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Abstract 

Question-asking, an essential yet understudied activity, holds 
significant implications for fields such as learning, creativity, 
and cognitive development. The quality, and complexity in 
particular, of the questions are recognized as crucial factors 
affecting these fields. Previous research explored question 
complexity through Bloom's taxonomy, but measurement 
remains challenging. Recent advancements have enabled 
automated scoring of psychological tasks but have not been 
applied to open-ended question complexity. Here, we address 
this gap by employing large language model (LLM) techniques 
to predict human ratings of open-ended question complexity. 
Our results reveal that our LLM-generated complexity scores 
correlated strongly with human complexity ratings in both the 
holdout-responses (r = .73) and holdout-item set (r = .77), 
whilst also exceeding baseline methods tested. The research 
emphasizes the significance of LLMs in psychological 
research and their potential in automating question complexity 
assessment. This study also highlights exciting possibilities for 
usage of LLMs in education and psychology. 

Keywords: LLM; Bloom Taxonomy; Creativity 

Introduction 
Question asking is a common and everyday activity which 
can bridge gaps in knowledge or resolve uncertainty (Ronfard 
et al., 2018), yet only a very rudimentary understanding of it 
currently exists (Kearsley, 1976), (but see: Gottlieb, 2021; 
Sasson & Kenett, 2023). Question asking is central to 
learning (Chin & Osborne, 2008), whilst also being an 
important component of educational programs (Chin & 
Brown, 2002) and creativity (Acar et al., 2023). Nevertheless, 
few methods exist for automatic scoring of question asking 
(Jayakodi et al., 2015; Mohammed & Omar, 2020) and to our 
knowledge, none which have assessed open-ended questions 

using LLMs, which perform better than previous approaches 
(Vaswani et al., 2017). Due to the significant role of 
complexity in question creativity (Raz et al., 2023), in the 
present study, we extend research on automatic complexity 
scoring of a creative question asking task, by developing and 
training a LLM to predict human-rated complexity scores for 
questions generated in a creative question asking task (Raz et 
al., 2023).  

Open-ended vs. close-ended questions 
Ortlieb et al. (2012) argue that the ultimate goal of education 
should be advancing beyond the use of the closed questioning 
style towards open-ended questions. Open-ended and close-
ended questions differ in several characteristics. Close-ended 
questions limit the respondent to the answers offered and 
require engaging in convergent thinking (i.e., converging on 
a single correct solution), while open-ended questions allow 
expressing an opinion without being largely influenced by the 
question designer and engaging in divergent thinking (i.e., 
diverging on multiple possible solutions). The advantages of 
open-ended questions include the possibility of discovering 
spontaneous responses, and avoiding biases that result from 
suggesting responses, which occur in close-ended questions 
(Reja et al., 2003).  

This is especially pertinent in education as teacher’s 
questions are indispensable components of classroom 
discourse and student learning (Salmon & Barrera, 2021). 
Research on teachers’ questions reveal that closed-ended 
questions are used more than open-ended questions in 
teaching (Çakır & Cengiz. 2016), a practice which has been 
criticized (Nunan, 1987). Baloche (1994) and Khan and 
Inamullah (2011) argue that a teacher's ability to ask open-
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ended questions is crucial for the development of complex, 
creative thinking which involves more elaborate and abstract 
ideas such as the creation of new topics and the expression of 
opinions. Although complexity seems to be an essential part 
of question asking, it is not necessarily clear how to best 
measure and classify it. 

Bloom’s Taxonomy 
One common approach to evaluate question complexity is 
utilizing the Bloom taxonomy (Bloom et al., 1956), which 
has been widely accepted as a guideline in designing learning 
objectives of differing levels of cognitive complexity 
(Adams, 2015; Goh et al., 2020). Specifically, the taxonomy 
includes six cognitive levels, which are hierarchically 
ordered from simple to complex (Krathwohl; 2002). Previous 
studies have applied the Bloom taxonomy to the evaluation 
of question complexity: assigning each question a score from 
one to six and allowing for quantitative analyses to be 
conducted on question complexity (Plack et al., 2007; Zheng 
et al., 2008).  

