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V. Joshi,19 S. Kaufmann,4 D. Kieda,7 A. Lara,21 R.J. Lauer,22 W.H. Lee,18 D. Lennarz,23 H. León Vargas,3

J.T. Linnemann,24 A.L. Longinotti,12 G. Luis Raya,8 R. Luna-Garćıa,25 R. López-Coto,19 K. Malone,26
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ABSTRACT

We present a search for very high energy gamma-ray emission from the Northern Fermi Bubble region using data

collected with the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. The size of the data set is 290

days. No significant excess is observed in the Northern Fermi Bubble region, hence upper limits above 1 TeV are

calculated. The upper limits are between 3×10−7 GeV cm−2 s−1 sr−1 and 4×10−8 GeV cm−2 s−1 sr−1.The upper limits

disfavor a proton injection spectrum that extends beyond 100 TeV without being suppressed. They also disfavor a

hadronic injection spectrum derived from neutrino measurements.

Keywords: Astroparticle physics — gamma rays — Fermi Bubbles — Gamma-Ray Astronomy
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1. INTRODUCTION

The search for a counterpart of the microwave haze

(Dobler et al. 2010) in gamma-ray data, using the Fermi

Large Area Telescope (LAT), revealed the existence of

two large structures extending up to 55◦ above and be-

low the Galactic Plane (Dobler et al. 2010; Su et al.

2010). Due to their bubble-like shape they received the

name of Fermi Bubbles.

The gamma-ray emission of the Fermi Bubbles

presents a hard spectrum —dN/dE ∼ E−2— in the en-

ergy range from approximately 1 GeV to 100 GeV. The

surface brightness is roughly uniform in both bubbles

—except for a structure inside the South Bubble called

the cocoon— and the total luminosity of the bubbles

for galactic longitude |b| > 10◦ and between 100 MeV

and 500 GeV was found to be 4.4+2.4
−0.9 × 1037 erg s−1

(Ackermann et al. 2014).

The origin of the Fermi Bubbles is still uncertain. Dif-

ferent models have been proposed to explain their for-

mation. Most of the models revolve around the idea

of outflows from the galactic center which then inter-

act with the interstellar medium. The outflow can be

generated by activity of the nucleus in our galaxy pro-

ducing a jet (Guo & Mathews 2012; Guo et al. 2012),

wind from long time-scale star formation (Crocker &

Aharonian 2011), periodic star capture processes by the

supermassive black hole in the Galactic Center (Cheng

et al. 2011), or by winds produced by the hot accretion

flow in Sgr A∗ (Mou et al. 2015).

The production of gamma rays is also under dis-

pute. Hadronic and leptonic models are the main mech-

anisms to explain the gamma-ray production. Photons

of hadronic origin are due to the decay of neutral pi-

ons that are produced in the interaction of protons with

nuclei in the interstellar medium (ISM). These protons
are injected in the bubble regions by the outflow pro-

cesses mentioned before or they can be accelerated in-

side the bubble as proposed by Fujita et al. (2013, 2014).

Some of these models, (Crocker & Aharonian 2011; Fu-

jita et al. 2013), predict the possibility of high-energy

gamma rays. In the leptonic model, high-energy photons

are produced by inverse Compton scattering from the

interaction of energetic electrons with photons from the

interstellar radiation fields (IRF) or cosmic microwave

background (CMB). The division between hadronic and

leptonic models should not be strict, but rather, a com-

bination of both models can be possible as shown in

Cheng et al. (2011); Ackermann et al. (2014). Observa-

tions at other wavelengths, specifically at lower energies,

have helped to constrain some models. For instance, the

microwave haze —produced by synchrotron radiation—

can help to constrain the electron population, which can

also radiate in gamma rays (Dobler et al. 2010; Su et al.

2010; Crocker & Aharonian 2011; Mou et al. 2015; Guo

et al. 2012).

The same principle can apply at very high energies

(VHE; >100 GeV), where observations can constrain the

population of the highest-energy cosmic rays. Consider-

ing that the Northern Fermi Bubble region is in the field

of view of the High Altitude Water Cherenkov (HAWC),

a search for VHE gamma rays (above 1 TeV) is pre-

sented. The paper is divided as follows: The HAWC

observatory and the data set used in the analysis are

defined in Section 2, the analysis procedure is described

in Section 3, and the results are discussed in Section 4

and summarized in Section 5.

