Lawrence Berkeley National Laboratory
Recent Work

Title

TWO ASPECTS OF ALLOY THERMOCHEMISTRY: A. VARIATION OF PROPERTIES WITH
COMPOSITION IN ORDERED PHASES. B. SOLUTE INTERACTIONS IN DILUTE LIQUID ALLOYS.

Permalink

https://escholarship.org/uc/item/5k73h452

Author
Orr, Raymond Leonard.

Publication Date
1965-09-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5k73h452
https://escholarship.org
http://www.cdlib.org/

-‘tﬁ: S

UCRL=16520

University of California

Ernest O. Lawrence
Radiation, Laboratory ; Lhatn

TWO ASPECTS OF ALLOY THERMOCHEMISTRY:

' A VARIATION OF PROPERTIES WITH COMPOSITION IN ORDERED PHASES

B. SOLUTE INTERACTIONS IN DILUTE LIQUID ALDOYS

— . W
5\¢ |
TWO-WEEK LOAN COPY

Thls is a Library Circulating Copy

whlch maij be borrowed for two weeks.
\ For a personal retention copy, call
“Tech. Info. Division, Ext. 5545

\ )

Berkeley, California- |



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



Research and DeveXizment

UCRL-16320

UNIVERSITY OF CALIFORNIA
" : .Lawrence Radiation Laboratory

Berkeley, California

. AEC Contract No. W-7405-eng-48
, _ ~

H
'
¥
B

i
!

TWO ASPECTS OF ALLOY THERMOCHEMISTRY:
A VARIATION OF PROPERTIES WITH COMPOSITION IN ORDERED PHASES
B.SOLUTE INTERACTIONS IN DILUTE LIQUID ALLOYS

Raymond Leonard Orr -
(Ph. D. Thesis)
September 1965




\ TP R UUU PR

“i- UCRL-16320

TWO ASPECTS OF ALLOY THERMOCHEMISTRY:

- A. VARIATION OF PROPERTIES WITH COMPOSITION IN ORDERED PHASES

B. SOLUTE INTERACTIONS IN DILUTE LIQUID ALLOYS

Raymond Leonard Orr
Inorganic Materials Research Division
Lawrence Radiation Laboratory

and 4 '
Department of Mineral Technology
College of Engineering

University of California
Berkeley, California

September 17, 1965

PREFACE

Studies h_ave.been made of two 'different. aépe'cts of the problem of
relating thérmodynamic properties to atomic interactions or configufa—
tions in intermetallic alloys. Part A presents a general method of cal-
culating the compositional variation of the configurational thermodynamic
properties for ordered phases which disorder by means of substitutional
defects. .Part B reports the results of an experimental study of solute
interactions in éome dilute binary and ternary liquid tin-rich alloys.

Each part is precedled by an individual abstract, and the refefences

for each part are also separately listed.
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Part A

VARIATION OF THERMODYNAMIC PROPERTIES WITH COMPOSITION
IN ORDERED INTERMETALLIC PHASES

ABSTRACT

A method is presented for calculaﬁng the compositional variation
of the configurational thermodynamic properties of orderea intermetallic
phases which éxist over a range of composition by means of the substi-
tutional defect mechanism. The treatment, which is an extension of the
one of Wagner and Schottky, is applied to the simple quasi—chemical
model analogous to that employéd in the Bragg and Williams treatment
of "the variation of degree of order with temperature.

The configgrational thermodynamic properties are expressed as
functions of the deviation from ideal stoichiometrsr and a composition
dependent parameter which represents the atomic distribution. By
minimizing the Gibbs energy with réspect to the distribution parameter,
an expression is obtained relating the equilibrium distribution with com-
position for giver’l degrees of érder at the stoichiometric composition.
Solutio;lns of this expression then permit the configuzfational properties
to be evaluated as functions of composition for specified degrees of
order at ideal stoichiomefury. !

The method .of treatment is derived in detail for phases having the
CsCl-type superlattice structure, and the results of corresponding

treatments for AuCu-type and AuCu3 -type superlattice phases are
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also given. Existihg entrop'y of formation data for the AgMg, AuCd,
and AuCu érdered phases aré compafed with valu_es predicted by the
trea’cments. Good correlations are thained, leading to reasonable
| interpretations of the actual values in terms of the configurational and
thermal contributions to the total entropies of formation.

It is proposed that the methods developed could provide the basis
for mofe elabérate or extensive treatments, either which inéorporate
other defect mechanisms or which empldy higher-order approximations

of the quasi-chemical model.

-



I. INTRODUCTION

In binary intermetallic Systefns; there are many examples of
intermediate phases which have highly ordered structures at a composi-
tion corresponding to some simple atomic ratio of ‘the components, but.
which often exist over a considerable ‘range of composition beyond the
one at which perfect order is possible. Three of the més‘c common
types of ordered structures are: (1) the cubic, CsCl-type superlattice .
isotypic with 87-CuZn, in which‘Cu atoms occupy the corners and a Zn
atom occupies the center of the unit cell, (2) the tetragonal superlattice
isotypic with AuCu I, in which Au and Cu atoms form alternate layers
on the (001) planes, and (3) the cubic suberlattice isotypic with'AuCuS,

in which Au atoms occupy the corners, and Cu atoms the face-centers

- of the unit cell. The three unit cells are illustrated in Fig. 1. Examples

of intermetallic phases having these ordered structures, taken from the

compilation of Laves, 1 are listed in Table I.

Degree of Order and Its Variation with Temperature

The ordered arrangement of atoms in a superlattice extends for

long distances throughout the crystal; hence the order is referred to

!

as long-range order as distinguished from the short-range "order of

i

neighbors' which frequently occurs in otherwise random solid-solutions.

* References for Part A are listed separately, beginning on p..52.
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TABLE I

Examples of Phases Having the Three Considered Types

CsCl-type |

of Superlattice Structures™

AgCd BiT1 HgPr
AgCe CaCd HgSr
Agl.a CaHg InNi
Agli CaTl InPd
AgMg CdCe LaMg
AgPr CdLa LaTl
AgZn CdPr . LaZn
AlCo CdSr LiPb
AlFe CeHg LiTl
AINd Ce‘Mg MgPr
AINi CeTl MgSr
AlPd CeZn MgT1
AuCd CoFe MnRh
AuMg CoTi NiTi
AuMn CuPd ‘NiZn
AuZn CuZn OsTi
BaCd FeTi - PrTl
" BaHg FeV PrZn
BaZn GaNi  RuSi
BeCo - | Hgl.a . RuTa
BeCu  HglLi RuTi =
BeNi HgMg  RuV
BePd HgNd SrTl

AuCu-type
AgTi
Al1Ti
AuCu
Bili
BiNa
CdPd
CdPt

- CoPt
FePd
FePt
HgPd
HgTi
HgZr
InMg
IrMn

"MnNi
MnPd
MnPt

- NiPt

‘NiZn
PdZn
PtZn

3

AuCusz-type
AgSPt GreNi3
AgPtg GeSU
AlNigq HgTig
A13Np Hggzr
AlSU In3Pr‘
Aer3 , In3U
AuCu3 Lan3
Can3 LaSn3
CaSn3 MnNi3
CaTl3 MnP’c3
CePb3 MnZn3
CeSn3 NiBSi
(_ZoP.’c3 Pde3
C03V PbSPr
'CrIrS Pb3U
'CrPtS PdBSn
Cu3Pd PrSn3
CuSPt PtSTi
Fel\Ti:3 PtBZn
_FePd3 RuBU
FeBPt SngU
FeP’c3 T13U |
GraNi3 ’I‘iZn3 ‘
Ga,U

#Taken from the compilation of Laves.

1



The degree of long-range order for the stoichiometric compositions is
uSually designated by the well-known long-range order parameter, W,

: ' 2
introduced by Bragg and Williams:

wesss S
A
where S _rA = fraction of A sites correctly occupied by
A atoms ’
X a = atomic fraction of A in the alloy

‘For fhe perfectly ordered configuration, r, = 1 and thus W = 1; while

A

for the completely random configuration, Tp~ XA'and W= 0.
Generally the degree of long-range order for the stoichiometric
cofnposition is nearly perfect, i.e.. W ~ 1, at low temperatures, bui
decreéses with increaéiﬁ_g temperature due to the effeq% of increasing
thermal agitation. The rate of disofdering proceeds slowly at first
but accelerateé with increasing temperature due to the cooperative.
nature of the disordering process. - An increasing aﬁomt of disorder
reduces the distinction between the different kinds of 'sites, making it
easier for further disorder to occur. The disordering process thus
occurs over a range of temperature until finally at a certain critical
temperature, ’I‘Cv, the superlattice .dis.appears more or less sharply
resulting in an alloy gene;‘aily having some degree of short-range ordex;.
The disordering process may be entirely a second—ordef process in .-

which all the disordering energy is absorbed over a range of tempera-

ture with no latént heat effect at T,, as is the case for CuZn;3 or it may
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be a combined second-order and first—,ofder process with a catastrophic

~ decrease in the degree of long-range order to zero accompanied by a

latent heat ;bsorption at T,, as is shown by _AuCu4 and AuCuS. ?’ 6
Many of the CsCl-type suf)erlattices, to be discussed in detail later,
retain 1argle degrees of long-range order all the way to their melting
temperafures, Tm’ indicating that in those cases, Ta >-Tm. There
have been numerous treatrhents concerned with the variation‘ of order

with temperature for the stoichiometric ordered alloys, the best known

of which is probably that of Bragg and Williams, 2 a good exposition of

_which is given by Cottrell. 7

Variation of Degree of O_rder'with Composition

.12 In ordered phases of the types described which exist over avrange
of composition, departures from ideal stoiqhiometry can only be
aéhieved by a defect mechanism which f)efmits the addition of an excess
of one of the components, decreasing the degree of order while retain-
ing the basic long-range superlatfice st_rﬁcture. As will be discﬁssed

in a later gection, one,of the primary mechanisms by which such de-

viations from ideal stoichi'ometry are achieved is by the substitution of

excess atoms of one kind on lattice sites normally occupied by atoms of
the other kind at the stoichiometric c'omposition.

The problem to be considered in this paper is that of predicting
the compositional variation of thermodynamic properties, especially |
the configurational entropy, for long-range-ordered phases which dis-

order by means of the substitutional mechanism. The general problem
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of the effect of defect structure on thermodynamic properties was ¥
‘ ' 8
treated many years ago by Wagner and Schottky (summarized more €

recently by Wagnerg). Their solutions for specific cases, however,

*

were restricted to approximations involving small concentrations of
defects and thus vﬁ}ere limited to only small deviations from stoichiom-
etry. - A general method of treating the problem of more extensive
deviations from stoichiofnetry will be introduced. The proposed treat-
ment will be described in considerable detail for the CsCl superlattice
structure, and the' results of similar-analyses éf the AuCu and AuCu3
type structureé will also be given. Available thermodynarﬁic data will
be corﬁpared with the results and interpre’ted in terms of the models

developed.
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II. ENTROPY OF ORDERED PHASES

The entropy of any alloy phase ofigiﬁates from two basic contri-
butions: configurational ‘and thermal. 10 The entropy of formation of
an alloy may thus be considered as being the ‘sum of two terms, such
thaté

48 = 88, + Sy - | (2)

AS., the configurational en{ro'py of formation, is the contribution aris-

C)

- ing from the atomic configuration of the alloy. Asth’ the thermal en-

tropy of formation, is sed here to denote the sum of all other contri-

butions, which will be enumerated later.