Several attempts at using LLMs to predict Bloom 
taxonomy scores have been made in the past (Gani et al., 
2023; Hwang et al., 2023). In one case researchers automated 
the quality evaluation of multiple-choice questions in 
introductory chemistry and biology courses (Hwang et al., 
2023). This was only partially successful, as model accuracy 
varied greatly depending on question type. The findings are 
further complicated as the author’s Bloom scores were 
sourced from a single human rater, raising potential issues of 
rater subjectivity. In contrast, Gani et al. (2023) developed a 
Bloom’s Taxonomy-based classification approach using an 
LLM and labeled multiple choice exam questions as training 
data, achieving good accuracy (86%) compared to previous 
computational models. The study compared embedding 
approaches and showed that RoBERTa is the most optimal, 
and suggested future work could include testing with larger 
datasets to evaluate its scalability. Critically, multiple choice 
questions such as the ones used in the study are usually 
closed-ended, single-solution tasks (SST) (de Vink et al., 
2021), which are binary scored for correctness and usually 
require closed convergent thinking, whereas open-ended 
questions that require divergent thinking and involve 
multiple solution tasks (MST) are usually evaluated in terms 
of fluency, flexibility, and originality. Previous research has 
indicated that creative thinking is more strongly related to 
MST than SST performance (de Vink et al., 2021), that 
asking questions is a key trait of creativity and an integral part 
of the creative process, and that question complexity is 
closely related to creativity (Raz et al., 2023). Thus, the need 
is clear for integrating divergent open-ended question asking 
together with larger datasets in developing new LLM based 
approaches to automatically predict question complexity. 

Question Asking and Creativity 
Asking questions is both a key part of creativity and an 
important component of the creative process (Acar et al., 
2023) that likely facilitates information seeking behavior, and 
has been shown to be part of the creative problem-solving 
process in children (Torrance, 1970). Recently, Raz et al. 
(2023) explored the relation between question asking and 
creativity using the alternative questions task (AQT). The 
AQT requires participants to generate creative and unusual 
questions about common objects (e.g., pen, book, shoe) such 
as “who invented the first pencil”. Responses were rated 
separately in terms of their creativity, using a 1 (not at all 
creative) to 5 (very creative) scoring method (Runco & Mraz, 
1992; Silvia et al., 2008), and complexity, according to 
Bloom’s taxonomy. They also found that question 
complexity and creativity were positively related: questions 
which were higher on the Bloom taxonomy (i.e., more 
complex) were also scored as more creative, and those that 
were less complex were scored as less creative. The 
researchers provided the first proof that question complexity 
and creativity are related, such that stronger creative abilities 
will accompany stronger question asking abilities.  

Raz et al. (2023) noted that subjective scoring of responses 
according to the Bloom taxonomy may suffer from the same 
limitations as subjectively rated creativity scores (Kaufman 
& Baer, 2012; Silvia et al., 2008), such as inconsistent rater 
agreement, rater fatigue and high costs. Thus, automating 
Bloom taxonomy scoring by means of computational 
approaches may help overcome these limitations. Recent 
advances in natural language processing (NLP) tools such as 
semantic distance have allowed for the automated scoring of 
psychological tasks (e.g., Beaty & Johnson, 2021). This has 
made it possible to overcome the typical bottlenecks of 
human scoring (e.g., high labor costs; (Reiter-Palmon et al., 
2019). One notable advancement has come in the form of 
large language models (LLMs). When fine-tuned, these 
models have demonstrated superior performance on a 
number of creative thinking tasks (Dumas et al., 2021; 
Luchini et al., 2023). Thus, several computational approaches 
exist for automating Bloom taxonomy scoring such as using 
NLP semantic distance tools or newer Language model 
methods (Stevenson et al., 2022).  