2. THE HAWC OBSERVATORY & THE DATA SET

HAWC is a ground-based gamma-ray observatory. It

is located between Volcán Sierra Negra and Pico de Oriz-

aba near Puebla, Mexico, at an altitude of 4100 m a.s.l.

and at (18◦59′41”N, 97◦18′30”W). The observatory has

a duty cycle of >95% and a large field of view of ∼2 sr,

which allows it to cover 8.4 sr in a day (Abeysekara et al.

2013). The instrument consists of an array of 300 wa-

ter Cherenkov detectors (WCDs). The WCDs are steel

tanks of 7.3 m in diameter and 5 m in height, filled with

water up to 4.5 m. Each WCD is filled with ∼ 200,000

L of purified water. The array provides an effective area

of ∼22,000 m2. Inside the WCDs, four photomultiplier

tubes (PMTs) facing upward are attached to the bot-

tom.

A simple multiplicity trigger is applied to find exten-

sive air showers in the data. For the present analysis,

the trigger requires 28 PMTs detecting Cherenkov light

within a 150 ns time window to be activated in order to

identify a shower event. After the processing and cal-

ibration of the events, the air shower cores, footprint

brightness in the array, and gamma- and cosmic-ray di-

rections are reconstructed. More information on the de-

tector, calibration, and reconstruction is presented in

Abeysekara et al. (2017b).

The HAWC observatory began science operations in

August 2013, when it was still under construction. The

analysis described in this paper uses data between 2014

November 27th to 2016 February 11th.

The data set is divided into seven event-size bins rep-

resented by the fraction f of functioning PMT channels

triggered in an air shower event. The energy of the ob-

served gamma rays is related to the shower event size

that is measured in the HAWC array. The range of f

for this analysis goes from 0.162 to 1.00. Table 1 shows

the ranges for each analysis bin.
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Table 1. Analysis Bins de-
fined as the fraction of opera-
tional PMT channels triggered
in an air shower event.

Analysis Bin f

f1 0.162 - 0.247

f2 0.247 - 0.356

f3 0.356 - 0.485

f4 0.485 - 0.618

f5 0.618 - 0.740

f6 0.740 - 0.840

f7 0.840 - 1.00

Standard selection cuts are applied to the data that

pass the trigger condition. The signals in each PMT are

required to have >1 photoelectrons (PEs) and are re-

quired to be between 150 ns before and 400 ns after the

trigger. In addition, it is required that more than 90%

of the PMT channels are functioning during the obser-

vation. Finally, cuts are applied to distinguish between

gamma rays and hadronic cosmic rays, the latter being

the main background of measurements with the HAWC

observatory. All the cuts are optimized by studying the

Crab Nebula in the HAWC data (Abeysekara et al.

2017b).

3. ANALYSIS

The analysis is focused on measuring the flux of

gamma rays in the Northern Fermi Bubble Region, since

this region is inside the field of view of HAWC. The main
challenge of the analysis is to estimate the background

of the data set. The procedure to deal with the back-

ground is divided in three steps:

1. Distinguish the air shower signatures between cos-

mic rays and gamma rays. The gamma-hadron

cuts select the gamma-like showers.

2. Find the isotropic flux of cosmic rays and gamma

rays. This is found by using direct integration and

it is explained in Section 3.1.

3. Remove effects of the large-scale anisotropy as seen

in (Abeysekara et al. 2014). The procedure is

shown in Section 3.2.

3.1. Direct Integration Isotropic Background

Estimation

The positions of the events are binned in equatorial

coordinates using the HEALPix scheme (Gorski et al.

2005). These are referred to as sky maps. For the anal-

ysis we set the pixel size to be ∼ 0.11◦.

The isotropic background is estimated using the di-

rect integration (DI) technique described in Atkins et al.

(2003). The background is integrated over 24 hours and

therefore only data were used when the detector perfor-

mance was stable for 24 hours, since this is a requirement

for the integration technique. This results in a lifetime

for the analysis of 290 days.

As explained in Abeysekara et al. (2014), an analysis

based on a background integration period of δt is sen-

sitive to potential signal excesses of an RA size smaller

than δt · 15◦ hour−1. Using a 24 hour integration pe-

riod ensures that the analysis is sensitive to the Fermi

Bubbles which extend to ∼ 50◦ in RA.

