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O P T I C S

Revealing non-Hermitian band structure of photonic 
Floquet media
Jagang Park1†‡, Hyukjoon Cho1†, Seojoo Lee1†, Kyungmin Lee1, Kanghee Lee1, Hee Chul Park2, 
Jung-Wan Ryu2, Namkyoo Park3, Sanggeun Jeon4, Bumki Min1*

Periodically driven systems are ubiquitously found in both classical and quantum regimes. In the field of photonics, 
these Floquet systems have begun to provide insight into how time periodicity can extend the concept of spatially 
periodic photonic crystals and metamaterials to the time domain. However, despite the necessity arising from the 
presence of nonreciprocal coupling between states in a photonic Floquet medium, a unified non-Hermitian band 
structure description remains elusive. We experimentally reveal the unique Bloch-Floquet and non-Bloch band 
structures of a photonic Floquet medium emulated in the microwave regime with a one-dimensional array of time-
periodically driven resonators. These non-Hermitian band structures are shown to be two measurable distinct 
subsets of complex eigenfrequency surfaces of the photonic Floquet medium defined in complex momentum space.

INTRODUCTION
Time-periodic driving of a physical system breaks time-reversal 
and/or time-translational symmetry, thereby enabling observation of 
exotic new phases of matter in a non- or quasi-equilibrium steady-
state setting, such as Floquet quantum Hall states and discrete time 
crystals (1–3). As in quantum systems ranging from irradiated Dirac 
matter to semiconductor quantum wells, a spin chain of trapped 
atomic ions (4) and spin impurities in diamond (5), classical systems 
can offer a route for observing these phases by virtue of mathematical 
analogy and the correspondence principle. For example, Floquet 
quantum Hall states, which were first predicted in irradiated graphene 
and observed in quantum wells and cold atom arrays (6–8), have been 
emulated with an array of spatially modulated optical waveguides 
(9–11) and acoustic and elastic metamaterials consisting of dynam-
ically modulated resonators (12–14). Equally important is that an 
array of driven coupled nonlinear resonators or even a cellular 
automaton has been recently suggested for observation of discrete 
time crystalline order in purely classical systems (15, 16).

Sophisticatedly designed photonic platforms have been one of 
the most prevalent and controllable testbeds for demonstration of 
exotic wave dynamics (17–25) and exhibit tremendous potential for 
imminent realization of time-periodically driven effective media. 
Wave propagation in periodically driven media can be rationalized 
based on an effective band analysis in the Floquet picture (2). More 
specifically, for space–time periodic media, the Bloch-Floquet theorem 
justifies the existence of Floquet sidebands generated by the driving. 
Therefore, the emergence of such sidebands and their interactions 
in the effective band description are the key to understanding wave 
propagation in space–time periodic media (26–33). In view of this, 
a new perspective on photonic Floquet media is now being provided 

by advances in non-Hermitian physics. As was theoretically noted, 
Maxwell’s equations with time-periodic nondispersive permittivity 
can be recast into an eigenvalue equation with a non-Hermitian 
Floquet Hamiltonian (29). More specifically, the driving-induced 
interaction between two counter-propagating modes is shown to be 
nonreciprocal, making the reduced Floquet Hamiltonian unitarily 
equivalent to a parity-time (PT) symmetric Hamiltonian (34, 35). 
One of the most notable insights provided by non-Hermitian physics 
is a completely different way of interpreting a momentum gap in a 
photonic Floquet medium as a broken PT [or unbroken anti-PT 
(APT)] phase with a pair of exceptional points being the gap edges 
along the real momentum axis (29, 36–38). Nevertheless, the emer-
gence of driving-dressed quasi-frequency bands of photonic Floquet 
media, which lie at the heart of understanding these emerging pho-
tonic platforms, has not been clearly verified, and thorough experi-
mental scrutinization is yet to come. Here, we take a step further than 
just experimentally reconstructing the Bloch-Floquet band structure 
and observing exceptional phase transitions. We show that compre-
hensive hidden information is embedded in complex eigenfrequency 
surfaces, the morphology of which can be further revealed by defining 
and measuring the non-Bloch band structure along a predetermined 
contour in complex momentum space. These two complementary 
measurable subsets of complex eigenfrequency surfaces of a pho-
tonic Floquet medium could provide a preview of the nonequilib-
rium dynamics of photonic Floquet media.

RESULTS
Modeling of photonic Floquet media
For emulation of a photonic medium with time-periodic permittivity 
(Fig. 1A), we consider an effective Floquet medium in the micro-
wave regime, in which a waveguide is loaded with a one-dimensional 
lattice of coupled time-periodically driven LC resonators (Fig. 1B). 
The necessity of large permittivity modulation leads us to use LC 
resonating unit cells in the construction of the Floquet medium, 
which, in turn, makes it inherently dispersive. Both the Bloch-Floquet 
and non-Bloch band structures of this space–time periodic effective 
medium can be analyzed by setting up a time-varying transmission 
line (TVTL) model consisting of lumped circuit elements. Specifi-
cally, by defining nodal variables of the circuit and corresponding 
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modal amplitudes, a Floquet Hamiltonian in momentum space 
can be derived, from which the exceptional phase transition can be 
systematically investigated (see the Supplementary Materials). For 
an undriven medium, the hybridization between a waveguide and 
a resonator mode results in two static Bloch bands ​∣​​1+​ 0 ​ ⟩​ and ​∣​​2+​ 0 ​ ⟩​, 
drawn with solid black lines in Fig. 1C (also drawn are two mirror 
symmetric negative frequency bands ​∣​​1−​ 0 ​ ⟩​ and ​∣​​2−​ 0 ​ ⟩​, with a line of 
symmetry being the momentum or wave number axis). In the pre-
ceding clarification, the static Bloch bands are labeled by ​∣​​m±​ 0 ​ ⟩​, where 
m denotes the lower (m= 1) or higher (m= 2) Bloch bands, with the 
following sign representing either a positive (+) or a negative (−) 
frequency. As a side note, the validity of the transmission line model 
is most clearly confirmed by its comparison with the static band 
structure obtained from full numerical simulations (see fig. S1).