Configurational Entropy

Since the configurational’entrépy of the pure component metals is
equal to zero, AS, is merely equal to Sc’ the configurational entropy
of the alloy, w&hich results from the ur'lcertain'ty of position or distfi— '
bution of the unlike atoms on the alloy iattice. It is related to the atomic
distribution by the Boltzmann relationship: |

A8, = S, = klaQ | | ®
where k is Boltzmann's constant, and {2 is the total number of statis- -

tically possible distinguisthable distributions of A and B afoms yielding

the observed equilibrium energy state of -the alloy.
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For a perfectly ordered alloy, §l = 1 and AS, = 0. For a com-
pletely random alloy, the number of distinguishable distributions of

NA A atoms and NB B atoms on N lattice sites, where N = NA +NB, is
10 :

given by:

- Y 1 1
random N,! N_! (XAN). . .(XBN)'

(4)
A" B ,

Fd

where Xp and XB are the atomic fractions. of th‘e‘ components. The con- |
figurational entfopy calculatedlfrom Egs. (3) and (_4)‘ is the ideal entropy
of random mixing:

id

AS Nk(xAlnxA+ xBlnx.B) (5)

Since Nk = % R, where No is Avogadro's nlimber, the ideal entropy for

n gram atoms of sites is given by:

Acld . L
| AS T = —nR (xA In xA}+AxB. 1n xB) (6) ‘

For any particular composition the configurational entrbpy of a
binary alloy Wiil have a value ‘between zero and that calculated from
" Eq. (6) depending on the degree of order. For ir.ltermedibate states 6f
order between those Qf perfécf drdef and .complete disorder, the con-
figurational entropy can be calculated from Eq. (3)if the avéfage atomic

distribution is known.

Thermal Entropy

There are three main possible contributions to the thermal entropy -:

. of formation of an alloy, vibrational, electronic, and magnetic, which

-
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may be represented by:

Asth = ASV‘ib + Asel + Asmag'. , (7

The magnetic effect will contribute only in the case of alloys of one or
more transition metals Wherg there is a change in magnetic properties
on alloying. Likewise, ASel, the contributiori due to ’che conduction
electrons, may be expected to be small except in some cases involving '
transition me_talsQ 11 The:thermal entropy of a binary alloy or.'iginates'
primarily from thé same source as thét of a pﬁre metal, bnafnely the
thérmal vibration of the atoms.;lo -Thus for many alloys,'ASt’h ~ Asvib'

For temberatures well above the Debye témperatures of the‘ alloy
and its pure components, the ‘vibrational contribution to the .entropy of
for‘ma.tion is giveri by the expression:1

B A6

| _ A
AS_ . = 3RIn 5 ~ -3R =5 | &

where 0 is the mean Debye temperature of the allOy, and
Af = 0—(xA6A+>§B9B) . | -(9)
Thus if the Debye temperature and consequently the vibrational spec-

trum for the alloy lattice are approximately linéarly pfoportional to

those of the pure components, ASVl &~ 0.

ib
Direct calculation of the vérious contributions to AS h is difficult.

’I_‘he terms may sometimes be deduced through analysis of experimen-

tally determined values of the total entropy of formation. 11-13 In the
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absence of changes in atomic configuration, integrated heat capacity

. data indicate the magnitude of Asth’ since, in this case:

T
- ACp. . .
A5 f T  dT (10)
0
where ACp = Cpa110y - (XA CpA + Xg CpB) (11)

In the absence of fhe anomalous effects mentioned, Kopp's law of ad-
ditivity of hea;c c‘apacit.ies is often approximately obeyed by ordered
 alloys, thus ACp ~ 0 and ASth ~ 0. For many’phases of fhe types
being rconsider'ed, this result is often observed at temperatures below
3 and AuCu
at;298° K, the values of ACp are -0.03, 0.0, and 0..0,' and those.of AS

those at which disordering occurs. Thus for CuZn, AuCu

are -0.16, 0.1, .and' -0.1, .respectively, 14

The treatment introduc‘evd in this paper-is limited to evaluation of
the configurational entroﬁy contribution. However, since changes with -.
composition are bei‘ngbonsidered,’ the significant assumption is that
the thermal contribution does not chaﬁge_ appreciably over small com~
position ranges, which éhould be feasonably valid.. As will be dis-
cussed, comparisc’m's of calculated values with actual data mé.y some-

times be interpreted in terms of a thermal contribution to the entropy.

.'k-
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III. TREATMENT OF THE CsCl;TYPE STRUCTURE

Characteristics of the CsCl-Type Structure

" The étructure-of. the CsCl-type superlattice was described in
Section I. From the exelmples listed in Table I, it is evident that this
type of ordered phase occurs frequently in binary alloy systems.

Superla{tices form only when there is a pr;eference'for unlike -
atom bonds and thus are to be expected only in systems for which the
A-B bond has a'loWer energy than the average energy of the A-A and

B-B bonds. The CsCl-type structure is extremely efficient in maxi-

‘mizing the number of preferred bonds; for in the perfectly ordered

superlattice (Fig. 1a), each a’;om is surrounded by eight unlike atoms
as nearest neighbors and there are no 1ike-atom nearest neighbor bonds.
In the correspond_ing random body-centered-cubic structure, each atom
will have, on thé average, four 1_ike—atoms and four unlike-atoms as
nearest neighbors. The CsCl-type stfucture is aléo well adapted to

accommodate two components of considerably different atomic size

- while retaining cubic symmetry. ‘Dwightls pointed out that CsCl-type

phases have been found with atomic radius ratios of the components
ranging as high as 1.416. - Considerable 1atti¢e contractions generally
accdmpany: formation of CsCl-type phases. 1,15

The bonding characteristics of the CsCl-type structure contribute

to the relatively high stabilities of these phases, many of which have
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heats of formation which are unusually large for intermetallic phases. 14
A few of the CsCl-type alloys, e.g. CuZn and CoFe, transform to dis-
ordered body-centered-cubic structures before they melt. The major-
ity of the equiatomic alloys however, e. g. AlCo, AlNi, AgMg, AuCd,
AuZn, and HgLi, remain highly ordered all the way to their melting
- temperatures, vs}hich in some cases (AlCo,‘All\JI,i, and HgLi) are higher

than those of both of the pure component metals.

Defect Mechanisms for Depai"tures from Stoichiometry

The CsCl-type structure is most conveniently treated by consider-
ing the superlattice to be divided into two interpehetrating simple-cubic
sublattices, A and B, as shown in Fig. 2. Fof one gram atom of alloy
there will be No_total sites, 0. 5N0 A sites and .0.75 No B sites. In a
perfectly ordered eQuiatorﬁic alloy,‘- AB, all A atoms: wili be on A sites
and all B atoms will bé on B sites. Departure from the ideal stoichio-
metric c.ompositi_on by increasing tbé atomic fraction of B, for example,
* could be acgomplished by one or more of three possible mechanisms:1

| (1) substitution of éxcess B atoms on A éites
(2) cre_atioﬁ of vacancies on A sifes, or
(3) formation of B étom interstitials
Mechanism (3) can be dismissed for the intermetallig: phases being con-
sidered because of the 1a’£7ge positive energies which would be required. 17 .
Interstitial solutiohs in metallic phases are only formed by relatively

small atoms, such as C, H, O, and N, | in the transition metals. 18
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A s{tes-

O A dtom ' @ B atom

FIG. 2 DESIGNATION OF SUBLATTICES FOR
CsCl - TYPE SUPERLATTICE STRUCTURE.
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Differentiation between the substitutional and vac,.angy:mechanisms
can be obtained from a combination of lattice parameter and density
measurements as ra function of composition. 19 The vacanéy mechanism
(2) does occur in some CsCl-type phasres. An example is afforded by
the $”- AINi phase which incorporates a different mechanism on either
side of the equiatomic co'mposition. On‘ the Ni-rich side excess Ni atoms
substitute onto the Al sublattice, but Al-rich compositions are achieved
by the creation of vécancies on the Ni sublattice. 20 :

The substitutional mechanism (1) is the more common process by
which departures from stoichipmetry are achieved by phases of the type
beihg considered. 16 Calculations will be limited to cases of this type,
although the proposed .analy.sis would also be applicable to the vacancy

1
mechanism.

Special Case with Perfect Order at the Stoichiometric Composition
.The first case to be considered is the. one for which the degree of
order is perfect (W = 1) at the équiatomic cbmposition. The atomic
distribution on the sublaftices for one gram atom of sﬁch an alloy is
. given in Table II(2). The configurationalAentropy will be equal to zero.
If the atomic fraction of B islincréased to a value XB = 0.5+ x, and
the (XNO) excess B atoms are assumed to substitute on the A sublattice
sites, the distribution will bé tHat given in Table II(b). Thrbughout the

11

derivation the symbol “X will be used to denote a departure from the
stoichiometric composition on the B-rich side:
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TABLE II

A’comic Distributions on A and B Subiattices

for CsCl-type Structure with Perfect Order aty = 0

Total Atoms A Sites B Sites
No. of Sites | * N, 0.5 Ng 0.5 N

A Atoms 0.5 No 0.5 N 0

(a) x=0

- B Atoms 0.5 N, |~ . 0 0.5 Ng

_ A Atoms (0.5-%) No (0.5 -x) Ng 0

(b) x>0 — ' .
B Atoms - (0.5+y) Ny | x Ng 0.5 Ng
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In order to calculate the configurational enfropy 'for the non-

- stoichiometric alloy as a function of y, it will be assumed"that the A
and B atoms on the A ‘sites are distributed randqmly. The valﬁe of SC
for the entire alloy will be merely equal ton the ideal entropy of mixing
of (0.5 -~ ) NO A atoms and XNO B atoms on the 0. 5NO A sites. | Since
the B sites are entirely occupied by B atoms, the configurational entro-
py on the B sublattice will be equal tp zZero. Applvication.-of Eq. (6) to
the A sublattice thus gives the total ‘co‘nﬁglAlrational entropy for the

¥

| phase:

T R

An identical relatior;ship will be obtained for departures from the equi-
atomic composition on the A-rich side.

‘The co‘nfigurational entropy fér this case is showﬁ plotted as a
func’cion of the deviation f?om stoichiometry in Flg 3. Aty =0, the

slopes of {he éyrﬁmétrical curves are infinite, .since ASA'—> o on the

B sublattice and A§-B—>'oov on the A sublattice as x= 0. .Thus., for the
corresponding limiting values of fhe partial molar Gibbs energies:

as x — 0, A@A-—* - w on the B sublattice and A_(?B — - 0 on the A sub-
lattice becausé of the coptributions oi; the (—TA§i) terms, regardless of
thé energy required fbr the Subgtitutioﬁs. From this if can be con-

‘ clﬁded that the f)erfec.tly Sx;dered state at xy = 0 can not poséiﬁly exist

at any temperature other than 0°K. Consequently, the proper treat-

ment, épplicable to a finite température, must iricorporate the existence

of some degree of disorder aty = O.

