
UC Irvine
UC Irvine Previously Published Works

Title
Beyond visual inspection: capturing neighborhood dynamics with historical Google Street 
View and deep learning-based semantic segmentation

Permalink
https://escholarship.org/uc/item/5k85f33k

Authors
Kim, Jae Hong
Ki, Donghwan
Osutei, Nene
et al.

Publication Date
2023

DOI
10.1007/s10109-023-00420-1

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, available at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5k85f33k
https://escholarship.org/uc/item/5k85f33k#author
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


1 
 

Beyond visual inspection: Capturing neighborhood dynamics with historical Google Street 
View and deep learning-based semantic segmentation 

 
Accepted Version 

 
(Note: Published in Journal of Geographical Systems 

doi: 10.1007/s10109-023-00420-1 
This version of the article has been accepted for publication, after peer review but is not 

the Version of Record and does not reflect post-acceptance improvements, or any 
corrections. The Version of Record is available online at: 

https://link.springer.com/article/10.1007/s10109-023-00420-1 Use of this Accepted Version 
is subject to the publisher's Accepted Manuscript terms of use 

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms) 
 

Jae Hong Kim 
Department of Urban Planning and Public Policy 

University of California, Irvine 
Email: jaehk6@uci.edu 

 
Donghwan Ki 

Department of City and Regional Planning 
Ohio State University, Columbus, USA 

Email: ki.17@osu.edu 
 

Nene Osutei 
 Department of Urban Planning and Public Policy 

University of California, Irvine 
Email: nosutei@uci.edu  

 
Sugie Lee 

Department of Urban Planning & Engineering 
Hanyang University 

Email: sugielee@hanyang.ac.kr  
 

John R. Hipp 
Department of Criminology, Law and Society and Department of Sociology 

University of California, Irvine 
Email: hippj@uci.edu  

 
  

https://link.springer.com/article/10.1007/s10109-023-00420-1
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
mailto:jaehk6@uci.edu
mailto:ki.17@osu.edu
mailto:nosutei@uci.edu
mailto:sugielee@hanyang.ac.kr
mailto:hippj@uci.edu


2 
 

Beyond visual inspection: Capturing neighborhood dynamics with historical Google Street 

View and deep learning-based semantic segmentation 

 

Abstract: While street view imagery has accumulated over the years, its use to date has been 

largely limited to cross-sectional studies.  This study explores ways to utilize historical Google 

Street View (GSV) images for investigation of neighborhood change.  Using data for Santa Ana, 

California, an experiment is conducted to assess to what extent deep learning-based semantic 

segmentation, processing historical images much more efficiently than visual inspection, enables 

one to capture changes in the built environment.  More specifically, semantic segmentation 

results are compared for (1) 248 sites with construction or demolition of buildings and (2) two 

sets of the same number of randomly selected control cases without such activity.  It is found that 

the deep learning-based semantic segmentation can detect nearly 75% of the construction or 

demolition sites examined, while screening out over 60% of the control cases.  The results 

suggest that it is particularly effective in detecting changes in the built environment with 

historical GSV images in areas with more buildings, less pavement, and larger-scale construction 

(or demolition) projects.  False positive outcomes, however, can emerge due to the imperfection 

of the deep learning model and the misalignment of GSV image points over years, showing some 

methodological challenges to be addressed in future research.   
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1. Introduction 

 

Increasing availability of street view images and advanced image analysis techniques have 

dramatically enhanced our ability to analyze the built environment and associated neighborhood 

phenomena more effectively.  Over the past decade or so, researchers have started to take 

advantage of these promising tools in various ways.  Google Street View (GSV) images, for 

instance, are increasingly used to precisely measure street-level greenery and other built 

environment characteristics that are known to have significant implications for residents’ 

physical activities, urban vitality, neighborhood safety, and housing values, to name a few (see, 

e.g., Lu, 2019; Ito and Biljecki, 2021; Wang and Vermeulen, 2021; Hipp et al., 2022; Kang et al., 

2021).  Recent years have also seen the rise of large-scale projects in which machine learning 

techniques are employed for semantic segmentation and thereby more efficient use of street view 

imagery (Kim et al., 2021).    

A relatively unexplored area is the (potential) use of historical street view images that 

could allow researchers to capture changes in the built environment over time.  To date, most 

studies using GSV (or similar sources of street view images) have exploited the imagery in a 

cross-sectional fashion.  The longitudinal use of historical GSV is scarce in the literature, 

although it can open up new avenues of research, particularly when other sources of data for 

what had existed or happened in the past are unavailable.  The small number of existing use 

cases have also been limited to small-scale projects in which the historical GSV images of 

selected sites are manually inspected sometimes for verification of what is found from analysis 

of other sources of (non-imagery) information (see, e.g., Gallagher et al., 2019; Yin et al., 2019; 

and Section 2 for more details).   
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Given its great potential as a tool for detecting (micro-level) changes in the built 

environment over time, in this study, we examine how historical GSV can be used more 

efficiently for large-scale urban and environmental research.  Specifically, although there are 

various machine learning techniques for classifying historical GSV images, we utilize one that 

represents the current state of the art: deep learning-based semantic segmentation.  We 

demonstrate how this technique can capture changes in the built environment, and we devise an 

experiment to assess its efficacy.  Using data for a city with a population of approximately 

330,000 (Santa Ana, California), our experiment is designed to compare semantic segmentation 

results (changes in the segmentation results, more precisely) for (1) 248 construction or 

demolition sites and (2) two sets of the same number of randomly selected control cases without 

such activity in the city.  In other words, this experiment enables us to assess to what extent a 

semantic segmentation approach can capture changes in the built environment with historical 

GSV images.    