Bloch-Floquet band structures and exceptional phase transitions
When the time-periodic modulation is turned on, Fourier sidebands 
can exist in the medium; for instance, two such sidebands, ​∣​​1−​ 1 ​ ⟩​ 

and ​∣​​2−​ 1 ​ ⟩​, are indicated by solid gray lines in Fig. 1C (where the 
superscript in the band labeling denotes the harmonic order of 
the driving involved in the formation of the sidebands). As a result, the 
static states can now be coupled to the sidebands at the band crossing 
points by a parametric nonreciprocal interaction. In this Bloch-Floquet 
framework, horizontal momentum gaps are opened because of the 
nonreciprocal coupling between the static band and the driving-
generated sideband of negative frequency (Fig. 1D). For example, the 
opening of a primary momentum gap (appearing at half the driving 
frequency, i.e., /2) is attributed to the nonreciprocal coupling and 
associated hybridization between ​∣​​1+​ 0 ​ ⟩​ and ​∣​​1−​ 1 ​ ⟩​. Two secondary 
momentum gaps are symmetrically located along the frequency axis 
with respect to the primary momentum gap frequency; the upper sec-
ondary gap is opened by the hybridization between ​∣​​2+​ 0 ​ ⟩​ and ​∣​​1−​ 1 ​ ⟩​, 
while the lower secondary gap is opened by the hybridization be-
tween ​∣​​1+​ 0 ​ ⟩​ and ​∣​​2−​ 1 ​ ⟩​.

The aforementioned qualitative description is clearly captured by 
considering the following 2 × 2 reduced effective Floquet Hamiltonian 

Fig. 1. Bloch-Floquet band structures and exceptional transitions. (A) Homogeneous Floquet medium with time-periodic permittivity. (B) Schematic illustration of a 
one-dimensional effective photonic Floquet medium consisting of spatially concatenated time-varying LC resonators and a waveguide. The resonator capacitance and, 
correspondingly, the resonance frequency are assumed to be time periodically modulated. Each of the resonators is capacitively coupled to the waveguide and induc-
tively coupled to its nearest-neighbor resonators. (C) Static band structure (drawn with black lines) of the undriven medium and creation of sidebands (drawn with gray 
lines) of negatively signed frequency in the photonic Floquet medium. The resonator and waveguide bands are drawn with dashed-dotted and dashed lines, respectively. 
(D) Formation of the primary (drawn with green lines) and secondary (drawn with blue and red lines) momentum gaps dressed by the driving-induced interaction 
between static bands and sidebands. Dashed lines are calculated without considering the interactions. (E) Complex eigenfrequencies plotted as a function of the real 
wave number in the proximity of the primary momentum gap. Mode coalescence behavior and exceptional transitions are observed at the edges of the primary momentum 
gap. The momentum gap is associated with the PT broken region. (F) Bloch sphere representation of eigenmodes ∣±⟩ at various wave numbers denoted by scatters in 
(E). (G) The mode coalescence and bifurcation occur at the north and south poles of the Bloch sphere.
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matrix that describes the interaction between the static band and the 
sideband (see the Supplementary Materials)

	​​ H​red​ F  ​(k ) = [​
​​ −​​(k ) +  

​ 
​​​ F  ​(k)

​  
− ​​​ F* ​(k)

​ 
​​ +​​(k)

​]​	
where −(+) is the modal frequency of the th (th) negative 
(positive) frequency band,  is the driving frequency, and ​​​​ F  ​​ is the 
driving-induced coefficient of coupling between the th negative and 
th positive frequency bands. In particular, for the interaction be-
tween two oppositely signed lower bands ​∣​​1+​ 0 ​ ⟩​ and ​∣​​1−​ 1 ​ ⟩​, the re-
duced Floquet Hamiltonian can be decomposed into the sum of an 
APT symmetric matrix and a scalar multiple of the identity matrix

	​​H​red​ F  ​(k ) = ​  ─ 2 ​ ​I​ 2​​ + [​
− ​​(​​ ​​ 1+​​(k ) − ​  ─ 2 ​​)​​​​ 

*
​
​ 

​​11​ F  ​(k)
​  

− ​​11​ F* ​(k)
​ 

​​ 1+​​(k ) −  ​  ─ 2 ​
​ ] = ​  ─ 2 ​ ​I​ 2​​ + ​H​APT​ F  ​(k)​	

Here, the dissipative loss of the resonators was included in the anal-
ysis through the use of the Rayleigh dissipation function, which makes 
the band frequencies −(+) intrinsically complex valued. We can 
also show that the APT symmetry of the reduced Floquet Hamiltonian 
matrix is preserved regardless of the inclusion of dissipative loss. 
Straightforwardly, the eigenvalues of the reduced Floquet Hamiltonian 
matrix (i.e., eigenfrequencies of dressed bands) are found to be

	​​​ ±​​(k ) = ​  ─ 2 ​ + jIm(​​ 1+​​) ± ​√ 
________________________________

    ​​(​​Re(​​ 1+​​ ) −  ​  ─ 2 ​​)​​​​ 
2
​ − Im ​(​​ 1+​​)​​ 2​ − ​∣​​11​ F  ​(k ) ∣​​ 

2
​ ​​	

The eigenfrequency plotted as a function of the real wave 
number signifies two distinct phases of the photonic Floquet 
medium (Fig. 1E). In the region of real wave numbers satisfy-

ing ​∣Re(​​ 1+​​ ) −  / 2∣< ​ √ 
____________________

  ​∣Im(​​ 1+​​ ) ∣​​ 2​ + ​∣​​11​ F  ​∣​​ 
2
​ ​​, the two complex 

eigenfrequencies become conjugate to each other (a broken PT or 
an unbroken APT phase), while the eigenvalues become distinctive 