Large Language Models in psychological research  
LLMs are computational tools that are used for a variety of 
tasks involving language data (Vaswani et al., 2017). They 
are a class of deep neural networks that undergo pre-training 
on large amounts of text data, for the purpose of learning and 
generating language. These NLP models have found success 
in psychology given the widespread importance of language 
data in research (Demszky et al., 2023). For example, LLMs 
can been used to generate experimental stimuli (Laverghetta 
& Licato, 2023), model word learning across the lifespan 
(Portelance et al., 2020), predict personality traits from text 
(Peters & Matz, 2023), and predict responses to problem 
solving tasks (Luchini et al., 2023).  
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LLMs are typically pre-trained through unsupervised 
learning, a training procedure which involves automatic 
pattern detection from unlabeled data—text that is not 
assigned any tag or number that the model has to predict. For 
LLMs this takes the form of iterative word prediction 
problems, where the model is required to predict a missing 
word from the context or vice versa (Jiang et al., 2020). In 
this way, LLMs can manipulate language efficiently and are 
thus able to outperform previous NLP tools on tasks they 
were never trained on (Vaswani et al., 2017).  

The present research 
The present study aimed to address the gap in the literature 
on questions asking and the role of complexity by developing 
an LLM model capable of scoring participant’s open-ended 
questions according to the Bloom taxonomy. This was done 
in an attempt to advance the availability, cost effectiveness 
and reliability of question complexity and creativity scoring 
and to highlight the advantages of the usage of LLMs in 
education and psychology and their potential in helping study 
how we ask creative questions.  

The model was trained on data we compiled from 
thousands of human-rated responses to the alternative 
questions task (AQT), a creative question asking task 
introduced by Raz et al. (2023). Responses were questions 
asked about everyday objects spanning a total of 6 items 
taken from the suggested items provided by Beaty et al. 
(2022). To evaluate model performance, its predictions were 
compared to three other scoring methods—elaboration (i.e. 
word count) and two semantic distance methods (MAD & 
DSI) —which reliably predict human creativity ratings in 
divergent thinking tasks (Luchini et al., 2023). 

Materials and Methods 

Participants 
Data analyzed comes from two different sources. The first is 
reanalysis of data collected by Raz et al. (2023) (47.9% male, 
50.4% female, 1.7% preferred not to say; mean age = 26.1 
years, SD = 6.41 years). The second dataset is recent data 
collected for a larger ongoing study on how priming question 
asking capacity impacts creative problem solving (49% male, 
50% female, 1% preferred not to say, mean age = 29.35 years, 
SD = 9.62 years). Both samples correspond to each other and 
are composed of data collected from participants recruited on 
Prolific Academic (N = 723). The total dataset consisted of 
10,282 responses to the alternative questions task (AQT), 
spanning a total of 6 items (pencil, sock, pillow, purse, clock, 
and knife). Average number of AQT responses per 
participant was (M = 4.74, SD = 2.341). 

Methods 
Alternative Questions Task (AQT) 
The AQT requires participants to generate creative and 
unusual questions about three common objects in two 

minutes for each object (Raz et al., 2023). The AQT was 
developed to test open-ended divergent question asking in 
general, beyond the classroom context (Raz et al., 2023). 
AQT objects were taken from the suggested items provided 
by Beaty et al. (2022) for the alternative uses task (AUT) 
which the AQT is based on (pencil, sock, pillow, purse, clock, 
and knife). Participants were explicitly instructed to come up 
with as many original and creative questions for objects as 
they can (Said-Metwaly et al., 2020). Creative questions were 
defined in the study as questions that strike people as clever, 
unusual, innovative, or different. Participants provided their 
responses on a single page with 30 available input fields. 
Time limits were two minutes per object. 

Bloom Taxonomy. AQT responses were externally scored 
for their respective Bloom level (from one to six: Remember, 
Understanding, Applying, Analyzing, Evaluating and 
Creating). The revised edition of Bloom’s taxonomy 
(Krathwohl, 2002) was used. Online raters from Prolific 
Academic were instructed on the Bloom taxonomy and 
subjectively rated AQT responses by assigning the level they 
ascertained from the response. Rating instructions included 
an explanation of the types of questions asked for each Bloom 
level, alongside key terms related to each level and examples 
of scoring. Each object cue was rated by ten different 
independent raters for study 1 (Raz et al., 2023) due to some 
raters failing attention checks, and by five raters for the 
priming questions dataset. Raters who failed attention checks 
or gave incomplete ratings were excluded from the final 
dataset. Reliability metrics for AQT objects on their Bloom 
level ratings were overall good (Ko & Lee, 2016) and as 
follows: pencil (N = 4, α = .752), pillow (N = 3, α = .720), 
sock (N = 10, α = .768) , knife (N =5, α = .702), purse (N = 
3, α = .63), and clock (N = 4, α = .61).  