We anticipate that our results will shed light on the potential opportunities and challenges 

associated with utilizing historical street view images to capture environmental change.  We not 

only assess the ability of the technique to capture environmental change, but also assess in which 

circumstances the strategy is more likely to successfully detect changes in the streetscape while 

minimizing false positive cases.  By doing so, we aim to provide practical guidance for those 

who consider using historical images for longitudinal studies, which can be particularly useful in 

analyzing and understanding how the built environment has changed over time in areas with 

limited availability of high-quality spatial data including many cities in Global South (Arellana 

et al., 2020).  



5 
 

The remainder of this paper first provides a brief review of the literature.  This is 

followed by Section 3 where we describe our study area, the design of our experiment, and the 

data used for the experiment.  Section 4 presents our major findings from the experiment.  In 

section 5, we discuss the implications of these findings and directions for future research.  

 

 

2. Literature Review – Limited Use of Historical GSV 

 

While it is no longer difficult to find studies actively using GSV imagery in various disciplines, 

as briefly mentioned above, cross-sectional studies are dominant in the literature.  Although 

historical GSV can make it possible to investigate how a place has changed over time, 

longitudinal studies are extremely rare (Biljecki and Ito, 2021, p.11).  Furthermore, most studies 

that have employed historical GSV images have focused on a small number of selected sites 

often for verification of findings derived from other sources of data or for measurement of place 

characteristics that could not be appropriately captured with conventional data sources.  In other 

words, historical GSV images have been used as a supplementary source of information, and the 

great potential of this tool has yet to be realized.   

 Chen et al. (2016), for instance, provided an early example of using historical GSV 

images in this manner.  The authors used historical GSV images not with semantic segmentation 

(or other image-processing techniques) but with two virtual auditors for their analysis of the 

influences of place characteristics on adolescent alcohol consumption in Taiwan.  Another 

example was provided by Yin et al. (2019) who explored ways to better analyze the evolving 

spatial patterns of hotel development.  They used historical GSV information to verify what they 
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obtained from TripAdvisor or other data sources used to identify the operation years of 

individual hotels.  Similarly, Gallagher et al. (2019) used historical GSV images in combination 

with other data sources to precisely identify cases of parcel amalgamation in their study area: 

Brisbane, Australia. 

More recently, a few other studies have used historical GSV images to examine changes 

in neighborhood environments.  These studies have focused on various elements of the 

neighborhood environment, such as street greenery (Li, 2021), food retailers (Cohen et al., 

2020), and marijuana dispensaries (Tyndall, 2021), suggesting that historical GSV can be useful 

for a variety of research purposes.  Some of these studies have noted that historical GSV could 

be a promising source of information to capture and investigate temporal changes in 

neighborhood environments (Cohen et al., 2020; Li, 2021), and this unconventional data source 

would be particularly valuable when researchers do not have reliable data for what happened or 

existed in the past (Cohen et al., 2020).   

It should be stressed, however, that most studies using historical GSV have processed the 

imagery information through visual/manual inspection.1  Cohen et al. (2020), for example, 

investigated changes in food environments in the Bronx, New York through manual views of 

historical images.  A similar method of manual scanning has been employed by other researchers 

who have attempted to take advantage of historical GSV.  Although this approach may allow one 

 
1 This does not mean that visual/manual inspection is still dominant in cross-sectional studies using GSV.  
Recent years have seen a growing number of cross-sectional studies using numerous GSV images with 
machine learning techniques. This mode of (large-scale) GSV use is particularly vibrant in some areas of 
research (Kim et al., 2021, p.3).  For instance, many studies concerning street greenery have gathered and 
processed GSV images in an automated fashion and analyzed how street greenery can affect walking, 
cycling, and other forms of human behaviors (see, e.g., Li et al., 2018b; Yang et al., 2019).  The public 
safety implications of the built environment are also increasingly examined in this fashion by 
criminologists and urban planners, as GSV images enable measuring micro-level built environment 
characteristics (see, e.g., Hipp et al., 2022; Zhanjun et al., 2022).   
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to detect subtle changes in neighborhood environments precisely, it would not be feasible or 

time-efficient to do this for a large study area.  Even when a small area is of interest, it can 

become challenging as the number of images to be inspected can go up exponentially with 

additional image years and/or location points for spatio-temporal precision.   

Two studies in particular motivate the present study.  First, a study by Cândido et al. 

(2018) utilized ground-truth data to assess the validity of historical GSV images.  Specifically, 

they identified traffic-calming features (e.g., curb extensions and speed bumps) using online 

audits of the Google Street View Time Machine and compared what they found with their 

ground-truth dataset (i.e., administrative data of traffic-calming measures).  They reported that 

historical GSV images enabled them to achieve acceptable accuracy, suggesting that using 

historical GSV could offer a novel and useful way of detecting changes in neighborhood 

environments.  This allowed them to validate the historical GSV images for capturing this type 

of change, but left open the question of whether such a strategy could be used for a larger-scale 

research site.   