Fig. 2. Experimental reconstruction of the Bloch-Floquet band structure. (A) Schematic illustration of the microwave Floquet medium comprising an array of driven 
LC resonators in a rectangular waveguide. (B) Geometry of a split-ring LC resonator patterned by a printed circuit board manufacturing process on a low-loss dielectric 
substrate. A varactor diode is soldered to the capacitive gap of the resonator. The geometrical parameters of the unit cell are designed as follows: ax = 80 mm, ay = 30 mm, 
w = 10 mm, and g = 1 mm. The spacing between the unit cells is set to 10 mm. Below is the plot of the inverse capacitance as a function of reverse bias voltage applied to 
the varactor diode (SMV1247, Skyworks). In the measurements, the Q-point was set by maximizing the signal parametrically oscillating at the primary momentum gap 
frequency. The orange line represents the variation in the inverse capacitance for the sinusoidal driving voltage excitation drawn with a green line. (C) Averaged trans-
mission spectra of the unit cells for bias voltages of 1, 3, and 5 V. Gray lines show individually measured transmission spectra of 24 different unit cells. (D to F) Two-dimensional 
Fourier transformed electric fields for modulation frequencies of (D) 4.6, (E) 4.65, and (F) 4.7 GHz. Theoretically calculated band structures are overlaid on the measured 
results with semitransparent violet lines. Middle panels are the horizontal cut of the transformed field along the real momentum axis at the primary momentum gap 
frequency. Bottom panels are the imaginary part of the eigenfrequency plotted as a function of wave number. The power spectral density of the radiation from the 
strongly driven Floquet medium is shown in the right panel. Sharp oscillating peaks are observed at momentum gap frequencies.
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real outside the region (an unbroken PT or a broken APT phase). 
Accordingly, exceptional phase transitions are explicitly revealed at 
the two edges of a momentum (or wave number) gap, where two 
mode coalescing singularities along the real momentum axis sepa-
rate the broken PT region (inside the momentum gap) from two 
unbroken PT regions (outside the momentum gap). This mode 
coalescence behavior of two eigenstates can also be visualized in the 
Bloch sphere representation (see Fig. 1F). With an increase in the 
momentum, the eigenstates coalesce and bifurcate at the lower 
momentum gap edge (corresponding to the south pole in the Bloch 
sphere), and they coalesce and bifurcate once more at the higher 
momentum gap edge (i.e., the north pole in the Bloch sphere). 
Notably, a non-Hermitian Hamiltonian matrix with nonreciprocal 
and/or dissipative coupling terms in its off-diagonal elements can 
be unitarily transformed into the matrix with gain and loss terms in 
its diagonal elements.

Experimental verification of Bloch-Floquet band structures
For experimental verification of Bloch-Floquet band structures and 
exceptional phase transitions, we constructed an effective Floquet me-
dium designed to operate at microwave frequencies by concatenating 
split-ring resonators inside a customized rectangular waveguide 
(Fig. 2A). Each resonator is embedded with a DC-biased varactor 
diode in the capacitive gap; through the application of an AC voltage 
to the diode terminals, direct modulation of the total capacitance 
and, correspondingly, the resonance frequency can be achieved 
(Fig. 2, B and C). Here, the driving strength 0 is defined as the 
modulation depth of the inverse resonator capacitance (see the Sup-
plementary Materials). As the first step in verifying the theoretical 
prediction, Bloch-Floquet band structures were experimentally 
reconstructed by mapping the spatiotemporal field evolution within 
the photonic Floquet medium. More specifically, we recorded the 
temporal evolution of the electric field radiated by a source antenna 
with a probe antenna scanning over the Floquet medium (see the 
Supplementary Materials). Then, a two-dimensional Fourier trans-
form of the measured electric field was used to reconstruct the 
Bloch-Floquet band structure. Here, note that the Floquet medium 
under test was finite sized along the propagation direction; for the 
first part, the number of unit cells (N) was set to 36 to ensure 
reasonable resolution along the momentum axis while keeping the 
external driving under optimal conditions. To test the validity of 
the experimental methodology, we first confirmed the emergence of 
driving-generated sidebands ​∣​​1+​ 1 ​ ⟩​ and ​∣​​2+​ 1 ​ ⟩​ from the positive fre-
quency lower bands (see fig. S2 for the case of driving at 0.6 GHz).

The driving-generated sidebands of a negative frequency state, 
which is of even greater interest, can be resolved, in principle, once 
the driving frequency exceeds approximately twice the lower band 
cutoff, i.e.,  ≳ 2c1. In Fig. 2 (D to F), these sidebands of negative 
frequency and resulting dressed bands are visualized in the recon-
structed Bloch-Floquet band structure, on which theoretically cal-
culated bands are overlaid (the real eigenfrequencies are drawn with 
semitransparent violet lines). The opening of momentum gaps can 
be confirmed by clarifying the locations of high transformed field 
intensities in the reconstructed Bloch-Floquet band structure, which 
can be attributed in part to the existence of a temporally growing 
mode of complex-valued eigenfrequency with a positive imaginary 
part (see Fig. 1E). This observation can be made clearer by plotting 
the transformed field intensity as a function of the momentum at 
half the driving frequency (Fig. 2, D to F, middle) and comparing it 

with the calculated imaginary part of the eigenfrequency. According 
to the comparison, the peak field intensity position on the momentum 
axis, at which the maximal net gain is expected, is in good agree-
ment with the analysis (Fig. 2, D to F, bottom). The theoretical 
prediction is also supported by measured standing wave–like mode 
field patterns near the two edges of the primary momentum gap 
(see fig. S3). Specifically, the temporal phase shift of ~/2 in between 
is analogous to the spatial phase shift of /2 between the (energy) 
band edge modes of a spatially periodic photonic structure.

