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Modeling the population effects of epitope specific escape mutations in SARS-CoV-
2 to guide vaccination strategies 
 
By James S. Koopman (University of Michigan), Carl P. Simon (University of Michigan), Wayne 
M. Getz (University of California, Berkeley; Numerus), Richard Salter (Oberlin College; Numerus) 
 
Highlights 

1) This model is the first to integrate both antigenic drifting from escape mutations and 
immunity waning in continuous time. 

2) Tiny amounts of only waning or only escape mutation drifting have small or no effects. 
Together, they have large effects. 

3) There are no or few escape mutations during the first epidemic peak and no effect of 
drifting parameters on the size of that wave. 

4) After the first epidemic peak, escape mutations accumulate rapidly. They increase with 
increases in waning rates and with increases in the drifting rate. Escape mutations then 
amplify other escape mutations since these raise the frequency of reinfections. 

5) Escape mutations can completely negate the effects of vaccines and even lead to more 
infections with vaccination than without, especially at very low waning rates. 

6) The model generates population level cross-neutralization patterns that enable the 
model to be fitted to population level serological data. 

7) The model can be modified to use laboratory data that determine the epitope specific 
effects of mutations on ACE2 attachment strength or escape from antibody effects. 

8) The model, although currently unable to predict the effects of escape mutations in the 
real world, opens up a path that can guide model incorporation of molecularly studied 
escape mutations and improve predictive value. We describe that path. 

9) Model analysis indicates that vaccine trials and serological surveys are needed now to 
detect the effects of epitope specific escape mutations that could cause the loss of 
vaccine efficacy. 

 
Abstract 
Escape mutations (EM) to SARS-Cov-2 have been detected and are spreading. Vaccines may 
need adjustment to respond to these or future mutations. We designed a population level 
model integrating both waning immunity and EM. We also designed a set of criteria for 
elaborating and fitting this model to cross-neutralization and other data in a manner that 
minimizes vaccine decision errors. We formulated four model variations. These define criteria 
for which prior infections provide immunity that can be escaped. They also specify different 
sequences where one EM follows another. At all reasonable parameter values, these model 
variations led to patterns where: 1) EM were rare in the first epidemic, 2) rebound epidemics 
after the first epidemic were accelerated more by increasing drifting than by increasing waning 
(with some exceptions), 3) the long term endemic level of infection was determined mostly by 
waning rates with small effects of the drifting parameter, 4) EM caused loss of vaccine 
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effectiveness and under some conditions, vaccines induced EM that caused higher levels of 
infection with vaccines than without them. The differences and similarities across the four 
models suggest paths for developing models specifying the epitopes where EM act. This model 
is a base on which to construct epitope specific evolutionary models using new high-throughput 
assay data from population samples to guide vaccine decisions. 

 
The nature of the problem that we address: 
SARS-CoV-2 has generated the most devastating pandemic in a century. Many aspects of SARS-
CoV-2 dynamics remain unknown, including the risks of and reasons for reinfection. Reinfection 
by endemic coronaviruses is common in all age groups (Monto, DeJonge et al. 2020, 
Nickbakhsh, Ho et al. 2020) and SARS-CoV-2 reinfections are increasingly being documented 
(Babiker, Marvil et al. 2020). Reinfections might arise either because of 1) waning, in which host 
immunity wanes after recovery from infection, or 2) drifting, in which the virus evolves to 
escape immunity stimulated by prior infections, immunotherapies, or vaccines. Drifting can 
arise in many ways, including immunity-escaping mutations, positive selection that increases 
transmissibility without escaping immunity, and of course, randomness. In this paper, our use 
of the term drifting will always imply selective drifting due to escape mutations, although our 
model can capture increased transmissibility mutations as well. 
 
The endemic coronaviruses might indicate what we can expect from SARS-CoV-2. In this vein, 
high variation in endemic coronavirus genomes at attachment sites led (Andersen, Rambaut et 
al. 2020) to suggest that virus variation might explain some reinfections.  The genetic analyses 
of (Kistler and Bedford 2020) provided evidence that “…OC43 and 229E, are undergoing 
adaptive evolution in regions of the viral spike protein that are exposed to human humoral 
immunity. This suggests that reinfection may be due, in part, to positively-selected genetic 
changes in these viruses that enable them to escape recognition by the immune system.” This 
observation is consistent with patterns of genetic change in East Asian populations which 
suggest that among the 8 identified OC43 genotypes, genotypes vary enough to replace each 
other at different times (Lau, Lee et al. 2011) (Zhang, Li et al. 2015) (Zhu, Li et al. 2018). Recent 
cross-neutralization assays of genetic changes in the alpha coronavirus 229E during the 1980’s 
and 1990’s have shown clear genetic escape from immunity across time (Eguia, Crawford et al. 
2020). 
 
Studies of SARS-CoV-2 itself have indicated how escape mutations can become a problem. 
(Greaney, Starr et al. 2020) demonstrated the potential for extensive SARS-CoV-2 escape from 
monoclonal antibodies by mutating every nucleotide in the receptor binding domain (RBD). 
(Weisblum, Schmidt et al. 2020) also documented mutations that escape from monoclonal 
antibodies and noted that such mutations are present at low levels in circulating SARS-CoV-2 
populations.  
 
The first well documented genetic change associated with high SARS-CoV-2 transmission 
involved a D614G mutation (Hou, Chiba et al. 2020). This mutation has been well studied. It is 
not clear whether this is an escape mutation, even though the 614G variant is associated with 
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higher viral load and younger age of patients (Volz, Hill et al. 2021). Evidence against this being 
an escape mutation and in favor of it generating greater contagiousness in other ways comes 
from neutralization assays. The original 614D variant is neutralized at a higher level in animals 
or humans whose immunity was stimulated by the 614G variant (Weissman, Alameh et al. 
2020).  
 
A second realization of the potential for escape mutations has emerged in South Africa. 
(Tegally, Wilkinson et al. 2021) documented a new variant with eight lineage defining mutations 
that has rapidly replaced the original pandemic strains. Two sites in the RBD of this new variant 
appeared to be under diversifying positive selection and are likely to represent escape 
mutations.  
 
A third case has emerged in England. The new lineage (B.1.1.7)  that came to dominate 
transmission in SW England is highly mutated and fits into an evolutionary pattern that suggests 
it emerged via extended evolution in an individual due either to immunodeficiency or to serum 
treatment of a case (Rambaut, Loman et al. 2020) (Volz, Mishra et al. 2020). The series of 
genetic changes in this virus have increased transmission by 50-70% with greater effects in the 
under 19 age group possibly indicating that some escape mutations are to endemic coronavirus 
epitopes (Davies, Barnard et al. 2021). A case of reinfection with this new escape mutant has 
already been detected (Harrington, Kele et al. 2021) 
 
These situations call for an intensive surveillance and control effort. We need to detect a 
possible threat to public health from escape mutations before epidemics of escape mutant 
viruses spread widely. After all, it takes time to develop new vaccine stockpiles even if mRNA 
manufacturing is faster than older approaches. Vaccine conformation decisions need methods 
that distinguish rare escape mutations that will spread widely from those that will not. 
Knowledge of microbial behavior at a biological level in individuals is not enough for this task. 
We need knowledge of the population conditions and processes that generate population 
threats. Such knowledge needs to integrate theory about population processes with data that 
capture the effects of those processes. In other words, we need models that can be fitted to 
population level data.  
 
