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Abstract

Endolithic microbial communities survive nutrient and energy deficient conditions while con-

tributing to the weathering of their mineral substrate. This study examined the mineral com-

position and microbial communities of fully serpentinized weathered rock from 0.1 to 6.5 m

depth at a site within the Khalilovsky massif, Orenburg Region, Southern Ural Mountains,

Russia. The mineral composition includes a major content of serpentinite family (mostly con-

sisting of lizardite and chrysotile), magnesium hydrocarbonates (hydromagnesite with lesser

amounts of hydrotalcite and pyroaurite) concentrated in the upper layers, and clay minerals.

We found that the deep-seated weathered serpentinites are chrysotile-type minerals, while

the middle and surface serpentinites mostly consist of lizardite and chrysotile types. Micro-

bial community analysis, based on 16S rRNA gene sequencing, showed a similar diversity

of phyla throughout the depth profile. The dominant bacterial phyla were the Actinobacteria

(of which unclassified genera in the orders Acidimicrobiales and Actinomycetales were most

numerous), Chloroflexi (dominated by an uncultured P2-11E order) and the Proteobacteria

(predominantly class Betaproteobacteria). Densities of several groups of bacteria were neg-

atively correlated with depth. Occurrence of the orders Actinomycetales, Gaiellales, Soliru-

brobacterales, Rhizobiales and Burkholderiales were positively correlated with depth. Our

findings show that endolithic microbial communities of the Khalilovsky massif have similar

diversity to those of serpentine soils and rocks, but are substantially different from those of

the aqueous environments of actively serpentinizing systems.

Introduction

Microbial communities colonizing mineral surfaces are of significant evolutionary and eco-

logical interest. Mineral surfaces are extreme econiches, having microbiota affected by a large
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number of exogenous factors such as temperature, light, salinity, high pH, deficiency and

unavailability of nutrients [1]. The mineral surface microtopography, structure, chemistry and

reactivity are selective factors for microbial colonization, formation of biofilms and ultimately

for the whole microbial community structure. Mineral-associated microorganisms often con-

tribute to geochemical processes including mineral formation, dissolution or deterioration

[2, 3].

One enigmatic mineral considered as a potential locus for the origin of life on Earth is ser-

pentinite [4]. Serpentinite comprising of the antigorite, lizardite, and chrysotile group minerals

is an ultramafic rock mineral that occurs in all ancient orogenic belts [5] within the oceanic

lithosphere at surfaces and faults[6, 7]. Formation of serpentinite occurs at relatively low tem-

peratures through hydration of olivine-rich ultramafic rocks to serpentine, hydrogen, meth-

ane, low-molecular organic compounds [8] and, under conditions of sufficient SiO2,

magnetite (Fe3O4) [9].

In natural environments, terrestrial serpentinites (Mg,Fe,Ni,Mn,Zn)2-3(Si,Al,Fe)2O5(OH)4

undergo a weathering process accompanied by consistent physical and chemical changes of

minerals through dissolution, decomposition and carbonation. Hydrolysis of serpentinites is

accompanied by release of Mg2+, HCO3 –and SiO2, which is followed by formation of magne-

sium hydrocarbonates and amorphous silica oxide [10]. Serpentinite weathering is associated

with increasing of alkalinity of deep-seated minerals within the geologic formation [11, 12].

We hypothesized that such changes in serpentine rocks impact the resident microbiota, which

in turn could have a role in the development of serpentinite-derived infertile soils.

The Khalilovsky massif is located near the town of Novorudnyy, Gaysky District, Orenburg

Region, Southern Ural Mountains, Russia (S1A and S1B Fig). The approximately 260 km2

massif was deposited in the middle Paleozoic era bordered by the Uraltausky anticlinorium

and greenstone synclinorium [13]. The main rock types within the massif are serpentinized

lizardite and chrysotile (95–98%) with lesser amounts of clay minerals, chlorite, dolomite, cal-

cite and magnesite[13]. The serpentine associated with the ophiolite complexes in this region

are derived from harzburgite and dunite, reflecting a more melt depleted oceanic mantle[14].