Here, several more remarks can be made on the momentum gaps 
in the Bloch-Floquet band structure. First, the primary momentum 
gap widens as half the driving frequency approaches the frequency 
of the band edge from the lower side (under the condition of con-
stant driving strength). This is in part due to the modal energy be-
ing confined more in the resonators than in the waveguide near the 
band edges. Second, the midgap location of the primary momentum 
gap, i.e., the midpoint (in wave number) between the left and right 
edges of a horizontal momentum gap, lies approximately on the 
static Bloch band ​∣​​1+​ 0 ​ ⟩​. This is attributed to the fact that the primary 
momentum gap starts to open at the intersection of ​∣​​1+​ 0 ​ ⟩​ and ​∣​​1−​ 1 ​ ⟩​ 
with an increase in driving strength. This observation can also be 
confirmed by calculating the midgap location as a function of the 
driving frequency and comparing it with the measured data (Fig. 3A). 
Last, the intensity peak at a lower wave number (ka/2 ~ 0.06) ob-
served for a higher driving frequency (Fig. 2, D to F, middle and 
bottom) is indicative of opening of a tertiary gap at the primary gap 
frequency. This tertiary gap originates from the hybridization be-
tween ​∣​​2+​ 0 ​ ⟩​ and ​∣​​2−​ 1 ​ ⟩​ and can be observed for a driving frequency 
higher than approximately twice the higher band cutoff ( ≳ 2c2).

Another compelling argument in support of opening of momentum 
gaps and occurrence of exceptional transitions is provided by the 
spectral measurement of noise-initiated in-gap mode parametric 
oscillation. In these experiments, in contrast to the Bloch-Floquet 
band structure reconstruction measurements, the power spectral 

Fig. 3. Identification of momentum gap locations in the Bloch-Floquet band 
structure. (A) Plot of midgap wave numbers as a function of the driving frequency (for 
the primary momentum gap). Theoretically calculated midgap wave numbers at which 
the imaginary part of the complex eigenfrequency becomes maximized are drawn with 
a black line. Experimentally measured midgap wave numbers are estimated from the 
locations of Fourier transformed intensity maxima at the primary momentum gap 
frequencies. (B) Plot of momentum gap frequencies as a function of the driving fre-
quency. Primary and secondary momentum gap frequencies are estimated from the 
experimentally measured parametric oscillation frequencies (see Fig. 2, D to F) and 
compared with the theoretical predictions from the TVTL model (drawn with lines). 
Parametric oscillations are attributed to the loss-compensated unstable modes inside 
the primary (green) and secondary (top; blue, bottom; red) momentum gaps.
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density of the field radiated from the Floquet medium was recorded 
without any source signal being provided. When the driving strength 
is increased up to the point where the total loss of the Floquet medium 
is compensated by the parametric gain within the gap, a noise-initiated 
oscillating behavior is induced (see fig. S4). Then, the precise frequency 
of the primary gap and the approximate frequencies of secondary 
gaps at which the net gain is maximized can be identified by 
the spectral positions of the parametrically oscillating peaks (see 
Fig. 2, D to F, vertical panels). As predicted, secondary momentum 
gaps are observed near the spectral positions where ​∣​​2+​ 0 ​ ⟩​ and ​∣​​1−​ 1 ​ ⟩​, 
or ​∣​​1+​ 0 ​ ⟩​ and ​∣​​2−​ 1 ​ ⟩​, are presumed to cross in the absence of cou-
pling (1− +  = 2+, or 2− +  = 1+) (28, 31). By tracking the 
oscillation frequencies with the variation in the driving frequency 
(Fig. 3B), we confirmed that the secondary momentum gaps are 
always symmetrically positioned along the frequency axis with 
respect to the primary gap, as predicted by theory.

Complex eigenfrequency surfaces and non-Bloch  
band structures
In the aforementioned discussions, all the observed and measured 
phenomena are interpreted on the basis of the relationship between 
complex energy and real momentum. Now, we will investigate 

the characteristics of photonic Floquet media within the non-Bloch 
framework. For this purpose, we measured the phase retardation of 
a wave of various frequencies passing through a finite-sized Floquet 
medium (N = 24) (39). Here, note that this measurement scheme is 
valid only when the driving strength 0 is maintained relatively low; 
this condition ensures that parametric gain-enhanced multiple re-
flection can be assumed to be minimal (see fig. S5). Within the driving 
strength regime where the single-pass approximation is valid, a 
real-valued modal wave number can be assigned to the wave of a 
given (real-valued) frequency as kr = /(Nd), where  is the mea-
sured phase retardation and d is the thickness of the unit cell. The 
non-Bloch band structure probed by this measurement protocol 
enables us to reveal the morphology of complex eigenfrequency 
surfaces of the Floquet medium in complex momentum space. 
Notably, the complex eigenfrequency surfaces also contain the 
Bloch-Floquet band structure as a subset, i.e., the intersections of 
the surfaces with the plane defined by Im(k) = 0. Therefore, knowledge 
of both band structures can provide a more in-depth understanding 
of the photonic Floquet medium. To illustrate this, theoretically 
calculated real and imaginary eigenfrequency surfaces are plotted in 
complex momentum space for three different values of the driving 
strength (Fig. 4, A to F). As observed in the plots, the real (or 