How we addressed this problem 
Given the desired model properties stated above, we initiated a new approach to modeling the 
population level dynamics of escape mutations. In our model, we focus on immunity dynamics 
related to one or three epitopes. In reality there are many more. But their number is countable 
and manageable. We treat our models as if the epitopes we model are the only ones affecting 
immunity. This amplifies vaccine and natural infection immunity effects. Thus, in their current 
forms the models examined are not immediately applicable to vaccine decisions like those 
concerned with whether the B.1.1.7 variant requires a vaccine change. But the analyses we 
present create a platform for constructing more detailed and realistic epitope specific models 
that can be informed by the proliferation of epitope specific population level data, as they 
become available.  
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We modeled escape mutations as arising during transmissions to individuals who already have 
some immunity from which the virus can escape. Immunity in a person being reinfected (the 
infectee) leads to escape mutations in the virus coming from a source case (the infector). We 
assumed that there was a common drifting scale between infectors and infectees. In other 
words, we put both the antigenicity of SARS-CoV-2 and the immune capacity of someone 
previously infected with the virus on the same scale. The infectee has the same position on the 
drifting scale as their last infection.  
 
To be more precise, we assume M+1 variants of the virus that can arise via escape mutations. 
For ease of exposition, we will often call these variants “drift levels” or sometimes simply 
“strains.” We write I(h), sometimes Ih, for those currently infected with drift level h. We will 
usually reserve h=0 for the strain that initially infects the population. Currently uninfected, 
susceptible individuals are in two sets: S for those never before infected and R(j,k) for those 
recovered from a previous infection whose last infection was by drift level j and whose current 
level of immunity to strain j is k. The second subscript in Rh0 represents how much the 
recovered individual’s immune system has waned from its maximum effectiveness. As their 
immune system wanes, the individual newly recovered from drift level h moves from Rh0 to Rh1 
to Rh2 and eventually to RhP at constant rate w. So, for each drift level h, there are P+1 waning 
states Rhk, k=0,1,…,P.  
 
In this paper we consider three simple configurations of drift levels:  
1) the M+1 drift levels lie at the integer points on a line, with extremes at h=0 and h=M;  
2) the drift levels lie on a circle, like hour marks on a clock face (the circle is formed by tying the 
ends of the interval in configuration 1) so that both level 1 and level M-1 are equally adjacent to 
level 0 so this configuration has no extreme levels).  
3) drifting occurs in patterns generated by γ dichotomous alleles so that each drift level can 
now be written as a string of γ capital letters and small letters (or 0s and 1s), where such alleles 
cause the shape of drifting relationships to emerge as a γ-dimensional hypercube.  
See Figure S1 in the Supplementary Material (SM).  All three of these configurations have a 
natural notion of adjoining drift levels and the “edges” that join them. In this paper we measure 
the distance between two drift levels as the least number of edges that connect one to the 
other. 
 
The question emerges: “What is the distance and direction in the drift space between infector 
and infectee where immunity in the infectee can cause the virus in the infector to drift one 
level?” For the linear configuration 1), we examine two situations: 1a) the influence can be 
from anywhere along the linear scale, 1b) the influence generating drifting only occurs when 
the infectee is at most one step away from the infector. In either case, the influence for drifting 
only occurs in one direction. Upon transmission, those viruses that escape a new host’s 
immunity are more likely to cause infection. For example, under our assumption that drift levels 
lie at the integer points on a line, if an individual in I(2) infects an individual in R(3,k), the virus 
in the infector could transit to I(1) or I(3) upon transmission. However, the individual in R(3,k) 
has more immunity to strain 3 than to strain 1. So, if there is a transit, it will be away from 
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strain 3 to strain 1. More generally, when the infectee is higher along the scale than the 
infector, drifting will move one step lower along the scale. When the infectee is lower along the 
scale than the infector the drifting will move one step higher. This corresponds to drifting only 
being possible in a direction that escapes immunity in the infectee. Once variants that escape 
immunity are in an infectee with that immunity, the escape variant virus will have a growth 
advantage that across hundreds of virus multiplications on the way to peak infection will lead to 
the dominance of the escape variant. 
 
The four models we examined are thus: Model 1 (corresponding to assumption 1a), Model 2 
(corresponding to assumption 1b), Model 3 (the circular model), and Model 4 (the allelic 
hypercube generating model). In terms of an epidemiological and immunological interpretation 
of our topological models, we speculate that when there are multiple escape mutations in a 
single epitope, our linear topology is the more appropriate abstraction. Six linear steps, as in 
our models, would be an unusually high number. In contrast the hypercube allelic relationships 
correspond to situations arising when different escape mutations arise in different epitopes.  
 
The issues we address with these four models seem not to have been considered before in 
either a scientific theory or a mathematical model formulation. In fact, we found no model that 
included both immunological waning and escape mutation drifting in continuous time. 
(Andreasen, Lin et al. 1997) have formulated a model with waning and drifting across seasons, 
but their model does not capture escape mutations in continuous time.  
 
Mathematical formulation of the models 
The model form we analyzed is an ordinary differential equation SIR model in a single 
homogenously mixing population. We present the explicit equations of our model in an 
appendix after the references. SIR models divide people into only three categories: Susceptible, 
Infectious, and Recovered (SIR). We stick with this simplification but, as discussed in the last 
section, we divide the I into M+1 different drifting levels of virus and we divide the R into both 
M different drift levels and P+1 different waning levels.  
 
Our mathematical formulation has two key elements not found in other SIR models: a drifting 
tensor and a susceptibility function. The drifting tensor is a general formulation for specifying 
how the immunity state of the infectee and the drift level of the infector will lead to drifting. It 
is an (M+1)×(M+1)×(M+1) array whose (h,j,h’) entry gives the probability that when an infector 
in I(h) transmits to an infectee in some R(j,k) the virus will drift from level h to level h’. The drift 
matrices for our four models are presented in Tables S1-S4 in the SM.  
 
The susceptibility function Z(h,j,k) specifies the probability of transmission when an infector in 
I(h) contacts a susceptible in R(j,k). Probability of transmission Z(h,j,k) rises more as the 
distance between the two strains h and j increases. It also rises more as the susceptible 
person’s immune system wanes (higher k). See equation (1) in the Appendix. 
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The usual SIR parameter values used in our simulations are provided in the Appendix.  To 
initialize the epidemic, we introduced one infection per 1 million into a continuous population 
nominally scaled to present results per 1000 individuals. All time scales were set to a week. We 
worked with 7 drift levels in Models 1, 2, and 3. In Model 4, we assumed there were 3 
independent dichotomous alleles, so that there were 23 = 8 drift levels. The resulting behaviors 
that we describe seem independent of the number of drift levels in Models 1, 2, and 3 or the 
number of independent alleles in Model 4. 
 
We varied the drift rate D and the waning rate W to understand better the interactions 
between drifting and waning on the behavior of the system.  
 
Table S5 in the SM provides some intuition for the effects of varying W. For example, in Model 
1, at waning rate W=0.1, it takes 57 weeks for half of those entering R00 to reach R06. For 
W=0.01, that process takes 11 years. 
 
Our waning functions have no redundant immunity. That is to say, as soon as there is any 
waning, there is susceptibility. The six waning steps are of equal size. In the last waning state, 
the susceptibility of previously infected individuals is 6/7ths of a fully susceptible, never before 
infected individual. 
 
Drifting is likewise divided into six drifting steps and 7 drift levels for Models 1 and 2. For 
Models 3 and 4, however, there are only 3 steps to the most distant drift state, so we double 
the size of immunity loss for each step while leaving the last state having 6/7ths of full 
susceptibility. 
 
