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An Adaptive Hybrid Time-Stepping Scheme for Highly Nonlinear
Strongly Coupled Problems

Prashanth K. Vijalapura! and Sanjay Govindjee*

Department of Civil € Environmental Engineering, UC Berkeley, Berkeley CA 94720

SUMMARY

This paper deals with the design and implementation of an adaptive hybrid scheme for the solution of
highly nonlinear, strongly coupled problems. The term “hybrid” refers to a composite time stepping
scheme where a controller decides whether a monolithic scheme or a fractional step (splitting) scheme
is appropriate for a given time step. The criteria are based on accuracy and efficiency. The key
contribution of this paper is the development of a framework for incorporating error criteria for
stepsize selection and a mechanism for choosing from splitting or monolithic possibilities. The resulting
framework is applied to silylation, a highly nonlinear, strongly coupled problem of solvent diffusion
and reaction in deforming polymers. Numerical examples show the efficacy of our new hybrid scheme
on both two- and three-dimensional silylation simulations in the context of microlithography.

KEY WORDS: operator splitting; fractional step methods; coupled problems; Hybrid scheme; time
stepping; silylation; microlithography

1. Introduction

The numerical simulation of transient, strongly coupled systems of Partial Differential
Equations (PDEs) is a well-known challenging problem. The assurance of accuracy while
remaining efficient is especially difficult. For time-stepping coupled problems numerically, one
can adopt the commonly used monolithic scheme which involves evolving the coupled field
variables simultaneously. In contrast, one can also use the method of fractional steps (also
known as operator splitting) which decouples the coupled problem and results in smaller
problems which can in turn be numerically integrated in time. Both these approaches are
common in the literature and for our purposes we will consider them in the context of PDEs
which have already been spatially discretized. Thus, we wish to concentrate on systems of
Ordinary Differential Equations (ODEs) and Differential-algebraic-equations (DAESs).
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fFormerly, Graduate Student at UC Berkeley, Currently employed at ABAQUS Inc., Providence, RI 02909



Monolithic schemes, although straightforward from an analysis viewpoint can become
inefficient as the coupled equations have to be integrated simultaneously. When implicit
time stepping schemes [23] are used on ODEs arising from the spatial discretization of the
coupled problem, a huge system of nonlinear algebraic equations for the coupled field variables
has to be solved at each time step making it expensive. The issue of solving nonlinear
algebraic equations can be avoided by using explicit time stepping schemes. However, these
schemes have stepsize restrictions due to stability [41] which can be severe. Consequently, in
many cases, the only viable option is to use implicit schemes [40]. Further, in the context
of DAEs [7], fully explicit time stepping is not possible as nonlinear algebraic equations
have to be solved at each time step to satisfy the algebraic constraints. Therefore, in the
context of DAEs, fully implicit schemes are preferred (see for e.g., Refs. [15, 11, 22]). For
the strongly nonlinear problems in these references, full Newton iterations have been used
making the simulations expensive. It is in this context that fractional step methods are helpful.
Fractional step methods decouple the coupled operator describing the coupled phenomenon
by additively splitting it in such a way that smaller problems for individual phenomena result.
The splitting schemes offer several advantages which include, a) computational savings from
smaller problem sizes and possible symmetry in sub-problems, b) flexibility from working
with smaller sized decoupled problems in terms of data storage and reusing computer codes
tuned to individual sub-problems. Consequently, splitting schemes have been widely used in
various applications such as, thermo-elastoplasticity[3], soil consolidation [2, 42, 36, 25, 14],
silicon oxidation [10], thermo-hydromechanical problems [28], reaction transport problems [6],
atmospheric sciences [24] etc. In spite of these contributions, the use of fractional step methods
particularly for DAEs with extreme nonlinearities and strong coupling needs a fresh look as
will be explained later.

Our motivation for considering coupled problems comes from the numerical simulation
of silylation, a process step in microlithography [29]. Silylation involves solvent diffusion
and reaction of a solvent in a polymeric photoresist [12]. The selective diffusion is effected
through a crosslinking pattern created on the polymer substrate by selective exposure to
UltraViolet radiation through a mask. The silylation polymer-solvent mixture that is formed
in the non-crosslinked regions has altered properties making it resistant to etching while the
crosslinked regions are vulnerable. This step in turn is followed by etching the vulnerable
regions and subsequent development of topographical features on the polymeric photoresist
in order to manufacture a microchip. Silylation involves a strong physical coupling between
solvent diffusion, reaction, and polymer deformation. Solvent presence causes the polymer to
undergo a glass-rubber phase transition [8]. This results in a steep drop in the relaxation
times, thereby enhancing segmental re-orientation, and subsequently causes large swelling (as
much as 50%). Solvent diffusion itself is strongly affected by the swelling state. The solvent
piles up at a sharp interface between the wet and the dry polymer while waiting for the
dry polymer to expand for additional solvent diffusion. Consequently, sharp solvent diffusion
fronts are created which also move at a constant speed. These characteristics constitute Case II
diffusion[27, 35, 34, 1, 16, 37], an important and well recognized regime of solvent diffusion in
polymers. Our mathematical model for silylation reflects these physically strong couplings by
way of extreme nonlinearities in the model’s constitutive relations. Further, a realistic quasi-
static assumption is made for the polymer deformation problem which is coupled to a first
order mass balance equation for solvent diffusion. These coupled partial-diferential-equations
(PDEs) on spatial discretization lead to a system of highly nonlinear, strongly coupled DAEs.
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Time integrating these coupled, nonlinear DAEs is a significant challenge.

In the context of extreme nonlinearities, as with our silylation problem, monolithic
implementations can be expensive when efficient iterative schemes like Krylov methods [21]
do not perform well forcing full Newton iterations. In such cases, the expense comes from
linear solves of generally unsymmetric matrices. On the other hand, using splitting as an
alternative is still deficient because none of the current splitting implementations have a
mechanism to control splitting errors. This crucially affects accuracy for strongly coupled
problems. Therefore, in spite of their efficiency, splitting schemes have had mixed success in
strongly coupled situations. Given the accuracy and efficiency concerns, it is hard to conclude
whether the monolithic or the split implementation is the best choice for a particular problem.
For either of the choices, if least expense needs to be ensured for a target accuracy, stepsize
adaptivity is necessary. Adaptive time stepping schemes for monolithic schemes have been
applied for both ODEs and DAEs in the engineering literature (see e.g., [15, 37, 31]). Similarly,
monolithic equations are solved using a staggered solution procedure with iterations converging
to the monolithic solution [43, 44, 36]. However, adaptive time stepping for splitting schemes
hardly exists (see e.g., [6]). Even in such cases, splitting error is not explicitly controlled making
them ineffective for strongly coupled problems. Moreover, the theoretical aspects of splitting
techniques for DAEs has only been recently established[38]. Considering these factors, the
objectives of this paper are:

1. Develop an efficient, accurate and a robust adaptive time stepping scheme for highly
nonlinear, strongly coupled problems including the case of DAEs and ODEs.

2. Apply the resulting numerical scheme for validation on silylation, a strongly coupled,
highly nonlinear problem of solvent diffusion and reaction in deforming polymers.

To this end, a novel, adaptive hybrid scheme is developed. Following a brief introduction
to operator splitting, the complete details of the hybrid scheme and the issues it addresses
are presented. This abstract presentation for general DAEs is followed by application details
of silylation, our specific problem of solvent diffusion and reaction in deforming polymers.
Numerical examples for silylation are presented in both 2- and 3-D settings which demonstrate
that the stated objectives are met.

2. Adaptive Time Stepping Schemes

Consider a canonical system of DAEs in x and y as shown in Eqn. (1).