-~
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General Case with Some Disorder at the Stoichiometric Composition y

The amount of disorder at x = 0 will be specifiéd by the parameter

@, as defined by Schottky and Wagner:8

o = i——-—-—NA(B)’ = '—NB(A)} | (14)
‘ \ No No ]
x=0 © x=0

where N,

i(3)

on the sublattices for one gram atom of alloy where y = 0 is given in

is the number of i atoms on j sites. The atomic distribution .

Table III(a). It will be assumed that the atoms on each individual sub-
lattice are randomly distfibuted on the sites of that sublattioe. This
assumption should be especially valid for this structure, since there
are no nearest neighbor bonds bet.weén'atoms on the same sublattice.
The sum of the ideal entropies of mixing on the two separate sublattices,
- calculated using Eq'. (6), is then the configurational entropy of the alloy:

S, ® -Rl2eln2e + (1 -20)In (1 - 29)] (15)
For y > 0 the eq'uilibi'ium. distributions will be specified in terms
of a composition dependenf variable, z, which is defined as the number

of gram atoms of A atoms on B sites at any composition, i.e.:

N .

. TA®B) : :

.Z = —],{I—L_l (16)
o) B . “
- Comparison of Eqs. (14) and (16) reveals that o and z bécome identical g

at x = 0; thus:
W
o = (17)

“tx = 0)
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" TABLE III

Atomic Diét’ributions on A and B Sublattices

for CsCl-type Structure with Some Disorder aty = 0

Total Atoms. A Sites B Sites
' No. of Sites No 0.5 Ny 0.5 Ny
A Atoms 0.5 N, (0.5-0) N_ a N,
(a) x=0 - -
| B. Atoms 0.5 N, aN, | (0.5-0) N,
A Atoms (0.5-x) N, (0. 5-x-~2) N, z Ng
() x>0 - ' '
B Atoms (0.5 +%) N, (x + 2)NJ | (0.5 - z) N
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From the definition of z and the required bélance's of atoms and
sites, the atomic distribution on the sublattices when X > 0 is expressed
in fernhs of x and z as shown in Table III(b). Again ' assuming a random.
distribution of atoms on each individual sublattice and using Eq. (6),

the configurational entropy of the alloy where x > 0 is given by:

SC = - -g{- [2z 1n 2z + (1-22) 1n (1-22)

+2(x+2) In 2(x+z) + (1-2x-22) In (1-2y-22)] (18)

Determination of the Equilibrium Distr'ibutionv

In order to find SC from Eq. (18) it is first necessary to find how
z varies with x. This will be doné by r;qinimizing thev Gibb's energy of
t_hé alloy with respect to the distribution function, z, for any fixed value
of x. The Gibb's energy of‘ the alloy is'given ’by:_

G = H-TS - - (19)

where H is the enthalpy and S 1s the absolute entropy of the alloy.

From the relations H = E+PV andS = SC +A‘Sth’ G becomes:

(20)

G = E+PV - T <S_c+'sth)

where E is the internal energy and V is the volume of the alloy. The
equilibrium value of z at any composition is the one for which the Gibbs

energy has the minimum value. Therefore, at equilibrium:

: e - 89S 88 .V 7
5G| _ [9E 5V [ A }_
az} ) az) +P8Z) " Tlez | s =0

X

o

I
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where constancy of T and P, while not explicitly expressed in the sub-

scripts, is of course implied. Ignoring the volume term, which is -

oS \ , ‘
negligible, and assuming that a_z—“f = (; the condition for the
: X
equilibrium distribution becomes:
loE \ 0 Sc}
‘ 9z | T 9z | o (22)
"X X ’ :

Making the '""zeroth-order' approximations of the quasi-chemical
treatment, i.e., considering only the nearest neighbor bonds and assum-
ing constancy of the interatomic bonding energies with composition, the

energy of the alloy may be evaluated from the expression:

E = 1n)a €aa ¥ P ‘BB T "AB AB (23)

where n is the number of A-A bonds and ¢ is the energy of an A-A

AA

AA

bond, etc. The number of bonds of each type may be expressve'd in terms
of the coordination between the sublattices, yielding:

a B{NA(A)XA(B)EAA * Np(ay*B(B)* BB

My sm NB(A)"A(B)’?AB} (24)

where again, Ni is the number of i atoms on j sites and Xi(j) is the

(3

- atomic fraction of i atoms on j sites. From the atomic distributions

given in Table III(b), the values of Ni' (5) and x, (j‘)'ar;e substituted into

Eq. (24), which gives, after simplification, fdr the energy of one gram

atom of alloy:

+

E=38 NO {(4z +4yz 2z)VAB X(eAB eBB) Z€ap (25?)
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where V the nearest neighbor interaction parameter, is defined by

AB’

the expression,

‘AAZ BB S " (26)

From Eq. (25), for any given fixed composition,

| {5—5) = -16N_V, (1 -2y - 42) (27)
| " |

® -

Similarly, from Eq. (18),

-R[ln 2z -1n (1 - 2z)

Pt
| @
N
(@]
e
i

4+In 2(')( +z) - In(l - 2y -2z)] (28)

Application of the condition for equilibrium, Eq. (22), to Egs. (27) and
(28) yields the expression:

4z'(x’ +2)
(1-2z)(1 -2y -2z) (29)

16'NOVAB(1 - 2x -4z)= RTIn

The constant parame_tei‘s in Eq. (29) may be related to ¢, the diétri-
bution function aty = 0 (Eq. 14)." Solving Eq. .(29) for the condition
that when y = 0, z = o (Eq. 17), yields:

16N V
' o = In
RT 1 -4co 1 - 2¢a

AB - 2 24 , - (30)

Substituﬁng Eq. (30) intp 'Eq. (29), and rezirranging, yields the desired
relationship between z and X for discrete values of the equiatomic com-

~ position distribution parameter, a:

W

£
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2 20 4z(y +2)
(1 - 2y - 42) 1 S NI St S Py oy (31)

1 -4 P1-2a "

Eq. (31) cannotlbe solved explicitly for z, but graphical solutions
can be obtained by plotting thg left and right hand sides of fhe equation
vs. z for give.n values of @ and y, as shown in Fig. 4. Fory bé10§v a
critical limiting value, Xg there will be two solutions fof z. The lower-
valued of. the two is the desired solution for the ordered configuration;
while the higher-valued solution for i, for which both sides of Eq. (31)-
ére equal to zero, corresponds to the completely random ‘configuration
for which 1 - 2y - 4z = 0. It will be shown later that the first solution

corresponds to a minimum in the G vs. z curve, and the second, to a

maximum value of G. For values. of x > x , there is only one possible
X2 Xy H Y

.. solution, given by 1 - 2y - 4z = 0, which corresponds to random mix-

‘ing. The Gibbs energy curve will have but one extremum When'x reaches

its critical value; therefore at.y =.>'<£:

az'G).=0 | - - L 3

From Eqgs. (27, 28, 30 and 32), the critical value ofx is given by:

8

. | ) : .
‘Solutions of Eq. (31) may readily be found by a computer using an

SIS

1 -4a 71 - 2a

(33)

o= .25 %
[

iteration procedure. Solutions for three different values of @ are given
by the z vs. x curves in Fig. 5. Aty = 0,2z = ¢; following which the

values of z first decrease with y, reach a minimum, then increase
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more and more steeply until ¥ reaches the value X, at and above which
the solution falls on the random solution line, 1 - 2y - 4z = 0. The
base line of Fig. 5, z= 0, cbrresponds to the hypothetical case where

a= 0,

Solution of the Entropy Equation

From solutions of Eq.. (31), Sc VS. x curves corresponding to
specified vaiues of Ollmay bé evaluated from Eq. (18). S‘yrhmetrically
identical relationships.will of course be obtained for depa'rtures from
stoichiomet'ry on the A—ricﬁ side.. Calculated Sc curves for four differ- '
ent values of o are s’h’ov’vn‘; in Fig'.' 6‘. The slopes of the curves are con-

tinuous and equal to 0 at x = O.

Rezlationship to the Bragg and Williams Parameter

As would be expected, « is related to the Bragg and William52

order parameter, W,  defined _in Eq. (1). At the equiatomic composition,

W = rA-O' 5 . From Table IIl{a), ry = 1 - 2@, Therefore, for the
0.5 | '
CsCl-type superlattice: -
W = 1-4a o | (34)

Also, the Bragg and Williams treatment for this structure results in the
following relati'onship between temperaturé and degi‘ee of order at

x.= 0:

(359
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From Eqs. (34) and (35) is obtained: -

-1

2 2¢ T ,
T-da * T-2a _4(TC) - (36)

The left hand side of Eq. (36) is the constant factor appearing in Eq. (31).

Table IV lists‘;‘_correspondin‘g values of this factor, W, and Lz for sev-

Te

eral values of o.

Relation to the. Wagner Apprbximatioﬁ

The solutior.{lic;'f Wagner and Sého’c’cky8 for the case of substitutional
defects Waé 1imitéd to sr_hall concentratioﬁs of defects and thus to small
departures from étoichiometry. Using the symbology employed in this

!

- paper, their distribution equation for the CsCl-type structure may be

written as

z(x +2z) = o | o : _ (37)

-~ which is an épproximation for the exact solution given by Eq. (31). A
comparison of the two equations for ¢ = 0.05 ié given in Fig. 5. The

approximate solution appears to be reasonably valid for y < 0. 02.

Solution of the Gibbs Enérgy Equation -

The Gibbs energy of formation of the alloy is given by:.
AG=AH'-”_.I‘AS‘,~‘AE-TSCr : (38)

The energy of formation is given by:

AE=E -x,E, -x_FE =.E—(.5—X)EA—_(.5+X)EB (39)

ATA BB

L
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TABLE IV

Distribution Parameters for CsCl-Type S’crué’cure

2o n 2o
1-4o 1-2¢

-0
~12.476
- 9.378
- 8107
_ 7,396
- 6.909
- 6.544

- 5.403
- 4621

- 4.000

. 000
. 996
. 980
. 960
.940.
. 920
. 900
. 800

. 600

L
_Te
0

0.321
0. 427
0. 493
0. 541

0.579

0.611

0.728

0. 866

1.000
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where E, the internal energy of the alloy, is given by Eq. (.25), and EA '

and EB gre the internal energies of the pure'.co.mponents. In order to
obtain an expreslsion for AE in terms of y ahdvz', it is necessary that
EA and EB‘ refer to the pure metéls with the body—centered—cubic coor-
dination number of eight, ‘the same as that of the CsCl-type phase. For
pure metals which exist only in some other struqture, the differénce in.
enérgy between the actual standard state and the hypothe’cical body-
centered-cubic state must be estimatea. Since only changes of AE with
composition in the ordered phase are being conéidered, however, un- -
certainties in the reference state will not be too significant. Again

considering only the nearest neighbor bonds, the energies of the pure

componentsb will be given by:

EA = 4vNO€AA |
. r | (40)
Eg = 4N epg |

)
Combining Egs. (29, 39 and 40) gives the f_ollo_vving expression for AE:

AE = (822 - - '
E _4NOVAB(8z + sz 2y 4z + 1) | (41)
From_Eqs. (30, 38 and 41), the equation for the Gibbs energy of for-

. L’
mation then becomes:

- AG | | ' : -

NV = 4(8z% + 8yz - 2y - 47 +1) - 212 In 725 Se . (42) )

AB R |1-4¢ " 1-2a

“where Sc is evaluated as already discussed.
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For sbecific values of ¢ and x, Eq. (42) may be solvegi for arbi-
* trary values of z to determine how the Gibbé ‘energy varies with con-
figuration for a fixed composition in the ordered phase. . The fesults
of such calculations fOr-a series of compositions'in the ordered phase
in which ¢ = O'. 01 are shown by the curves in Fig. 7.‘ The 'm'inima
and maxima on t}vle. curves correspond to the two possible sollutio'ns to
Eq. (31) mentioned previously. As y increases, the differénce between
the Gibbs energies of the equilibrium'and random sitat-es decreases,
| unfcil at x 2 the random solution has the minimum value of AG.
Equation (42) may also be used :to calculate thé Varizition of AG
with y for the equilibrium values of z. The AG.vs. 'X. curve for the

.ordered phase corresponding to o = 0. 01 is shown, plotted in units of

NOVAB’ in Fig. 8. Also shown is the AG vs. x curve for the random
regular solution for the same temperature; i.e. T = 0.493 TC, which
is equivalent to ¢ = 0.01. The two curves become identical at

X, = +0.356,
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IV. TREATMENT OF THE AuCu-TYPE STRUCTURE

An AB phase alloy having the AuCu-type structure (Fig. 1b) may
be divided into two interpenetrating sirhple tetragénal Sublattices of A
sites and B sites in‘a manner similar to that for the CsCl-type super-
lattice. The atomic distributions on the sublattices for xy = 0 and
and y > 0 will then be the same as those shown in Table III, and the
entropy exﬁre‘ssions will be identical with those of Egs. (15) énd (18).