Model behaviors observed across the four models: without vaccination 
In the absence of vaccination, the behavior of the four different models had remarkable 
similarities. Figure 1 shows the behavior of each of the four models varying D for fixed W=0.01. 
(Figure S2 in the SM does the same for fixed W=0.1.) Figure 2 does the same for varying W for 
fixed D=0.01. At a basic reproduction number of 2 we observed the following: 
 
Invariance of the first epidemic 
The first epidemic is practically unchanged as W and D vary in the 3 graphs of Figures 1, 2 and 
S2, for Models 1 through 4. This invariance is expected since drifting in the model arises from 
reinfections, which are rare in the first epidemic; nearly all the infected are in I(0). The sharp 
rise and fall of the epidemic given homogeneous mixing contributes to this pattern. Perhaps the 
slower transmission expected from more realistic contact patterns would allow for some 
drifting during the first epidemic. 
 
Joint effects of waning and drifting 
Without waning there was no drifting regardless of how high the drifting parameter was set. 
After the initial epidemic, with W=0 it took 78 years of new susceptible births before a second 
epidemic appeared. With tiny amounts of waning but no drifting (W=0.00001, D=0), results 
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were similar. But with just an equally tiny amount of drifting (W=D=0.00001), the first rebound 
epidemic followed a few years after the first. So, at low levels of waning, the joint effects of 
waning and drifting are far greater than multiplicative. (See Figure S3 and S4 in SM.) 
 

 
Figure 1. Runs of all 4 models with waning rate fixed at W=0.01 and drifting fraction varying at 
d=D= 0.001, 0.01, 0.1. In each panel the top curve gives the total number of infections with 
annotations for the dominant strains for different waves.  
 
As seen in Figure 1 and the first two rows of Figure 2, for W and D values at or below 0.01, 
infections occur in discrete waves, with virtually no infection in between for Models 1, 2, and 4. 
However, with these values, Model 3 moves more quickly to continuous epidemics and then to 
equilibrium. There are two reasons for that. First, it takes only three drift steps instead of 6 to 
reach the maximal loss of immunity in Model 3. Second, each drift level has two different drift 
levels that are maximally distant from it. That means there are twice as many highly susceptible 
contacts to whom transmission can occur. 
 
At W = 0.1, total infection does not remain at low levels in between waves but stays positive at 
the end of each epidemic and oscillates upwards in time, eventually reaching an equilibrium 
across all models. (Figures 2 and S2.) 
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As seen in Figures 1 and S2, increasing the drifting parameter D accelerates the occurrence of 
rebound epidemics after the first epidemic for waning rates of 0.01 and 0.1. It also accelerates 
the attainment of equilibrium levels of infection. Model 2, which has the lowest fraction of 
contacts that induce escape mutations, has the longest intervals to rebound epidemics and 
lowest infection rates in those epidemics. Model 3 has the same limitations on the fraction of 
contacts that induce escape mutations as Model 2. However, its circular form adds contacts 
between the ends that induce mutations as well as mutations from one end to the other. These 
additional drifting paths as well as the additional contacts that induce drifting at what are end 
levels in Model 2, result in Model 3 showing drifting comparable to what is seen in Model 1. 
 
Increasing the waning rate accelerates the appearance of the first rebound epidemic in all four 
models, as Figure 3 illustrates for D=0.01 in Model 1. As Figure S4 in the SM illustrates, this 
acceleration is a little slower in Model 4. 
 

 
Figure 2. Analog of Figure 1, but now with drifting fraction fixed at D=0.01 and waning rate 
w=W varying at 0.001, 0.01, 0.1. 
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Figure 3. Simulation of Model 1 with drift fraction fixed at D=0.01. As waning rate W increases 
from 0.001 to 0.01 to 0.1, the time between waves shrinks and the level of infection increases 
noticeably.  
 
Equilibrium infection levels 
Prevalence reaches an equilibrium in all four models, for all parameter values. In the 0.001 to 
0.1 parameter ranges, endemic equilibrium infection levels are an increasing function of the 
waning rate W and are mostly unaffected by the drifting parameter D. As seen in Figure 4, the 
equilibrium infection levels were identical for models 1 and 2 and nearly identical for Model 4. 
But they were considerably higher for model 3; in model 3 each drift level has two different 
drift level that are maximally different from it while all of the other models each drift level has 
only one. (See Figures 4 and S1.)  
 
The drifting parameters accelerate the attainment of equilibrium, but they do not increase 
equilibrium levels. In fact, for Models 1 and 2 they lower the equilibrium a little as they 
decrease the equilibrium accumulation of infections at the ends of the lines of drifting in these 
models. The equilibrium infection level is unchanged in Models 3 and 4 as the drifting rate 
changes. 
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Figure 4. Graphs of the risk of first infection and risk of reinfection at equilibrium for all 4 
models as the waning rate W increases. The top two graphs are for Model 3, the bottom two 
are for Models 1, 2, and 4. In each case, the risk of first infection is greater than the risk of 
reinfection. 
 
The equilibrium infection levels had risks for reinfection that were comparable to the observed 
reinfection rates by endemic coronaviruses in older individuals when the waning rate was in the 
0.001 to the 0.01 range. The true rates of reinfection, including asymptomatic infections and 
those mild enough to not be detected, are likely to correspond to a higher range. The endemic 
first infection risks were more than twice as high as the endemic reinfection risks (Monto, 
DeJonge et al. 2020, Nickbakhsh, Ho et al. 2020) in all models. (See Figure 4). 
 
Timing and composition of the subsequent epidemics 
The drifting parameter has significant effects on both the timing of the first rebound epidemic 
and the extent of drifting in that epidemic. Except at very high waning rates and very low 
drifting rates, the first rebound epidemic – wave 2 -- has a virus drifted from the first epidemic. 
 
As mentioned above, the first epidemic is dominated by the initial strain – level 0 in most of our 
simulations. Except in Model 2, the second wave is dominated by the drift level the furthest 
from level 0. In Model 1 the drift from strain 0 to strain 6 occurs rapidly during the end of the 
first epidemic. The drift restriction that distinguished Model 2 from Model 1 slows down this 
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all-too-rapid drift so that intermediate drift levels dominate wave 2 in Model 2. Strains 0 and 6 
take turns dominating alternate epidemics in Model 1, and eventually in Model 2. 
 
Drift levels 3 and 4 dominate the second wave in Model 3, but soon thereafter all seven strains 
equilibrated to the same value. In the allelic Model 4, if we write ABC for the initial strain, then 
abc dominates the second wave, ABC dominates the third, then abc, until eventually all eight 
strains equilibrate to the same value. 
 
6) Model behaviors observed across the four models: with vaccination 
Vaccination effects were explored by beginning vaccination at the end of the first epidemic and 
keeping it constant thereafter. Vaccination rates of 0.25 and 1.0 per person per year were 
examined. The vaccine modeled generated exactly the same immunity as would an infection. 
The immunity is against infection. There is no immunity against disease given infection in this 
model.  Specifically, vaccination moves a susceptible to state R(0,0), where drift level 0 is the 
initial infecting level – the one that thoroughly dominates the epidemic wave that precedes the 
introduction of the vaccine. The models discussed here have a small number of epitopes and no 
redundant immunity. That makes the insights generated by our analysis relevant for 
constructing more realistically detailed models, but less relevant for interpreting real world 
vaccine patterns.  
 
When both the waning rate and drifting rate are at 0.1 as in Figure 5, we see for all models that 
vaccination has tiny but beneficial effects on the first rebound epidemic for models 1 and 4 
while the effects for models 2 and 3 are small but not so negligible. The effects on endemic 
levels are more uniform across models; vaccination decreases infection prevalence at 
equilibrium. 
 
When the waning rate is decreased to 0.01 as in Figure 6, however, we see small but positive 
vaccine effects when the vaccination rate is only about a quarter of the population per year. 
However, when the vaccination rate goes up to 1 per year, vaccination has negative effects. It 
increases the frequency of rebound epidemics and raises the equilibrium levels of infection.  
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Figure 5. For each of the 4 models, W and D are fixed 0.1. The first row presents the graphs for 
the case of no vaccination; the second row presents partial vaccination (25% of the population 
per year); the third row presents full vaccination per year. 
 