Since the estimation of the isotropic background can

be biased by strong known sources in the data, a region

of interest (ROI) masking is used, as shown in Figure

1. The ROI masking covers the galactic plane [±6◦],

as well as circular regions of radius 3◦, 1.3◦,1◦ and 1◦,

respectively, for Geminga, the Crab Nebula, Mrk 421

and 501. Region A and B from the small-scale cosmic-

ray anisotropy are also masked. Their shapes are ob-

tained from the results in Abeysekara et al. (2014), by

requiring that the significances in the sky map without

gamma-hadron cuts are greater than 4σ. Finally, the

ROI for the Northern Fermi Bubble was obtained from

the Fermi Diffuse Model pass 7 version 6 1.

The shape of the Northern Fermi Bubble above 1 TeV

is unknown. We perform a gamma-ray flux excess search

within the boundaries of the Northern Bubble as de-

tected by Fermi below TeV energies.

1 See http://fermi.gsfc.nasa.gov/ssc/data/access/lat/

BackgroundModels.html

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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Crab Nebula
Geminga

Galactic Plane

Region A

Region B

Northern
Fermi
Bubble

Mrk 421Mrk 501

0 ∘∘60 ∘

Figure 1. Skymap in equatorial coordinates showing the re-
gion of interest masking as used for the analysis. The masked
ROI include the Galactic Plane, Geminga, the Crab Nebula,
Mrk 421, Mrk 501, the small-scale anisotropies region A and
B, and the Northern Fermi Bubble.

3.2. Gamma-Ray Excess Calculation

For each analysis bin, sky maps are created after ap-

plying the gamma-hadron cuts. The isotropic back-

ground is then estimated and an excess sky map is ob-

tained. The excess in each pixel i is given by the follow-

ing equation,

E′i = N ′i − 〈N ′i〉, (1)

where N ′i is the observed data after gamma-hadron cuts,

and 〈N ′i〉 is the isotropic background estimated after

gamma-hadron cuts. However, the excess sky map in the

lower analysis bins reveals the large-scale anisotropy as

seen in (Abeysekara et al. 2014). This is because there

is enough statistics to calculate the background with an

accuracy of one part per mille in these bins. The North-

ern Fermi Bubble is located at a deficit region, therefore

this systematic effect needs to be removed. The subtrac-

tion of this cosmic-ray feature is achieved by using the

data without gamma-hadron cuts.

The data without gamma-hadron separation is com-

posed of a total number of gamma rays and cosmic rays,

Ni = GT
i + CT

i (2)

where Ni is the data without gamma-hadron cuts in the

pixel i, GT
i is the number of gamma rays in the pixel i,

and CT
i is the number of cosmic rays in the pixel i. GT

i

and CT
i can also be decomposed in terms of an isotropic

component and an excess(or deficit). This is expressed

as

GT
i =GI

i +Gi

CT
i =CI

i + Ci, (3)

where GI
i , CI

i are the isotropic components; and Gi, Ci

are the gamma-ray and cosmic-ray excesses or deficits.

The data after gamma-hadron separation also con-

tains gamma rays and cosmic rays but the composition

is different due to the rejection efficiency of the gamma-

hadron separation cuts,

N ′i = εG,iG
T
i + εC,iC

T
i , (4)

where εG,i and εC,i are the gamma and hadron efficien-

cies after applying the gamma-hadron cuts.

For completeness the isotropic background for the

data before and after gamma-hadron cuts are written

as follows,

〈Ni〉 = GI
i + CI

i (5)

〈N ′i〉 = εG,iG
I
i + εC,iC

I
i . (6)

The gamma passing rate efficiency εG,i is obtained

using simulations. The detector response is simulated

in each of the seven analysis bins and for 5◦ declination

bands between −37.5◦ and 77.5◦. Each bin contains

an energy histogram that is expected for the simulated

signal. We compute the number of events in the energy

histograms and the ratio for the events with gamma-

hadron cuts h′(e) over the events with no gamma-hadron

cuts h(e), where e is the energy. Therefore, the efficiency

can be written as

εG,i =

∫
h′(e)de∫
h(e)de

. (7)

The hadron passing rate efficiency εC,i is estimated

from the data since the total number of cosmic rays

outnumbers the total number of gamma rays. In or-

der to avoid bright sources, we use equations 5 and 6 to

estimate εC,i,

εC,i = 〈N ′i〉/〈Ni〉. (8)

The isotropic gamma-ray emission can be safely ne-

glected in the sums for equations 5 and 6. To account

for declination dependence, the data in the same decli-

nation (or HEALPix ring) as in pixel i is used so that

εC,i =
∑

j〈N ′j〉/
∑

j〈Nj〉, where j is the pixel in the ring

containing i.