0)-(3)

Here x denotes a nonlinear operator in general. The DAEs are assumed to be of index-1
meaning that along the solution, the algebraic variables x can be expressed in terms of the

ODE variables y'. Further, () denotes a time derivative. This canonical formulation provides

fFor coupled problems involving mechanical displacements and an auxiliary field as in diffusion-deformation
coupling, or thermoelasticity or consolidation-flow coupling, this assumption is equivalent to a non-restrictive
condition, namely, invertibility of the stiffness matrix associated with the mechanical DOFs.
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a suitable abstraction for describing the time stepping scheme in addition to simplifying the
notation. The adaptive hybrid scheme which accommodates both monolithic and splitting
steps is described using this canonical form.

2.1. Time Splitting/Fractional Steps

A typical monolithic step for time stepping in the time interval [t,,t,4+1] involves, time
discretization of the ODE part of (1) and solving the resulting equations simultaneously for
both x and y at t,+1. In a splitting step, the evolution of the ODE variables y is decoupled
from the solution of the algebraic variables x. Consequently, the split equations governing the
separate evolution of x and y can be written as:

6)-5") 6 (euw) @

where x = x; + X»- Such an additive decomposition of operators is well understood [33] in
the context of pure ODEs where the split equations often take the form:

6)=Gen) = 0)=C) O =lewn)  ©

For time stepping the split equations, a first order, one pass algorithm x, ¢ © X1 4, used here
involves finding the algebraic variables x that satisfy the algebraic constraint with y fixed,
followed by evolving the ODE variables y over At = t,,41 — t, with x fixed. In practice, the
ODE variables are time integrated using a globally first order scheme, say e.g., Backward
Euler. This algorithm constitutes a typical splitting step. The monolithic and split schemes
are both selectively used in the hybrid scheme.

Remark 1

In addition to the one-pass algorithm x5 A, © X1 A4 One can reverse the orders by evolving
the ODE variables first followed by updating the algebraic variables to obtain the alternate
one-pass algorithm x; ;X2 a¢- Both one pass algorithms when applied to index-1 DAEs are
globally first order accurate. While analogous results are well known for pure systems of ODEs,
they have been proved only recently [38] for index-1 DAEs. Furthermore, it is shown in [38]
that the symmetric two-pass splits, X2 a¢/2 © X1,A¢/2 © X2,a¢/2 a0d X2 Ar/2 © X1,A¢/2 © X2,At/2
are also globally first order accurate when applied to DAEs. This result is contrary to global
second order accuracy of two-pass splits for pure ODEs showing that an extra pass in the DAE
context does not translate to an increase in global order of accuracy. Consequently, attention
here is restricted to one-pass algorithms.

2.2. Hybrid Scheme and Error Control

The overall framework for a hybrid time stepping strategy is summarized in a flowchart in
Fig. 1. As shown in the flow chart, the goal is to compute the solution numerically at time
tp+1 in an efficient and accurate manner, given the solution at time ¢,. For achieving this,
the hybrid framework provides a choice between monolithic and split options for the current
timestep, [tn, tn+1]. The algorithm begins by predicting stepsizes Atspiir and Aty ono, assuming
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Figure 1. Flow chart for the adaptive hybrid time stepping

a split or a monolithic choice for the current timestep. Based on these stepsizes, the cost per
unit stepsize is calculated for each choice. The splitting scheme or the monolithic scheme
is chosen depending on which one delivers the smallest cost per unit stepsize. This choice
guarantees efficiency. Once the solution at ¢, is found, an a posteriori error check is made
to satisfy a predictor error tolerance. If the choice for the current step is a splitting scheme,
a splitting error tolerance is additionally checked. These error checks ensure accuracy and are
central to the framework of the hybrid scheme.

2.3. Error Control

Predictor Error

Using the notation, where z = [x, y]T, the predictor error PE is given by

PE = Zn+1 — Vp41 (4&)
=z[n+ 1,n,n — 1](At?)(At? + Aty). (4b)

The difference term in Eqn. (4a) measures how fast the discrete solution is changing [26].
Therefore, the larger this difference, the larger would be the error associated with a time step
to be controlled. As shown in Fig. 2, v, 11 denotes the linear extrapolation of the solution at
times, t,, and t, 1. Eqn. (4b) is obtained from a standard result on errors from polynomial
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z ., (Solution)

Figure 2. Schematic diagram explaining the Predictor Error.

extrapolation [32], where z[n + 1,n,n — 1] denotes the second divided difference* computed
from the solution at t,41, t, and t,_1. Further, At? = t,,; — t, is the current unknown
stepsize, while At; = t,, —t,—1 is the previous stepsize. Since, in Eqn. (4b), the predictor error
depends on the unknown solution z,11, it can only be used for an a posteriori error check. For
predicting stepsize AtP, an a priori estimate for the predictor error is needed. We adopt the
approximation

Est. PE = z[n,n — 1,n — 2](At?)(At? + Aty), (5)

where only the known solutions at previous time steps are utilized.
The stepsize At? is obtained by setting ||PE||, = tol, where tol is a tolerance; this gives the
following polynomial relation:

tol
AtP)(AtP + Aty) = . 6
R e N [ | (R R ©
Here, || - ||, denotes a discrete relative norm defined as:
()z,wz )2
Jlla = ' ) 7
il ; (rtol(.) |(-)"] + atol . ()

where atol(.) and rtol. are specified absolute and relative tolerances, respectively, and w; is
a weighting factor with integers ¢ denoting components of vectors. The tolerances atol(.) and
rtol(.y are typically selected to be different for the different field variables. Finally, once the
solution zy41 is found for the time step [t,, tnt1], Eqn. (4b) is used to perform an a posteriori
check for satisfying the tolerance tol. If the a posteriori check is successful and the current time

step is a monolithic step, we save the current At? in a history variable AtE7¢" for later use in

fIn general, the divided differences are defined recursively as: z[n + 1,m,mn — 1,...,n — i — 1] =
(zZln+1,n,n—-1,...,n -4 —z[n,n—1,...,n —i —1])/tn41 — tn—i—1, where the zeroth divided difference is
defined as z[n + 1] = zp 41
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decision making. On the other hand, if the a posteriori check fails, the stepsize is reduced and
the time step is repeated.

The key advantage of using the predictor error as an error measure is that it doesn’t
distinguish whether the time discrete solution at previous time instants were obtained from a
split or a monolithic choice. In other words, the algorithm for time integration is independent
of error control. Consequently, predictor errors can be used for the adaptive time stepping of
either a purely monolithic scheme or a hybrid time stepping scheme. The error formulation
has the property that a smaller stepsize implies a smaller predictor error and vice versa.
Therefore, tightening the predictor error tolerance implies convergence to the exact solution.
The development of the predictor error measure is novel and is a key step in the formulation of
the adaptive hybrid scheme. Commonly used error measures based on a truncation error (see
references [18], [7]) simply do not separate the time stepping algorithm from error control.

Splitting Error

When an operator split choice is made for a particular time step, splitting errors have to be
controlled in addition to the predictor errors. The splitting error in the discrete setting is
defined as the difference between a monolithic solution and the split solution for the current
time step, t.e.,

Split Error (SE) = ||z2,, — 254 ||,- (8)

While the split solution z? , ; is known for the time step of interest, the monolithic solution z%,
is unknown. However, the norm of the difference in Eqn. (8) can be computed in the following
way. Assuming a first order method such as backward Euler to time integrate Eqn. (1), the
monolithic residual evaluated on the split solution is

G(x711,Yn41)
Rz, ) =R}, 1, ¥y2.1)=1{_5 g il ntl 5 . 9
() = RO v = (yy oS L ©)
Using the monolithic residual R evaluated at the split solution, a single iterative update is
performed. For example, if a Newton update is performed on z*,

v )R- (10)

Since errors reduce asymptotically quadratically using the Newton scheme when zj , , is close
to the monolithic solution z2 , (which satisfies the monolithic residual in (9), exactly), the
ODE variables in z$ , ; are O([At?]?) and the algebraic variables are O((At?)) approximations
of their monolithic counterparts. Consequently, using a single Newton update, with asymptotic
quadratic convergence, z,_; is an O([AtP]?) approximation in the algebraic variables, and an
O([AtP]*) approximation in the ODE variables to z2. . Similar conclusions can be drawn when
other iterative updates like Broyden [32] or Krylov updates [9] are made. We now compute an
estimate of how much larger of a time step we could have taken, Atpiitmaz, via the relation
below. If the split error satisfies a tolerance SE;,;,

Atsplitmaz — (SEtol)l/m

M s _
211~ 2y = _(DZR

Atp SE (1)

where m (such that 1 < m < 2) depends on the type of iterative update (e.g., Krylov or
Broyden or Newton). For a successful split step, we also save the current At? in a history
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variable Aty for later use in decision making. If the a posteriori check fails to satisfy SE;or,
the step size is reduced according to Eqn. (11) and the timestep is repeated.