Presently, the massif is characterized by rolling hills covered in some places by 1–5 cm layer of

soil with grass and streams running through the deposit (S1C Fig). One of the most significant

waterways of the region is the Guberlya River. The Southern Ural Mountains have an arid con-

tinental climate. The average temperature for the coldest (January) and the warmest (July)

months of the year is –20˚C and +40˚C, respectively. The deposit receives an average of 181

mm of precipitation per year with a mean annual evaporation rate of 988 mm.

The purposes of this study were to (1) characterize the microbial community diversity of

the fully serpentinized weathered Khalilovsky massif subsurface samples and compare them

with those reported for other serpentinite-hosted systems, and (2) to perform geochemical and

mineralogical analyses and determine the role, if any, of the resident microbial community in

the weathering process. The results presented here show that bacterial diversity, as indicated

by 16S rRNA gene sequence analysis, did not vary significantly at the phyla level with depth

within our sampling site, although differences in the dominant microbial orders and genera

were found. We also demonstrate that the microbial community does not appear to substan-

tially alter its serpentine mineral substrate.

Materials and methods

Site characteristics and sample collection

Using a dry drilling rig (URB-2A2, Spezburmash, Russia), a single 112 mm-diameter, 6.85 m

deep core was taken from an exposed section of weathered serpentine rock, without soil
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overlay, located in the central part of the Khalilovsky massif (Latitude: N 51˚30’ Longitude: E

58˚ 07’) in August 2017. Two duplicate samples (55.0–60.0 g) taken from opposite sides of the

core were collected at the depths specified in Table 1 into sterile plastic boxes. Each sample

was crushed under sterile laboratory conditions using a mortar and pestle. The mineral parti-

cle size for analysis was approximately 0.01 mm. The pH of water extracted samples ranged

between pH 8.98 to pH 9.06. For the collection of serpentine from the Khalilovky massif a spe-

cific permission is not required. The Khalilovsky massif is not related to a national park or

other protected areas of land of the Russian Federation.

X-ray diffraction (XRD)

Analyses of the mineralogical samples were performed on powdered samples using a D8

Advance XRD2 Bruker diffractometer, with CuK-alpha radiation, at 40 kV, 30 mA. X-ray dif-

fractograms were collected within the 2θ range (5–40˚) with 0.05/1 sec step. Mineralogical

composition was determined with advance diffract plus evaluation software (DIFFRACplus-

TOPAS Software package).

Scanning electron microscopy (SEM)

The mineralogical samples were coated with a conductive layer of Au/Pd alloy at an 80/20

ratio using a cathode sputtering method in the Quorum Q150T ES vacuum chamber. The

thickness of the conductive layer was 15 nm. Measurements were conducted using a high-reso-

lution field-emission scanning electron microscope Merlin (Carl Zeiss). Imaging of the surface

morphology was carried out with 5 kV acceleration voltage of the primary electrons and 300

pA probe current for minimal impact on the object of research.

Elemental analysis was conducted using an energy dispersive spectrometer (EDS) AZtec

X-Max (resolution 127 eV) under 20 kV acceleration voltages of the electron probe and 10

mm working distance in order to avoid minimal errors in the microprobe analysis. The prob-

ing depth was approximately 1 μm.

Transmission electron microscopy (TEM)

Analysis of samples was carried out using a Hitachi HT7700 Exalens transmission electron

microscope. To prepare the sample 5 μl of the mineralogical suspension was placed on a For-

mvar/carbon 3 mm coated copper grid and dried at room temperature. After drying, the grid

Table 1. Sample X-Ray diffraction mineral identification and percent composition in the serpentine rock core taken at the Khalilovsky massifa.