By combining Equations 4 and 6, Equation 1 can be

re-written as

E′i = εC,iCi + εG,iGi. (9)

Using Equations 2 and 5 give an equation for the excess

in pixel i for the data without gamma-hadron cuts,

Ei = Ci +Gi. (10)

Finally, the number of gamma rays is obtained from

Equations 9 and 10,

Gi =
E′i − εC,iEi

εG,i − εC,i
. (11)



6 HAWC Collaboration

The efficiency εG,i is applied to the number of gamma

rays Gi to obtain the number of excess events measured

by the detector.

G′i = εG,iGi (12)

The previous equation is used to calculate the num-

ber of gamma rays G in each pixel inside the Northern

Bubble region as defined in Figure 1 and then summed

to get a total excess G′ =
∑

iG
′
i in each analysis bin.

As mentioned in Section 3.1, the shape of the Fermi

Bubbles at high energies is unknown, though some au-

thors suggest that the size of the bubbles increases with

energy (Fujita et al. 2013; Yang et al. 2014; Mou et al.

2015). In this case, calculating the flux in the smaller

region of the MeV-GeV excess is the more conservative

approach.

The description of the variables is presented in ap-

pendix A.

The uncertainty calculation for Gi is shown in ap-

pendix B.

3.3. Testing the Analysis Method

The analysis method is tested on simulated sky maps

containing a dipole distribution as shown in Figure 2 as-

suming no sources are present. A rate map in the local

Figure 2. Dipole distribution used for the skymap simula-
tion.

coordinates of HAWC containing a snapshot of 24 sec

of data is generated. Since HAWC observations cover a

local sky of zenith angles 0◦ < θ < 45◦, the rate map is

generated for this zenith angle range. Using the dipole

distribution given in Figure 2, the total sky event rate

from HAWC data, and information from the detector re-

sponse, a rate in each pixel is obtained. After the 24 sec

period the rate map is reset and the procedure is started

again. In this way a simulated data set is generated that

is of the same size as the real data set analyzed in this

paper for both cases of without and with gamma-hadron

cuts. An example of a resulting simulated sky map f1 is

shown in Figure 3. The upper panel presents the result-

ing map after simply subtracting the estimated back-

ground from the data, the lower panel shows the excess

map after applying the procedure described in Section

3.2.

0 ∘360 ∘

∘3 ∘2 ∘1 0 1 2 3
E’i

0 ∘360 ∘

∘3 ∘2 ∘1 0 1 2 3
G’i

Figure 3. Simulated event excess in f 1 for an injected sig-
nal which mimics the cosmic-ray anisotropy, smoothed with
a 5◦tophat. Top: Event excess after subtracting the esti-
mated background from the simulated data. Bottom: Large-
scale structure dominated by cosmic rays is removed after the
method described in Section 3.2 is applied.

Figure 4 shows the resulting simulated excesses in each

f bin. A comparison is made between the event ex-

cesses derived from simply subtracting the estimated DI

background from the simulated data (blue points) and

the event excess obtained by the method from Section

3.2 (red points). The effect of the simulated cosmic-ray

anisotropy results in systematically lower excesses for

the lowest two f bins if the method from Section 3.2 is

not applied.

The method is also tested by adding a strong Fermi

Bubble-like gamma-ray emission. The spectrum is as-

sumed to be a power-law with spectral index γ = 2.0

and normalization of 5.03× 10−7 GeV−1 cm−2 s−1 sr−1,

both values obtained by fitting the Fermi data points in

the range of 1 GeV to 150 GeV.

Using this assumption and extending the spectrum to

TeV energies, the analysis procedure was tested. If the
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0.0 0.2 0.4 0.6 0.8 1.0

f

−6

−4

−2

0

2

4

6

G
′ /
√

〈N
′ 〉

Large Scale Anistropy

Not subtracted

Subtracted

Figure 4. Simulated event excess over the square-root of
the isotropic background inside the Northern Bubble region.
The effect of the dipole is stronger at lower values of f. Blue:
Estimated DI background subtracted from simulated data;
Red: Background subtraction considering the gamma and
cosmic-ray efficiencies. See method described in Section 3.2.