There is, howéver, a significant difference in the .bonding charac-
_terisﬁés for this close-packed structure. In the prévidﬁs case all |
ﬁeare_st neighbor bonds are between atoms on different sublét’cices. In
| the AuCu-type structure, each A—s‘ite‘ atom has four nearest neighbors .
on A sites and eight on B s&teé, and each B’—site atom has four nearest
neighbors on B sites and eight on A sites. This results in a difference
in the eﬁergy, and consequently the Gibbs energy, relationships for
this struc’a.lre.‘ The resulting equilibfium distribﬁtion equaﬁon, h&w—
ever, remains the same as that of Eq.l (31), and the Sc vS. x curves
are identical to those of Fig.» 6.

The pertinent equations resulting from the treatmelht of the AuCu-~-
type structure are summarized below. - Expressions Which are identical
to those 6btained for the CsCi-fype structure are merely indiéated by
reference» to the applicable equations. D’efinifions and -_symbols are the

same as in the preceeding section.
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S, (x‘= 0) : Given by Eq. (15)

S, (x > 0) : Given by Eq. (18)

25,
,\az | : Given by Eq. (28)
y |
- 2 _ 2 -
E = N_[8(222 - x* + 2x2 2V g
- - 4y)e ' - | 43)
+ 41 - e, + (1 -4x)e,, + (1 +.8X)CBB1 (43)
2l | anv (1 - 2y - 4z) | (44)
i, z | o AB x
| X
| |
RT 1- 4o 1-2a _!ch S ‘

| Equilibrium distribution equation : Given_ by Eq. (31)

’ W : Givenby Eq. (34)

S

{ AE = 4NOVAB(4Z 2x° + 4yz X 2z + 1) (46)
ﬁ'%g—— = 4(4z® - 2% +4xz - x - 22 + 1)
" j o AB :

-1
- 8 : 2¢
- . . A
R |T-4e ™ T 22 Se | (47)
- , The distributioh parameters"for various values of o will be same

. as those in Ta'ble Iv.
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V. TREATMENT OF THE AuCu,-TYPE STRUCTURE

The AuCu3-type superlattice structure (Fig. 16)'may be divided

into four interpenetrating simple cubic sublattices, three of one type

and one of the other. For one gram atom of alloy with the ideal stoi-

chiometric composition A;B, there will be 0. 75 N_ A sites and 0.25 N_

B sites. The atomic distributions on the sublattices for x = 0 and

x > 0, where now,

X = xg - 0.25 | (48)

and o and z are defined as in the previous treatments, are given in
o - _

Tébl_e V. Each A-site atom has eight nearest neighbors on A sites and

four nearest neighbors on B si’c’es, and each B-site atom has twelve
nearest neighbors on A sites only.

The AuCu,-type structure has been treated by the procedures

3
described in Section III. The resulting pertinent expressions are sum-
marized below, employing the same definitions and symbols already

established.

For x = 0:

Sc = -R [a 1n:.1—3§~ o? + (. 75-a) lni(l-%oz) + (.25-a)In(1 -4a):{ (49)

B e g s
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'TABLE V

Atomic Distributions on Sublattices for ASB Pha'sef,{'j :

Having the AuCug-type Structure with Some Disorder é{'x =0

| Total Atoms

A Sites‘ B Sites
i
| No. of Sites Ny 0.75 N - 0.25 N
F‘i , _
| A Atoms 0.75 N (0.75 - o) N a N
(a) x=0 A _
| B Atoms 0.25 N~ aN, |(0.25-a) N,
. 1A Atoms (0.75 =) Ny -{(0.75-x~-2) N z Ny
() x>0 -
B Atoms (0.25+x) N, (x +2) Ny |(0.25-2) N




L4oi

For x> 0:
oo . ' ) S 4 ‘
Sc = -R{z In 4z + (. 25-2) In (1-42) + (x+z) In §‘(x+z)
+ (.75-x-2) In %—(3—4X—4z) : (50)
_ . J
[as | | o | |
c - . 16z(y+z) _ , v
137 ;x-~ "R IP 70) (B-4x-42) - (51)
E i N 32 (22’2‘_ 2eyz)V, o + (A¢-82+3)V, _
) 0{3 RTXEIY AR T ORTEETYI VAR
+ 2 (3uay 3 (1eay) (52)
2 LAYV X eBB
(az ) = -3 NV, ,<'3 4y -162) B (53)
8NoVAB N . 16a% : _ (54)
3RT ) ,3—1.6'01_ 3-16a+ 1607
1602 | -~ , 16z(x+z)
- ~4x- 162)3 16a In2- T6a+T6a - InGe ~a-162)+T6200%). (55)
W= 1 -13§ o S , (56)
"AE = N‘V‘ 2 (2z-vy) (x+2) +-4x¥8z‘+3§ ‘(57)—
4 o AB|3 K’ SRS
ﬁ.%_g_- = [%2_ (2z_—-><)f (x+z) + 4X-8-‘z-+3]
s 1 182 \7L
“3R §3‘-16a n 3-16a+ 16012} Se (58)

~The dlstrlbutlon parame ters for various values of @ are glven in

Table VI. Accordmg to results of the Bragg and Wllllams‘ treatment
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TABLE VI

Distribution Parameters for AuCu,~-Type Structure

1 In T 16w?2
5-16a 3-160+ 1602 W
R 1. 000
-4.067 ~ 0.995
-3.046 0.973
9635 | C0.947
-2.407 0.920
-2.254 ©0.893
-2.140 o 0. 867
-1.830 | - 0. 733

-1.625 ' | 0.

463
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for the stoichiometric alloy as a function of temperature, 21 the highest
permissible value of W is 0.463, corresponding to o= "(')‘..1007. At the
température yield_ing.’this degree of order, the stoichipmetric alloy is
predicted by that treatment to undergo a first—ordervtrans.ition to tl;.e
disordered state. Corrésponding discontinuities occur in the present-
ly derived functions at limiting values of X de_;;ending. ’on the value of
o, beyond .WhiCh the random configuration becomes the stable one.
For o= 0.1007 the discontinuity is at x = 0;

Because of the unsymmetrical nature of the AuCtiS—type structure,
nonsymmetrical solutioﬁs for SC result fér'x < 0 and y > 0. Calculated

SC vs. x curves for three different values of o are shown in Fig. 9.
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VIi. COMPARISCNS WITH MEASURED VALUES

EXperimenta_l data from which the variation of AS with composition
in ordéred phases may be evaluated are quite limited. Comparisons are
possible, however, between the derived expressions for SC and the AS
valueé fof the AgMg, AuCd, -and AuCu phases taken from the evalu-
ations of Hultgren, Orr, Anderson,. and Kelley. 14 The most valid
method of correlation would appear fo be by means of the shapes of the
AS vs. comp_osition curves, differences between the absolute values of

actual

bution to the entropy of formation.

AN and _SC then being interpreted in terms of a thermal contri-

The values of AS for two CsCl-type phases, §* - AgMg at 773°K

{

and B- - AuCd at 700°K, are plotted in Figs. 10 and 11, respectively.

‘The terminal values .apply to the boundaries of the phases at those -

temperatures. 14,22 The data for the 8- - AgMg phasel'4 are seen to

“be represented reasonably well by the CsCl-type Sc curve for = 0.015,

aSsuming Asth ~ 0. From Table IV it is seen that this value of « &:or-

responds to W = 0. 94 and % = 0.541. The resulting calculated crit- |
ical tempe‘raturé, Tc = .143021{, is consistent with the fact that the equi-
atomic alloy retains a high-degree of order to its melting point, 1090°K. 22
From lattice paramete_r and density meésurements, Hagel and West- .
brook23 showed AgMg to disorder bjmeans of the éubstitutional

mechanism on both sides of stoichiometry.
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FIG. 10 CORRELATION OF ENTROPY DATA FOR
THE B'- AgMg PHASE AT 773°K.
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The data for the 8- - AuCd phase14 are fitted satisfactofily by the
. SC cufve for o =-0.005, assuming AS,&n = -0.20 qal./deg. g-atom, as
shown in Fig. 11. There are other indications of negative thermal con-
tributions to the entropy of this system._‘ For AuCd between 298° and
600°K, ACpan. = -0. Zé cal./d‘eg‘. g—atém, 14}presﬁmab1y from thermal
origin. For the iiquid equiatomic alloy at 1000°K, AS™ = AS - astd

= -1.11 cal./deg. g—étom, 14 which again indicates a negative thermal
contribution to the entropy of formation, siﬁce it is unlikely for the liquid

alloy to possess a significant degree of order. The value of « used to

fit the data, 0.005, corresponds to W = 0. 98 and % = 0.427, leading
c

to a calculatea value for T of.1640°K, far e_{bové the 'meltir}g tempera-
ture of AuCd, 900°K.. |

» The AS values14 for the AuCu phase at 653°K are plotted in .Fig. 12,
where, again, the terminal values apply to the phase boundaries at thaf
tempei‘ature. * Especiélly about the equiatomic composition and on the
| Cu - rich side, the data are represented extremely well by the SC
curve for o= 0.015, assuming ASt}; = +0. 16 cal./deg. g-atom. The
suggested positive thermal entrdpy contribution is consistent with other
data for this system. For the ""disordered" equiatomic alloy at 720°K,
37° above Te, A5 = 1. 36 cal’./c"ieg.. g-atom, 14 iny 0.02 cal./deg. g-atom

less than the ideal entropy of miking. The high-temperature X-ray data

* The high temperature orthorhombic modification of tetragonal AuCu’l,
the AuCu II phase stable between 658° and 683°K atx_, = 0.5, -has
been neglected. Calorimetric measurements have failed to show any
change of properties between the two modifications. 4
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~ | | of Roberts, 24 however, indicate a hiéh degree of short-range order |

a for this alloy, with a number of excess Au-Cu bonds W];ich is 36. 5 per
cent of the way betwe‘en'the completely random and perfectly ordered
states. The configurational entropy of the short-range-ordered alloy

must be significantly less than ideal; thus the thermal contribution to

AS must be positive in.order to yield the obser;fed valﬁe of 1. 36 cal./deg.
g-atom.