Sample depth (m) Serpentinite (%) Hydrotalcite-type and pyroaurite group minerals (%) Hydromagnesite (%) Clay minerals (%) Calcite (%)

0.1 72.3 ±2.5 10.8 ±1 15.1 ±1 1.8 ±0.5 -

0.85 82.1 ±2.0 6.7 ±0.7 9.3 ±0.8 2.0 ±0.5 -

1.6 79.0 ±2.1 9.6 ±0.8 9.2 ±0.8 2.2 ±0.5 -

2.35 72.1 ±2.5 12.2 ±1 15.5 ±1 1.2 ±0.5 -

3.1 84.0 ±1.6 7.8 ±0.8 8.2 ±0.8 - -

3.85 81.4 ±2.1 11.3 ±1 4.9 ±0.6 2.5 ±0.5 -

4.6 81.6 ±2.2 9.8±1 7.3 ±0.7 1.3 ±0.5 -

5.35 87.5 ±2.0 6.6 ±0.7 3.7 ±0.6 1.5 ±0.5 0.8±0.2

6.1 89.0 ±1.7 5.6 ±0.6 4.0 ±0.6 1.4 ±0.5 -

6.85 93.5 ±1.1 4.1 ±0.6 - 2.3 ±0.5 -

aValues are the mean ± range of duplicate samples of the core taken at a given depth.

https://doi.org/10.1371/journal.pone.0225929.t001
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was transferred into the transmission electron microscope. Analysis was conducted at an accel-

erating voltage of 100kV in TEM mode.

DNA extraction, 16S rRNA gene amplification and sequencing

To extract DNA 10 g of crushed rock from each depth sample was submersed in 5 ˗ 10 mL

DNAse-RNase-free water for one week at room temperature. The mineral suspension was sub-

jected to three liquid N2 freeze/thaw cycles[15], lysozyme/Proteinase K treatment, followed by

a phenol-chloroform extraction step. DNA washing and precipitation was performed using

80% cold ethanol. DNA was resuspended in the DNAse-RNase-free water[15]. The quantity of

the extracted DNA was measured using a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA).

Bacterial 16S rRNA gene amplicons (*500-bp fragments) were produced using the 337F

(5’-CCTACGGGNGGCWGCAG-3’) and 805R (5’-GACTACHVGGGTATCTAATCC-3’)

primers[16]. Archaeal 16S rRNA gene fragments were amplified with the forward primer 344F

(5'-ACGGGGYGCAGCAGGCGCGA-3’) and the reverse primer 806R (5'- GGACTACVSG
GGTATCTAAT-3’)[17]. Reaction products were purified using Ampure1 XP paramagnetic

beads (Beckman Coulter Inc., USA). The purified PCR products were amplified with Illumina

primers containing the unique barcodes. The pooled multiplex reactions were loaded on an

Illumina MiSeq instrument with the 2x300 v3 reagent mix.

Analysis of the specific functional genes in the serpentinite-associated

microbial communities

The mcrA gene encoding methyl-coenzyme M reductase (MCR) and hydA gene encoding

hydrogenase were used to investigate the potential methanogenic activity and hydrogen oxida-

tion in the mineralogical samples using specific primers mcrA-F (5’-GGTGGTGTMGGATTCA
CACARTAYGCWACAGC-3’) and mcrA-R (5’-TTCATTGCRTAGTTWGGRTAGTT-3’), and

FeFe27F (5’-GCHGAYMTBACHATWATGGARGA-3’) and FeFe27R (5’-GCNGCYTCCATDA
CDCCDCCNGT-3’), respectively[18, 19].

Bioinformatics analysis

Sequencing of 16S rRNA gene V3-V4 variable regions was performed on the Illumina MiSeq

platform in 2x300bp mode. Reads were further processed and analyzed using the QIIME soft-

ware, version 1.9.1 (http://qiime.org/) [20] according to protocols. Before filtering, there were

66287 read pairs per sample on average. Paired-end reads were initially merged and then pro-

cessed to remove low quality and chimeric sequence data. The rarefaction step was performed

to reduce sequencing depth heterogeneity between samples. After quality filtering, chimera fil-

tering and rarefying, we analyzed 24442 joined read pairs. Sequences were clustered into oper-

ational taxonomic units (OTU) based on the 97% identity threshold (open reference-based

OTU picking strategy), the latest SILVA database v.132, 13-12-17 [21] was used. Each OTU

was required to contain at least 2 sequences for inclusion in the final OTU list. The number of

observed OTUs varied from 1702 to 3578. To characterize the richness and evenness of the

bacterial community, alpha diversity indices were calculated using Chao1, Shannon and Simp-

son metrics (S2 Table). Similarities between microbial compositions of samples were evaluated

using the beta diversity characteristics, which were estimated using weighted and unweighted

Unifrac measures with further non-metric multidimensional scaling (nMDS) visualization.