Northern Fermi Bubbles had this spectrum, the HAWC

observatory would have detected it.

0.0 0.2 0.4 0.6 0.8 1.0

f

0

20

40

60

80

G
′ /
√

〈N
′ 〉

Fermi Bubble TeV with γ = 2.0

No Simulated Emission

With Simulated Emission

Figure 5. Simulated event excess over the square-root of
the isotropic background inside the Northern Bubble region
without and with strong Fermi Bubble-like emission after
applying the procedure. See method described in Section
3.2.

4. RESULTS AND DISCUSSION

4.1. Gamma-Ray Excess Results

Figure 6 shows skymaps of the result of the first analy-

sis bin, f 1. The figure shows a sky map without gamma-

hadron cuts, and sky maps with gamma-hadron cuts be-

fore and after applying our procedure.

Figure 7 shows the results of the summed excess in-

side the bubble region after applying our procedure. No

significant excess inside the bubble region is observed,

therefore upper limits on the differential flux are calcu-

lated. The upper limits are also compared to the differ-

ential sensitivity of the HAWC observatory. The upper

limits give the maximum flux intensity that is plausible

0 ∘360 ∘

∘15 ∘10 ∘5 0 5 10 15
Ei

0 ∘360 ∘

∘1.5 ∘1 ∘0.5 0 0.5 1 1.5 2 2.5 3
E’i

0 ∘360 ∘

∘1.5 ∘1 ∘0.5 0 0.5 1 1.5 2 2.5 3
G’i

Figure 6. Event excesses in analysis bin f 1, smoothed with
a 5◦ tophat. Top: Event excess Ei after subtracting the esti-
mated DI background from the cosmic-ray data. The large-
scale CR anisotropy is visible. Middle: Event excess E′i after
subtracting the estimated DI background from the gamma-
ray data. A deficit casued by the large-scale anisotropy is
visible. Bottom: Large-scale CR anisotropy structure is re-
moved after the method described in Section 3.2 is applied.

given the observed counts in the HAWC data. The dif-

ferential sensitivity quantifies the power of the detection

procedure and is based on finding an α-level threshold

(related to background fluctuations claimed as detec-

tions) and the probability β to detect a source2.

2 The definitions of upper limit and sensitivity are the same as
upper bound and upper limit in Kashyap et al. (2010).
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0.0 0.2 0.4 0.6 0.8 1.0

f

−6

−4

−2

0

2

4

6

G
′ /
√
<

N
′ >

Figure 7. Event excess over the square-root of the isotropic
background inside the Northern Fermi Bubble region after
applying the procedure described in Section 3.2.

4.1.1. Calculating the Upper Limits

The differential flux is calculated from the measured

excess by comparing the signal observed in the data to

an expected signal obtained for each of the fractional

f analysis bins using simulations. Since the energy re-

sponse histograms for each analysis bin overlap (see Fig-

ure 8), the excesses measured in the analysis bins are

combined in a weighted sum.
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Figure 8. Energy distributions for the analysis bins assum-
ing a 2.75 power-law spectrum.

The procedure is as follows: a differential flux is as-

sumed in an energy bin of width ∆ log(E/1 TeV). The

width of differential energy bins is defined such that the

results are independent of spectral assumptions. Using

the HAWC detector response, an expected signal for the

Northern Bubble region is obtained for each fractional f

bin. Taking into account the previous values, the weight

in the energy bin k for the fractional bin fl is calculated

as

wk
l =

MEk
l

〈N ′〉l
, (13)

where wk
l is the weight in the energy bin k for the frac-

tional fl; MEk
l is the expected signal in the energy bin

k for the fractional fl, and 〈N ′〉l is the background es-

timated in fractional bin fl. This procedure results in a

matrix that allows “projection” of the fractional f anal-

ysis bin space onto the energy space.

Using the weights, the ratio of the observed signal and

the expected signal is calculated

Rk =

f∑
l=1

wk
l G
′
l

f∑
l=0

wk
l MEk

l

, (14)

and the uncertainty in the ratio as

δRk =

√
f∑

l=1

(wk
l δG

′
l)
2

f∑
l=1

wk
l MEk

l

. (15)

The ratio is used to obtain an estimation of the flux in

the energy bin k

Fk = (R± δR)kF (Ek), (16)

where F (Ek) is the flux assumption at the energy bin k

used to obtain the expected excess MEk
l .