Similar patterns are seen in Figures S4 and S5 where the drifting level is 0.01. At waning rate 0.1 
vaccines reduce infection levels a little at both vaccination rates. At waning rate 0.01 there are 
slight beneficial effects of low vaccination rates, but harmful effects at the high vaccination 
rates with higher rates of infection with the vaccine than without it. 
 
These harmful effects occur in all cases because high levels of vaccination eliminate strains with 
drift levels like those of the pandemic strain and the vaccine. They thus increase the frequency 
of individuals that have the highest levels of susceptibility to the most drifted strains. Those 
drifted strains can thus cause more infections than would be the case if the population were 
oscillating between the drifting extremes. Model 3 is less subject to these nefarious effects for 
the same reasons it stood out with regard to parameter effects when there was no vaccination. 
In model 3, the number of escaped strains that can take advantage of immunity levels 
stimulated by the vaccine or pandemic strain is greater so the vaccine has fewer individuals it 
can drive into the most drifted state. 
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Figures S6 and S7 make it easier to see the differences in vaccine effects when the waning rate 
changes from 0.01 to 0.1 by putting all three vaccination rates in the same figure. 
 

 
Figure 6. This is the analog of Figure 5, but with the waning rate W at .01 instead of 0.1. Full 
vaccination is more problematic here than in Figure 5. 
 
Generation of cross-neutralization assay and epitope specific serology results 
Cross neutralization assays have long been used to determine whether new strains of viruses 
have developed escape mutations. For example, there has been great interest in the cross-
neutralization assays of people infected in the U.S. for the new virus from SW England. But 
these assays have not previously been used to fit waning and drifting parameters of population 
models.  
 
A strength of our model formulation is that it generates population patterns of immunity. As a 
result, our model can be fit to population level serology data and thus inform decisions about 
which epitope conformations to include in updated vaccines. Describing how cross 
neutralization tables are generated by the model and how they change over time given 
different parameter values illustrates the potential of fitted models to be used in vaccine 
composition decisions.  
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At a population level, cross-neutralization analyses are performed on a sample of individuals 
from a population. Each person provides a sample of antibody sera to assay the strength of 
their immune system to neutralize two or more viruses that may have been isolated at different 
times or from different populations. If the population patterns ascertained indicate that the 
titers of everyone are the same against each virus, then there is no drifting between different 
viruses.  If there is a statistically significant difference, then the viruses have drifted to be 
different from each other.  
 
To generate cross neutralization data from our models’ output, we use the Z(h,j,k) function as 
formulated by function (1.1) in our model (without B) to calculate the susceptibility of all 
individuals who have recovered from a previous infection. Since the Z function is a transmission 
parameter, it corresponds to the inverse of the neutralizing level. To make that number 
correspond to a titer, we divide the interval [0,1] into 10 equal subintervals that could 
correspond to 10 sequential dilutions of the sera for the neutralization assay. Both waning and 
drifting determine the neutralizing antibody levels according to equation (1.1). We present an 
example of such a construction in the Supplementary Material. 
 
Comparison of model-generated cross-neutralization tables and corresponding tables from 
serology labs can be used to fit the model waning and drifting parameters. Such model fits can 
then be used to project how the immunity levels in the population will affect the spread of new 
virus variants with escape mutations. They can also be used to project how quickly further 
escape mutations might emerge. The validity of such projections requires more models that 
specify a series of specific potential escape mutations. The type of data generated by (Shrock, 
Fujimura et al. 2020) in combination with the type of data generated by (Greaney, Starr et al. 
2020) and (Greaney, Loes et al. 2021) would be especially helpful in this regard. 
 
There are too many epitopes and too wide a variety of immune responses to those epitopes for 
a model to capture all that information extensively enough to validate a vaccine decision. 
Because of this, deciding on the best way to validate a vaccine decision becomes a crucial issue 
that we deal with in the next section.  
 
Using the model and data to make decisions about vaccination: DRIA 
The model we have presented is a first step in a process needed to make valid scientific or 
policy decisions. The Decision Robustness and Identifiability Analysis (DRIA) process we 
propose, as shown in the Figure 7 has a number of distinct steps that will make subsequent 
investigations more productive. 
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Figure 7: The DRIA algorithm steps 
 
The enumerated steps are as follows:  
1) Formulate the decision to be made in terms acceptable to policy makers. This requires a 

dialogue that has yet to take place. One such decision could be “All needed steps should be 
taken now so that SARS-CoV-2 vaccines can be updated in a timely manner to counteract 
escape mutations.”  

2) Construct a simple model like the one in this paper that helps make the chosen decision.  
3) Fit the model to data.  
4) Assess whether a decision is identifiable given the data used. It is identifiable only if all of 

the parameter space that fits the data is consistent with only one decision. This requires 
two tasks to be completed. First, decision boundaries must be mapped out in parameter 
space. Second, the model must be fit to data and the parameter space consistent with the 
data must be mapped out. Some data to be used has been discussed above. This key step is 
addressed by using one of the modern approaches to fitting models to data (Funk and King 
2019).   

5) If the decision is identifiable, proceed with a decision robustness loop. That puts the 
decision on firmer grounds by reducing the possibility that unrealistic model assumptions 
could be determining the decision.  

6) If the decision is not identifiable, proceed with a decision identifiability loop by seeking 
more informative data or better use of available data to improve decision identifiability.   

 
DRIA loops address two major sources of errors when using models to make decisions about 
complex dynamic systems:  

1) Robustness error: Some aspect of model structure that does not correspond to reality 
leads to a wrong decision.  
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2) Identifiability error: The fit of the model to data which leads to a decision is not the only 
fit possible and other fits could lead to a different decision.  

If one is pursuing a decision about a scientific theory formulation, decision robustness and 
identifiability loops should go on infinitely. Policy decisions, in contrast, must be made quickly 
before things get out of control. 
 
Instead of pursuing a model with all the detail that molecular biology can generate, we 
advocate taking all of that molecular biology into account to find abstractions where, step by 
step, one could relax simplifying assumptions to capture ever more of that molecular biology. 
Further thoughts on how to do this are included in the Supplementary Material.  
 
Needed steps for model development 
Improve Immune memory in the model 
As attempts are made to pursue the strategy just outlined, we need to understand better how 
various aspects of our model formulation affect model transmission dynamics. A first issue to 
study is the effect of relaxing the assumption that reinfection wipes out prior immunity and 
leaves only the stamp of the last drifting level of infection - the assumption that our R(j,k) 
depends only the previous infection by strain j. One solution is to make immune memory 
specific for each drift state. It seems likely that if immunity to old strains is retained, the 
extreme swings which are exceptionally strong in Models 1 and 4 should be ameliorated. Later, 
as elaboration of the model in a DRIA context proceeds to specify immunity to specific 
epitopes, immune memory could be formulated as epitope specific. It might even specify 
antigen variation within epitopes. This would enable data being generated about epitope 
specific immunity to answer key questions in vaccinology by fitting our model to such data. 
 
Formulate immunity effects more realistically 
The model we analyzed had no redundant immunity which, even after some waning, still 
provides complete protection. It also had each drift level making a separate contribution to 
immunity which was removed by waning. A formulation with some redundant immunity that 
wanes quickly, then a somewhat slower waning followed by a longer term quite slow waning 
seems reasonable. Hopefully the numerous studies now underway to examine waning 
immunity will provide needed data. Our model will assist in separating out the waning from 
drifting in such data. 
 