In summary, a predictor error measure that fundamentally separates the time integration
algorithm from the error measure, and a scheme for computing the splitting errors in the
context of general nonlinear operators makes an error based hybrid scheme a reality.

The full algorithmic details for the hybrid scheme control logic are enumerated as follows:

1. Compute the cost for monolithic and split options using stored history. The procedure
for cost computation is summarized as follows:

e Retrieve AtPre Atf;f; and Atspritmaz, the latest successful monolithic and split

stepsizes and a maximum possible split stepsize from a database.
e Calculate Monocost = Cost/iteration x # of iterations for last successful stepsize,
At oo

e Calculate Splitcost = >° itions
partition with last successful stepsize, At

Cost/iteration of Partition x # of iterations for
prev
split*

2. Calculate Atpono and Atgpe, the stepsizes for monolithic and split choices, for the next
timestep [tn, tnt1]-

Compute AtP, the trial stepsize based on the estimated predictor error.
Atmono = min[5AEPTeY  AtP]

mono?
Retrieve Atgpiitmqr from the history.

Atsplit = min[5At§;;5, AtP, Atsplz’tmaz]-

3. Decide based on Scolst per unit stepsize, i.e.,
Monocost itcost
IF ( Atmono > gtsplit )
Choose Split option
ELSE
Choose Monolithic Option
END

This scheme for choosing the best strategy and the best stepsize for the particular
strategy leads to both efficiency and accuracy.

4. For every successful step, history information on the number of iterations of the iterative
schemes is stored irrespective of whether the choice is monolithic or split. In order to
keep the history as current as possible, either a split or a monolithic choice is never
allowed consecutively more than N, times.

5. When a split algorithm is chosen, iterations may fail to converge in either phase of the
split within the limit, MAXITER . The reader is reminded that nonlinear algebraic
equations have to be solved iteratively while updating the algebraic variables. Similarly,
nonlinear algebraic equations may have to be solved for time integrating the ODEs
whenever an implicit time integrator (e.g., Backward Euler) is utilized. In these cases,
the stepsize is reduced by half and a split step is tried again. Similarly, when iterations
fail during a monolithic step within the limit MAXITER, the stepsize is reduced and the
monolithic step is repeated. This detects slow convergence or divergence of iterations and
leads to robustness. Finally, only MAXTRY number of stepsize reductions are allowed
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either in the splitting phases or the monolithic step failing which the time integration is
terminated.

In summary, the error measures ensure accuracy while a cost based choice between monolithic
and splitting options for each time step guarantees efficiency. Additionally, stepsize reductions
to handle extreme nonlinearities ensure that iterative schemes converge leading to robustness.
This completes the section on the hybrid scheme-the primary development in this paper.

3. Application of the Hybrid Scheme to a Diffusion-Deformation-Reaction Problem

As mentioned in the introduction, the motivation for developing a sophisticated hybrid
time stepping scheme comes from the need to simulate silylation, a process step in
microlithography[12]. The governing equations for silylation include global mass balance for
solvent diffusion and mixture stress equilibrium for polymer deformation. The balance laws
are derived in a finite deformation setting to accommodate large strains due to swelling and
are only summarized here. Complete details can be found in Refs. [39, 16]. However, it is useful
to mention that the coupling between solvent concentration M and polymer displacements u
in the governing equations arises from the following: (1) a finite strain viscoelastic stress law
for the polymer overstress in the deviatoric and pressure components with relaxation time, 7,
dependent on M, (2) a solvent swelling pressure p; dependent on M, (3) a jacobian determinant
J dependent chemical potential p in the solvent flux law and (4) a mobility coefficient B
dependent on the solvent concentration and concentration R of reacted sites. The functional
forms that define the various constitutive relations and therefore coupling terms introduce
extreme nonlinearities and also introduce the physically consistent strong coupling.

3.1. Balance Laws

e Solvent Mass Balance

M =DIV[B(M,J,R)MC 'GRADy]. (12)

Here, DIV and GRAD denote the divergence and the gradient operators in the coordinates
X4, A =1, 2,3 that define the reference placement of the dry polymer. Further, C = FIF
denotes the Right Cauchy-Green strain tensor, F : F;4 = 0x;/0X 4 denotes the deformation
gradient while R denotes the concentration of the reacted sites in the reference configuration.
The spatial coordinates z;, ¢ = 1, 2, 3 define the deformed solvent-polymer mixture. The

symbol () denotes the material time derivative.
e Stress Equilibrium (Quasi-static Case)
DIV[FS] = 0. (13)
Here, S denotes the 2"¢ Piola-Kirchhoff stress tensor and inertial effects are ignored.

3.2. Constitutive Relations
o Total Stress
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S = Jp071 + SpEev. (14)
The stress Spgy denotes a deviatoric component of S while p is the total pressure.
e Deviatoric Stress
o _2 O
SeEv = 2p0——~ = 2poJ 3DEV— 15
DEV Po aC Po EYe (15)

Here, S¥gy is a purely elastic contribution to the deviatoric stress, C = J3C and
DEV(:) = (-)—tr((-)TC)C~!/3 is the pull-back of the standard deviatoric operator to reference
coordinates. In the simulations, the strain energy ¥ is provided by a modified Neo-Hookean
model, i.e., ¥ = P (trC — 3), where pF is the long term shear modulus. The total deviatoric
stress, including a viscous contribution Q is given by

Spev = SEuy + 2p0J “3DEV[Q]. (16)
e Total Pressure

p=p° +ps+q. (17)

The total pressure has an elastic contribution p® and a viscoelastic overstress contribution g
from the polymer skeleton while p; denotes the solvent pressure.

P = cpfead + s — (c2 — 1)*/(cad + c4)], (18a)
c1(cad + ¢4)
s = pocsIn | —— 2= T 18b
Ps = poc n[02j+c4_c5M] (18b)
In these expressions, cs, ¢y and ¢;, ¢ = 1,...,5 are material constants.

o Viscoelastic over-stress

q+%:ﬂpm, (19)
T
Q+T<M,J)“’[ac]' (20)

In these evolution equations for the viscoelastic overstress, the relaxation time 7 is
concentration and deformation dependent. Further, & and § are material constants.

o Chemical Potential
u= po[ln(cics M) — In(caJ + ¢4 — cs M)]. (21)

e Reaction Evolution
(Rmae — R)M
7 .

In the evolution law for reacted sites concentration R, R,,,; denotes the maximum
concentration of sites at each point in the polymer available for reaction with the solvent
and K, is the reaction constant. No separate balance law for the reacted sites is assumed. The

R=K, (22)
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Table I. Choice of functions for diffusion coefficient, the relaxation time, and the current free volume

Functional Form Parameters
Diffusion Mobility B B(M, J, R) = Bo(1 + &(M/J)* + xR?) By, &, x
Relaxation Time 7 (M, J)) =109(M, J) To
Relaxation Time Function g | g(M, J) = exp(Ba(f — fo)/(fof)) By, fo
Current Free Volume f f(M,J) = fo+a,M/J an

silylating agent is a mixture (90%-10% by weight) of a liquid solvent and a silicon containing
reactant that reacts with the polymer. Assuming that the solvent acts as a perfect conduit for
the silicon containing compound and that the silicon compound is always available for reaction
until all the reaction sites R4, are consumed, the above evolution for the reaction process
can be justified (see Ref. [39] for complete details).

Further, the functional forms and parameters for various coefficients are tabulated in Table. I.