A second important study that motivates the present study is that of Li (2021), who 

conducted a large-scale investigation of changes in neighborhood environments (specifically 

street greenery in this study) with the use of historical GSV imagery.  This study collected a 

large number of historical GSV images drawn from over 300,000 location points in New York 

City and analyzed them using deep learning and computer vision algorithms to examine how the 

spatial distribution of green infrastructure changed from 2008 to 2018.  However, although 

comprehensive, the study did not provide detailed guidance on how to handle the uneven 

availability of historical GSV and other issues to utilize this promising data source more 

cautiously and effectively (see, e.g., Fry et al., 2020; Smith et al., 2021).  Furthermore, in this 
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study the image segmentation results were aggregated spatially and temporally (into census tracts 

at two periods: 2008-2013 and 2014-2018), leaving it unclear whether this machine learning-

based approach enables one to detect changes in the streetscape at the point or street segment 

level.   

Given that it is quite challenging to measure temporal changes in our cities with spatial 

precision, it is worth studying how historical street view images can be used more efficiently for 

a variety of research purposes.  Researchers, in particular, can benefit from a method that would 

allow them to go beyond visual/manual inspection and identify changes in our neighborhoods in 

a systematic fashion for large-N projects.  It is also imperative to understand what kinds of 

methodological challenges would arise in utilizing historical street view images.  In the 

following sections, we present an experiment to assess to what extent deep learning-based 

semantic segmentation, processing historical GSV images much more efficiently than 

visual/manual inspection, enables one to discern locations with and without a certain type of 

change.   

 

 

3. Data & Methods 

 

3.1. Study area 

As briefly mentioned above, we devise an experiment through which we can assess the efficacy 

of using historical GSV with deep learning-based semantic segmentation in detecting changes in 

our neighborhoods.  Our experiment is carried out using data for the City of Santa Ana located at 

the center of Orange County, California.   
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Santa Ana is home to approximately 330,000 people and numerous diverse business 

establishments. As one of the earliest incorporated cities in Southern California (incorporated in 

1886), Santa Ana contains both old and new development styles, and parts of the city possess 

some of the urban features common in small or mid-sized American cities.  In recent years, it has 

been characterized by various efforts to redevelop commercial districts and residential 

neighborhoods, thus providing a good opportunity to evaluate the performance of various 

approaches to using historical GSV imagery.  Furthermore, although largely urbanized, the city 

features a mixture of high- and low-density development patterns and various land uses, allowing 

one to test certain methods in various settings. 

 

3.2. Historical GSV images in Santa Ana 

GSV provides an invaluable opportunity for researchers to obtain street view images in Santa 

Ana and numerous other cities around the world.  While acquiring static images in some formats 

incurs costs, panoramic (360 degree) images can be downloaded more easily without requiring 

payment.  This is true not only for the latest imagery but also for historical street view images, 

presenting great potential for a variety of longitudinal research projects.    

 It should be noted, however, that the availability of GSV is far from uniform.  Figure 1 

demonstrates the unevenness by showing the temporal distribution of the GSV panoramic images 

available in Santa Ana.  This figure was made based on the metadata of all panoramic GSV 

images found in the City of Santa Ana.  Since Google does not provide a convenient way to 

retrieve historical GSV images through their official API, we employed a module obtained from 

GitHub (source: https://github.com/robolyst/streetview) that enabled us to access historical GSV 

images.  This module allowed us to find all available GSV images, including current and old 

https://github.com/robolyst/streetview
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ones, surrounding a given location point.  To check the GSV availability thoroughly, we created 

points with 20-meter intervals along with all road segments in Santa Ana and used these points 

repeatedly to identify all available GSV images in the city, given that the search boundary of the 

module to retrieve GSV images was greater than 20 meters (Figure 2).  We removed duplicate 

images found through this process and ended up with a total of 570,522 panoramic images.   

As shown in the figure, Google started to take/provide street view images in the city in 

2007, but the number of images taken/provided was small in that year.  In the case of Santa Ana, 

the first massive street imagery acquisition took place in June 2008.  Additionally, over twenty-

five thousand images were taken in March 2011, April 2015, and December 2017, whereas GSV 

imagery is often unavailable for months (e.g., no GSV image available from March 2009 to 

September 2010 for any location points in Santa Ana). 