Both drifting and waning in our model are formulated as consisting of elements that 
independently add or subtract immunity from the total possible immunity. Once immunity to 
several drift levels comes into play, the necessity to formulate a joint effect for immunity arises. 
It takes extensive data to determine joint effects. Using the DRIA process should keep the joint 
effects that need to be determined to a minimum. 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.21250114doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.21250114
http://creativecommons.org/licenses/by/4.0/


 17 

Mutation effects on contagiousness 
In most of the experimental observations in (Greaney, Starr et al. 2020) escape mutations also 
led to decreased attachment to the ACE2 receptor. A simple solution there is to modify the 
overall effective contact rate parameter by a term specific for each drift level within the Z 
function of waning and drifting. That simple change would also enable modeling of changes like 
the D614G mutation that increases transmissibility without necessarily escaping pre-established 
immunity. 
 
Efforts to fit this model to data, however, should not await all of the increased understanding 
discussed above. Focusing on making decisions regarding vaccine effect surveillance systems 
and vaccine modifications to counter escape mutations should guide which of the more 
theoretical issues are more intensely pursued. 
 
Conclusion 
Recently a group of prominent infection transmission system modelers published an SIR model 
like ours in Science, but just with waning and not drifting (Saad-Roy, Wagner et al. 2020). They 
examined immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 
years. When they took seasonality into account, they found that complex system phenomena 
could accelerate or increase the size of rebound epidemics and alter the effectiveness of 
vaccinations. While they did not model drifting, they acknowledged its importance and the key 
need to establish the impact of viral evolution, coinfection, and other pathogen characteristics 
on COVID-19 infection and disease. The findings in this paper reinforce that call.  
 
The theory, data, and models needed to guide us to effective and long-lasting vaccine control of 
coronaviruses should rapidly go well beyond what is in this paper. The SARS-CoV-2 pandemic 
has led to the flourishing of diverse molecular methods that advance the science of vaccinology. 
These create the potential to specify the epitopes that stimulate immunity, the variation in 
immune responses to each of those epitopes, the classification of immune response 
components by their effectiveness for controlling infections, the prediction of what peptides 
will stimulate B and T cell responses in different people, the prediction of which immune 
responses might stimulate auto-immunity, and the prediction of the effects of mutation in each 
amino acid of a virus. None of these advances by themselves can indicate what escape 
mutations are likely to emerge de novo or how newly detected genetic variations will spread in 
different populations. To achieve these predictive goals, a model that builds on all the epitope 
specific advances listed above, but that does so judiciously in a manner that advances 
identifiability of decisions based on these advances is needed. The needed model is more 
elaborate than the model we have presented. But it can be built on the basis of that model. 
 
APPENDIX: Mathematical formulation details 
 
The total population N is partitioned into never-infected individuals in S, individuals currently 
infected with strain h in Ih, and previously infected individuals in Rjk whose last infection was 
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from strain j and who have immunity level k. Here, drift levels h and j go from 0 to M-1 and the 
immunity level k goes from 0 to P. 
 
Transmission and Waning 
New infections can occur when an infected in state Ih meets a recovered individual in state Rjk 
(our compact notation for R(h,j)) with the probability of transmission increasing: 1) as the 
waning level k increases, and 2) with increases in the distance (in some metric) dist(h,j) 
between the drift level h of the infected and last former infection level j of the susceptible in 
Rjk. For example, there is no transmission when an Ih encounters a Rh0 and the highest 
probability of transmission when an I0 encounters someone in Rhj. To quantify this probability 

of transmission between an Ih and an Rjk, we combine the risk of infection due to waning 𝐵 "!
"
# 

with the risk due to drifting 𝐵 "1 − !
"
# "dist((,*)

,
#. Since there are P+1 waning states and P 

waning steps, Q must be ≥ P. In all four models 1 and 2 we use Q=P+1=7.  Since there are M+1 
drift levels and M drift steps, L must be ≥ M. In models 1 and 2 where there are M = 6 drifting 
steps, we use L=M+1. In Models 3 and 4 where there are only M = 3 drift steps, we use L = 3.5 
so that the ratio is the same between models. The more general values Q and L allow us to 
increase or decrease the relative weight of waning or drifting on transmission probability in our 
model – flexibility that we will use in the SM. The total probability of transmission when an 
infective in Ij contacts a susceptible in Rhk is: 

𝐵 ∙ 𝑍(𝑗, ℎ, 𝑘) = 𝐵 /0
𝑘
𝑄
2 + 01 −

𝑘
𝑄
2 0
dist(ℎ, 𝑗)

𝐿
29												(1)		 

This formulates independent joint effects of waning and drifting on infection risk with drifting 
adding susceptibility beyond the current level of waning. It implies that drifting and waning 
operate on the same scale in terms of ability to increase susceptibility. 
 
Drift Tensors 
For general spaces of drift levels, drift tensors (or matrices) present a formulation to model 
drifting. Suppose that a virus has M+1 drifting levels. One can construct an 
(M+1)×(M+1)×(M+1) “drifting tensor” that captures drifting processes like ours. Consider the 
case where an individual in Ih (infected by a virus at level h) transmits the virus to a susceptible 
in Rj* (most recently infected by the virus at level j). Let h’ denote a level to which the level h 
virus might drift at such a transmission. Let ϕ(h,j,h’) denote the probability that such a drift to 
level h’ occurs. These ϕ(h,j,h’)s are the entries of the drift tensor. See the examples in Tables 
S1-S4. 
 
Vaccination 
In all the models in this paper, we assume that a vaccination program begins after the first 
wave and goes on continuously. Individuals in S or any of the Rjk’s are vaccinated. A fraction v 
of these susceptibles is vaccinated each week; our default 𝑣 is 0.02 which is more than once per 
person per year. Unless otherwise specified, we assume that the vaccine enhances immunity 
only to strain 0, the strain that dominates the first wave. In particular, we assume that 
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vaccinated susceptibles receive the same protection as if they had recovered completely from a 
strain 0 infection, i.e., they move into compartment R00. 
 
The system of differential equations that describes our model for general drift spaces is as 
follows:  
 

 

 
The first equation describes the infection and vaccination of never-infected susceptibles. The 
second set of equations describes the dynamics of those infected with drift level h – the Ih’s, 
who recover at rate g and die at rate m. New Ih’s arise when an Ih infects an S, infects any Rjk 
without drifting, or when an Ii drifts to an Ih upon infecting an Rjk. The probability of the latter 
occurrence is the probability Z(i,j,k) that any given Ii will infect an Rjk times the probability 
𝜙(i,j,h) from the drift tensor that the Ii will drift to an Ih upon such an infection.  
 

 In the third set of equations, Rjk’s increase when an Ij recovers or when an Rjk-1 
wanes. Rjk’s decrease when they wane to an Rjk+1 or upon vaccination. The last 
line in the above equations keeps track of the vaccination process when the newly 
vaccinated enter R00. 
 
We simulated the model delineated in the Supporting Material using the Berkeley 
Madonna Software (Madonna 2021) always checking to see that the shortening 
the step size did not change the results. For the simulations in this report we set 
effective weekly transmission rate parameter B=1 or 1.5 and weekly rate of 

dS
dt

= mN −mS − BS
I j
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i=0

M

∑
p=0

P

∑
⎛

⎝⎜
⎞

⎠⎟
,        j = 0,…,M ;   k = 0,…,P.

Here, for any subset Y of a set X, δY (x) =
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recovery g=0.5, so that the underlying basic reproduction number is R0=2 or 3. 
The birth and death rates were set at 1/(75 × 52). All time scales were set to a 
week. We introduced one infection per 10 million into a continuous population 
denoted as having size 1000. Numerical solution of the model used Runge-Kutta 4 
and the stability of numerical solutions were evaluated across smaller time steps.  
 