The upper limit calculation is then performed in the

energy bins. The prescription of Helene (1983) is used

to calculate an upper limit on the differential flux de-

rived from equation 16. A 95% confidence level is cho-

sen.

4.1.2. Calculating the Sensitivity

The sensitivity is calculated based on Kashyap et al.

(2010)3. The procedure consists of setting a small prob-

ability for false positives (Type I error) and setting a

probability of detection when there is a source (related

to Type II error). The probability for false positives is

set to α = 0.05 and the probability of detection is set

to β = 0.5. This is to compare the detection power of

the observatory to the calculated upper limit at 95%

confidence level.

The calculation is performed by using the measured

background and doing simulations for a simulated Fermi

Bubble of varying flux. For the simulation we assume

3 Named upper limit in the reference instead of sensitivity
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a power-law with an index of -2.75 in the differential

energy bin. For each analysis bin, the total background

counts and the total expected number of events from

the simulated source are calculated inside the bubble

region. Following the same procedure as in Section 4.1.1,

the analysis bins are combined to get the total number

of events for each energy bin. In each energy bin, a

null hypothesis histogram and an alternative hypothesis

histogram are created for the quantity

Sk = Ek/
√
〈N ′〉k, (17)

where Ek is obtained by Poisson-fluctuating 〈N ′〉k for

the null hypothesis, and then subtracting 〈N ′〉k from

this value; or by Poisson-fluctuating 〈N ′〉k + MEk for

the alternative hypothesis, and then subtracting 〈N ′〉k
from this value. The Poisson fluctuations are performed

10000 times to fill the histograms. The null hypothesis

histogram is used to find the α-level detection thresh-

old and the alternative hypothesis histogram is used to

find the flux normalization that is required to obtain a

probability of detection of 0.5.

4.2. Differential Flux of the Fermi Bubbles

The first energy bin is centered at 2.2 TeV, which is

the median energy of fraction f 1 assuming a power law

spectrum of index γ = 2.75 (see Figure 8). The en-

ergy bin width is set to ∆ log(E/1 TeV) = 0.5 which is

comparable to the width of the energy histograms. The

energy range covers up to the highest energy at which

HAWC is sensitive (∼100 TeV).

Table 2 shows the values of the upper limits and sen-

sitivities for each energy bin. The upper limits obtained

from data are consistent with the detection power of

HAWC. Figure 9 shows the upper limits together with

the flux measurement of the Fermi Bubbles made by the

Fermi Collaboration (Ackermann et al. 2014). Different

leptonic and hadronic models are also present in Figure

9.

The two leptonic models are obtained from Acker-

mann et al. (2014). In these models, the emission is due

to inverse Compton scattering. Two radiation fields are

used: the IRF at 5 kpc above the Galactic Plane and

photons from the CMB. The electron spectrum inter-

acting with the radiation fields is modeled as a power-

law with an exponential cutoff. The spectral index

has a value of 2.17 ± 0.5+0.33
−0.89 and the cutoff energy is

1.25± 0.13+1.73
−0.68 TeV.

The two cyan hadronic models, also obtained from Ack-

ermann et al. (2014), assume a power-law and a power-

law with cutoff for the injection spectrum of the hadrons.

These protons interact with the ISM producing neutral

pions that decay into gamma rays. The spectrum was

Table 2. Charactersitics of the non-detection: upper limits
on the differential flux in four different energy bins. Since
the highest energy bin is treated as an overflow bin, only the
lower boundary of that energy bin is quoted in order to be
conservative.

Energy Range Upper Limits Sensitivity

[TeV] [GeVcm−2s−1sr−1] [GeVcm−2s−1sr−1]

1.2 - 3.9 3.0×10−7 3.3×10−7

3.9 - 12.4 1.0×10−7 1.1×10−7

12.4 - 39.1 0.5×10−7 0.5×10−7

>39.1 0.4×10−7 0.3×10−7

obtained using the library cparamlib4, which imple-

ments the cross sections from Kamae et al. (2006), for

the production of gamma rays through hadronic in-

teractions. The spectral index for the power-law is

2.2; the spectral index for the power-law with cutoff is

2.13±0.01+0.15
−0.52 with a cutoff energy of 14±7+6

−13 TeV. Us-

ing the fit results obtained in Ackermann et al. (2014),

we extrapolate the results for the hadronic models above

100 TeV. The upper limits derived from HAWC data ex-

clude the hadronic injection without a cutoff, that best

fits the GeV gamma-ray data, above 3.9 TeV.