Automated Originality Scoring 
Given the extensive work done on validating semantic 
distance as a measure of originality (e.g., Patterson et al., 
2023), both MAD and DSI scores can serve as a good tool or 
baseline against which to compare our LLM.  

Maximal Associative Distance (MAD). We computed 
MAD scores (Yu et al., 2023) for all AQT responses 
following the approach described by Patterson et al. (2023). 
MAD was selected given it is an unsupervised machine 
learning approach (i.e., human-rated originality scores are 
never shown to the model) for extracting originality measures 
from text data. The MAD method has been shown to 
outperform previous compositional techniques at predicting 
human-rated originality and to correlate with Bloom scores 
on the AQT (Raz et al., 2023). Semantic distance scores are 
first computed between all words in a response (e.g., can I 
bend the pencil without breaking it) and the prompt (e.g., 
pencil). Then, only the most distant word is retained. 
Response-level MAD scores are thus the semantic distance 
of the most distant word from the prompt.  
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Divergent Semantic Integration (DSI). We calculated 
DSI scores for AQT responses as a baseline against which 
LLM performance was compared to as this is also an 
unsupervised machine learning technique for extracting 
originality measures from text data. As such, it is a good 
benchmark to evaluate the performance of supervised models 
which involve the fine-tuning of model weights. DSI 
significantly predicts originality on other creativity tasks 
involving long-form text responses (DiStefano et al., 2024; 
Johnson et al., 2023, Luchini et al., 2023). To calculate DSI 
scores, word embeddings from the BERT model were first 
extracted from a pre-trained machine learning model. These 
embeddings were then used to calculate the semantic distance 
between all pairs of words in a response. 

Bloom scoring LLM 
Model. The RoBERTa base model was selected for fine-

tuning. RoBERTa constitutes an improvement on the BERT 
model (Liu et al., 2019), and was released by Google in 2018 
(Devlin et al., 2018). RoBERTa is a transformer model (see 
Vaswani et al., 2017) which underwent self-supervised 
training, without any human labeling being presented. The 
architecture of the model is similar to BERT with some 
changes in the pretraining procedure, including an increased 
amount of data it was trained on (Liu et al., 2019). Given its 
smaller size, this base version comes with a reduced 
computational cost compared to larger versions of the same 
model. This version has 123 million parameters (i.e., 
weights). RoBERTa is a LLM that was pre trained with a 
bidirectional approach (i.e., the model saw entire sentences 
when making predictions) applied to context leveraging (i.e., 
filling in the blanks by drawing from the surrounding 
context). Of note, RoBERTa has been shown to perform 
strongly on a variety of linguistic tasks (Gillioz et al., 2020). 
The model is available on the open-access Huggingface 
platform (https://huggingface.co/). For fine-tuning, the 
“Huggingface Transformers” suite of the PyTorch package 
was used via the Python programming language. 

Datasets. Data (AQT responses collected as described 
above) was randomly split into training, validation, and 
holdout (response and items) sets following a 70/10/20 ratio. 
The training data was employed to fine-tune the model, as 
the model saw both responses and human Bloom ratings and 
learned to predict the ratings. The validation data served the 
purpose of iteratively testing different variations of the 
model, each trained with different combinations of 
hyperparameter values, to determine the best settings. The 
holdout-responses data contained responses that the model 
was never presented during training and allowed the testing 
of model performance on unseen responses. Responses in the 
holdout-responses set were associated with AQT items that 
the model saw during training, and as such served as a test of 
near-transfer. The holdout-item data also contained responses 
that the model wasn’t shown during training, except they 
were related to an AQT item that the model never saw during 

training. As such, the holdout-item set was employed as a test 
of far-transfer of model performance.  