A Numerus Model Builder version of Model 2 was built independently of the 
Berkeley Madonna model.  A web version of this Numerus model that includes a 
seasonal driver is under construction and revision. 
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SUPPLEMENTARY MATERIAL 
 

1. Drift Matrices for Models 1, 2, 3, and 4 
2. More figures and tables for model behavior without vaccination 
3. More figures and tables for model behavior with vaccination 
4. Examples of model generated cross neutralization tables 
5. Varying model parameters 
6. DRIA informed vaccine decisions 

 
S1. Drift matrices for our models 
Drift Matrices 
Drift matrices present a formulation to model drifting. Consider the case where an individual in 
Ih (infected by a virus at level h) transmits the virus to a susceptible in Rj* (most recently 
infected by the virus at level j). Let h’ denote a level to which the level h virus might drift at 
such a transmission. Let ϕ(h,j,h’) denote the probability that such a drift to level h’ occurs. 
These ϕ(h,j,h’)s are the entries of the drift matrix. 
 
Table S1 presents the drift matrix for the drift process in Model 1 in which there are 7 drift 
levels. To represent 7×7×7 underlying drift matrix on this two-dimensional page, for every Ih 
and Rj*, we list in row h and column j of Table S1 all the ordered pairs (h’, ϕ(h,j,h’)) for which 
ϕ(h,j,h’)≠0. For example, in the third row, fourth column of Table S1, we see that when an I2 
infects an R3k , there is probability D that the I2 will drift to an I1 and probability 1-D that there 
will be no drift and the newly infected will enter I2.  
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Table S1. Drift Matrix for Model 1, representing the 7×7×7 drift matrix for the model we 
simulate. The entry in row h and column k contains all the ordered pairs (h’, ϕ(h,j,h’)) for which 
ϕ(h,j,h’)≠0. 
 

 
 
 
  

Rj* 0 1 2 3 4 5 6
Ih

0
0, 1-D
1, D 0, 1 0, 1 0, 1 0, 1 0,1 0,1

1
1, 1-D
2, D

0, D/2
1, 1-D
2, D/2

0, D
1, 1-D

0, D
1, 1-D

0, D
1, 1-D

0, D
1, 1-D

0, D
1, 1-D

2
2, 1-D
3, D

2, 1-D
3, D

1, D/2
2, 1-D
3, D/2

1, D
2, 1-D

1, D
2, 1-D

1, D
2, 1-D

1, D
2, 1-D

3
3, 1-D
4, D

3, 1-D
4, D

3, 1-D
4, D

2, D/2
3, 1-D
4, D/2

2, D
3, 1-D

2, D
3, 1-D

2, D
3, 1-D

4
4, 1-D
5, D

4, 1-D
5, D

4, 1-D
5, D

4, 1-D
5, D

3, D/2
4, 1-D
5, D/2

3, D
4, 1-D

3, D
4, 1-D

5
5, 1-D
6, D

5, 1-D
6, D

5, 1-D
6, D

5, 1-D
6, D

5, 1-D
6, D

4, D/2
5, 1-D
6, D/2

4, D
5, 1-D

6 6, 1 6, 1 6, 1 6, 1 6, 1 6, 1
5, D
6, 1-D
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Table S2. Drift Matrix for Model 2 
 
 

  

Rj* 0 1 2 3 4 5 6
Ih

0
0, 1-D
1, D 0, 1 0, 1 0, 1 0, 1 0,1 0,1

1
1, 1-D
2, D

0, D/2
1, 1-D
2, D/2

0, D
1, 1-D 1,1 1,1 1,1 1,1

2 2,1
2, 1-D
3, D

1, D/2
2, 1-D
3, D/2

1, D
2, 1-D 2,1 2,1 2,1

3 3,1 3,1
3, 1-D
4, D

2, D/2
3, 1-D
4, D/2

2, D
3, 1-D 3,1 3,1

4 4,1 4,1 4,1
4, 1-D
5, D

3, D/2
4, 1-D
5, D/2

3, D
4, 1-D 4,1

5 5,1 5,1 5,1 5,1
5, 1-D
6, D

4, D/2
5, 1-D
6, D/2

4, D
5, 1-D

6 6, 1 6, 1 6, 1 6, 1 6, 1 6, 1
5, D
6, 1-D
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Table S3. Drift Matrix for Model 3 
 

 
 
 
 
 
 
 

Rj* 0 1 2 3 4 5 6
Ih

0
6, D/2
0, 1-D
1, D/2

6, D
0, 1-D 0, 1 0, 1 0, 1 0,1

0, 1-D
1, D

1
1, 1-D
2, D

0, D/2
1, 1-D
2, D/2

0, D
1, 1-D 1,1 1,1 1,1 1,1

2 2,1
2, 1-D
3, D

1, D/2
2, 1-D
3, D/2

1, D
2, 1-D 2,1 2,1 2,1

3 3,1 3,1
3, 1-D
4, D

2, D/2
3, 1-D
4, D/2

2, D
3, 1-D 3,1 3,1

4 4,1 4,1 4,1
4, 1-D
5, D

3, D/2
4, 1-D
5, D/2

3, D
4, 1-D 4,1

5 5,1 5,1 5,1 5,1
5, 1-D
6, D

4, D/2
5, 1-D
6, D/2

4, D
5, 1-D

6
5, D/2
6, 1-D 6, 1 6, 1 6, 1 6, 1

6, 1-D
0, D/2

5, D/2
6, 1-D
0, D/2
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Table S4. Drift Matrix for Model 4 
 

 
 
  

model 4 0.0.0 0.0.1 0.1.0 0.1.1 1.0.0 1.0.1 1.1.0 1.1.1
abc abC aBc aBC Abc AbC ABc ABC

j in R(j,*) 0 1 2 3 4 5 6 7
h in I(h)