The hadronic model represented by the red line is ob-

tained from Lunardini et al. (2015). This model is the

counterpart of a neutrino flux model that best fits the

IceCube data. The IceCube data corresponds to five

events that are spatially correlated with the Fermi Bub-

bles. The differential flux model was obtained by taking

into account the flux from both bubbles. Above 10 TeV,

the HAWC upper limits exclude the parent proton spec-

trum predicted from IceCube data.

Table 3 gives a summary of the different models.

Early reports such as Crocker & Aharonian (2011);

Fujita et al. (2013), presented the possibility of observ-

ing TeV gamma rays. The intensity was predicted to

be ≤ E2 F (TeV) ∼ 10−6 GeVcm−2s−1sr−1. The result

presented here sets a stricter upper limit.

The result is not constraining the main contribution

to the spectrum of the Fermi Bubbles. Nevertheless our

result may imply, for a hadronic model, that there is a

cutoff in the proton spectrum. Ackermann et al. (2014)

showed that GeV gamma-ray spectrum cuts off around

100 GeV. The cutoff for the parent proton spectrum in

this case could be around 1 TeV (Cheng et al. 2015).

4 https://github.com/niklask/cparamlib

https://github.com/niklask/cparamlib


10 HAWC Collaboration

Table 3. Differential flux models for the Fermi Bubbles.

Model Description

Hadronic Model 1 Np ∝ p−2.2

Hadronic Model 2 Np ∝ p−2.1 exp(−pc/14 TeV)

Leptonic Model 1 Ne ∝ p−2.17 exp(−pc/1.25 TeV) and IRF at 5kpc

Leptonic Model 2 Ne ∝ p−2.17 exp(−pc/1.25 TeV) and CMB

IceCube Hadronic Model Np ∝ p−2.25 exp(−pc/30 PeV)

10−1 100 101 102 103 104 105
E [GeV]

10−8

10−7

10−6

E2
  
N/
 E
 [G

eV
 c
m

−2
 s
−1
 sr

−1
]

Ha ronic Mo el 1
Ha ronic Mo el 2
Leptonic Mo el 1
Leptonic Mo el 2

HAWC UL 95%
IceCube Hadronic Model
Fermi 2014 ApJ 793

Figure 9. HAWC upper limits together with the Fermi data and gamma-ray production models from Ackermann et al. (2014)
and Lunardini et al. (2015). See table 3 for spectral assumptions of these models.

As mentioned in Section 3.2, Fujita et al. (2013); Yang

et al. (2014); Mou et al. (2015) propose that the size of

the bubbles increases with energy. While defining the

search region to be the same as the excess detected at

GeV energies is a more conservative approach, it may be

interesting to increase the size of the latter in a follow-up

analysis.

Increasing the sensitivity at energies <1 TeV is an-

other objective for future analysis. Compared to re-

cent(Abeysekara et al. 2017b,a) or future (HAWC Col-

laboration 2017, in preparation) publications of the

analysis of HAWC data, this analysis uses only the seven

highest event-size bins. At energies .1 TeV, the large-

scale anisotropy signal (or any significant, spatially-

extended feature) causes signal contamination in the es-

timation of the background because the structure takes

up a large portion of the field-of-view of HAWC, signif-

icantly altering the all-sky rate. An iterative procedure

for the DI method will be followed as explained in Ahlers

et al. (2016) and has been shown to remove this artifact.

5. CONCLUSIONS

A search of high-energy gamma rays in the North-

ern Fermi Bubble region has been presented by us-

ing 290 days of data from the HAWC observatory.

No significant excess is found above 1.2 TeV in the

search area and the 95% C.L. flux upper limits are

calculated and compared to the differential sensi-

tivity with α = 0.05 and β = 0.5. The upper

limits are between 3×10−7 GeV cm−2 s−1 sr−1 and

4×10−8 GeV cm−2 s−1 sr−1 . The upper limits, for

gamma-ray energies between 3.9 TeV and 120 TeV, dis-

favor the emission of hadronic models that try to explain

the GeV gamma-ray emission detected by the Fermi
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LAT. This makes a continuation of the proton injection

above 100 TeV highly unlikely (solid cyan line in Figure

9). The HAWC upper limits also disfavor a hadronic in-

jection spectrum derived from IceCube measurements.