The value of o used to fit the data at 653°K, 0.015, corresponds
to W = 0.94, in fair agreement with the value determined by RObértSle
for an alloy quenched ffom the same température, W=0.97. Itis
possible that the degree of order increased sc’JmeWhat during the quench,
ac‘counting‘for some of the différence. The calculated critical tempera-
ture, 1200°K, is much too high, as the degree of long-range order of

the equiatomic alloy drops precipitously to zero at ’1‘C = 883°K by a

first order process involving a considerable latent heat effect. &
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- VII. DISCUSSION

Solutions for many of the expressions derived for the illustrative
CsCl-type structure were ex’cended-to théir ma’chema’cical limits. This
‘was done with the object of exploring the behavior of the derived functions
and not of suggesting that their v.alidity shéuld.be expected to extend
over such wide ranges of composition. The two pfimary assumptions
involved in the treatment are those of (1) constancy of the nearest

neighbor interaction parameter, V and of (2) random mixing of atoms

AB’
on the individual sublattices. The validity of these two assumptions is
likely to deqrease with increasing departures from stoichiometry.

In actual alloy systems: the composition range of stability of a
superlattice phase is often limited by the existence of other cofnpeting
p.hases which become the stable ones on either side of the one considered.
In the case of an ofdered phasé which transforms to a disordered alloy
of the same or related lattice structure, the Gibbs energy curve for
the ”disordered”’_ phase, e.g. in Fig.‘ 8, will be lowered by the exist-
ence of short-range order, again reducing the range of stability of the
ordered phase. Seldom does an ordered phése exist for departures
from stoichiometry greater than y = £0.10, for which r:ange.the assump-
tions made should remair} reasohably valid. "

It would also be expected that the basic assumptions should be

more valid for the CsCl-type structure than for the close-packed super-

lattice structures considered, because of the difference in their bonding
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characteristics. In the CsCl-type structure there are no nearest
neighbor interactions between atoms on the same sublattice, which
especially favors assumption (2). In the clqse—packed AuCu and
AuCuBFtype structures, however, some of the nearest neighbor bonds
are between atoms on the same sublattice, which, in the case of the
tetragonal AuCu-type, have different bondilengths than those between
atoms on different su‘blattices. In all céses the distinction between the

sublattices will tend to break down with increasing amounts of disorder,

resulting -either from higher temperatures or greater departures from

- stoichiometry; but this may occur sooner for the close-packed structures.

Further assumptions are of course involved in ignoring inter-
actions of longer range than the nearest neighbor ones and in considering

the departures from stoichiometry to occur purely by substitutional

-defects. Even in cases where this is the predominant mechanism,

there will always be thermal vacancies present which vary with com-

position and which may show a preference for one sublattice or the

 other. More extensive treatments would have fo take these fact_ors into

account. It is believed that the methods presented here should provide
the framework upon which more elaborate or sophisticated treatments

may be based.
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" Part B

SOLUTE INTERACTIONS IN DILUTE LIQUID ALLOYS

ABSTRACT

Calorimetric measurements are reported for the heats of splution
of gold and indium in a number of liquidAtin—rich alloys at a temperature
of 705°K. From the data the partial molar enthalpies of gold are deter-
mined as a function of dilute solute concenﬁrations in the binary Au-Sn
system and in the ternary systems, Ag—Au—Sn, Au-Ni-Sn, and Au—In—SAn.
Partial molar enthalpies of indium are detefmined for dilute solute con-
centrations in the In-Sn, Ag-In-Sn, ‘and Au-In-Sn systems.

The data are expressed in terms of the interaction parameter
"~ concept introduced by Wagner and moré recently extended by Lupis and
Elliott. Values are obtained for the gold-gold, silver-gold, nickel-gold,
gold-indium, and silver-indium enthalpy interaction parametérs in
liquid tin. Values of enthalpy interaction parameters are also evaluated
from existing data for the tempera.ture.variation of the Gibbs venevrgy
interaction parameter in four liquid ternary alloy systems. The results
are interpreted in terms of solute atom distributions through compari-
sons with values of the enthalpy intéraction pafameters predicted by

the random solution and Henty's law models for the dilute solution.
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I. INTRODUCTION

Interest in the thermodynamic behavioerf dilﬁte 1iQuid alloys
arises from fwo primary sources. From a practical viewpoint, it is
often of importance to kl:lOW or to be able to predict the effect that one
solute will have on the thermodynamic properties of the other soluies
in a multicomponent system. The leading example of this point 6f view
is afforded by the extensive studies of Chipman:1 on the interactions of
dilute solutes in liquid iron. 2 Studies of dilute solutions may also be
rewarding from the theoretical point of view. Some of the complications
and diffic‘ulties arising from the more complex iﬁteraqtions possible in
concentrated solutions are avoided, leading to easier'intérpretations in
terms of solution models and bonding energies. | For example, in a
binary alloy the limiting values of the partial molar properties of the
solute repfesent the case for which each solute atom is cbmpletely,sur—

rounded by atoms of the solvent, and no other interactions are possible.

~ Interaction Parameters

Solute interactioruls in dilute solutions are> conveniently ‘tre'ated by
the interaction parameter concept of Wagner. 3 Using a Taylor series
expansion for the logarithm of fche activity coefficient, In i of a com-
poﬁent, i, in a solution c'onsisting of dilute solutes with atomic fractions

X., X

i 5y Xk’ etc., in a solvent, s, and neglecting the second- and higher-

order terms, Wagner obtained the expression:
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e i j Kk - ]
= - e v e L
1n v 1nq/i + oxe 4 xjei + X €+ ‘( )

where fy; is the limiting value of s in the pure solvent, s. The coef-

ficients, €., e?, etc., are called the interaction parameters, defined.
1 1

by:
. ’Bln'y.“ , A
R [—— | | (2)
i axi xs=1 . , .
g [8 ln'yi\
= by 3
€i \ ox, x =1 , etc (3)
C J 5

The self-interaction parameter, ei , rep'resénts the effect of interactions
between atoms of component i; eg represents the effect of interactions
between i and j vatoms, etc. Since s is relatéd to the excess partial |
molar Gibbs energy of component i by AG‘};S = RTIln s ei will be re-
ferred to as the '"Gibbs energy interaction paramét.er” to differentiate
it fx"om the othef interacrtion parameters which Wiil be empllo:.yed.

Lupis and E.lliott4_ proposed that Wagner's treatment be extended
to the partial molar enthalpy, 'Aﬁi , an.d thé excess partial molar en-
tropy, A§};S. They define the enthalpy intefaction parameter as:

; {aaﬁi | .
i : \ 9 x, x =1 ~ (4)
J s S

;

and the entropy interaction parameter as:

9ATS

6:?’___ _— ' (5)
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leading to expressions similar to Eq. (1):

1 cd
Sy PN R + (6)

ju=]
ot
—
>
1

8 +x.6%_+x.6Q+”._‘ : (7)
i(x_ =1) ii joi

. ) . , ) s _ .
From the definitions in Egs. (3-5) and since A(—}’f = AH, - TAS;{S,

4
- the three interactions parameters are related by:

RT e = nq - Ted _ : : ' (8)
i i i

From the usual Maxwell-type relationships between partial molar

properties. Wagner3 has shown that

€j=€i. : ' | (9)
i i A

i

 Similar reciprocity relationships apply to the enthalpy and entropy inter-

action parameters4, thus:

io_ i ‘ ' '
and
sd = & ‘ (11)
i J =

Relation between Gibbs Energy and Enfhalpy Interaction Parameters

g ,
Dealy and Pehlke derived the following relationship between the

tempera’cﬁre dependence of eg and H, the total.enthalpy per gram atom
of alloy: ‘
J
Sy [ om -
g 1 R 9x,0X, -1 :
T Vol xg= :
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The authors state that if the right hand side of Eq. (12) is not a strong
j

function of temperature, then € would be expected to vary linearly

with "1f , permitting extrapolations of measured values to other temper-
atures of iﬁterest. Such é linear variation has indeed often been found
in the measurements of Pehlke and his asso'ciatesen9 on dilute ternary
liquid alloys.

These authors neglectéd to point éut, however, that a more use-
ful relétionship, subject to more meaningful interpretation, can be just

as easily obtained. From the definition of eg (Eq. 3) and-the fact that the

order of differentiation in the mixed partial derivative is immaterial:

o) | , .
i [2ln | I Rl (13)
Y T =T R NPT U et
T °T J s J T s
Since, from the Gibbs-Helmholiz relation,
AE}';{S L
] T Bln'yi
= R = AH, , ‘ (14)
5 = 5 = ' |
T T
one obtains:.
v ol = % i
de; L1 {84)31%1} on 05
1 R i X, f . R
dE‘ | i XS—l

‘Eq. (15) thus relates, in the familiar way,:'data obtainable from equili- '
brium and calorimetric measurements. This relation could just as well

be derived from Eq. (8) or Eq. (12). An observed linear variation of

e
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ei with LT thus results from a temperature invariant value of ng.

Introducing here a further interaction parameter, oi , where:

N J
. ACp, - dn:
o) = i_gi\ = " (16)
i 9x. } dT ’ , : ’
J xg=1
ng will be constant with temperature when og = 0.

Experimental Measurement of Interaction Parameters

Experimental determination of the various interaction parameters
requires extremely precise measurements of the appropriate properties
as functions of solute concentrations in very dilute regioﬁs. Unfortu-
nately, few su_ch accurate data exist for inte_rmetallic alloys, even for
binary systems, because of the e#perimental difficulties involved. |
Examination of the evaluations of published data for binary alloys by
Hultgren, Orr, Anderson, and Kelleylo reveals that determina’cion‘.of
the.limiting vaiues of 'y; and Aﬁi (x.=0) often requires extrapolations to

i

infinite dilution from X, ~ 0.05 - 0.10. Similar difficulties were

recently pointed out by Dealy and Pehlke11 as having been encountered

J

i

2

. . . 2 . . ;
in their tabulations of available values of fy‘i’ and € in non-ferrous

liquid alloys. Values of eg for several metallic and non-metallic

solutes in liquid iron are tabulated by Elliott, Gleiser, and RamaKrishna.

J

The use of high temperature galvanic cells for determining € in

dilute liquid alloys has been critically discussed by Deaiy and Pehlke, 11

and such data for several ternary systems have recently been reported

6- :
by Pehlke, et al. 9 Direct measurements of the enthalpy interaction
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parameter, ng , for ndulticomponent systems, however, are virtually
nonexistent. This quéntity is of course subject tov calorimetric meas-
urement, but its determination must be limited to cases where high
experimental precision is possible.