The training data was used to adjust the weights of the 
model. To achieve this, batches of responses from the training 
set were inputted to the model during training. The model 
would then predict a single creativity value associated with 
each response, and the mean squared error between these 
predicted values and the true human-rated Bloom scores 
determined the degree of weight adjustment. The validation 
set was also employed during training but was instead used 
for the hyperparameter search. It therefore did not serve the 
purpose of adjusting model weights. Model predictions for 
the validation set were compared across a variety of model 
settings, retaining only the best combination for later testing. 
The responses in the holdout-responses set were only 
presented to the model once the training procedure had 
finished. This allowed for a test of model generalizability, 
evaluating whether model predictions could extend to unseen 
data. We further withheld responses to the item ‘clock’ from 
the splitting procedure and assigned them to a holdout-item 
set. This item was selected for the holdout-item set as it was 
associated with the smallest number of responses in the entire 
dataset, compared to the other items, leaving more data to be 
assigned to the other sets. By evaluating model predictions 
for the holdout-item set it is then possible to determine 
generalizability to unseen items. Ideal model performance 
would involve strong predictions for both unseen responses 
and items, as this would indicate that the model can be 
extended to different responses and items. 

Hyperparameter Search. Hyperparameters are settings 
that determine the learning of a model and which are set prior 
to training. We implemented a hyperparameter search over 
the number of epochs, the learning rate, the training batch 
size, and the evaluation batch size based on similar 
applications (e.g., DiStefano et al., 2024; Luchini et al., 
2023).  

The number of epochs determines how many times the 
model will iterate over the entire training dataset during 
training. For this, we searched between a range of 100 and 
130 epochs. The learning rate determines the speed at which 
the model will learn from the data. It effectively modifies the 
impact that one batch of data will have on the weights of the 
model. We searched between learning rate values of 5e-05 
and 5e-04. The batch size refers to the number of responses 
that are inputted to the model during each iteration. Batch 
sizes were searched separately for the training and the 
evaluation data (i.e., validation, holdout-responses, and 
holdout-prompt sets). For both training and evaluation batch 
sizes, we searched through three possible values of 8, 16, and 
32. Low batch values were selected because larger values 
lead to poor generalizability of model predictions (Keskar et 
al., 2016). Total model training time took approximately 72 
hours. 
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 Hyperparameter search was run by employing the Optuna 
package in Python language (Akiba et al., 2019). Optuna 
allows for the search over a variety of hyperparameter 
combinations by means of a Tree-Structured Parzen 
Estimator, a Bayesian optimization method. The best 
hyperparameter settings were identified and used in the 
training of our final model. All other hyperparameters were 
left to the default settings for RoBERTa-base. Data, analysis 
scripts and weights for our final model are available online: 
(https://osf.io/823ak/?view_only=2f8f7a94ca5e4d57b810afc
26054a6d3). 

Results 

Descriptive analysis 
We computed a series of descriptive statistics for the AQT. 
Across all items, the mean word count was 6.58, and the 
mean Bloom rating was 2.85. We calculated the intra-class 
correlation (ICC; Shrout & Fleiss, 1979) between raters in the 
study and found a strong reliability across all items in the 
dataset (ICC = 0.76 [95% CI: 0.75, 0.77]) on the average 
ratings using a two-way random-effects model with absolute 
agreement. We then computed a series of Pearson’s 
correlations between our variables of interests, separately for 
each set. Before computing any of the linear regression 
models, we removed outliers from all variables by excluding 
datapoints that lay more than 3 standard deviations above or 
below the mean. 

We then calculated correlations between DSI and MAD 
and found moderate correlations for the training set, r = .54, 
validation set, r = .47, holdout-responses-set, r = .53 and 
holdout-item set, r = .61 (all p’s < .001). Next, we then 
calculated correlations between MAD and word count. 
Strong to moderate correlations were observed throughout all 
sets, with r = .58 for the training set, r = .51 for the validation 
set, r = .57 for the holdout-responses set, and r = .68 for the 
holdout-item set (all p’s < .001).  