The present result does not allow unequivocal conclu-

sions about the hadronic or leptonic origin of the Fermi

bubbles though. A future analysis of HAWC data will

include a better sensitivity, especially at lower ener-

gies and possibly larger search regions according to the

predictions of some theoretical models.
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APPENDIX

A. TABLE OF VARIABLES

Table 4. Description of the variables used in the analysis

Variable Description

Ni Number of events in sky-map pixel i before gamma-hadron cuts

N ′i Number of events in sky-map pixel i after gamma-hadron cuts

〈Ni〉 Number of estimated background events in sky-map pixel i before gamma-hadron cuts

〈N ′i〉 Number of estimated background events in sky-map pixel i after gamma-hadron cuts

Ei Excess above background in sky-map pixel i before gamma-hadron cuts

E′i Excess above background in sky-map pixel i after gamma-hadron cuts

B. UNCERTAINTY CALCULATION OF G’

The number of gamma rays, as presented in Section 3.2, is given by

G′i = εG,iGi, (B1)

where Gi is given by

Gi =
E′i − εC,iEi

εG,i − εC,i
. (B2)

The value of εC,i is obtained by the equation

εC,i =
∑

j

〈N ′j〉/
∑

j

〈Nj〉, (B3)

where j are the pixels in the same HEALPix ring as pixel i.

The uncertainty δGi is calculated as
(
δG

|G|

)2

=
1

(E′i − εC,iEi)2

[
δE
′2
i + (εC,iEi)

2[(
δεC,i

εC,i
)2 + (

δEi

Ei
)2]

]
+

δε2C,i

(εG,i − εC,i)2
. (B4)
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The uncertainties of the different terms are δE
′

i =
√
〈N ′i〉; δEi =

√
〈Ni〉; and δεC,i = |εC,i|

√
αi

(
1∑

j〈N ′j〉
+ 1∑

j〈Nj〉

)
,

where αi is the relative exposure of the observed sky map to the direct integration background. It is calculated as

αi = ∆Ω/(∆θ∆t 15
◦
hr−1 cos δ), where ∆Ω is the pixel area, ∆θ is the pixel size, ∆t is the integration time and δ is

the declination.

The systematic uncertainty on G =
∑

iGi due to the gamma-ray content in the variable εC,i is estimated. First we

calculate the relative error of the measured εC,i to the true value εtC,i where the superscript is for “true”.

δεC,i

εtC,i

=
|εC,i − εtC,i|

εtC,i

=

∑
j(εG,i − εtC,i)G

I
j

εtC,i

∑
j(C

I
j +GI

j )
≈
∑

j(εG,i)G
I
j

εtC,i

∑
j(C

I
j )

<

∑
j(εG,i)Gj

εtC,i

∑
j(C

I
j )
, (B5)

where the numerator is close to the gamma-ray signal after gamma-hadron cuts and the denominator is close to the

isotropic background after gamma-hadron cuts. By using the information from Abeysekara et al. (2017b), the relative

error is estimated.

The total trigger rate for the HAWC observatory is 24kHz for the 2sr field of view. Assuming that most of the

Crab events come from a 1
◦

radius, we can obtain an estimation of the background rate events from the Crab. This

background rate is defined as BR = 24000(2π(1− cos(1
◦
))/2sr. This background rate is proportional to the isotropic

component after gamma-hadron cuts εCCI The total number of observed events from the Crab is 166.85 events/transit

or 0.00772Hz for 6 hour/transit. This is proportional to the excess gamma rays after gamma-hadron cuts εGG
T . We

calculate the following ratio
N ′ − 〈N ′〉
〈N ′〉 =

εGG+ εCC
I

εCCI
. (B6)

The ratio C/CI is O(10−4)(Abeysekara et al. 2014), so the ratio N ′−〈N ′〉
〈N ′〉 can be approximated as

N ′ − 〈N ′〉
〈N ′〉 =

εGG

εCCI
= 0.6× 10−3. (B7)

The systematic error in Gi can then be written as

(δGi)sys =
∂Gi

∂εC,i
δεC,i (B8)

Assuming gaussian regime, (δG)sys =
∑

i(δGi)
2
sys, where i is pixel number. The ratio (δG)sys./(δG)stat. is of order

O(10−4), so the systematic uncertainty is ignored.
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