Fig. 4. Complex eigenfrequency surfaces and non-Bloch band structures. (A to C) Imaginary eigenfrequency surfaces plotted in complex momentum space for three 
distinct values of the driving strength, i.e., weak driving (0 < c), critical driving (0 = c), and strong driving (0 > c). The imaginary eigenfrequency surfaces consisting of 
a pair of curved sheets are color-coded by the values of their imaginary part. The zero imaginary eigenfrequency contours are drawn with cyan-colored lines. Bottom 
panels show the enlarged view of the imaginary frequency bifurcation (solid black lines) on the surface of Im(k) = 0, and the dotted cyan lines are located at Im() = 0. 
(D to F) Real eigenfrequency surfaces plotted in complex momentum space for three distinct values of the driving strength, i.e., weak driving (0 < c), critical driving 
(0 = c), and strong driving (0 > c). The real eigenfrequency surfaces consisting of a pair of curved sheets are color-coded by the values of their corresponding imaginary 
eigenfrequency. Here, the black lines (drawn on the surface) are the real eigenfrequencies corresponding to the complex momenta on cyan-colored contours (i.e., zero 
imaginary eigenfrequency contours). Shown on the sidewall are the non-Bloch band structures that can be obtained from phase retardation measurements (see Fig. 5). 
Note that phase discontinuity is observed only for strong driving (highlighted by a yellow-colored area).
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imaginary) eigenfrequency surface is composed of a pair of curved 
sheets, the characteristics of which are signified by two exceptional 
points in complex momentum space (see fig. S6). In Fig. 4 (A to F), 
we can observe that a driving-induced surface morphological change 
is more pronounced in the region of complex momenta with real 
values approximately falling in the momentum gap. In contrast, 
a change in the resonator dissipation rate (see the resistors in 
Fig. 1B) leads to preferential bending and leveling of the surfaces 
near the band edge (see figs. S6 and S7 for an expanded view of 
driving- and dissipation-induced changes in the complex eigen-
frequency surfaces).

These results prove that the performed phase retardation mea-
surement can be thought of as a selection process that samples only 
a subset of the real eigenfrequency surfaces in a designated way. The 
selection rule imposes the condition that the imaginary eigenfrequency 
must be zero, i.e., Im() = 0, which can be justified based on the ob-
served steady-state behavior of the photonic Floquet medium. This 
steady-state condition enables us to define contours in complex mo-
mentum space (as denoted by cyan-colored contours in Fig. 4, A to C) 
and to construct the non-Bloch band structure from the real eigen-
frequencies evaluated along these contours (see black lines on the 
real eigenfrequency surface and their projection onto the sidewalls 
in Fig. 4, D to F). For the case of weak driving (0 < c), the imaginary 
part of the eigenfrequency bifurcates within the momentum gap, 
but the sign is still negative due to dissipation-induced lowering 
of the eigenfrequency surfaces (see Fig. 4A). Then, the selection 
rule guarantees phase continuity along the real momentum axis 
at half the driving frequency (Fig. 4D). In contrast, for the case of 
strong driving (0 > c), the sign of a larger bifurcated imaginary 
eigenfrequency becomes positive near the real momentum axis, 
changing the zero imaginary eigenfrequency contours such that a 
phase discontinuity occurs along the real momentum axis at half 
the driving frequency (see Fig. 4, C and F). These two driving 
regimes are differentiated at a critical driving strength (0 = c), 
where the larger of bifurcated imaginary eigenfrequencies becomes 
zero (Fig. 4, B and E).

Complex Brillouin zone
The difference between non-Bloch and Bloch-Floquet band struc-
tures can be clearly noted by plotting the corresponding Bloch phase 
factors  ≡ exp (jk) for two subsets of complex momentum defined 
by Im() = 0 and Im(k) = 0. The latter condition ensures that the 
Bloch phase factor Im(k) = 0 takes continuous values on a unit circle 
centered at the origin of the Gauss plane (drawn with black dashed 
lines in Fig. 5, A to C), which represents the conventional Brillouin 
zone for the Bloch-Floquet band structure. In contrast, the Bloch 
phase factor Im() = 0 does not trace the unit circle (drawn with cyan 
lines in Fig. 5, A to C), the consequences of which are reflected in 
the non-Bloch band structure measured in the steady state. More 
specifically, for the case of strong driving (0 > c), the trace of Im() = 0 
no longer encircles the origin but exhibits gaps in the angular direc-
tion (highlighted by yellow sectors in Fig. 5C). The angular gaps in 
the trace imply that there exists a finite range of Re(k) for which 
real-valued eigenfrequencies are absent. Therefore, the non-Bloch 
band structure projected onto the Re(k)-Re() plane exhibits a dis-
continuous jump along the real momentum axis at the primary mo-
mentum gap frequency. This is in stark contrast to the immediate 
opening of momentum gaps in the Bloch-Floquet band structure, 
which is observed regardless of the driving strength (see Fig. 4, D to I). 

As shown in the reconstructed non-Bloch band structures (Fig. 5, 
D to F), an abrupt phase jump is observable only when the driving 
strength becomes larger than the critical value, which is in a good 
agreement with the theoretical prediction. As demonstrated, the 
non-Bloch band structure reconstruction, when combined with 
variations in parameters (e.g., driving strength or the rate of dissi-
pation), can provide sectional information on the morphology of 
complex eigenfrequency surfaces in complex momentum space, which 
calls for a further in-depth investigation on how the non-Hermiticity 
of photonic Floquet media manifests itself in complex momentum 
space (40–42).