The present paper will report the v'results of calorimétric measure-
ments of the enthalpy interaction parameters for a few repnresentative.
solute pairs in dilute solution in liquid tin. The data will be int-erprete:d'
in terms of dilute solution models. Values of enthalpy interaction para-
meters will also be .evaluated frqm exisﬁng data for the temperatﬁre

variation of eg in liquid ternary alloys.
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II. MODELS FOR DILUTE SOLUTION BEHAVIOR

Random Solution Behavior

In the quasi—chemigal treatment of sglutions, (it is assumed *_chat
the energy of a solution. may be expressed merely as thg summation
of all the nearest neighbor bond energies. Also, a composition inde-
pendent value is asvsumed for the pa.irwis.e interaction éhergy term,

-

‘vij’ defined by:

V.= E_-L(E. +E) - . . .amn
ij i i

where Eij'is the energy of an i-j bond, etc. The so-called "zeroth'
approximation13 Qf this treatment, referred to throughout this paper as
the ""random solution model', further assumes random mixing of the

component atoms. Based on this model; " the integral heat of formation

for one gram atom of a 'binary alloy is given by:‘l

AH = wx.x. = S T ae)
i

where

© = NyzVi o R (19)

N, being Avogadro's number and z the coordination number,, assumed to
bé the same for the _pure,gomponents and-the alloy. Since, for this nioci-elﬁ
w 1s constant for a given system, AH will be a parabolic fﬁnction of com-
position. The coi‘responding values of the partial.rnolar enthalpies for

the two components are given by:
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[N

AH. = 'wxj? - | : , (20)

and

/,_\ﬁj = wxf : : (21)

The limiting values for the partial molar enthalpies for the solutes in

the terminal infinitely dilute solutions will thus be identical as shown by:

AR

AH,, .= o = N=zV,_. (22)
J(Xi-'-'l) o i

=1) =
XJ ]

The enthalpy self-interaction parameter for a solute showing
random solution behavior in a dilute binary alloy may be éalculated

from Eqs. (4) and (20), yielding:

i
!

; aAﬁi | _
nl : 8Xl x.=1 = —2(0 = —ZAHi(XJ'—'l) (23)

The assumpti’oﬂthat Vij.does no’; vary with composi’gion is not
generally valid fox\' intermetallic systems. Failure of this assumption
is shown by the fgct fhat the limiting partial molar enthalpies' in liquid
binary alloy sy.ste'ms uéually differ, sometimes by considerable amounts. 10
Nevertheless, bver a small r'ange of composition such as in the very
dilute range for gr_lg of the components, the assu.mption that Vij is con-
stant should be reasof;ably valid. Therefore for component i in very
dilute solution in j, a ’depia"rture‘from the behavior predicted by Eq. (23)

could be concluded to result primarily from a non-random distribution

of the solute (i) atoms.



-63 -

Applying the zeroth approximation assumptions to a liquid terﬁary
4 . ' |
alloy, Alcock and'Richardson1 " derived the following equation for the
enthalpy interaction parameter of dilute components i ahd'j in solvent -

metal s:

(24)

/
. ‘
J 2 i AT i oy = =
n "k o9x. |x =1 AHi(ln J)X.=1 AHi(mS)X -1 AHj(m s)X -1

j S i S S

where the three terms on the right hand side of the equation represent

the limiting partial molar en£halpies in the three respective binary alloys.
The last two terms are unambiguouslyvevolved in the treatrhent, since
metal s is the major component for the binary systems they répresent

as well as for the ternary alloy. The term, Aﬁi(in j)X =1 however

. evolves from the expression, Nozvij’ Whi(;,h‘ accordingjto the model
employed could jgst as well be given by Aﬁj(in i)x_=1' Thus in cal-

1

culating the value of ng predicted by this model in cases where the values

of AHi(xj=1) and AHj(Xfl) for the binary i-j system are different, it

would appear better to use an average of the two limiting values. From
Eq. (24) the enthalpy self-interaction parameter for the ternary alloy is
again given by:

i = .
n, = —ZA.Hi (in s)xS=

1 (25)

For the very dilute fange of solutes i and j in solvent s, the assump-
tion that the interaction energy terms, Vis’ Vjs’ and Vij’ remain con-
stant over the dilute range is not unreasonable. Thus, a depa'rture in

the behavior of an actual dilute ternary system from that predicted by
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Eqg. (2_4) is most likely to result from .one or more of the following:

(1) a non-random atomic distribution, (2) other than{nearest neighbor
interactions, or (3) a differe.nce between the value of Vij-in the binvary
i-j and ternary i-j-s systems. Experifnental departures from Eq. (24)
must therefore be inte‘rpreted in terms of these possibilities, ’caking
into account thé nature of the systems involved and the direction and

magnitude of the departures.

Henry's Law Behavior

Henry's 1awlis merely the statement of the empirical observation
sometimes méde that for a component i in dilute solution:
a, = kx, ‘ ‘ (26)
where a; is the activity of component i and k is the Henry's law constant.

Actually,Henry's iaw is’a 1imitihg law, which can be expressed as:

a, - kx, as x.,—0 (27
i i i

~In téerms of the activity coefficient of componenjc i, this becomes:

yi—>k as xi—>0 ‘ « (28)

from which it is obvious that k = 'y; , the limiting value of s at X, = 0.
For finite ranges of cofnposition, Henry's 1avx; is besvt viewed as a
hypothetiéal law which will be afpproached more or less closely by aﬁ
actual solution, dépending on the nature of .the system and the limits of
experimental precision.available. Highly precise galvanic cell measure=

ments of the activities of several metals in very dilute binary amalgams
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have revealed deparfurés from 'H-enry’s :1'a\£'r at 'qﬁite‘ low ="solu"cze" .conc-en-
trations, less than x = 0. 0005 for K, Pb, and S.'ri, ‘for". ekamolo. 10 On
the other hand, départures from Hénfj?'s; law behavior are sometimes
small or experimentally undetectable over finite ranges of composition.
The solubilities‘of ni’crogenl5 and ]o.ydrogen16 in 1iquid iron at 1600°C,
for example, have been founol to obey Sievert's law (which assumes
Henry's law for the dissolved species)17 for pressures up to one atmos-
phere, at which Xy = 0.00180 and XH = 0.00137.

The model deduced from Henry's law behavior for finite solute
concentrations is one of a nonrandom atomic distribution for which
there are no interactions between solute atoms. (An exception to this
model is provided by the special case of an ideal_oolution, for Which
’che: solute obeys Raoulf,'s law, a special.oase_ of Henry's law. In thisb
case, Vij = 0, and the solute atoms are randomly distribufedi) Thus

for -a dilute binary solution, over the range that solute i is assumed to

obey Henry's law, ei = 0, n; = 0, and 5; = 0; therefore A@?S,

)

' Aﬁi, and Ag:’i{s'will be constant and equal to their values at X, 0.
 Likewise, for a multicomponent solution in which each solute is assumed
to obey Hénry’s law, all of the solute interaction parameters, ég , ni s

6

;» etc., will have zero values.

The random solution and Henry's law models for the dilute solution -
~represent limiting typés of behavior as far as the nature of the distri-
bution of the solute atoms is concerned. Thus, while both are idealized,

they provide useful bases for the comparison and interpretation of the
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} prperties of real diiufe _so_luﬁons. Comparisons of meagured values of
~ the enthailpy iﬁtera{:tion parametei‘ with those predicted by the two models

should serve as most convenient criteria for making such interpretations.
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‘II. CALCULATIONS FROM EXISTING eg' TEMPERATURE

COEFFICIENT DATA

Values of\ei for dilute solute pairS"in ,foux;'irite‘rmetallic liquid
ternary alloys have recéhtiy been determined from galvanic cell meas-

urements by Pehlke, et 1.6_9 In each case ¢’ was found to vary linear-

— i
ly with the reciprocal of the absolute temperature, yielding the values

J .
of i listed in Table I. Values of nJ have been calculated from: (1) the

i

1

d_.

T .
reported temperature coefficients, using Eq. (15); and (2) the random
solution model, using Eq. (24). The resﬁ_lts are given in the last two
columns of Table I.

Limiting values of the partial molar enthalpies in the app'r_opr_iate
binary systems, needed for the evaluation of Eq. (24), were taken from
the selected values of Hultgren, et al., 0 and are listed in Table II to-
gether with other binary data which will be referred to in this paper.
For the reason discussed previously, the (i-j) binary term in Eq. (24)
has been evaluated as the average of AH, and AH, .

1(xj=1) ](Xi':l)

Values calculated from the temperature coefficient data and from
, : : Ag . ' . g ] Pb,
the random solution model for Mo in bismuth and in lead and for U in
tin agree surprisingly well, especially considering possible uncertainties
in the limiting values for the binary systems. Also, it has been neces-

sary to assume Kopp's law (AC—pi= 0) for. the binary systems, thus ig-

noring differences in the temperatures at which the enthalpies are known:
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TABLE I

Enthalpy Interactlon Parameters :
J

Calculated from €} ’I‘emperature Coefficient Data

' and from Random Solutlon Model

. [ saE,
o = { i
oy aXj x_s=1 , cal/(g-at)?
deg _
j o From - Calculated from
»'de_ib" o d% Random Sol'n Moedel
| S 1 » o
s i 3 T,k _%F  Ref.  Eq. (15 Bq. (24)
Bi Cd Sn 673-683 4880 6 9700 1040
Bi Zn Ag 723-923 -4830 7 -9280  -10740.
Pb Zn Ag ' 823-943 -5870 8 - -11660 -12770
' Sn Zn Pb 723-923 2080 9 4130 | 5330

*Tentative value®
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"TABLE II

Limiting Values of Partial Molar Enthalpies in Liquid Binary Alloys

(taken from Hultgren, Orr, Anderson, and Kelleylo)

.i(ﬂ) = i (in allqy) g ,Xi;O)

Solvent i : - T,°K .AHi(xi= 0>, cal/g-atom
Ag Au 1350 | 4660
Agd Zn ' 1050 . 5000%
Au Ag 1350 : ~.3860

Au Ni % 1369 © 3300
o Agt 1000 20940
B cd s T
= on 608 105
Bl . Zn 873 | 3680
o on [KER 2330
= Agh 723 1200
- At 723 ~11200
Pb Agt e oy

 Pb 7 ' 926 s
Sn Agi . 723 | 870
- Au 700 . - 8030
S cd 73 1520
o " s - 140
. Ni3 | 910 ~13900
on Fbo - 773 | - 1360
sn Zn 700 . 9990
“n Agt 1050 - _3940*

“n Pb 926 12075

i Supercooled liquid. . . * Estimated assumingAé?S:O
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The vélues Aare certainly in sﬁfficiently good agreement to suggest that
t.hesve three systems closely approach random solu’éion behavior in the
- dilute ranges studied. . |

The value of nir; in bismuth obtained.from the temperature coef-
ﬁcien’c data disagrees strongly with the random solution vahie, in a
direction opposite to that which would indicate an approéch to Henry's
law behayior. The discrepancy is much t00 large to result from uncer-
tainties in the binary values used. The measured value appears to be
several times more endothermié than can be explained by any reasonable
interpretation other than possible uncertainties in the temperatﬁre éoef—

ficient data.
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IV. EXPERIMENTAL

Systems Studied

Liquid fin was the lm'ajof componeht for-all of the éystems studied.

~ The heét of solution of gold was measured for several diiufe éblute com-~-
positions in the binary Au;Sn 'systém and in tile terné,ry systém's:
Ag—Aﬂ—Sﬁ, Au-Ni-Sn, and Au—Iﬁ.—Sn. | Sirﬁilar ‘meaé’ﬁrefnehfs were made
of the heat of solutiém of indium in the In-Sn, Ag—I'n—Sn,- and Au-In-Sn
systems. Measurementé were made for all of the ailoys at a tempera-

ture of 705 (+2)°K.