3.8. Spatial Discretization of the Balance Laws

The hybrid scheme is applicable for the DAEs arising from spatial discretization of the balance
laws. Spatial discretization of the balance laws is performed using standard C? finite elements
(see e.g., [20]) for the spatial fields. For the mechanical problem, the displacement field u
defined as u = x — X is interpolated linearly through shape functions N7, I = 1..., Npoges, in
terms of a vector of nodal displacements U. Therefore, u = NU, where N is a matrix containing
NTs. For the diffusion problem, there are two choices for the interpolation fields. Either the
concentration M or a mixed variable, activity A = exp (u) can be linearly interpolated in
terms of their nodal values. When concentration Dirichlet boundary conditions are specified,
the field M is the natural choice for interpolation. However, in this paper, a formulation in
terms of activity A is utilized for reasons explained below.

3.4. Formulation in terms of Activity

The diffusion problem has two physically relevant boundary conditions: (1) exposure of the dry
polymer to a solvent and (2) insulation to solvent diffusion. The physically correct boundary
condition for exposure to the solvent is to specify an activity A (and not solvent concentration)
on the polymer boundary [13, 16]. The second boundary condition corresponds to specifying
the flux given in terms of the gradient of p (or equivalently A). Motivated by the physically
relevant boundary conditions which are in terms of activity and its gradient, the mass and
momentum balance equations are written in terms of the activity and the deformation as the
primary variables through the transformation:

e M
A= = 2
W) = T e =M (23)
(CQJ+C4)A
M= M(A,J) =22 T4~2 24
(4, = 212 (29

Such a formulation, with activity as a primary variable, avoids the following difficulties.
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1. In the formulation where concentration M is the primary variable, boundary conditions
in terms of activity have to be imposed as mixed boundary conditions. From, Eqn. (24),
specifying activity implies imposing a mixed boundary condition which nonlinearly
relates M and J. Implementing these boundary conditions in a finite element setting
is rather inconvenient, if not impossible.

2. The gradient of the chemical potential takes the form

Op _ Op OM  0pdJ

ox — 2M ox T 87 9%’ (25)

when displacements u and concentration M are used as primary variables. From
Eqn. (25), the spatial derivatives 8.J/0x of the Jacobian determinant, or equivalently,
second derivatives of u are required. This would lead to difficult continuity requirements
on the finite element shape functions associated with solvent mass balance.

3.5. Matrix Forms

The Galerkin finite element method can be stated in terms of finding the C° fields, u and A
(or equivalently, nodal vectors U and A) satisfying the weak forms of solvent mass balance
and mixture stress equilibrium.

The weak from of the solvent mass balance given by Eqn. (12) states: Find A € Sy = {4 €
H(Q); A= Ap for x € T4}, V variations §A4 such that,

dM (A, J)
q Jdt

M o
+/ B(M(A, J, R),J)——gradA - gradd A dx —/ h-ndx=0.
a AJ ¥

Ga(A,wdA) = 5 A dx

(26)

In Eqn. (26), the integrals have been transformed in terms of spatial coordinates x using solvent
mass balance (12). Further, h is the specified flux on the boundary of ¢(2), the deformed body,
with n being its outward normal.

The weak form for the mixture stress equilibrium states: Find u € S, = {u; € H*(Q), i =
1,2,3;u=ug for x € '}, V variations du such that,

Hy(A,u;6u) = /Q [pI + deve (A, J)] - grad(du) dx — /f t-du=0. (27)

In Eqn. (27), dev(-) = (-) — tr(-) I/3 is the deviatoric projection operator. The Cauchy stress
tensor o is the push forward of the Second Piola stress S, and p is the pressure. Here, t is the
specified traction on the deformed boundary.

Since, the weak forms (26) and (27) hold for all admissible variations §A and du, one can
write the following DAEs indicated in terms of their functional dependencies.

% +R(A,U;R) =, (28a)

Momentum Balance: S(A,U;Q,q) —s =0, (28b)

Mass Balance:

UCB/SEMM-2005/02



12

where

Nel

(e) m® M(A,U)
Al My, 11" My = /Q Nt 7 dx, (29)

Mel

M(A
R(A,U;R) Al ro Lyt T = /ﬂ B(A,U;R)¥grade.gradAdx, (30)

Mel

5A,U;Q0 = A s

) .
(Nen.ndm)x1] *

e=1
ndm NI
WHWMM)/‘ZakmwwAQHMUAmmw (31)
e k=1

Here, U and A denote the vector of nodal displacements and nodal activities. Further, N,
denotes the number of nodes in the element, n.; denotes the number of elements, and ndm,
the dimension of the problem. The fields, A and J are calculated for each element in terms
of nodal values. The various integrals are computed numerically using Gaussian quadrature.
Since numerical quadrature is used, the viscoelastic stresses Q and ¢, and the reacted sites R
are evolved only at each of the quadrature points in an element. Numerical time integration
is used for their evolution as well.

The solvent mass balance equations in (28a) constitute a system of ordinary differential
equations. The stress equilibrium equations in (28b) result in algebraic constraints. Since,
the derivative dS(A,U;Q,q)/dU is assumed to be invertible, the set of equations in (28a)
and (28b) constitute a system of Index-1 DAEs. The invertibility assumption is equivalent to
assuming that no bifurcation phenomena, in the stress equilibrium problem is witnessed during
the time integration of the DAEs. In the silylation examples, this assumption was always found
to be satisfied.

4. Implementation Details

Based on the canonical form for the DAEs considered, solvent concentration M and polymer
displacements u are the respective ODE and DAE variables for time splitting. However, due
to the reasons stated in the previous section, the activity field A is interpolated at the nodes,
making the nodal vectors A and U as the primary unknowns. Due to the involvement of
activity nodal variables which is unusual, further implementation details are provided here.
Consistent with the theory presented earlier, the splitting step is still effected by fixing solvent
concentration at element quadrature points in the deformation phase although activity is the
nodal variable. Before providing the details of a typical splitting step, a typical monolithic step
is summarized.

4.1. Implementation of the Monolithic Algorithm

The monolithic scheme for time stepping from ¢,, to ¢,4+1 can be summarized as solving for
nodal values A, 11 and U, given their values at t,. Using a backward Euler discretization,
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the following system of equations is obtained.

Mass Balance:

M(A,:1,U —M(A,,U ;
(A n+1A)t (An, Un) + R(Ant1, Upya; RSL) =t (32a)
Momentum Balance:
S(Ant1,Ung1,dn41) —Sny1 =0, (32b)
Viscoelastic Evolution:
@ _ @ (1) o 00
nt1 — 4n n Ant1 _ ﬂp ltni1 =P |2, (33a)
At T(Mn+1, Jn+1) At ’
. . . 8 T B a8 TE
QS-)FI — Qs"z) QE:—)I-I — af;p—é |t"+1 _t‘;p—é |t" (33b)
At T(Mn+1, Jn+1) At ’

Reaction Evolution:

RY, -RY % (1= R DM (Ang, Jng) (33¢)
At ST Jni1 '

In these equations, the unknown nodal activities and displacements form the driving variables.
In Eqgns. (33a), (33b) and (33c), the index ¢ runs from 1 to the number of quadrature points
Nyuad- A monolithic step in the hybrid scheme involves evolving both the nodal displacements
and activities simultaneously by solving the complete system of nonlinear algebraic equations
(32a)—(33c) at each time step. In the next section, the details of a typical split step are
discussed.

4.2. Implementation of the Splitting Algorithm
Deformation Phase: (M = 0)

1. Given nodal values U,, and A, at time ¢,,, the concentration field M,, is calculated within
each element from Eqn. (24). Here, the nodal values U,, and A, are linearly interpolated
in a C° manner. However, the Jacobian determinant J is only piecewise continuous, so
is M, (see Fig. 3 for a depiction in the 1-D case).