We then calculated correlations between DSI and word 
count. Strong correlations were observed throughout all sets, 
with r = .70 for the training set, r = .66 for the validation set, 
r = .69 for the holdout-responses set, and r = .73 for the 
holdout-item set (all p’s < .001).  

Finally, we computed correlations between baseline 
measures and human-rated Bloom scores. For word count, we 
observed moderate correlations of r = .40 for the training set, 
r = .30 for the validation set, r = .44 for the holdout-responses 
set, and r = .37 for the holdout-item item set. For MAD, we 
observed moderate correlations of r = .31 for the training set, 
r = .22 for the validation set, r = .32 for the holdout-responses 
set, and r = .42 for the holdout-item set. Finally, for DSI, we 
observed moderate correlations of r = .39 for the training set, 
r = .27 for the validation set, r = .39 for the holdout-responses 
set, and r = .34 for the holdout-item set (all p’s < .001). 

LLM Prediction of Bloom Ratings 
Hyperparameter settings for our final RoBERTa model 
included 114 epochs, a learning rate of 9.2e-05, and a batch 
size of 16 for both training and evaluation. The fine-tuned 
RoBERTa model was then used to predict Bloom scores for 
each response. These predicted scores were then included in 
a series of linear regressions against the human rated scores 
(Figure 1). We found that our model perfectly predicted the 
human ratings at r = .99 on the training set, and strongly 
predicted them on the validation set r = .76 (all p’s < .001).  

As a test of model generalizability, we further explored 
correlations for the holdout-responses set. The held-out test 
set consisted of responses that were neither used for model 
selection nor seen by the model during its training. It thus 
served as a test of the model’s ability to generalize to 
responses it wasn’t trained on. We found that the correlation 
between model predictions and the holdout-responses was 
substantially larger, r = .73, p < .001, than baseline measures. 
The results demonstrate that fine-tuned LLMs, can strongly 
capture and predict human creativity ratings of question 
complexity. We then tested the correlation with the holdout-
item set, which consisted of item inputs that were neither used 
for model selection nor seen by the model during training. 
We found a substantially larger, r = .77, p < .001, correlation 
than baseline measures. This highlights how LLMs can 
accurately predict human ratings of question asking tasks and 
offer a reliable and efficient alternative to labor-intensive and 
subjective human ratings of question complexity. 

 
 
 
 
 
 

 
 
Figure 1: Linear regressions between human-rated Bloom 

scores and model predictions. Single responses are denoted 
by the black dots. Ideal performance (r = 1) is denoted by the 
black line, while the orange line is the line of best fit. All p’s 
< .001. 

Discussion 
Questions play a critical role in learning, education, and 
creativity. However, much is still unknown about the role of 
asking complex question in cognition. This is in part due to 
the challenge of scoring and assessing open-ended questions, 
an issue that is also relevant in broader creativity research 
(Kaufman, 2019). Despite recent advancements in LLMs and 
their emerging role in psychological research (Zhang et al., 
2023), little research has examined automated scoring of 
question asking (Gani et al., 2023; Hwang et al., 2023). 
Furthermore, to our knowledge, none has been applied to 
scoring open-ended questions.  
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The current study capitalized on advanced LLMs to 
develop automatic and accurate scoring of open-ended 
question complexity, based on the Bloom’s taxonomy 
(Bloom et al., 1956). We trained a LLM (RoBERTa) to 
predict human-rated Bloom scores for responses to the AQT, 
which measures creative question asking (Raz et al., 2023). 
Bloom scores are a measure of the cognitive complexity of 
an AQT response, subjectively scored by human raters (with 
high inter-rater agreement).  

Our fine-tuned LLM demonstrated robust predictions of 
Bloom scores, surpassing those achieved by semantic 
distance models or word count. The model generalized its 
predictions beyond the data it was trained on and 
demonstrated good performance on the test data, reaching a 
Pearson correlation above .75. Of note, strong predictions 
were also observed for an unseen prompt item. By evaluating 
model predictions for the unseen prompt item, it is then 
possible to determine generalizability of the model. Ideal 
model performance would involve strong predictions for both 
unseen responses and items. We provide the first evidence 
that a LLM can robustly predict Bloom complexity scores 
and automatically score open-ended questions.  