Fig. 5. Comparison between non-Bloch and Bloch-Floquet band structures. 
(A to C) Traces of the Bloch phase factor  = exp (jk) plotted on the complex plane 
for two different subsets of complex momentum. One is based on the conven-
tional definition of the Brillouin zone (denoted by a dashed black unit circle; ∣∣ = 1), 
and the other is based on the extended Brillouin zone from steady-state phase 
retardation measurements [drawn with a cyan solid line; Im() = 0]. Here, the 
complex Brillouin zone is introduced for interpretation of measured phase retarda-
tion data. For strong driving, angular gaps in the traces of the Bloch phase factor 
are highlighted with yellow sectors. (D to F) Theoretically calculated Bloch-Floquet 
band structure defined on the real momentum axis (denoted by dashed black lines) 
and non-Bloch band structures (denoted by cyan solid lines). The non-Bloch band 
structures are reconstructed from the phase retardation measurements at three 
different values of the driving strength approximately corresponding to (D) weak, 
(E) critical, and (F) strong driving (with the power being measured before splitting 
the driving signal). The black dots represent the measured data, while the gray 
dots are the mirror-reflected ones with a line of symmetry being the momentum 
gap frequency  = /2. The yellow region in (F) is associated with the angular 
gaps shown in (C).
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DISCUSSION
Although one of the most intriguing features of a photonic Floquet 
medium is the creation of sidebands of negative frequency and their 
interactions leading to exceptional phase transitions, the interpreta-
tion of experimental observations given here is based on a linearized 
model. In the strong driving regime, however, ignoring nonlinearity 
along with dissipation and fluctuation becomes increasingly difficult. 
This implies that a thorough understanding of these effects is re-
quired for characterization of exotic new phases in nonequilibrium 
photonic matter. In this regard, nonreciprocal phase transitions in 
active matter seem to share many features in common with the pro-
posed nonequilibrium photonic Floquet medium, which coherently 
exchanges energy with its environment (16, 43, 44). In particular, 
classical many-body effects can be manifested by nonlinearity; 
whether a subharmonic spectral component arising at the momentum 
gap is associated with many-body time crystalline behavior would 
be an especially interesting question for which further investigation 
is highly demanded. Considered from another perspective, the pro-
posed platform is reminiscent of classical coherent Ising machines 
constructed by coupling nonlinear oscillators for solving computa-
tionally hard problems (45). The complex band structure analysis 
also provides a new perspective on designing driven nonlinear 
photonic devices such as parametric amplifiers, oscillators, and iso-
lators. Last, photonic Floquet media are an effective spatiotemporal 
matter platform generalized from conventional spatially periodic 
structures and are poised to create a new area of research in non-
Hermitian photonics.

MATERIALS AND METHODS
Transmission line modeling of static band structures
We established a TVTL model with lumped circuit elements to 
analyze Floquet media, the properties of which are simultaneously 
dispersive and time varying. The static band structure can be ob-
tained simply by assuming that none of the constituting circuit 
elements of the TVTL are time varying. The model consists of a 
chain of driven LC resonators and a bus waveguide, as depicted in 
Fig. 1B. The constituting resonators are assumed to be capacitively 
coupled to the waveguide and inductively coupled to their nearest 
neighbors. The Lagrangian can be given as a function of accumulated 
charge and electric current (Q and ​​Q ̇ ​​) at every nodal point and cir-
cuit element of the TVTL

	​​

​ℒ  = ​ ∑ 
n
​ ​​​(​​ ​ 

1 ─ 2 ​ ​L​ 0​​ ​∣​​Q ̇ ​​n​ ​L​ 0​​​∣​​ 
2
​ + ​ 1 ─ 2 ​ ​L​ s​​ ​∣​​Q ̇ ​​n​ ​L​ s​​​∣​​ 

2
​ + ​ 1 ─ 2 ​ ​L​ r​​ ​∣​​Q ̇ ​​n​ ​L​ r​​​∣​​ 

2
​+​

​    
​​∑ 

i
​ ​​ ​ M​ i​​ ​​Q ̇ ​​n​ ​L​ r​​​ ​​Q ̇ ​​n+i​ 

​L​ r​​ ​  − ​ ​∣​Q​n​ a ​∣​​ 2​ ─ 2 ​C​ 0​​ ​  − ​ ​∣​Q​n​ b ​∣​​ 
2
​ ─ 2 ​C​ r​​

 ​  − ​ ​Q​n​ a ​ ​Q​n​ b ​ ─ ​C​ g​​
 ​​

)
​​​
 ​​	

where L0, Ls, C0, Lr, Cr, Mi, and Cg are the series inductance, shunt 
inductance and shunt capacitance of the bus waveguide, inductance 
and capacitance of the resonator, mutual inductance between ith 
nearest-neighbor resonators, and coupling capacitance between the 
resonator and the bus waveguide. The superscripts on ​​Q ̇ ​​s indicate 
the circuit elements conducting the electric current, while the super-
scripts a and b on Qs denote the waveguide and resonator nodes, 
respectively. The Legendre transformation of the Fourier transformed 
Lagrangian gives the Hamiltonian in momentum space as a function 
of charge and node flux (Q and ), which are the canonical variables 
for electric circuits. By defining modal amplitudes of the waveguide 

(a) and the coupled resonators (b) as linear combinations of these 
canonical variables, the Hamiltonian can be written as

	​​ H​ ​​  = ​ ​ ​​(​a​​ † ​ ​a​ ​​ + ​a​−​ † ​ ​ a​ −​​ ) / 2 + ​​ ​​(​b​​ † ​ ​b​ ​​ + ​b​−​ † ​ ​ b​ −​​ ) / 2 − ​g​ ​​ [ (​a​​ † ​ + ​
a​ −​​ ) (​b​ ​​ + ​b​−​ † ​  ) + (​b​​ † ​ + ​b​ −​​ ) (​a​ ​​ + ​a​−​ † ​  ) ] / 2​	

where  and  are the frequencies of the bus waveguide and the 
coupled resonator with momentum , respectively, and g is the 
coefficient of coupling between these two modes, which are found 
as follows:

	​​ ​ ​​  = ​ √ 
________________________

   1 / ​L​ s​​ ​C​ 0​​ + [4 ​sin​​ 2​( / N )  ] / ​L​ 0​​ ​C​ 0​​ ​​	

	​​ ​ ​​  =  1 / ​√ 
_____________________

   [​L​ r​​ + ​Σ​ i​​ ​M​ i​​ cos(2 / N ) i ] ​C​ r​​ ​​	

	​​ g​ ​​  = ​ √ 
_

 ​C​ 0​​ ​C​ r​​ ​​ ​​ ​​ ​​ ​ / 2 ​C​ g​​​	

On the basis of mode amplitudes ​(​a​ ​​, ​b​ ​​, ​a​−​ † ​ , ​b​​ † ​)​, the effective 
Hamiltonian is found in the form of a matrix as