2. The unknown U, ; is solved from mixture stress equilibrium (32b) by holding M,
fixed pointwise in the interior of each element. In particular, M, is held fixed at
each quadrature point while calculating the contribution from swelling pressure p® and
viscoelastic stresses ¢ and Q. Fixing M, is a special case of fixing the assembled global
vector M, (i.e., M = 0), a fact that is used in the accuracy analysis later.

3. The visco-elastic stresses are evolved in this phase, with a fixed M,, and reacted site
concentration R,,.

A few remarks on the splitting implementation details can be made here.

Remark 2

In the deformation phase, nodal activities would still evolve due to displacement evolution even
though the concentration is held fixed at the quadrature points. However, this intermediate
nodal activity is never explicitly calculated. In the diffusion phase, using backward Euler
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Linear Interpolation of nodal variables A and U,
Figure 3. Illustration of the Splitting Algorithm in the 1-D case.

time integration, only nodal activities A, 1 at time ¢,,1, and A, at time ¢, (for calculating
M, = M,,(U,, A,)) are actually needed.

Remark 3

The splitting scheme used here corresponds to the well-known “adiabatic splitting”
algorithm [3] in the context of linear thermoelasticity. In that context, temperature plays
an analogous role to activity while entropy corresponds to solvent concentration. Adiabatic
splitting guarantees unconditional stability for the thermoelastic case by satisfying the
contractivity of an energy norm. Even in the present context which is nonlinear, one can
show that the free energy function decreases with time. However, the free energy need not
induce a norm as in the linear thermoelastic context. This makes the splitting algorithm only
dissipative in the free energy rather than being contractive in the energy norm of the solution
(see [39] for a discussion). In spite of this, the adiabatic splitting is adopted here to ensure that
the splitting algorithm is dissipative and consistent with the evolution of the time-continuous
DAEs.

Remark 4

The norm adopted for calculating the predictor and splitting errors for the silylation problem
is a mass-weighted norm. Accordingly, in Eqn. (7) w; is computed as the lumped nodal mass
for a unit density. This norm is the discrete analogue of the standard Ly norm.

5. Numerical Examples

The numerical examples are provided here to illustrate the following: (1) strong coupling and
extreme nonlinearities of the silylation problem, (2) successful application the hybrid scheme
to simulate silylation resulting in an accurate solution with large savings in both 2- and 3-D
situations.
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Figure 4. Left: SEM cross-section of a Silylated Photoresist [19]. Right: Geometry and Boundary
Conditions of a Trench.

5.1. Silylation of a Trench in an array of lines

In this example, silylation of a single trench in an array of trenches, shown in Fig. 4, is simulated
under 2-D plane strain conditions. The boundary conditions shown in Fig. 4 include symmetry
boundary conditions on the lateral edges and zero solvent flux and zero displacements for the
bottom. The top surface is free to expand and cross-linked regions are modeled by specifying
zero flux. Solvent exposure to the uncrosslinked regions is specified through a unit solvent
activity. The solvent is selectively diffused and reacted into the uncross-linked regions forming a
protective cap which is resistant to subsequent etching as shown in Fig. 4. A finite element mesh
with 4608 elements, 9216 displacement unknowns and 4709 activity unknowns is considered.
Since, convergence of DAFE solutions implies only convergence to the spatially discrete problem,
a fine mesh such as the one chosen is needed to minimize errors in the spatial solution.

The material parameters for this simulation are listed in Table II. These parameters simulate
a liquid phase silylation of a Shipley SPR505a polymer [4, 5] with the silylating agent consisting
of a mixture of Xylene, a polymer solvent, and Hexamethylcyclotrisilazane(HMCTS), a
reacting silicon compound. As experimentally observed, the polymer swells by 40% on
silylation. The other key experimental features expected from the simulation include a sharp
silylation front separating silylated and unsilylated regions, and silylation depths at the center-
line varying linearly with time. The latter feature leads to a linear increase of cumulative
reacted sites with time. This fact is experimentally verified by measuring energy absorbance of
1240-1280 cm~! wavelength radiation by reaction bonds during a Fourier Transform Infrared
(FTIR) Spectroscopic experiment [5]. The material parameters listed in Table II reflect a 3
orders of change in solvent mobility B during the simulation when the polymer changes from
a dry to a fully swollen gel. Similarly, the polymer relaxation times 7 decrease by 6 orders of
magnitude to reflect a glass to rubber transition in the presence of the solvent. Further, the
reaction constant K, ensures a fast chemical reaction. These parameters replicate experiments
but at the same time introduce extreme nonlinearities and a strong coupling.

For the numerical simulation, the IBVP is non-dimensionalized (see Appendix-A). For this
non-dimensional form, the time stepping parameters and error controls chosen are listed in
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W 0.116 Mpa ay,p 0.3672 cm®/gm apaev | 0.3672 cm® /gm
Bd 1/2.303 T0,p 30s T0,dev 6s

a 1x10° B 5 x 102 ch 1.71 x10?

¢ | 1.58 x10* em®/gm? || 1.0 2 1.025

c3 0.0 C4 -1.0 cs 0.51 cm?®/gm
By | 7.79 x107¢ pm?/s || K, | 2.95 x107!° cm®/gm.s X 10

Table II. Material Properties for the 2-D Silylation Example

Table III. Parameters for Adaptive Time Stepping

Atmin | 1x 1077 Atol 1x 10717
ror | 5% 1074 || MAXTRY 5

ISE||* | 5x 107° ISE||4 | 4x107°
Neon 5 MAXITER 10

Table III. For cost comparison, two versions of the hybrid scheme are used. In the unsymmetric
version, the stiffness matrix for the nodal displacements U used in the deformation phase
is unsymmetric. In the symmetric version (see Appendix-B), an approximate viscoelastic
contribution to the stress-equilibrium residual is used. This results in a symmetric stiffness
matrix in the deformation phase. As a note, the full stiffness matrix of the coupled problem
is always unsymmetric. Full Newton iterations were used as the problem is highly nonlinear$.
The hybrid scheme which takes both monolithic and splitting steps during the simulation is
compared with a purely monolithic scheme with the same error controls and time stepping
parameters listed in Table III.

The evolution of normalized reaction fronts is plotted in Fig. 5 at 30, 60 and 90 sec. The first
column corresponds to the monolithic calculation while the second and third correspond to
the unsymmetric and symmetric versions of the hybrid scheme. From the plots, the reaction
fronts from the 3 simulations with the specified tolerances match perfectly. For obtaining such
high fidelity solutions, the cost statistics on a Pentium 3.1GHz 512MB RAM are compared at
times ¢t = 30, 60 and 120 sec of the simulation in Tables IV, V and VI. Based on CPU times,
the symmetric hybrid scheme, for example, is about 2.17 times more efficient than the purely
monolithic version at t = 30 sec. At t = 60 sec, the benefit ratio drops to 1.77 and further down
to 1.47 at t = 120 sec for the symmetric hybrid scheme. This observation shows the necessity for
a hybrid scheme. As the solvent diffuses and reacts deeper against greater swelling constraints,
the coupling becomes stronger and splitting errors start dominating. Even though split time
steps are favored in the hybrid scheme, the allowable stepsize to control splitting errors drops.
In the current simulation, at ¢ = 60 sec, the symmetric hybrid version, for example, takes

§ Alternate inexpensive schemes like the modified Newton and Newton Krylov methods were attempted.
However, they lead to severe convergence problems for the iterative solution of the nonlinear equations presented
here.
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Table IV. Cost Statistics for the 2-D silylation example at t = 30 sec, NM = # of successful Monolithic
Steps, NS = # of Successful Split Steps up to t = 30sec

Scheme Mono. Split-1 Split-2
CPU time (sec) | 2.6848e+04 | 1.4744e+04 | 1.2353e+04
ratio 2.17 1.19 1.0
Mono. iter. 5337 1638 1623
Mech. iter. - 2892 2968
Conc. iter. 1837 1890
NM 571 175 163
NS 491 508
At gy (seC) 5.25 x1072 | 4.50 x10~2 | 3.89 x10~2

Table V. Cost Statistics for the 2-D silylation example, NM = # of successful Monolithic Steps, NS
= # of Successful Split Steps up to t = 60sec