Materials
The materials used, together with the suppliers and reported

purities, are listed below.

Material Puri’cy | A Suppiier
Sn 99. 999 %‘ Vulcan Detinning Co., Sewaren, N J.
Au 99. 999+% . Cominco Products, Inc., Spokane, Wash.
In 99. 999+% _ American Smelting and Refining Co.,
, C o SAouth Plainfield, N. J.. '
Ag 99. 999+, Cominco Products, Inc., Spdkane, Wash.

Ni- 99.999 % -  Chicago Development Corp.,
' Riverdale, Md. :

Experimental Procedure °

The measurements were made using the liquid metal solution
calorimeter and experimental methods described in detail in a previous

publication. 18 The calorimeter basically consists of a stirred solvent-
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metai béth containéd in a rriolybdenum crucible which is supportea_ with-
“in :va_heavy‘c’op‘pfer j_é,c'ket.- 'Thev jacket is heated by a surrounding resist-
ance héating elevme'nt and i}s maintained at a constant teinperature, within
+0. 001 ovC, by meéns of é sensitive resistance thermometer temperature
éontrollef. ' The‘temperatﬁre difference between the crucible and jacket
is meésured by .méans_ of a _copper—cdnstantan differential thermocouple,
and the jacket temperature is 'me.asured separately by a calibrated plat-
ir.lum-pla_’ci_num. +1 0%‘ rhodium céuple. The calorimeter is contained in
| the lower half of a chamber evv'a.cuated to a predsure of about 10_8 atmos-
phereb._ Locate.d in .the uppe_f part of th§ chamber and separated from the
, calorimetef by sev‘er‘a'l‘ radiati}onvshields is the dispenser unit which |
holds the 'Solufe specimens p_ri'or to dropping them into the solvent bath.
- Spéfcimenvs are >admi'tted fﬁo '.thé‘dispens'er unit throughvan extez:nal
1Vacuﬁ:1'n-lo¢1; device. . | |

F_’Qr each series-of runs, approximately 250 g. of tin (~2.1 g-atqms)
‘ v-vvas‘mel’c_ed under {ra-cuum-into fhe molybdenum crucible, which was then
instélled in the 'ca'l-o.rimei’cer. and‘brought to the _solufibn temperature,
705 '(3:2)°K_. - ‘Smail. ‘spheri-cai specimens of gold and indium, consisting
.of about 0. 003 g - atoms ofv sample, were used for the measurements.
The total heat effeét taccorhpanying the solution of a specimen dropped
from the ’cemf)erbatﬁre{vof vthe. disbenser" unit ‘("?~321°K) was determined
from 'thé change in ﬂ‘.lé crilcible temperature, the measured heat capac-
ity‘ of the caﬁlolfimeter; and a co.rrection for heat transfer between '

jacket and ‘crucible duririg the run, using calculation methods previously



. 18 . . .
described. The heat capacity of the calorimeter was determined at
the beginning of each series of runs by measuring the temperature
change accompanying the addition of specimens of pure solid tin. Simi-
lar measurements were made during the runs by dropping specimens of
tungsten into the bath. The known heat effects were obtained from tab-

.10 19 .
ulated heat content data for tin" = and tungsten. Solute additions for
the purpose of changing the composition of the liquid alloy were also

made through the dispenser unit.

Treatment of Data

The isothermal heats of solution at the temperature of the liquid
alloy were determined from the measured heat effects and the enthalpy

increments10 of gold and indium between the initial specimen and final

- solution temperatures. The heat of solution per g-atom of solute added

is the average partial molar enthalpy, Aﬁi , of that solute over the range
of composition covered by the liquid alloy during the run. Since the
change in composition of the solute was quite small, of the order of

Axi = 0.0012, the valueé have been taken to represgn’c the partial molar
enthalpies at the average of the alléy compositions before and after each
run.

During the course of six series of runs, fhe temperatures of the
liquid alloys for i‘ndividual»‘ruris differed by a maximﬁxn of only +2°K
ffom‘ a mean value of 705°K. The measure.dv partial molar enthalpies of
gold have been corrected for these small differehces.from 7T05°K using

the value of A@Au(xs - = 3.0 cal. /deg. g-atom, tabulated
“onT B
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by Hultgrén, et al. 10 The usual corrections were of the order of only
1-to 2 cal. /g-atom; the ﬁaximum correction was 6 cél. /g-atom. Re-
ported heat capacity and heat of mixing datalo indicate that liquid In-Sn
alloys obey Kopp's law. It has thus been assumed that "_A—C—ﬁm = 0, and
the measured partial molar enthalpies of indium have béen dir.ec’cly

referred to 705°K.

Experimental Data

The experimentally determined partial molar enthalpies are given
in Tables III - VIII. Since the temperature of measurement was above

the melting temperature of indium, the data for indium were obtained

directly with respect to liquid indium at 705°K; thus AH. =H_ - H. .
In In Inu)

The data for gold, however, were obtained with respect to solid gold at

705°K. The values of AﬁAu have been referred to supercooled liquid

 gold at 705°K by assuming the heat of fusion of gold at 705°K to be

2955 cal. /g-jatom, the same as that at its melting ,temperature;lo thus:

AH =H -H =g, - - 2955 (295
Auu) Au Auu) Au Au(s)
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TABLE IIT-

Measured Partial Molar Enthalpies of Gold*

in Liquid Au-Sn Alloys at 705°K

T, B | | - H, oW

Au TAu : : Au TAu
x, (avg.) S - x, (avg.) ()
Run No. Au cal. /Jg-atom - Run No. - “Au cal. /g-atom
1-4 0.00035 ~7964 1-14 0.0197 7936
3-3 0. 00070 .. =79871 - 1-15 0.0210 -7929
1-5 0.0011. | -7955 1-16 0.0308 -7928
1-6 0.0018 -7951 1-17 0.0320 -7909
3-4 0. 0021 -7942 - 1-18 0.0410 -7902
1-7 0.0028 . -7963 1-19 0.0422 . -7913
3-6 0. 0035 . =T7962 1-20 .0.0510 -7871
1-8 0. 0042 7045 1-21 0.0522  -7875
1-9 0.0056 _ -7940 _ 1-22 0. 0582 . -7843
1-12 0. 0069 ~-7946 . 1-23 0. 0594 -7845
1-13  0.0083 7944 |

* Referred to supercooled Au(l) at 705°K.
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TABLE IV

Measured Partial Molar Enthalpies of Gold*

in Liquid Ag-Au-Sn Alloys at 705°K

HAu—-HOAu (Y
"Run No. XAg<an' ) XAu_(an' ) cal. /g-atom
5-7 0.0199 10.0048 - -8010
3-8 ; 0.0062 ~ -17985
4-8 0. 0390 0. 00069 ~8016
4-9 " 0.0021 - -8047
4-10 L 0.0034 8026
4-11 " 0.0048 - -8045
3-9 g 0..0074 -8012
3-10 4 0. 0088 7999
4-12 4 0.0116 ~ -8018
4-13 " 0.0129 .  -g024
4-14 4 0.0236 -8006
4-15 " 0.0248 | 7990
4-16 " 0.0339 -8013
4-17 & 0. 0351 7991
4-18 1 0. 0452 -7977
4-19 " 0. 0464 | - _n9s68
4-20 4 0.0556 7929
4-21 oo 0.0568 | 7943
3-11 0.0579 0.0099 -8052
3-12 - " 0.0112 o -8015
3-13 R 0.0125 - . _8019

* Referred to supercooled Au(ﬂ) at 705°K
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TABLE V

Measured Partial Molar Enthalpies of Gold*

in Liquid Au-Ni-Sn Alloys at 705°K

' HAu_Hjﬁuu)

XNi(an' o Xpulave:) cal. /g-atom
0.0094 0.00074 -7965.
" 0. 0022 7976
0.0111 0. 0037 -7957
" 0.0051 =7975
" 0.0066 -7968

* Referred to supercooled Au at 705°K

Run No;

5-7
5-8
5-13
5-14
5-17

(£)

TABLE VI

Measured Partial Molar Enthalpies of Gold*

'in Liguid Au-In-Sn Alloys at 705°K

0

‘ ’ HAu— Au(ﬁ)

XIn(an' ) , XAu(an' ) cal. /g-atom
0.0045 0.0108 © -79865
L 0.0122 ‘ 7970
0.0091 0.0283 < -7992
o 0.0297 7978
0.011%5 0. 0404 ‘ 7978

* Referred to. supercooled Au, , at 705°K

(£)

4
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- TABLE VII

Measured Partial Molar Enthalpies of Indium

in Liquid In-Sn and Ag~In-Sn Alloys at 705°K

x . (avg.)
FagtvE

O O O 0O 0O O O O O O O

Hlnummu)'

xIn(an' ) cal. /g-atom

. 00047 -195

. 0015 -238

. 0026 . -226

. 0037 ~242

. 0048 -254

. 0060 ‘ -248

L0071 -274

. 0082 -291

. 0094 298

0104 -327

0115 -308
0. 0503 -296
0.0515 -298

sk -

U S

R i e



Run No.

5-3
5-4
5-5

5.6
5-9
5-10

5-11
5-12
5-15
5-16
5-18
5-19
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TABLE VIII

Measured Partial Molar Enthalpies of Indium

in Liquid In-Sn and Au-In-Sn Alloys at 705°K

XAu(an' )

X

I

rl(avg. )

0.00056
0.0017
0.0028
0.0039
0. 0051
0.0063
0.
0
0
0
0
0

0074

. 0085
. 0096
. 0109
L0120
. 0133

HIn

-H?
)
cal. /g-atom

-205
-210
-260
-265
-283
-296
-340
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V. RESULTS AND DISCUSSION

The iimiting values obtained for the partiél molar enthalpies of
gold and indium in liquid tin at 705°K are given in Table IX. The binary
and ternary enthalpy interaction parameters calculated from the data
are given in Table X,' which also lists the corresponding values cval— ’
culated from the random solution model using evither Eqg. (24) or Eq. (25).
Details 6f the evaluations and interpretations,of the values are given Ain

the following sections.

Binary Au-Sn Alloys

The measured partial molar enthalpies of gold (Table III) are

in Fig. 1. The limiting value of H, -H°

plotted as a function of x N

, Au u(g)
at Xq =1 is obtained as -7955 cal. /g-atom (-5000 cal. /g-atom with

respect to Au The corresponding value obtained from the evaluations

(s)" |
of Hultgren g_’ggl_zlo is -8010 cal. /g-atom at 705°K, which is based pri-
marily on earlier data from this laboratory. The present data wefe
obtained using samples of both gold and tin of consi‘derably higher purity
than those used in any of the previous measurements, and this is believed
to be responsible for at least part of the observed difference of
55 cal/g-atom.

Between Xpu© 0 énd Xpg ™ 0. 038 the dafa are Well repfesented

within a maximum scatter of about £10 cal. /g-atom by the linear relation-

ship:
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- TABLE IX

Measured Limiting Partial Molar Enthalpies

in Liquid Tin at 705°K

T -me o O-u°

| . i l(ﬁ)’XSnzl i 1(5),xsn=1
Solute (i) cal. /g-atom S cal. /g-atom
Au  _7955 (+15) -5000 (+15)
In ' - 205(x£10) -
TABLE X

Enthalpy Interaction Parameters in Liquid Tin-Rich Alloys at 705°K

ng , cal. /g-atom?