<< Insert Figure 1 about here >> 

The spatial distribution of GSV images is also uneven.  As reported by Kim et al. (2021) 

and other studies, GSV images are often unavailable for private properties (e.g., gated 

communities) due to difficulties in accessing them.  While the geographic coverage of GSV has 

dramatically expanded, it is not always possible to get the same amount of street imagery 

information for all road segments in a city (see Figure 2).  To mitigate the data availability issue, 

researchers need to use all street view images taken over months or even years rather than 

relying on the data collected on a single day.  Admittedly, there is no single perfect time window 

or aggregation scheme, but it is important to inspect how the availability of street view images 

varies across time and space.  In particular, when conducting longitudinal studies, consideration 

may need to be given to when massive street imagery acquisition took place in the study area 

(such as April 2015 and December 2017 in the case of Santa Ana).   
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<< Insert Figure 2 about here >> 

 

3.3. Research design  

Our experiment utilizes the logic of difference-in-differences analysis, comparing (1) treatment 

group and (2) two control groups with observations before and after the treatment.  The treatment 

group consists of 248 sites where new construction or demolition of existing buildings took place 

between May 2015 and November 2017.  These 248 sites (i.e., treatment group) and their exact 

location points were identified through a careful examination of building permit data provided by 

the City of Santa Ana, as detailed in Appendix A.  The spatial distribution of these sites is not 

uniform since development projects tend to concentrate in some locations rather than being 

evenly distributed within a city.  As shown in Figure 3, there were 39 sites of construction or 

demolition on/near Bristol Street, a north-south major arterial that underwent a large-scale 

corridor improvement project.  For the control groups, we used a random sampling approach to 

draw two sets of the same number (248) of location points without such construction or 

demolition activity.2  While it is unlikely that 248 randomly generated points will result in 

misleading conclusions, we nonetheless generated an additional control group (Control group #2) 

to increase the robustness of our experiment.   

<< Insert Figure 3 about here >> 

 
2 This was accomplished by employing the “Create Random Points” tool in ArcGIS.  In doing so, we first 
created a layer that meets the following three conditions and then drew random points from the layer to 
increase the comparability between treatment and control group points: (1) All control group locations 
should be located within the city boundaries, (2) Distance to the nearest road segment should be between 
10 and 30 meters (since most of the 248 treatment group cases had this range of distance to the nearest 
road segments), and (3) Distance to the nearest construction or demolition site should be larger than 100 
meters.   
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 It is important to note that the aforementioned time period (May 2015 – November 2017) 

was chosen to have the largest number of GSV images possible for both before and after the 

period.  As shown in the previous section (Figure 1), in Santa Ana, over twenty-five thousand 

images were taken in April 2015 and December 2017, respectively.  In the experiment, to have 

additional images, we used the following 18-month windows:  

• Pre-treatment: GSV images taken between November 2013 and April 2015 (Note: No 

images available for the first six months of this period, but we made it 18 months to make 

it consistent with the post-treatment period.) 

• Post-treatment: GSV images taken between December 2017 and May 2019  

For each of the 248 treatment and 496 (=2×248) control group cases, we first searched 

and identified the nearest GSV image taken during the pre- and post-treatment time windows.  

Additionally, we collected nearby GSV images from each (treatment or control) point using the 

following four buffers: 25, 50, 75, and 100 meters.  While a larger buffer (e.g., 100 meters) 

allowed us to have more GSV images around each case, having these additional images does not 

necessarily improve our ability to detect changes in the built environment more precisely with 

historical GSV images.  In contrast, a narrow buffer (e.g., 25 meters) can result in no image 

taken during the pre- and/or post-treatment time windows.  In other words, there is a tradeoff 

between precision and data availability, and we will present and discuss our results regarding this 

issue in Section 4.        

 All nearby GSV images (for each treatment or control point) were analyzed by 

employing a deep learning-based semantic segmentation approach.  As explained in detail below 

(Section 3.4. Semantic Segmentation), this allowed us to determine what percentage of the pixels 

in each image indicated buildings and many other streetscape elements (e.g., pavement, 
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sidewalks, sky, vehicles, vegetation) and thus compare the detailed semantic segmentation 

results derived from treatment and control group cases.  Since the treatment in this experiment is 

construction or demolition of buildings, our assessment focused on changes in percent buildings.   

More specifically, for each case, we calculated the before-and-after change in percent 

buildings and used the metric in absolute term (abs.change.pct.buildings hereafter) for our 

assessment as shown below.3  The calculation of abs.change.pct.buildings was conducted in two 

ways:  

1) Using the two nearest GSV images:  

𝑎𝑎𝑎𝑎𝑎𝑎. 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏)

= |𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝.𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝.𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝.𝑝𝑝𝑛𝑛𝑎𝑎. 𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏)| 

where 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝. 𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝.𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏) indicates the percent buildings of the nearest GSV 

image taken during the post-treatment period (December 2017 – May 2019) from i-th case point 

(i = 1, 2, …, 743, 744 because there are 248 treatment and 496 control cases), while 

𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝.𝑝𝑝𝑛𝑛𝑎𝑎.𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏,𝑏𝑏) represents the percent buildings of the nearest GSV image 

taken during the pre-treatment period (November 2013 – April 2015) for the same (i-th) case 

point.   