Model predictions strongly correlated with human-rated 
Bloom scores in both the holdout-responses and holdout-item 
set. Model performance on the holdout-item set was even 
slightly better than inter-rater agreement between human 
raters in the study. Correlations between the baseline 
measures and human-rated Bloom scores were consistently 
moderate for both holdout responses and item sets. Thus, the 
model substantially outperformed baseline measures. These 
findings indicate that the LLM model was able to pick up a 
big part of how humans evaluate questions and was able to 
re-apply this knowledge to new data.  

Question asking is an important human capacity, related to 
curiosity, problem finding and information seeking behavior 
(Kenett et al., 2023; Raz & Kenett, 2024; Raz et al., 2023). 
But critically, not all questions are the same. The type of 
questions used can have a very important role in constructing 
a facilitative environment for information seeking, education 
or higher-level thinking (Çakır & Cengiz, 2016).  

Çakır and Cengiz (2016) support the idea that open-ended 
questions elicit more utterances from students, enhance 
creativity, and encourage the learner to contemplate and 
explore. Conversely, close-ended questions limit the 
respondent to the set of alternative answers offered in the 
question and bias thinking towards them. The model 
developed in this study aims to further advance research into 
this area of open-ended questions by adding an additional tool 
to the limited but expanding toolset of question asking 
measurement.  

There are some potential limitations concerning the results 
of this study. As noted by Luchini et al. (2023), smaller, older 
LLMs such as RoBERTa and GPT-2 have been shown in the 
past to underperform on certain benchmark tasks when 
compared to newer, more advanced ones. The current 

analysis should therefore be extended to larger models, such 
as GPT-4, to evaluate whether predictions can be further 
improved. However, larger models like GPT-4 are currently 
not freely available, and researchers would incur costs when 
employing these models. Additionally, the model developed 
in this study was trained on averaged continuous scores of 
Bloom complexity via a regression model. As such, the 
output scores of the model are continuous, but are rounded to 
the nearest whole level in order to display familiar bloom 
levels. This is in contrast to a classification model which 
outputs discrete scores, in this case corresponding to the one 
to six Bloom levels. We opted to use a prediction, regression-
based approach to align with previous LLM applications of 
open-ended responses (e.g., Distefano et al., 2024; Luchini et 
al., 2023). The question of whether the complexity of 
questions is discrete or continuous is still an open one and 
requires further research into how we measure complexity. 
Despite these limitations, the results suggest several 
theoretical and practical implications.  

Research with elementary and college aged students has 
shown that they can quickly be taught how to ask higher level 
questions rather than lower complexity factual questions, and 
that this leads to improvements in learning and reading 
comprehension (Ronfard et al., 2018). It is therefore possible 
that educators may greatly benefit from automated methods 
of assessing open-ended question complexity, thus helping to 
foster creativity, learning and advanced comprehension in 
students. Future research should also focus on expanding the 
arsenal of automated psychological tests using LLMs, which 
will greatly improve the accessibility of these tests, and on 
creating online “one stop shop” resources combining many 
automated scoring techniques similarly to the work done by 
Beaty and Johnson (2021).   

Conclusion 
In this study, we introduce a novel approach to automatically 
score the Bloom taxonomy complexity of open-ended 
questions using a fine-tuned LLM. Our results reveal that 
LLM-generated Bloom scores correlated strongly with 
human ratings—greatly exceeding baseline measures. These 
results highlight the unique ability of LLMs to accurately 
predict ratings of open-ended questions. Our study offers a 
reliable and efficient alternative to labor-intensive and 
subjective human ratings of question complexity—
improving the reproducibility and scalability of complexity 
assessment. This study also emphasizes the exciting potential 
for the continued usage of LLMs in education and 
psychology and the possibilities they unlock in studying how 
we ask creative questions about the world and help us build 
the educators and pedagogical programs of the future. 
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