0.0.0 0

1   p=D/3
2   p=D/3
4   P=D/3
0   p=1-D

2   p=D/2
4   p=D/2
0   p=1-D

1   p=D/2
4   p=D/2
0   p=1-D

4   p=D
0   p=1-D

1   p=D/2
2   p=D/2
0   p=1-D

2   p=D
0   p=1-D

1   p=D
0   p=1-D

0   p=1

0.0.1 1

3   p=D/2
5   p=D/2
1   p=1-D

0   p=D/3
3   p=D/3
5   p=D/3
1   p=1-D

5   p=D
1   p=1-D

0   p=D/2
5   p=D/2
1   p=1-D

3   p=D
1   p=1-D

0   p=D/2
3   p=D/2
1   p=1-D 1   p=1

0   p=D
1   p=1-D

0.1.0 2

3   p=D/2
6   p=D/2
2   p=1-D

6   p=D
2   p=1-D

3   p=D/3
0   p=D/3
6   p=D/3
2   p=1-D

0   p=D/2
6   p=D/2
2   p=1-D

3   p=D
2   p=1-D

2   p=1

3   p=D/2
0   p=D/2
2   p=1-D

0   p=D
2   p=1-D

0.1.1 3

7   p=D
3   p=1-D

7   p=D/2
2   p=D/2
3   p=1-D

7   p=D/2
1   p=D/2
3   p=1-D

7   p=D/3
1   p=D/3
2   p=D/3
3  p=1-D

3   p=1 2   p=D
3  p=1-D

1   p=D
3  p=1-D

1   p=D/2
2   p=D/2
3  p=1-D

1.0.0 4

6   p=D/2
5   p=D/2
4  p=1-D

6   p=D
4   p=1-D 5   p=D

4  p=1-D 4   p=1

0   p=D/3
6   p=D/3
5   p=D/3
4  p=1-D

0   p=D/2
6  p=D/2
4  p=1-D

0   p=D/2
5   p=D/2
4  p=1-D

0   p=D
4  p=1-D

1.0.1 5
7  p=D

5  p=1-D

7   p=D/2
4   p=D/2
5  p=1-D 5  p=1

4  p=D
5  p=1-D

1   p=D/2
7  p=D/2

1  p=D/3
7   p=D/3
4  p=D/3
5  p=1-D

1   p=D
5  p=1-D

1  p=D/2
4  p=D/2
5  p=1-D

1.1.0 6
7  p=D

6  p=1-D 6  p=1

4  p=D/2
7  p=D/2
6  p=1-D

4   p=D
6  p=1-D

2  p=D/2
7  p=D/2
6  p=1-D

2   p=D
6  p=1-D

2  p=D/3
4   p=D/3
7   p=D/3
6  p=1-D

2   p=D/2
4   p=D/2
6  p=1-D

1.1.1 7 7  p=1
6   p=D

7  p=1-D
5   p=D

7  p=1-D

5   p=D/2
6   p=D/2
7  p=1-D

3   p=D 
7 p=1-D

3  p=D/2

6   p=D/2
7  p=1-D

3   p=D/2
5   p=D/2
7  p=1-D

3  p=D/3
5   p=D/3
6  p=D/3
7  p=1-D
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Figure S1. Three Model Configurations 

 
S2. Model Behavior Without Vaccination 
 
Interpreting waning rates 
To provide a feel for the values of the waning parameter W, we present in Row 2 of the Table 
S5 below, the waning rates in terms of the time it takes for half of recently uninfected 
individuals to lose all of their immunity in Model 1. This is the time when half the population is 
at R06, waning level 6. In Row 3, we present the waning rates in terms of the time for the sum of 
all susceptibility across the whole population to reach a level that has half the immunity it had 
right after infection.  
 

Waning Rate 0.001 0.01 0.1 
Half Max 6 109 years 11 years 57 weeks 

Half Popn. Immunity 69.7 years 7 years 36 weeks 
 
Table S5. Interpretations of the waning rates in Model 1. 
 
  

0

1

2

34

5

6
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Behavior of the Four Models for W=0.1 and Drifting Varies 
 

 
 
 
Figure S2. Runs of all 4 models with waning rate fixed at W=0.1 and drifting fraction varying at 
D=0.001, 0.01, 0.1. In each panel the top curve gives the total number of infections. Lower 
graphs track strains 0 through 6. (Compare to Figure 1 in the main text.) 
  

Effect of increasing drifting when waning is 0.1 for models 1-4

Model 1 d=0.01

Model 1 d=0.1

Model 1 d=0.001 Model 2 d=0.001

Model 2 d=0.01

Model 2 d=0.1

Model 4 d=0.001

Model 4 d=0.01

Model 4 d=0.1

For model 4  I[7] is in 
brown and Total is in Gray 

Model 3 d=0.1

Model 3 d=0.01

Model 3 d=0.001

Model 3 d=0.01

Model 3 d=0.1
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Model Behavior for Especially Small Values of D and W 
 
For any W and D in or model, the first epidemic peaks around 32 weeks. When there is no 
waning (W=0), there are additional discrete epidemic spikes at t=4012, 6372, 8066, 9397. A 
similar graph holds when D=0 and W is small (0.00001), with spikes that peak a few weeks 
earlier, at 3990, 6336, 8020, 9342. However, with miniscule positive values of both W and D 
(W=D=0.00001), epidemic spikes (dotted curve) occur as early as t=244, 551, and 1144 weeks. 
It’s the interaction between waning and drifting that matters. 
 
Figure S3 illustrates this phenomenon for Model 1. Figure S4 shows that this story persists for 
all four models. 
 
 
 

 
 
Figure S3. The tiniest bit of waning and drifting greatly changes infection dynamics. If W=0 and 
D=0.00001, the dynamics is still the same as for W=0 and D=0. If W=0.00001 and D=0, the 
dynamics is virtually the same. But, if W and D are both at the micro level 0.00001, the 
dynamics changes dramatically. The second epidemic now peaks 4.3 years after the first, not 
75, and the next epidemic is just 6.2 years later. 

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000

In
fe

ct
io

ns

time in weeks

Infection Prevalence for W=0 or 0.00001 
and D=0 or 0.00001, Model 1

W=0, D=0 or
0.00001

W=0.00001,
D=0

W=0.0001,
D=0.00001

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2021. ; https://doi.org/10.1101/2021.01.19.21250114doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.21250114
http://creativecommons.org/licenses/by/4.0/


 9 

 

 
 
Figure S4. The phenomenon described in Figure S3 holds in all four models. It’s 
the interaction between waning and drifting that matters. 
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S3. Model Behavior With Vaccination 
 

 
 
Figure S5. For each of the 4 models, W =0.1 and D = 0.01 are fixed. The first row presents the 
graphs for the case of no vaccination; the second row the case of partial vaccination (25% of the 
population per year); the third row full vaccination per year. 
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Figure S6. For each of the 4 models, W and D are fixed 0.01. The first row presents the graphs 
for the case of no vaccination; the second row the case of partial vaccination (25% of the 
population per year); the third row full vaccination per year. 
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Figure S7. Simulation of Model 3 with W=0.1 and D=0.01 with three vaccination 
possibilities: none, partial (25% of the population per year, rate = 0.005/week), 
full (100% of the population per year, rate = 0.02/week). 
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Figure S8. Simulation of Model 1 with W=0.001 and D=0.1 and same three 
vaccination possibilities as in Figure S7. Partial vaccination works well; full 
vaccination does not. 
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Figure S9. Simulation of Model 1 with W=0.001 and D=0.1, the model underlying 
the construction of cross-neutralization tables below. Strains 0 and 6 dominate 
alternate waves. Vaccination has positive effects. 
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S4. Sample Computation of Model-Motivated Cross-Neutralization Tables 
 
On this section, we continue our discussion of constructing cross-neutralization 
tables from our models. We work with Model 1, with waning rate W=0.001 and 
drifting fraction D = 0.1. This is the situation pictured in the non-vaccine graphs in 
Figure S9. Note the alternation of strains 0 and 6 over time, until the system 
reaches equilibrium. 
 
Consider the pattern of R(j,k) individuals taken from this model output. Tables S6 
and S7 presents the cross-neutralization table at week 60. The assay viruses were 
the original pandemic I(0) virus and the first step drift virus I(1). At time 60 almost 
all viruses are at I(0) so the I(1) might have been obtained elsewhere and the 
question is whether that virus might have drifted from the original pandemic 
virus. Note that the I(0) titers are all higher than the I(1) titers. This indicates that 
the I(1) virus has drifted. Given the high waning rate, there are highly waned 
immunity levels at the bottom left of the diagonal where there is not enough 
residual immunity to determine if there has been drifting from the I(0) virus.   
 
Table S6. A cross-neutralization table generated from the R(j,k) population at week 60 given a 
waning rate of 0.1 per week for each of the 6 waning steps and a very small drift fraction of 
0.001 per transmission. 
 

 
 
 
 

Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.001;  week = 60 
10          85  
9         171  0.1 
8        200  0.1  
7         0.1   
6      166  0 0   
5     107 0 0.03 0    
4     0 0.01      
3    57 0       
2   41 0        
1            
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 
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Table S7. The cross-neutralization table generated from the R(j,k) population at week 110. 
 