2) Using all nearby images falling within a buffer:   

𝑎𝑎𝑎𝑎𝑎𝑎. 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏,𝑏𝑏)

= |𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎.𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝. 𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏,𝑏𝑏) −𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎. 𝑝𝑝𝑛𝑛𝑎𝑎.𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏,𝑏𝑏)| 

where 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎.𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝.𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏) indicates the mean of the percent buildings values of the 

GSV images taken during the post-treatment period within the buffer distance d (25, 50, 75, or 

 
3 The metric was used in absolute term because our treatment in this experiment included both 
construction and demolition of buildings.  One limitation is that this metric is not able to capture changes 
in building shape.  If the overall building size remains the same, the metric will not yield a value that can 
allow one to detect the construction/demolition activity.       
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100 meters) from i-th case point, while 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎. 𝑝𝑝𝑛𝑛𝑎𝑎.𝑝𝑝𝑐𝑐𝑝𝑝. 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎(𝑏𝑏,𝑏𝑏) represents the 

corresponding mean percent buildings calculated based on the GSV images taken during the pre-

treatment period located within the same buffer distance (d) from the same (i-th) case point.  A 

short buffer distance (e.g., 25 meters) can be more effective in detecting changes in the 

streetscape, but GSV images are not always available within such narrow boundaries.  It is 

worthwhile to additionally test larger buffer distances to see how the results may differ 

depending on buffer sizes.       

We expect the value of abs.change.pct.buildings to be larger for treatment group cases 

(involving construction or demolition of buildings) than for control group cases (without such 

activity), if semantic segmentation of historical GSV can precisely detect changes in the built 

environment.  If so, one could use a threshold (or cutoff) value of abs.change.pct.buildings (e.g., 

abs.change.pct.buildings > 1 percentage point) to identify areas experiencing a certain form of 

the built environment changes by utilizing this deep learning-based semantic segmentation 

approach with historical GSV.  However, some control group cases can have a large magnitude 

of abs.change.pct.buildings exceeding the threshold.  Such a false positive outcome (or Type I 

error as shown in Figure 4), can occur due to the imperfection of the semantic segmentation tool 

and/or other reasons that could make pre-and-post-treatment GSV images inconsistent.   

<< Insert Figure 4 about here >> 

Although it is possible that false positive or false negative outcomes are more likely to 

arise in some locations, this strategy might show better performance in other parts of the city.  

For instance, GSV images taken on a wider street might not have the same ability to capture a 

single building on the street (due to the longer distance between the building and the Street View 

car/fleet) compared to those taken on a narrower road segment and thus could lead to false 
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negative outcomes more frequently.  To understand under what circumstances historical GSV 

processed through deep learning-based semantic segmentation can yield more satisfactory 

outcomes, we analyzed how the rates of false outcomes were associated with street segment 

characteristics.  To accomplish this, for each road segment in Santa Ana, we calculated the mean 

percent buildings, percent pavement, percent sidewalks, percent sky, percent vehicles, percent 

vegetation, and percent all other streetscape elements by processing historical GSV images 

through semantic segmentation.  This segment-level average computation used not only the GSV 

images located near a treatment or control case but also other street view images available on the 

road segment.  The following section provides a detailed description of the semantic 

segmentation method used for this average calculation as well as our analysis of the treatment 

and control cases. 

 

3.4. Semantic segmentation  

To analyze the collected historical GSV images, we employed semantic segmentation, a 

computer vision technique to segment each image pixel as a component.  While traditional image 

classification methods rely on RGB (red, green, blue) information or other spectral 

characteristics, recent years have seen the development of more advanced semantic segmentation 

models trained with the use of deep learning algorithms that exhibit stronger performance.  

These models consider the semantic meaning of objects in an image to better classify them into 

pre-defined categories at the pixel level by accounting for the detailed arrangement, shape, and 

color information embedded in the image.  Some of these models, pre-trained by a deep learning 

algorithm with the use of a benchmark dataset containing annotated urban street images, are 
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readily available for performing semantic segmentation.4  Therefore, these models have been 

widely adopted as a method of processing street view images to quantify the neighborhood 

environment.  

Among the several semantic segmentation models available to researchers (e.g., FCN8s, 

PSPNet), this study used the Deeplabv3+ model (Chen et al., 2018) which has performed well 

and is therefore utilized by a growing number of studies, such as Nagata et al. (2020), Wang and 

Vermeulen (2021), and Hipp et al. (2022).  This model uses convolutional neural networks 

(CNN) to detect complex patterns and relationships of objects within an image (Li et al., 2020).  

The CNN deep learning makes it suitable for extracting features from urban street view images 

where RGB information alone often leads to inaccuracies (see, e.g., Li et al., 2015; Lu, 2019).  

The Deeplabv3+ model was pre-trained with the Cityscapes dataset (Cordts et al., 2016), 

one of the most popular datasets offering both original streetscape images and annotated images 

of various streetscape components.  In other words, the model had the ability to classify GSV 

image pixels into various streetscape elements.  These elements included not only buildings (the 

main target feature in this study) but also pavement, sidewalks, sky, vehicles, vegetation, and 

many other objects, such as humans and traffic signs.   

It is important to note that the raw panoramic GSV images that can be downloaded 

without payment have limitations.  Specifically, a distortion issue exists in panoramic images, 

and this can make the outcome of semantic segmentation less desirable (Li et al., 2018a; Tsai and 

 
4 For the detection of new buildings, one could train and use an object detection model instead of 
employing a semantic segmentation model.  However, it requires a lengthy process of data preparation, 
image annotation, and model training to develop such a tool tailored to capture a certain object (e.g., new 
buildings) with high precision.  In this study, we tested the applicability of a pretrained semantic 
segmentation model, Deeplabv3+ (source: https://github.com/lexfridman/mit-deep-learning) that is 
increasingly used by researchers given its proven performance in detecting various features in urban street 
view images.  

https://github.com/lexfridman/mit-deep-learning
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Chang, 2013; Yin et al., 2015).  The degree of distortion is particularly severe in the upper and 

lower parts of panoramic images (see, e.g., Tsai and Chang, 2013; Orhan and Bastanlar, 2022).  