Scheme Mono. Split-1 Split-2
CPU time (sec) | 8.3228¢+04 | 6.0215e+04 | 4.7137e+04
ratio 1.77 1.28 1.0
Mono. iter. 16076 6278 5710
Mech. iter. - 13230 13820
Conc. iter. 7106 7423
NM 1653 612 566
NS 2050 2176
At gy (seC) 3.63 x1072 | 2.25 x1072 | 2.19 x10~2

Table VI. Cost Statistics for the 2-D silylation example, NM = # of successful Monolithic Steps, NS
= # of Successful Split Steps up to t= 120sec

Scheme Mono. Split-1 Split-2
CPU time (sec) | 2.0763e+05 | 1.7823e+05 | 1.4136e+05
ratio 1.47 1.26 1.00
Mono. iter. 41159 18794 17003
Mech. iter. - 38851 42354
Conc. iter. 19949 21729
NM 4105 1828 1675
NS - 5697 6421
At gy (seC) 2.92 x1072? | 1.59 x10=2 | 1.48 x10~2
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21% monolithic and 79% splitting steps. There might be a situation where stepsizes based on
splitting errors are so restrictive that it is more efficient to go fully monolithic. In a nonlinear
problem, it is impossible to determine the coupling strength a priori and choose stepsizes
accordingly to control splitting errors. This is the primary reason why splitting schemes with
varying moderate/strong coupling have met with limited success. Meaning that for large
stepsizes when they are efficient, they become inaccurate. Our hybrid scheme allows us to
automatically avoid this problem.

The stepsize sequences for the entire simulation ¢ € [0, 120] using the monolithic and the
hybrid schemes are shown in Fig. 6. For all 3 simulations, stepsizes vary by 3 orders of
magnitude making a strong case for stepsize adaptivity. Even though the solvent diffusion
and polymer deformation appear monotonic, the stepsize variation is caused by large changes
in mobility, swelling pressure and polymer relaxation times once the solvent front approaches
a line of elements in the unsilylated region. Consequently, small stepsizes are needed both for
Newton convergence as well as controlling predictor and split errors. Once the line of elements
has swollen and the changes in mobility and relaxation times accommodated, the time stepping
scheme gradually reverts to larger stepsizes. The cycle is repeated when the solvent front moves
to a new line of elements leading to a near cyclic variation.

UCB/SEMM-2005/02



a
8 Monolithic Hybrid(Unsymm) Hybrid(Symm)
~~
Ct{jl Reaction Reaction ___Reaction
z 1.75E-72 2.53E-71 1.86E-71
7.93E-02 7.90E-02 7.91E-02
z 1.59E-01 1.58E-01 1.58E-01
) 2.38E-01 2.37E-01 2.37E-01
o 3.17E-01 3.16E-01 3.16E-01
o 3.97E-01 3.95E-01 3.95E-01
(S 4.76E-01 4.74E-01 4.74E-01
- 5.55E-01 5.53E-01 5.53E-01
S 6.35E-01 6.32E-01 6.32E-01
7.14E-01 7.11E-01 7.12E-01
7.93E-01 7.90E-01 7.91E-01
8.73E-01 8.69E-01 8.70E-01
9.52E-01 9.48E-01 9.49E-01
Time = 3.00E+01 Time = 3.00E+01 Time = 3.00E+01
Reaction Reaction ___Reaction
9.63E-57 3.17E-57 1.05E-56
8.33E-02 8.33E-02 8.33E-02
1.67E-01 1.67E-01 1.67E-01
2.50E-01 2.50E-01 2.50E-01
3.33E-01 3.33E-01 3.33E-01
4.16E-01 4.16E-01 4.16E-01
5.00E-01 5.00E-01 5.00E-01
5.83E-01 5.83E-01 5.83E-01
6.66E-01 6.66E-01 6.66E-01
7.49E-01 7.49E-01 7.49E-01
8.33E-01 8.33E-01 8.33E-01
9.16E-01 9.16E-01 9.16E-01
9.99E-01 9.99E-01 9.99E-01
Time = 6.00E+01 Time = 6.00E+01 Time = 6.00E+01
Reaction Reaction ___Reaction
1.81E-52 1.33E-52 1.35E-52
8.33E-02 8.33E-02 8.33E-02
1.67E-01 1.67E-01 1.67E-01
2.50E-01 2.50E-01 2.50E-01
3.33E-01 3.33E-01 3.33E-01
4.17E-01 4.17E-01 4.17E-01
5.00E-01 5.00E-01 5.00E-01
5.83E-01 5.83E-01 5.83E-01
6.67E-01 6.67E-01 6.67E-01
7.50E-01 7.50E-01 7.50E-01
8.33E-01 8.33E-01 8.33E-01
9.17E-01 9.17E-01 9.17E-01
1.00E+00 1.00E+00 1.00E+00
Time = 9.00E+01 Time = 9.00E+01 Time = 9.00E+01

Figure 5. Evolution of Reaction Fronts for the silylation of the 2-D trench.
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Table VII. Non-dimensional material properties for the 3-D examples

po| 832 %1073 || any 0.7 A, dev 0.7

By 0.43 70,p 1.0 70,dev 0.2

o 1x10° B | 5 x 10 o 1.28 x1073
13 6 x 10* c1 1.0 c2 1.025

c3 0.0 C4 —-1.0 Cs 1.0

Table VIII. Parameters for Adaptive Time Stepping

Atpmin | 1x 1077 Aol 5% 107°
Tt | 2% 1074 || MAXTRY 5

ISE||* | 1x107° ISE||A | 4x107°
Npae 5 MAXITER 10

5.2. Silylation of a 3-D L-shaped Pattern

As a 3-D application, silylation of L-shaped patterns shown in Fig. 7 is considered. One such
pattern with geometry and boundary conditions is also shown in Fig. 7. This simulation
is important for studying the effect of stresses on corner rounding and silylation depth. As
before, the polymer slab is fixed at the bottom and impermeable to the solvent. As a good
approximation, symmetry boundary conditions are assumed for the lateral surfaces. Excepting
the L-shaped region where solvent exposure is modeled by specifying unit activity, the rest of
the top surface is impermeable to model cross-linking. Further, zero tractions are prescribed
for the top surface. Non-dimensional equations which are appropriate for understanding the
qualitative behavior, are solved for this example. The reason being, experiments providing
silylation depths versus time are unavailable for the 3-D L-pattern example.

The finite element mesh has 11094 solid 3-D elements, with 33792 displacement and 13137
activity unknowns. The dimensionless material parameters are listed in Table VII. The time
stepping parameters and error controls for this different problem are listed in Table VIII. For
this example, the unsymmetric hybrid version always favored monolithic steps¥. Therefore, the
results from purely monolithic and the symmetric version of the hybrid scheme are presented.
Fig. 8 shows the reaction fronts at non-dimensional time § = 0.8, the end of the simulation.
As in the 2-D case, the reaction fronts remain sharp and match within 1% in their location
from both the adaptive monolithic and the adaptive hybrid scheme. In Fig. 9, the slab is
sliced along plane A (as shown in Fig. 8) and reaction contours are plotted on the undeformed
polymer. It can be seen that stresses have a negligible influence on silylation depth. Further,
the corners remain sharp, consistent with experiments which justify a stress-inhibited diffusion

TIn the 3-D case, the ratio of displacement to activity unknowns is roughly 3:1 as against 2:1 in the 2-D case.
Consequently, the cost of unsymmetric solves in each phase of the split in the 3-D example supersedes the cost
of monolithic unsymmetric solves.
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Figure 6. Stepsize Sequence for the silylation of the 2-D trench. X-axis: Step #, Y-axis: Log[At] in
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Figure 7. Left: SEM image of an etched photoresist [5]. Right: Geometry and Boundary Conditions

of the L-pattern 3-D slab.

model where negative pressures prevent corner rounding.
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Scheme Mono. Hybrid (Symm.)