 
 
Next look at the cross-neutralization pattern at 110 weeks in Table S7. At that 
time there are clearly enough individuals whose I(1) neutralization titer is higher 
than their I(0) titer to conclude that drifted viruses have circulated in this 
population. As seen in Figure S9, 110 weeks is well into the second wave of the 
epidemic but before the I(6) viruses surge to co-dominate the epidemic along 
with the I(0) strain. At 110 weeks, however, individuals whose major immunity is 
to an I(0) virus are more than 13 times as numerous as individuals whose major 
immunity is to a drifted virus beyond I(0). Thus this population is set up for rapid 
drifting since all viruses that have a drifting level to the right of I(0) have escape 
mutations to I(0). Consequently these virus levels will have a higher rate of 
infection than I(0) viruses and will experience a strong selective force to drive 
further drifting. The realization of that drifting pressure is evident in Figure 4. That 
high degree of drifting occurred even though the drifting fraction parameter is 
very low. 
 
When vaccination at a rate of 0.02 per week (more than once a year) begins on 
week 52, we see in Figure S9 that for these parameter values there is no 
noticeable infection or virus drifting until about week 120.  At t=120, infections 
with drifted viruses rise to a prevalence of 2/1000. Thereafter the epidemic is 

Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.001;  week = 110 
10          180  
9         150  33 
8        100  26  
7         13   
6      68  1 0.8   
5     55 0.4 5 0.3    
4     0.1 2      
3    52 0.02 0.02      
2   226 0.01        
1  0 0         
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 
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almost as explosive as the first epidemic. That is because 99.9% of the population 
has 6/7 of the susceptibility to the rising I(6) virus as the original population had 
to the I(0) pandemic strain.  
 
If the world experiences escape mutations as intensely as our model, there won’t 
be time to develop vaccines that address these escape mutations. But we suspect 
that when the simplifying assumptions we listed earlier are addressed, the 
intensity of escape mutations will diminish. 
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S5. Changing other parameters 
 
We changed various parameters in our basic model, both to understand their 
roles and to ascertain our model’s robustness. In particular, we varied 1) the 
strain on which the vaccine focused, 2) the overall contagiousness of the infection 
and consequently the underlying R0, 3) the relative effect of drifting on 
contagiousness in expression (1.1), and 4) the relative effect of waning on 
contagiousness in (1.1). 
                            
                               Pandemic strain and the vaccine against it are at drifting level 3 
                      D=0.01 W=0.01                         D=0.01 W=0.1                     D=0.1 W=0.01                  

           

            

           

           
           
Figure S10. Simulation of Model 1 where Strain 3 is the original strain and vaccine focus. In the 
top two rows, R0=2 (as in most of this paper). The vaccine works well when W=0.001, but not so 
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well when W=0.1.  R0 is increased to 3 in the bottom two rows; vaccine is ineffective at all 
values of W. 
 
When the initial strain is I0 and the vaccine focuses on that strain, for low values of W the 
vaccine can do more harm than good. But what if the initial/focal strain is not I0? By the 
symmetry of our model, similar results would hold if we replaced I0 by I6. A more interesting 
case is allowing the initial level to be the internal level I3 with a vaccine moving susceptibles to 
R30. The first two rows in Figure S10 illustrate the positive effects of the vaccine, depending on 
the waning rate W. If W is as high as 0.1, then the vaccine reduces the prevalence of the 
infection after the first wave. This is shown in the second column of Figure S10 for D=0.01, but 
holds more generally. If W is at a lower level of 0.01, then the vaccine can postpone rebound 
epidemics for long times after the first infection (columns 1 and 3, rows 1 and 2 in Figure S10). 
 
However, all the simulations up to this point were run under the assumption that the basic 
reproduction number R0 is 2. If instead R0 = 3, then as the last two rows of Figure S10 illustrate, 
the vaccine has virtually no effect on infection prevalence. 
 
Finally, we examine the robustness of our conclusion to changes in the parameters in the 
expression (1.1) for probability of transmission. Our simulations used Q=P+1 and L=M in (1.1). If 
we increase Q, we are reducing the relative effect that drifting has on transmission; if we 
increase L, we are reducing the relative impact of waning. Figure 7 illustrates the effect of such 
changes on vaccine success. In the first column, we have reduced the transmission potential of 
drifting (TPD) by 80% by changing Q from (P+1) to 5(P+1) in (1.1).  In the second column, we 
have reduced the transmission potential of waning (TPW) by 80% by changing L from M to 5M 
in (1.1). We remain in the situation of the lower half of Figure S10 where R0 = 3 and the initial 
drift level and vaccine target is level 3, the situation in which the vaccine had little effect. Figure 
S11 shows in this case that there is still very little effect when the TPW is dramatically lower. 
However, given an 80% reduction in drifting effect on increasing susceptibility to reinfection, 
the vaccine can have a noticeable effect on the epidemic after the first wave. 
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Figure S11. Simulation of Model 1 with D=0.01, W=0.1, and R0=3, as in the last two rows of the 
middle column in Figure S10. In the first column, the effect of drifting on transmission function 
Z is reduced 80%: as a result, prevalence is reduced, especially after vaccination. In the second 
column, the effect of waning on transmission Z is reduced 80%: no effect before or after 
vaccination. 
 
In an epidemic that includes waning immunity and antigenic drifting to escape such immunity, 
we need a systems approach to understand the dynamics of the infection in order to gauge the 
possible effects of a vaccine. 
 
S6. Paths to epitope data informed vaccine decisions using DRIA 
 
A wide variety of scientists are exploring epitope contributions to immunity. The 
determination of epitope location is informed by  

• model based and artificial intelligence enhanced protein folding analyses,  
• linear epitope mapping using CRISPR enhanced construction of epitopes 

and epitope variants,  
• serological assays using epitope specific antigens,  
• in silico analyses of proteins to identify sites where B and T cell antigens 

might be processed by different host genetic states,  
• molecular epidemiology based serological analyses of immune responses, 
• evolutionary biology models and analyses, and epidemiological model 

fitting.  
The scientists using these approaches have a wide variety of philosophies of 
science guiding their search for new knowledge. Yet their work must be 
integrated if epitope specified models of host immunity and viral evolution are to 
be successful. This will not be an easy task. 
 
Scientists in these specialties naturally want to pour the knowledge and methods 
available in their specialties into uncovering new knowledge about SARS-CoV-2. 
Epidemiologists who want to guide public health decisions need a context for 
integrating all the vast new knowledge that is being generated. A model fitted to 
data provides a particular context. (Davies, Barnard et al. 2021) have fitted a 
model to SARS-CoV-2 data that is strain specific and could inform Public Health 
decisions regarding the new B.1.1.7 variant. They have added much realistic 
complexity to their model that is relevant to public health decisions. (Volz, Mishra 
et al. 2020) have fit epidemiological models to the new B.1.1.7 using an approach 
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that uses more extensive location-specific model fits to make inferences about 
virus variants on transmission dynamics. That approach seems to use the data 
more fully. The estimates of increased transmissibility of B.1.1.7 from the two 
groups are about the same.  
 
How these analyses can inform decisions about changes in vaccine composition to 
counteract escape mutations is not clear. We believe that a DRIA approach can 
enable models to use epitope specific immunological data like that generated by 
(Greaney, Starr et al. 2020, Greaney, Loes et al. 2021) and (Shrock, Fujimura et al. 
2020). Cross-neutralization assays could play a key role.  
 
One way to start is to fit cross-neutralization assays to the extensive populations 
that are under study in vaccine trials. In addition, extensive populations in 
serological surveys could provide key data. The unit of analysis in such studies is 
the individual. At this level the joint effects of different antibodies to different 
epitopes could be described. Such models could then be incorporated directly 
into the type of models we have presented here. There then could be a second 
stage of fitting performed in the DRIA context to inform decisions about epitope 
composition of vaccines. 
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