Therefore, we only used the central part of each panoramic image with the least distortion by 

cropping 100 pixels of the upper and lower parts of the image to handle this issue.  

In addition, from each panoramic image, we derived more narrowly-focused street view 

images for our auxiliary analysis.  This process, illustrated in Figure 5, enabled us to replicate 

what one could have if s/he used static GSV images.  Although static images can be collected via 

GSV API, there is a quite strict quota on the number of freely downloadable static GSV images 

per month.  Therefore, we processed panoramic images using the Equirec2Perspec package 

(source: https://github.com/fuenwang/Equirec2Perspec) that enabled us to convert an 

equirectangular panoramic image into the images comparable to static images.  For each 

panoramic image, we extracted four images (front, back left, and right) with a size of 640 × 640 

pixels.  Since buildings tend to appear in the left- and right-side images of the street, we analyzed 

these two images through semantic segmentation for our auxiliary analysis (see Section 4.4. for 

the results of this analysis). 

<< Insert Figure 5 about here >> 

 

 

4. Results 

 

4.1. Comparison of treatment and control groups 

As described in the previous section, for each of the 248 treatment and 496 control group cases, 

we computed abs.change.pct.buildings by analyzing the pre- and post-treatment GSV images 

through semantic segmentation.  First, the nearest pre- and post-treatment images were compared 

https://github.com/fuenwang/Equirec2Perspec
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for this experiment.  Additionally, we used all nearby pre- and post-treatment GSV images in 

four buffer sizes (d = 25, 50, 75, 100 meters), and Table 1 provides a summary of these 

comparisons of the treatment and control groups.  It should be noted that not all 744 sites (248 

treatment and 496 control cases) had nearby GSV images taken during both pre- and post-

treatment periods.  This issue was particularly apparent when a narrow buffer size (e.g., 25m) 

was used (see n in Table 1 for the number of treatment or control group cases with GSV images 

available for both pre- and post-treatment periods). 

<< Insert Table 1 about here >> 

Overall, the treatment group showed much larger abs.change.pct.buildings values than 

the control group, as expected.  For instance, when the nearest pre- and post-treatment GSV 

images were analyzed, treatment group cases exhibited a mean of 3.781 for 

abs.change.pct.buildings which was significantly larger than those (0.613 and 0.642) of two 

control groups.  Similarly, even though the magnitude of the difference varied as discussed 

below, all of the four buffer sizes resulted in a larger mean of abs.change.pct.buildings for the 

treatment group.  Furthermore, the mean differences between the treatment and control groups 

were all statistically significant at p < 0.001, suggesting that the tested deep learning-based 

semantic segmentation of historical GSV images provided an ability to identify areas with real 

changes in the built environment. 

Among the four buffer sizes tested, d=50m yielded the largest mean difference between 

the treatment and control groups.  However, the t-statistic for the mean difference was larger, 

when a larger buffer size was used (given the larger n).  On the contrary, d=25m demonstrated 

the poorest performance.  As shown in Table 1, when this narrow buffer size was used, only 89 

out of 248 sites of the treatment group had GSV images for both pre- and post-treatment periods.  
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Moreover, the abs.change.pct.buildings values derived from these 89 sites varied quite 

substantially, as indicated by the large standard deviation (SD=2.170) presented in the table.   

As the buffer size increased, an increasing number of cases have at least one GSV image 

for both pre- and post-treatment periods.  However, in the case of the treatment group, even 

when d=100m was used, less than 90% of the total 248 sites had GSV images for both pre- and 

post-treatment periods, whereas nearly all control group cases had pre- and post-treatment GSV 

images.  This indicates that the GSV availability near the treatment group sites was more limited 

than that of the control groups.  This happened mainly because a considerable number of 

treatment group cases were construction sites in new subdivisions for which GSV images during 

the pre-treatment period were not available due to the limited or lack of road access to those 

locations.  The finding highlights the uneven availability of historical GSV, and this challenge 

deserves attention as it can limit the ability of researchers to utilize historical street imagery data 

platforms for their investigation of some parts of our cities (e.g., new subdivisions).      

 

4.2. False positive and false negative rates 

We next asked the likelihood of making a correct decision about the presence of new buildings 

when using the nearest GSV image comparison (the first strategy).  The top part of Table 2 

compares the distribution of abs.change.pct.buildings for the treatment group with that of the 

two control groups.  As demonstrated in the table, the treatment group showed larger values of 

abs.change.pct.buildings much more frequently than the two control groups.  For instance, only 

25.4% of treatment cases had abs.change.pct.buildings less than 0.5, whereas over 60% of 

control cases had a value of abs.change.pct.buildings in this range.   

<< Insert Table 2 about here >> 
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In the lower part of Table 2, we present the false positive and false negative rates 

calculated based on various thresholds to identify treatment sites with construction or demolition 

of buildings.  That is, the identification is based simply on whether each site’s 

abs.change.pct.buildings is greater than the threshold or not.  These rates demonstrate the 

efficacy of the semantic segmentation method tested in this study in two ways: (1) to what extent 

does it misidentify a control case as a treatment case (false positive) and (2) to what extent does 

it fail to identify a treatment case (false negative).   