CPU time (sec) | 5.9825x 10* 1.9142x 10?
ratio 3.12 1.00
Mono. iter. 1702 279
Mech. iter. - 749
Conc. iter. - 637
NM 176 33
NS - 139

Atgug 4.5 x1073 4.7 x1073

Table IX. Cost Statistics for the 3-D slab with L-Shaped Pattern, § = 0.8

NM: # of Successful Monolithic Steps, NS: # of Successful Split Steps.

The cost statistics from runs on a Pentium IV, 3.1 GHz, 512MB RAM machine are provided
in Table IX. With regard to CPU time, the symmetric hybrid scheme beats the monolithic
scheme by a factor of 3.12. The extreme coupling and nonlinearities resulted in an average
of 10 Newton iterations per successful step for the monolithic schemel. On the other hand,
the split steps took around 5 iterations for each phase per successful timestep and emerged
as the favored choice. Newton failures for the monolithic scheme in the 3-D case, offsets any
benefit the monolithic scheme offers (problem size ~ 4n) against the split scheme (problem
sizes ~ 3n and ~ n, in the two phases of the split). The stepsize sequence is shown in Fig.10.
The stepsizes vary by an order of magnitude on average for both the monolithic and hybrid
schemes. Unlike the 2-D trench example, the split choice is favored for most of the simulation.
In fact, the only times the monolithic step is chosen is when the hybrid scheme is forced to
update the current cost of a monolithic step. Towards the end of the simulation, when splitting
errors start to dominate, the monolithic choice is made.

6. Conclusions

A general framework incorporating error and cost criteria for efficient time stepping of highly
nonlinear, strongly coupled problems is developed. In this context, a novel hybrid time stepping
scheme is devised and successfully tested on one such highly nonlinear, strongly coupled
problem, namely, silylation. The hybrid scheme objectively evaluates the benefit of using
time splitting in the broader context of ensuring accuracy, efficiency and robustness. By
providing the monolithic alternative in its framework and an algorithm for choosing the best
among monolithic and split alternatives, the common drawback of inaccurate results with
large stepsizes or inefficient results with small stepsizes for splitting schemes in strong/varying
coupling situations is completely removed. Based on numerical results in both 2- and 3-D

lCalculated as 1702/176~10. Here, 176 denotes only the number of successful steps while 1702 denotes the
Newton iterations that include those accrued from failed steps.
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situations, the hybrid scheme is definitely seen to be cost effective—the best one can achieve
for a target accuracy.

Although not emphasized in this paper, the hybrid scheme proved to be indispensable for
simulating silylation. Numerical simulations have illustrated that strong coupling is necessary
for sharp reaction fronts silylating the dry polymer at a constant speed and the accompanying
polymer swelling. These features are simply not achievable from a pure uncoupled nonlinear
diffusion viewpoint. Although the physically consistent coupled viewpoint has been around,
the hybrid scheme has provided the right tools to simulate such a coupled model.
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Appendix-A: Non-dimensional form of the governing equations

Denoting non-dimensional quantities by (-), the non-dimensional physical quantities and
governing equations are:

e Non-dimensional spatial and reference coordinates

x=x/L, (34)
X =X/L, (35)
where L is a characteristic length of the domain.
e Non-dimensional time B
0= Z;E (36)
where B, ,; is an estimated mobility maximum over the domain.
e Non-dimensional Concentration -
M =csM (37)
where 1/c¢5 is the density of the pure solvent.
e Non-dimensional Deformation Measures
F=0x/0X=F (38)
C=F'F=C (39)
J=J (40)
e Non-dimensional Reacted Sites Concentration
R=R/R4s- (41)
e Non-dimensional Relazation time
r=? met (42)
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o Mizture Stress Equilibrium

DIV[FS] = 0, (43)

where S = S/G and G has dimensions of an elastic modulus.
o Viscoelastic Stresses

dq q _ ,dp™
@ oLy - Pa (44)
dQ Q d 0P
- = — | — 4
@ TRy " Y@l (45)
where, p>° = p> /G and Sy, = S¥gy /G-
e Total Stress
S =S¥py +Q+ JpC™! (46)
e Chemical Reaction
dR - (1-R)M
— = Kri—7 4
do J (47)

where, K, = KBpaz/cs is the normalized rate constant.

Similarly, the operators GRAD, grad, DIV and div are defined as derivatives with respect
to dimensionless referential and spatial coordinates.

Appendix-B: Symmetric version of the Hybrid scheme

Consider the deviatoric viscous term in the total stress at time ¢,41, namely,

_z
2p0J, 2\ DEV,141[Qn41]**. The viscous stress Q1 is given by:

Q20 oop(a). 20 oop(e
Quir = - VI (€,) + —2 VP (Crpr) - (48)
1+4t 144t (¢) 1+ 4t (Cr)
H,

Here, the notation V¥ (C(.)) = 9P /9C ) is adopted for showing the argument of the
derivative clearly. Taking the differential A of the viscous term expressed as a function of

**The other contributions to the total stress lead to symmetric tangent moduli. Therefore, only the viscous
term is considered.
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C,+1, one obtains:

3 P
A [7 DBVt (Quin)] = €3 5AC 4

N
72(1+ 2t) 0Jnpa

+ I

1
DEVn+1 (Q’n-‘rl) &® C;—]ill H iACTH_l

(49)

Here, Cisa symmetric rank 4 tangent modulus tensor. For the modified Neo-Hookean model,
it is given by:

2
. Aupfald ? -
¢=E nh (—Cn}rl ©I-1®C,t + trCppICniy

31+ £

1 _ _
5trcnﬂcni1 ® Cnil) -

_2
2Jn—ifl -1 -1
—2(H,®C;}, + oy € H,
t ann _ _ t HnCn N
_ %Cn-}—l ®C,l, — % []Icnil]> (50)

In the above equations, I is the rank 2 identity tensor while the components of [Cnt1 (dropping
-1
the subscript 7 + 1) are given by 1 0p = (C3LC5h + C1LCaL) /2.
From the above derivation, the dependence of 7 = 7(My,, Jp+1) on Jp41 in the deformation

phase leads to an unsymmetric tangent modulus and subsequently an unsymmetric tangent
stiffness. Without losing first order accuracy, one can simply set 7 = 7(M,, J,,) and eliminate

the 20d (unsymmetric) term in Eqn. (49). This approximation is made in the symmetric version
of the hybrid scheme leading to a symmetric tangent stiffness in the deformation phase of a
splitting step. In the unsymmetric hybrid version, the original unsymmetric tangent modulus
is utilized in the deformation phase of a splitting step.

Appendix-C: Further Implementation Details

In the actual implementation of the spatial discretization of the mass balance equation and
stress equilibrium equations, two special issues have to be addressed. Firstly, the presence of
the c2J + ¢4 — M term in the swelling pressure, ps behaves as a singularity as M approaches
¢aJ + ¢4 making the mixture nearly incompressible. Therefore, ill-effects of incompressibility
on the numerical scheme have to be addressed. Secondly, the mass matrix M is the so-called
consistent mass matrix which leads to an oscillatory solution for the activity field (and in turn
the concentration) near the sharp fronts. These oscillations are unphysical and we want to
avoid them.

The first issue is handled by using mixed pressures p which are calculated in terms of mixed
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activity A and mixed Jacobian determinant .J as follows. The equations are recalled from [17].

Mixed Jacobian: /(j— J)8J,dx = 0, (51a)
Q

Mixed Activity: / (A— A)sAdx =0, (51b)
Q

Mixed Pressure: / (P — P(A,J))6Pdx = 0. (51c)
Q

In Eqns. (51a), (51b) and (51c¢), mixed Jacobian, mixed activity and the mixed pressures are
interpolated as piecewise constants within each element. Consequently, these mixed quantities
can be obtained elementwise for each element. Further motivation for the specific mixed
equations used here can be provided through a three-field Hu-Washizu interpretation by Simo
et al. [30] for the nearly incompressible purely mechanical problem.

The second issue is handled by considering a mass lumping technique using the mixed
Jacobian determinant J and the nodal activity A,

10.