Interaction - . Measured - Calculated from

Parameter _ Value Random Sol'n Model
niﬁ 1125 | | 15900
- -
jiﬁ _s000 | 2820
,”Ei. (-1800) 24200
'nﬁf —220§‘ -  -1860
Au

4 - -
nIn 4400 3040



- 7800, —
800 T Sm— _ l l
(@] (Au-Sn)(g)
- 7850 ———\ | Ay~ Hay ... = 7955 + 125 Xy, (Xa, < 0.038) 20
& ) L~
5 | | - o0
o
I -7900 - ="
= : ‘ Q=710 9//
S 7950l 0 ol aot——"T""" | | T
N 1 -
gj Mﬁa/
— —8000 TAS ——— .
3!: ,_.,—:—A”"M . '
IT -8050—%
Hau — HAL’(’)Q) = -8033 + |325?<Au s (Xau< 0.0348)
8150 I I R N I S M .
-0 0.0i0 0.020 2030 0.040 0.050 0.060
: Au -

FIG.1 PARTIAL MOLAR ENTHALPY OF Au IN LIQUID (Au-Sn) AND

(Ag-Au=Sn)(y, =0.039) ALLOYS AT 705 °K.
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AH = -7955 + 1125x

. (x
’ | Aty

" <0.038) | : (30) _

Au’ A

where the slope. at XAu = 0 gives:
J P
5AH, |\ : o
nﬁu - | ——Au = 1125 cal. /g-atom?.
v 8XAu] x, =1

. Sn

Thus for X a4 < 0. 038, {he enthalpy self-interaction parameter of gold,
Ay

nAu , remains constant at a value which is only about seven per cent of

the random solution model value of 15900 cal. /g—atomQ.

In this com-
position range, therefore, gold shows only a small departure from Henry's
law behavior. This undoubtedly results from the strongly exothermic
chgracter of the Au-Sn interaction energy which is indicated by the
reiatively large nega.tivé value of AﬁAu(ﬁ) atx, = 0. For X, > 0.038
the departure from Henry's law behavior begins to increase more
rapidly in a non-linear maﬁner, suggesting that above that composition,
vthe Au-Au interactions begin to become~conside‘rab1y more significant.
From Gibbs-Duhem infegra‘tion of -the. values of A‘I:I-Auu), partial

molar enthalpies of tin at 705°K have been calculated, yielding the values:

X pu AHg , cal. /g-atom
0. 04 - -1.0
¢ )
| , 0.05 | -2.3

0.06 . . -4.8

Thus, as would be expected, the departure of tin from Raoult's law

behavior is also small within the measured composition range.
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Ternary Ag-Au-Sn Alloys

The partial molar enthalpies of gold in ternary Ag'—Au—Sn alloys in
which XAg = 0. 039 (Table IV) are also plotted as a function of XAu in
Fig. 1. The values are represented within the experimental precision

by a curve parallel to that for the binary Au-Sn alloys. The linear -

range is g'iven by:

AHAu = -8033 + 1125 Xy (XAu< 0.038) | (31)
(£)
where -8033 cal. /g-atom is the limiting value atx, = 0 of AH in
Au Auu)
the ternary system for Xpngp ™ 0.039. The self-interaction parameter

o

for gold, niﬁ, has the same value as in the Einary Au-Sn system, 1125
cal. /g-atom?, and again remains constant to X, ~ 0-038.
Only a few runs were made for ternary alloys in which XAg = 0.0199

and x, = 0.0579 (Table IV). From the data, values of AH at
Ag - Aty

Xpu " 0 were calculated using the value of nﬁi& established by the data

in Fig: 1, from the relation:

= AH. - 32
AHAu,x -0 AHAu,x 1125XAu (32)
Au Au

Since the maximum value of x, for these alloys was 0. 0125, the linear

Au

relation should apply. The resulting values are plotted vs. XAg in Fig. 2

. together with the values determined from Fig. 1 for XAg. = 0 and
XAg = 0.039. The curve drawn gives maximum weight to the value )
at x = 0.039, since that is the best established of the ternary values. .

Ag
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FIG. 2 DETERMINATION OF 729 IN Sn(y AT 705° K.
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FIG. 3 DETERMINATION OF 7™ AND 71" IN Sn(y AT 705°K.



-86-

The slope of this curve at x

Ag = 0 gives
b
9AH
TIAg = f_______Au = -2000 cal. /g-atom?
Au boox -
i Ag XSn—-l

The curve hag been drawn assuming nilgl to remain constant up to
XAg ~ 0.04. A smooth curve could be dré&vn Which would resﬁlt in. a
slightly more négative value of nii, but this is not believed to be
justified without more data at the lower covmpositions.

Because of the observed small departure of gold :Erém Henry's law

behavior in these alloys, it is not surprising that the value obtained for

nii does not agree with the calculated random soluti'on value of 2820 .

2, A negative value, which is well established by thé data,

cal. /g-atom
does not appear amenable to simple intefpretation, since the value 6f
niz is not affected by the presence of silver, and since the fgrma’cion of
a Ag-Au bond at the expense of a Au-Sn bond and a Ag-Sn bond should

- presumably be accompanied by a net endothermic effect. The negative
value may result from longer range, i. e., other than nearest neighbor,

interactions between Ag and Au atoms which would be expécted to make

an exothermic contribution.

Ternary Au-Ni-Sn Alloys

Only a few measurements were made in the ternary Au-Ni-Sn
system because of the low solubility of nickel in liquid tin; at 705°K,

2 : : -
X _..(max.) ~ 0.015. 0 From the data (Table V), values of AH -
Ni Augye X p =0
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in alloys for which x = 0.0111 were calculated using

Ni

Ni = 0.0094 and X

Eq. (32), assuming, as before, that niﬁ = 1125 cal. /g-atom? The

maximum value of XAu was 0. 0066, well within the range for which

nﬁﬁ was found to be constant for the Au-Sn and Ag-Au-Sn alloys.

The values are plotted in Fig. 3 together with the value of

AH for x__. = 0 taken from the data of Fig. 1.  The line

Au(JZ)’XAu:O Nl.
drawn indicates that niil = -1800 cal. /gfatomz. Actually, if an un-

certainty of £15cal. /g-atom is ascribed to the limiting value at XN =0,

which is reasonable, since it was not determined independently for this

Ni

~series of runs, it would be concluded that My = 0. The significant

result is that the value calculated from the random solution model,

24200 cal. /g-atom?, is not at all approached. It would appear that both
gold and nickel show only small departures from I—Ienry's law and do not
interact significantly in the ternary alloy. This might be .exﬁected from

the highly exothermic character of the Au-Sn and Ni-Sn interaction

| energies coupled with the corresponding endothermic interaction of gold

and nickel:(see Table II).

Binary In-Sn Alloys

Measurements of Aﬁln in the binary In=Sn system were made only

at very dilute compositions (x n=0. 0005-0. 0017) at the beginning of the

I
studies on the Ag-In-~Sn and Au-In-Sn ternary systems (Tables VII and

VIII). The average value found, ~205(£10) cal. /g-atom at 705°K, is

more exothermic than the selected value of Hultgren,et al., 10 -140
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cal. /g-atom at 7’73°K, which is based primarily on the data of Kleppa21

and Cohen, gjc_gk‘zz at 723°K and 623°K, respeétively. More recently,

2 —_—
Pool and Lundin 3 reported AHIn = -243(£30) cal. /g-atom at 750°K, ob-

tained from measurements of the heat of solution of solid indium, initially
at 273°K, in liquid tin a’; 750°K, and the enthalpy increment of indium

between 273° and 750°K taken from Kelley. 24 The present data were

evaluated using enthalpy increment'values‘for indium of Hultgren,et al. . 10

which incorporate the later Cp data (354°-801°K) of Kaznoff. 25 If the

: 10
data of Pool and Lundin are recalculated using the latter values, = one

obtains AHIn = -210 (£30) cal. /g—atom,, in excellent agreement with the

present value.

Térnary Ag-In-Sn Alloys

e

Data for AHIn as a function of XAg in ternary Ag-In-Sn alloys

(Table VII) are shown plotted in Fig. 4. It was assumed that for the
small concentrations of indium present in the measurements (xIn=O. 0015~

0.0115), the effect of n%g would be undetectable within the experimental

In has the random solution value

precision and could be neglected. (If nIn

of 410 cal. /g-atom?, its effect on AL atx_ = 0.01 would be +4'cal. /g-atom.)
& n

I In
To check this assumption two runs were made within the range of xAg
studied with the low indium content alloys, but with a much higher
indium content, X & 0.05. The results, shown plotted in Fig. 4, -

agree well within the experimental scatter with those obtained where

x. <« 0.012.
In
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The data yield the value, nA = -2200 cal./g-atom?, which appears

g
In
to reméin essentially constant over the measured range/ (XAg< 0. 05)
and which agrees reasonably well with the value calculated from the
random solution model, -1860 cal./g-atom? For this dilute system the
conditions may indeed be favorable for random solution behavior as
the Ag-Sn and In-Sn interaction energies are small endothermic and

exothermic quantities, respectively, and the Ag-In interaction energy

is only moderately exothermic (see Table II).

Ternary Au-In-Sn Alloys

Data for Aﬁin as a function of X au in ternary Au-In-Sn alloys

(Table VIII) are also shown plotted in Fig. 4. Again the indium con-

centrations present in the measurements were small (x_ =0.0028-0.0133),

In

and the presumably small effect of nii was neglected. The data yield

the value, nﬁu = -4400 cal./g-atom?, ‘which here also appears to remain

constant over the measured range (XAu < 0.035).
To check the reciprocity relation, Eg. (10), which for this system»
is expressed by:

Au _ In
nIn nAu (33)

a few determinations of A—H'Au were made in this same series of runs
: (2}

(Table VI). The results,,corrected to x = 0 assuming nﬁz = 1125

Au

cal./g—a’comz and using Eq. (32), are shown plotted vs. X0 in Fig. 3.

Drawing a straight line through the points and the limiting value of

AH determined from the binary Au-Sn data, indicates
Ay ¥au™° |
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the value, n;[_\lju = -6000 cal./g-atomz. If, however, an uncertainty of

+15 cal./g-atom is ascribed to the absolute value of AH

Au 0

() “Au”
at XIn = 0, which was not determined independently for this series of

runs, a line with a slope of -4400 cal./g—atom2 agrees quite satisfactorily
with the data. In any event the value of nf;lu obtained from the more

extensive measurements of L\ﬁln as a function of XAu is the better

-established.

The value obtained for nA

Inu" ~4400 cal./g-atom?, is about 50 per cent

more exothermic than that calculated from the random solution model,

-3040 cal./g-atom? In view of the demonstrated small departure of

gold from Henry's law behavior in liquid tin.it at first seems surprising
that the correspondence between the two values should be es close as it
is. The interaction energy between gold and indium is also highly exo-
thermic, however, as revealed By.the limiting value of AH =0

Au, .x,. =
(2" Au
in liquid indium,-11200 cal./g-atom (Table II), which is about 3000

‘cal./g-atom more negative than that in liquid tin. Thus in the ternary

system, the indium atoms successfully compete with those of tin toward

the formation of Au-In bonds.
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