If a researcher had used 0.5 as a cutoff to determine whether a site had treatment (i.e., 

involved construction or demolition of buildings) or not, s/he would correctly identify 74.6% of 

the total treatment cases.  That is to say, in this case, the false negative rate is 25.4%.  On the 

other hand, the cutoff of 0.5 would result in a false positive rate of 33.9% (or 39.1% in the case 

of Control group #2), as it could screen out 66.1% (or 60.9% in the case of Control group #2) of 

the control cases.    

It is clear that there is a tradeoff between false positive and false negative rates.  A lower 

cutoff (e.g., 0.5) can lead to more false positives, while it can reduce the chance of ending up 

with false negatives.  If the goal is to keep the false positive rate low, a higher cutoff would be 

more desired.  According to our experiment, cutoff=1.5 was found to reduce the false positive 

rate down to less than 10% (i.e., 5.6% in the case of Control group #1 and 9.3% in the case of 

Control group #2).  In this case, the semantic segmentation method was able to detect 41.5% of 

treatment cases.   

Figure 6 presents the receiver operating characteristic (ROC) curves which clearly show 

the tradeoff by displaying the false positive and true positive rates for various cutoff values.  A 
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method is considered good when the area under the curve (AUC) is large.  The AUC values from 

this experiment were larger than 0.75, which can be considered fair (Lüdemann et al., 2006). 

<< Insert Figure 6 about here >> 

 

4.3. Performance variation across contexts 

As noted in Section 3, the false positive or false negative outcomes may arise more frequently in 

some contexts than in other locations.  We examined this possible variation across geographical 

contexts by analyzing how the values of abs.change.pct.buildings were associated with road 

segment-level characteristics, and the results of this analysis are summarized in Table 3.    

<< Insert Table 3 about here >> 

As seen in the table, in the case of the treatment group, abs.change.pct.buildings was 

found to be larger in areas where GSV images had more pixels of buildings, less pavement, less 

sidewalks, less sky, more vegetation, and less other streetscape elements (remainders).  The 

association between abs.change.pct.buildings and the segment-level mean percent buildings was 

strong (correlation = +0.399), indicating that historical GSV yielded a large value of 

abs.change.pct.buildings and thus effectively captured changes in the built environment in 

locations with more buildings.  In contrast, a notable negative correlation was detected with the 

mean percent pavement and the mean percent sky, meaning that abs.change.pct.buildings tended 

to be lower where pavement and sky accounted for a large proportion of the street view images.  

These two findings together suggest that false negative rates tended to be lower (due to larger 

abs.change.pct.buildings values) in environments with more buildings and less pavement+sky 

pixels.  As a consequence, in a built environment with narrow streets and minimal setbacks new 
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construction or demolition of old buildings can easily be reflected in GSV image pixels and 

thereby captured through deep learning-based semantic segmentation with fewer false negatives. 

Many contemporary cities in fact have wide streets and large setbacks.  In our study area, 

the Bristol Street mentioned in Section 3.3 presents such a situation.  Among the 39 treatment 

sites located within 50 meters of the street, nearly half (17 out of 39, 43.4%) had 

abs.change.pct.buildings less than 0.5, suggesting that the probability of false negative results is 

likely to be high in this type of geographical setting.  The probability was much lower (22%) for 

the remaining 209 treatment sites, including those in non-central locations of the city.  Thus, the 

size and layout of the street on which the building is located, which may be a function of the time 

period of development, may also impact the strategy’s ability to detect environmental change.   

Although not presented in the table, another notable finding is that 

abs.change.pct.buildings tended to be larger in areas with multiple building permits.  This 

implies that false negative rates can further be reduced on road segments with construction or 

demolition of multiple buildings.  In other words, while a single (or small-scale) project might 

not always be detected, it is rare for semantic segmentation of historical GSV images to miss 

large-scale construction or demolition projects.  Therefore, this deep learning-based method can 

be used with high confidence for detecting such projects or other types of large-scale changes in 

the built environment.    

In the case of Control group #2, abs.change.pct.buildings showed a strong, positive 

correlation with the segment-level mean percent buildings, while this was not the case in Control 

group #1.  This finding (combined with the similarly strong positive correlation detected from 

the treatment group) suggests that both false positive and false negative rates can be higher in 

areas with more building pixels.   
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Figure 7 provides historical GSV examples showing false positive (B) and false negative 

(C) outcomes.  In the case of (B), trees on the street made it difficult to capture all the buildings 

in the pre-treatment period, and this resulted in a high level of abs.change.pct.buildings for this 

control case.  In the case of (C), there was another building behind the new building (as shown in 

the pre-treatment image), and consequently percent buildings did not increase substantially.  The 

small size of the new building in the post-treatment image also contributed to this false negative 

outcome.   

<< Insert Figure 7 about here >> 

 

4.4. Analysis with left and right-side images only  

What if we used narrowly-focused (static) images instead of large panoramic GSV images?  We 

attempted to answer this question by deriving left- and right-side street view images from each 

panoramic image using the Equirec2Perspec package as explained in Section 3.4.  The results of 

this auxiliary analysis are presented in Table 4.    