11.

Nel
M= A m(Je\zenXNen] (52)
e aM( n+1> n+1
m{) = (,;A 517 / Nldx. (53)
REFERENCES

. A. S. Argon, R. E. Cohen, and A. C. Patel. A mechanistic model of Case II diffusion of a diluent into a

glassy polymer. Polymer, 40:6991-7012, 1999.

. F Armero. Formulation and finite element implementation of a multiplicative model of coupled pore-

plasticity at finite strains under fully saturated conditions. Computer Methods in applied Mechanics and
Engineering, 171:205-241, 1999.

. F. Armero and J. C. Simo. A new unconditionally stable fractional step method for nonlinear coupled

thermomechanical problems. International Journal for Numerical Methods in Engineering, 35:737-756,
1992.

. K. Arshak, M. Mihov, A. Arshak, and D. McDonagh. Top surface imaging lithography processes for i-line

resists using liquid-phase silylation. volume 2 of Proceedings of the 23rd International Conference on
Microelectronics, pages 503—-508, Yugoslavia, May 2002.

. K. Arshak, M. Mihov, A. Arshak, D. McDonagh, M. Pomeroy, and M. Campion. PRIME process with

Shipley SPR505A resist - simulations and experiments. Microelectronic Engineering, 61:783-792, Jul 2002.

. L. S. J. Bell and P. J. Binning. A split operator approach to reactive transport with the forward particle

tracking eulerian lagrangian localized adjoint method. Adwances in water resources, 23:467-492, 2004.

. K E Brenan, S L. Campbell, and L. R Petzold. Numerical solution of initial-value problems in differential-

algebraic equations. Elsevier Science Pub. Co., North-Holland, New York, 1989.

. R. G. Carbonell and G. C. Sarti. Coupled deformation and mass-transport processes in solid polymers.

Industrial and Engineering Chemistry Research, 29:1194-1204, 1990.

. N N Carlson and K. Miller. Design and application of a gradient-weighted moving finite element code I:

In one dimension. SIAM Journal of Scientific Computing, 19:728-765, 1998.

P. Causin, M. Restelli, and R. Sacco. A simulation system based on mixed-hybrid finite element
analysis for thermal oxidation in semiconductor technology. Computer Methods in Applied Mechanics
and Engineering, 193:3687-3710, 2004.

J. H. Choi and I. Lee. Finite element analysis of transient thermoelastic behaviors in disk brakes. Wear,
1-2:47-58, Jul 2004.

UCB/SEMM-2005/02



30

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41

. E. Croffie. Moving boundary models and methods for deep submicron resist process simulation, Report
No. UCB/ERL M99/26. Technical report, Electronics Research Laboratory, College of Engineering, U.C.
Berkeley, 1999.

. E L Cussler. Diffusion, Mass Transfer in Fluid Systems. Cambridge University Press, New York, 1984.

. D. Dureisseix, P. Ladeveze, and B. A. Schrefler. A LATIN computational strategy for multiphysics

problems: application to poroelasticity. International Journal for Numerical Methods in Engineering,

56:1489-1510, March 2003.

E. Ellsiepen and S. Hartmann. Remarks on the interpretation of current non-linear finite element analysis

as differential-algebraic equations. International Journal for Numerical Methods in Engineering, 51:679—

707, 2001.

S. Govindjee and J. C. Simo. Coupled stress-diffusion: Case II. Journal of the Mechanics and Physics of

Solids, 41:863-887, 1993.

S. Govindjee. Physical and Numerical Modelling in Filled Elastomeric Systems. PhD thesis, Stanford

University, 1991.

E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and Differential-Algebraic

problems. Springer-Verlag, New York, 1993.

M. A. Hartney. Modeling of positive-tone silylation processes for 193-nm lithography. Journal of Vaccuum

Science and Technology, B, 11:681-687, 1993.

T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.

Dover Publications, Inc., New York, 2000.

D. A. Knoll and D. E. Keyes. Jacobian-free newton-krylov methods: A survey of approaches and

applications. Journal of Computational Physics, 193:357-397, Jan 2004.

D. Kuhl, F. Bangert, and G. Meschke. Coupled chemo-mechanical deterioration of cementitious materials—

part II: Numerical methods and simulation. International Journal of Solids and Structures, 41:41-67, Jan

2004.

J D Lambert. Numerical Methods for Ordinary Differential Equations: The initial value problem. John

Wiley and Sons, New York, 1993.

D. Lanser and J. G. Verwer. Analysis of operator splitting for advection-diffusion-reaction problems in

air pollution modelling. Journal of Computational and Applied Mathematics, 111:201-216, 1999.

R. W. Lewis and B. A. Schrefler. The finite element method in static and dynamic deformation and

consolidation of porous media. Wiley Press, New York, 2 edition, 1998.

K Miller. Class notes for MATH 228A, U.C. Berkeley. Unpublished, 1997.

M. Sanopoulou, D. F. Stamatialis, and J. H. Petropoulos. Investigation of case II diffusion behavior. 1.

Theoretical studies based on the relaxation dependent solubility model. Macromolecules, 35:1012-1020,

2002.

B. A. Schrefler, L. Simoni, and E. Turska. Standard staggered and staggered newton schemes in thermo-

hydro-mechanical problems. Computer Methods in Applied Mechanics and Engineering, 144:93-109, 1997.

J. R. Sheats and B. W. Smith, editors. Microlithography Science and Technology. Marcel Dekker, 1998.

J. C. Simo, R. L. Taylor, and K. S. Pister. Variational and projection methods for the volume constraint

in finite deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 51:177—

208, 1985.

S. W. Sloan and A. J. Abbo. Biot consolidation analysis with automatic time stepping and error control

part 1: Theory and implementation. International Journal for numerical and analytical methods in

geomechanics, 23:467-492, 1999.

J. Stoer and R. Bulirsch. Introduction to numerical analysis. Springer, New York, 2002.

G Strang. On construction and comparison of difference schemes. SIAM Journal on Numerical Analysis,

5:506-517, 1968.

N L Thomas and A H Windle. Case-IT swelling of PMMA sheet in methanol. Journal of Membrane

Science, 3:337-342, 1978.

N L Thomas and A H Windle. A theory of case-II diffusion. Polymer, 23:529-542, 1982.

E. Turska and B. A. Schrefler. On convergence conditions of partitioned solution procedures for

consolidation problems. Computer Methods in Applied Mechanics and Engineering, 106:51-63, 1993.

P. K. Vijalapura and S. Govindjee. Numerical simulation of coupled-stress case II diffusion in one

dimension. Journal of Polymer Science Part B: Polymer Physics, 41:2091-2108, 2003.

P. K. Vijalapura, J. A. Strain, and S. Govindjee. Fractional step methods for index-1 differential algebraic

equations. Journal of Computational Physics, 203:305-320, 2005.

P. K. Vijalapura. Numerical Simulation of Solvent Diffusion and Reaction in Deforming Polymers:

Applications to Microlithfography. PhD thesis, University of California, Berkeley, 2004.

P. K. Vijalapura. Numerical simulation of Case II diffusion in one dimension. Technical Report

UCB/SEMM-2002/07, University of California, Berkeley, 2002.

. W. L. Wood. Practical time-stepping schemes. Oxford Applied Mathematics and Computing Science

UCB/SEMM-2005/02



31

series. Oxford University Press, 1990.

42. O. C. Zienkiewicz, D. K. Paul, and A. H. C. Chan. Unconditionally stable staggered solution procedure
for soil pore fluid interaction problems. International Journal for Numerical Methods in Engineering,
26:1039-1055, 1988.

43. T. 1. Zohdi. An adaptive-recursive staggering strategy for simulating multifield coupled processes in
micro-heterogeneous solids. International Journal of Numerical Methods in Engineering, 53:1511-1532,
2002.

44. T. 1. Zohdi. Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in
multiphase solids. Computer Methods in Applied Mechanics and Engineering, 193:679-699, 2004.

UCB/SEMM-2005/02