	​​​    H ​​ ​​  = ​  1 ─ 2 ​ [ ​ 

​​ ​​

​ 

− ​g​ ​​

​ 

0

​ 

− ​g​ ​​

​  
− ​g​ ​​

​ 
​​ ​​

​ 
− ​g​ ​​

​ 
0

​  0​  ​g​ ​​​  − ​​ ​​​  ​g​ ​​​  

​g​ ​​

​ 

0

​ 

​g​ ​​

​ 

− ​​ ​​

​]​	

Then, by calculating eigenvalues of ​​​   H ​​ ​​​, the exact static band struc-
ture of the model can be found to be

	​​ ​1​ 2​  = ​  1 ─ 2 ​ [ (​​​ 2 ​ + ​​​ 2 ​ ) − ​√ 
________________

  ​(​​​ 2 ​ − ​​​ 2 ​)​​ 
2
​ + 16 ​​ ​​ ​​ ​​ ​g​​ 2 ​ ​]​	

	​​ ​2​ 2​  = ​  1 ─ 2 ​ [ (​​​ 2 ​ + ​​​ 2 ​ ) + ​√ 
________________

  ​(​​​ 2 ​ − ​​​ 2 ​)​​ 
2
​ + 16 ​​ ​​ ​​ ​​ ​g​​ 2 ​ ​]​	

For the sake of simplicity, an approximated Hamiltonian can be 
obtained by applying the rotating-wave approximation

	​​ H​ ​​  = ​ ​ ​​ ​a​​ † ​ ​a​ ​​ + ​​ ​​ ​b​​ † ​ ​b​ ​​ − ​g​ ​​(​b​​ † ​ ​a​ ​​ + ​a​​ † ​ ​b​ ​​)​	

which can be used to derive approximate static band structures of 
the transmission line model

	​​ ​ 1±​​  =  ± ​ 1 ─ 2 ​ [ (​​ ​​ + ​​ ​​ ) −  ​√ 
____________

  ​(​​ ​​ − ​​ ​​)​​ 2​ + 4 ​g​​ 2 ​  ​ ] ≈  ± ​√ 
_

 ​​1​ 2​ ​​	

	​​ ​ 2±​​  =  ± ​ 1 ─ 2 ​ [ (​​ ​​ + ​​ ​​ ) +  ​√ 
____________

  ​(​​ ​​ − ​​ ​​)​​ 2​ + 4 ​g​​ 2 ​ ​ ] ≈  ± ​√ 
_

 ​​2​ 2​ ​​	

These approximated static band structures are drawn in Fig. 1C.

Bloch-Floquet band structures of the TVTL
For the calculation of Bloch-Floquet band structures, we first assumed 
that the resonator capacitance is periodically driven as Cr(t) = Cc/
[1 + (t)] with a temporal periodicity of 2/; this assumption makes 
the Hamiltonian time periodic, i.e., H(t + 2/) = H(t). The tem-
poral periodicity allows us to use the Fourier series expansion of the 
Hamiltonian, ​​H​ ​​(t ) = ​∑ q​ ​​ exp(− jqt ) ​H​​ q ​​, and choose the solution 
of the Floquet form ​​​ ​​(t ) = exp(− jt ) ​∑ q​ ​​ exp(− jqt ) ​​​ q ​​. Conse-
quently, the Hamilton’s equations can be rearranged into a set 
of time-independent equations using the orthogonality of har-
monic terms. The equations can be recast into an eigenvalue 



Park et al., Sci. Adv. 8, eabo6220 (2022)     7 October 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 9

problem with the following time-independent effective Floquet 
Hamiltonian matrix

	​​​    H ​​​ F ​  =  [​

⋱

​ 

 

​ 

 

​ 

 

​ 

 

​   
 
​ 

​​   H ​​​ 0 ​ + I
​ 

​​   H ​​​ −1​
​ 

​​   H ​​​ −2​
​ 

 
​    ​  ​​   H ​​​ +1​​  ​​   H ​​​ 0 ​​  ​​   H ​​​ −1​​   ​   

 

​ 

​​   H ​​​ +2​

​ 

​​   H ​​​ +1​

​ 

​​   H ​​​ 0 ​ − I

​ 

 

​   

 

​ 

 

​ 

 

​ 

 

​ 

⋱

​]​	

The size of the Floquet Hamiltonian matrix depends on the har-
monic order considered in the analysis and determines the number 
of shifted replicas of static bands appearing in the band structure. In 
the case where (t) is sinusoidal, i.e., (t) = 0 cos (t + φ0), we can 
truncate the Floquet Hamiltonian matrix up to the first harmonic 
order without significant loss of accuracy. The calculated Bloch-Floquet 
band structures are shown in Fig. 1D and overlaid on the experi-
mentally measured band structure in Fig. 2.

The Materials and Methods section should provide sufficient 
information to allow replication of the results. Begin with a section 
titled Experimental Design describing the objectives and design of 
the study as well as prespecified components.

Reduced Floquet Hamiltonian
The opening of a gap along the momentum axis is attributed to the 
nonreciprocal coupling between two dominant bands participating 
in the interaction, one of which is the static band and the other is 
the sideband. Therefore, the formation of dressed bands due to the 
driving-induced interaction between those two bands can be intui-
tively understood by constructing a 2 × 2 effective Hamiltonian matrix, 
the so-called reduced Floquet Hamiltonian. With the rotating-
wave approximation followed by a basis transformation, the 
static component of the Floquet Hamiltonian can be diagonalized:  
​​​ 
_

 H ​​​ 0 ​  = ​ P​​ −1​ ​​   H ​​​ 0 ​ P  =  diag(​​ i±​​)​. Then, the reduced Floquet Hamiltonian 
is obtained by choosing only four elements from the entire Floquet 
Hamiltonian considering the driving-induced interaction between 
the involved bands. For the lossless case, the nonreciprocal coupling 
coefficients for the first-order sideband of the th band and the static 
th band are found to be

	​​ ​​ F  ​  = ​   ​​ ​​ ─ 
​​2​ * ​ − ​​1​ * ​

 ​ ​ ​​ ​​ ​​ 0​​ ─ 4 ​ ​ e​​ j​φ​ M​​​​	

where () ≡  − +(+). The reduced Bloch-Floquet band struc-
tures calculated from the reduced Floquet Hamiltonian are used for 
the non-Hermitian physics-based analyses in the main manuscript.