<< Insert Table 4 about here >> 

As shown in the table, abs.change.pct.buildings values became significantly larger, when 

these narrowly-focused images were used.  For instance, when the nearest pre- and post-

treatment GSV images were compared, the mean of abs.change.pct.buildings increased from 

3.781 (Table 1) to 10.098 (Table 4) for the treatment group, from 0.613 (Table 1) to 1.718 (Table 

4) for Control group #1, from 0.642 (Table 1) to 2.046 (Table 4) for Control group #2.  

Accordingly, the mean difference (between the treatment and control groups) went up 

substantially.  This is not surprising given that buildings are likely to account for a larger 

percentage of the pixels in these narrowly-focused images than they could in larger panoramic 
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images.  The t-statistics for the mean differences, however, did not increase, suggesting that the 

image treatment does not necessarily improve the performance of the tested deep learning-based 

semantic segmentation in distinguishing treatment cases from control cases.  Using such images 

can result in inaccuracies when GSV images are not available right in front of the target 

(buildings in this study) or pre- and post-images were not taken from the exact same location, 

while larger panoramic images are less vulnerable to these situations.   

 

 

5. Summary and Discussion 

 

Recent years have witnessed the emergence of new data opportunities that can dramatically 

enhance our capabilities for urban and environmental research, and geocoded street view 

imagery is one of the most promising data sources of this kind.  However, while this promising 

resource has been increasingly utilized by researchers in many disciplines, we still know little 

about how to use it more effectively and efficiently (Kim et al., 2021).  This is particularly true 

when it comes to historical street view images and their use for longitudinal studies (Biljecki and 

Ito, 2021). 

 In this study, we devised and conducted an experiment to assess the efficacy of using 

historical street view images.  More specifically, we assessed the feasibility of deep learning-

based semantic segmentation as a method for detecting changes in the built environment with 

historical GSV.  To do this, we analyzed the rates of false positive and false negative outcomes 

using data for (1) 248 treatment sites with construction or demolition of buildings and (2) two 

groups of randomly chosen control cases without such activity in Santa Ana, California.  
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Additionally, we examined under what circumstances (or geographical contexts) the method 

would tend to yield better results.   

Our assessment presents both opportunities and challenges.  On the one hand, the deep 

learning-based method tested in this study showed an ability to distinguish treatment cases from 

control cases.  To be more precise, when a threshold of abs.change.pct.buildings > 0.5 was used, 

it was able to detect nearly 75% of the treatment sites with historical GSV images available for 

pre- and post-treatment periods, while screening out over 60% of the control cases.  It performed 

well particularly in areas with more buildings, narrow streets (or less pavement+sky pixels), and 

larger-scale construction/demolition projects.   

On the other hand, the method yielded a noticeably high value of 

abs.change.pct.buildings for some control cases.  While the occurrence of such false positive 

outcomes can be mitigated by adopting a higher threshold as discussed in Section 4.2, this 

approach does not eliminate the possibility given that false positive outcomes can happen not 

only due to the imperfection of the semantic segmentation technique but also due to the uneven 

availability of historical GSV images and the misalignment of GSV image points over years.  It 

is also important to note that a high threshold to reduce false positive outcomes increases false 

negative results, an important tradeoff that exists in devising and applying a method for detecting 

changes in the built environment through analysis of street view images.  One could argue that 

false positive outcomes are less concerning given that researchers can verify the cases with 

positive results through an additional step of visual (eyeball) inspection, site visits, or 

verification with other data sources, but this may not always be feasible in large-N projects. 

We also highlight that while we had building permit data for our study area—which 

potentially could be directly used to assess environmental change—this will not be the case for 
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other study sites.  Many cities do not provide building permit data in a geocodable format.  There 

is an even more limited list of cities that provide historical building permit data for a long period 

of time.  Furthermore, the data availability is often more limited in some other countries (see 

e.g., Arellana et al., 2020).  Given all these issues, historical GSV imagery can be viewed as a 

valuable alternative source of information.  Although our experiment focused on construction or 

demolition of buildings, we believe this experiment can inform those who are interested in 

detecting other types of changes in the streetscape using historical GSV with deep learning-based 

semantic segmentation tools.   

Although this study has revealed some challenges and limitations to using historical street 

imagery, we nonetheless believe that on balance there is strong potential for using the images in 

research exploring neighborhood change.  When combined with a machine learning technique, it 

appears that historical street images can feasibly capture real change in the built environment for 

large-N projects.  Our analysis shows some limitations that researchers will want to be aware of 

when utilizing such images, including that the availability of street view images fluctuates over 

time and thus requires special attention in the research design.  We therefore believe that this 

study provides insights that we hope will result in even more creative and broader use of 

historical street imagery.  It is our hope that our analyses can serve as a catalyst for more 

experiments or other types of future research through which the deep learning-based method 

presented here (or its derivatives) can be refined.  Such future research endeavors will greatly 

contribute to more efficient use of historical street view images that are indispensable for more 

complete understanding of the constant evolution of our cities and the complex mechanisms 

behind it.    
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