Inclusion of dissipative loss in resonators
The resonator dissipative loss can be considered by introducing the 
Rayleigh dissipation function and adding the corresponding non-
conservative force into the equation of motion. A serially connected 
resistor is included in each constituting LC resonator as a source of 
dissipation. Then, the Rayleigh dissipation function in momentum 
space is found to be

	​​ ℱ​ ​​  = ​  1 ─ 2 ​ R ​∣​​Q ̇ ​​​ b ​∣​​ 
2
​  = ​ ​ ​​ ​​ ​​(​b​​ † ​ − ​b​ −​​ ) (​b​−​ † ​  − ​b​ ​​)​	

where  is the loss rate proportional to the resistance. By including 
the dissipative loss, the frequency of the static band becomes intrin-
sically complex valued as follows:

	​​ ​ 1+​​  = ​  1 ─ 2 ​ [ (​​ ​​ + ​​ ​​ − j ​​ ​​ ) −  ​√ 
________________

  ​(​​ ​​ − ​​ ​​ + j ​​ ​​)​​ 2​ + 4 ​g​​ 2 ​ ​ ] = − ​​1−​ * ​​	

	​​ ​ 2+​​  = ​  1 ─ 2 ​ [ (​​ ​​ + ​​ ​​ − j ​​ ​​ ) +  ​√ 
________________

  ​(​​ ​​ − ​​ ​​ + j ​​ ​​)​​ 2​ + 4 ​g​​ 2 ​ ​ ] = − ​​2−​ * ​​	

The band structures considering the dissipative loss were used to 
interpret the phase retardation measurements and non-Bloch band 
structures shown in Figs. 4 and 5.

Fabrication of samples and preparation of the 
measurement setup
The split-ring resonators comprising the photonic Floquet medium 
were patterned on low-loss dielectric substrates (RO4350B 30MIL, 
Rogers) by a printed circuit board manufacturing process. Then, a 
varactor diode (SMV-1247, Skyworks) was soldered to the resonator 
split gap and connected via an SMA (Sub-Miniature A) connector to 
external driving circuitry for periodic capacitance modulation 
(see Fig. 2B for the design of unit cells and their operation). The 
driving signal was generated and amplified by a signal generator 
(E4438C, Keysight) and a radio frequency amplifier (RUM43020-10, 
RFHIC), while its power was monitored before distributing the sig-
nal to the constituting unit cells. Each resonator was DC-biased using 
a bias tee (ZX85-40 W-63-S+, Mini-Circuits), and the operating DC 
bias voltage was optimized to ensure the large opening of a primary 
momentum gap. For spatiotemporal electric field probe scanning mea
surements, a rectangular waveguide with a DC servo-controlled mov
able upper plate was custom-made, and a quarter-wave monopole 
antenna was attached to the movable upper plate. In addition, a com
mercially available waveguide was used for the phase retardation and 
parametric oscillation measurements. Both waveguides have the same 
dimensions as the standard WR430 rectangular waveguide, whose 
recommended operation band ranges from 1.72 to 2.60 GHz. Sche-
matics of the experimental setups are depicted in fig. S8.

Bloch-Floquet band structure construction by spatiotemporal 
field probing
The number of unit cells used to probe the Bloch-Floquet band struc-
ture was set to 36 to ensure maximal momentum space resolution 
under realistic driving conditions. In all the measurements, the dis-
tance between the nearest-neighbor unit cells was fixed to 10 mm. To 
provide a seeding field for spatiotemporal modal evolution inside the 
Floquet medium, an on-off keying signal (N5171B, Keysight) with a 
variable (angular) carrier frequency () was fed into the input port 
of the waveguide (see fig. S8). To synchronize the acquisition at dif-
ferent spatial probe positions, a rising signal edge was used to trigger 
the whole measurement sequence. Experimental data were monitored 
with a spectrum analyzer (E4404B, Keysight) and a digital oscilloscope 
(DPO70804, Tektronix). To obtain high resolution along the frequency 
axis, the input frequency was scanned in 10-MHz steps. Then, the 
acquired spatiotemporal field was Fourier-transformed to reconstruct 
the Bloch-Floquet band structures. For clear visualization of static 
bands and Floquet sidebands, we mainly used three spatially re-
solved spectral components (,  −  and /2), and the Bloch-Floquet 
band was reconstructed by merging each spectral component with 
normalized amplitude on the frequency axis.

Non-Bloch band construction by phase  
retardation measurement
For characterization of phase retardation and construction of 
non-Bloch band structures, three measurements were sequentially 
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performed (see fig. S8). First, the phase retardation through an empty 
waveguide and a static resonator-loaded waveguide was measured 
as a function of frequency. Here, the measurement on the empty 
waveguide was used to subtract the phase retardation accumulated 
along the path outside the Floquet medium (i.e., the path from 
the source to the medium and the medium to a detector). We first 
checked the validity of this measurement scheme by reconstructing 
the static band structure and comparing it with the theoretically cal-
culated structure. With driving on, the same measurement gives the 
non-Bloch band structures shown in the main manuscript (Fig. 5). 
For clear visualization of the driving-induced sidebands of negative 
frequency states, we mirror-imaged the measured curves with re-
spect to the momentum gap frequency.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo6220
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