Raw reads are deposited in the ENA under Project ID PRJEB29885 in the fastq format

(https://www.ebi.ac.uk/ena/data/view/PRJEB29885).
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Results and discussion

Mineral morphology and geochemical composition

Rocks containing the serpentine group of minerals are present in all orogenic belts worldwide,

typically forming large massifs along continental margins and mélange, faults and shear zones.

The geochemical, mineralogical and microbiological features of serpentinites attract much

interest among researchers in the field of geology, mineralogy, geochemistry and microbiol-

ogy. The process of weathering results in serpentinites of different mineral maturities. Mineral

rocks of the Khalilovsky massif are represented by massive and coarsely fractured lizardite and

chrysotile with small amounts of bastite [13]. We observed two distinct serpentine zones of the

massif: (1) the soil-grass serpentine ecosystem; and (2) the solid rocky nutrient poor serpentine

ecosystem from which we obtained our core (S1 Fig).

We collected duplicate samples at given depths from 0.1 m to 6.85 m from a single core

drilled at a site presently undergoing erosion and weathering (Table 1). This weathered serpen-

tinite has a distinct greenish grey color and fine to medium-grained texture, which is distinct

from rocky serpentinites that are characterized by a dark greenish grey color and dense homog-

enization (S2 Fig). The mineralogical composition of the rock core samples was evaluated by X-

ray diffraction and found to be represented by serpentinite minerals and hydromagnesite, with

a minority of hydrotalcite, pyroaurite, clay minerals and calcite (Table 1, S3 Fig). Magnesium

hydrocarbonate minerals (hydrotalcite-type and pyroaurite group minerals and hydromagne-

site) are known to accrete in veins and fissures formed through surface weathering[22]. Consis-

tent with this, the content of these minerals decreased in depth from 0.1 m to 6.85 m and,

conversely, the proportion of serpentinite group minerals increased in the deep-seated layers.

Calcium carbonates (e.g. calcite) were negligible or completely absent throughout.

Serpentine rocks include a range of major minerals, such as lizardite, chrysotile, antigorite

and other minorities characterized by different texture and structure[12]. Scanning electron

microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) was used to characterize

the surface morphology and determine the chemical phases of serpentinites collected from dif-

ferent depths. A plate-like morphology, characteristic of lizardite[23], with a minor inclusion

of cylindrical fibers was observed in serpentinite collected from 0.1 m depth (Fig 1A). Plates

and unoriented fibers, often arranged in parallel strands, were characteristic of the serpentinite

collected from the 3.1 m depth (Fig 1B). The deep-seated serpentinites (6.85 m in depth) dis-

played well oriented, needle-shaped hollow fibers, or nanotubes, that are characteristic of

chrysotile [23] (Fig 1C). The sizes of the particles observed in this study ranged from less than

1 μm to greater than 200 μm. As determined by EDS, oxygen, magnesium, silicon and iron

were the predominant elements in the mineralogical samples (S4 Fig). Additionally, the transi-

tion metals nickel and chromium were detected in the upper layers of the serpentine deposit,

only nickel was found in the middle layers, but both elements were absent in the deep-seated

serpentinites (S4 Fig). Transmission electron microscopy (TEM) was applied to investigate the

crystal structure of serpentinites. The irregular shaped plates and hollow cylinders with differ-

ent thicknesses were typical for all serpentinites (S5 Fig).

Microbial community composition

We characterized the microbial diversity of the weathered serpentine minerals sampled from

the core obtained from a solid rocky zone of the Khalilovsky massif. The composition of

microbial communities was similar throughout the 0.1 m to 6.85 m depth profile at the phy-

lum/class level. Among the 31 different phyla found, Actinobacteria, Proteobacteria and Chlor-
oflexi were the most abundant phyla in all of the mineralogical samples (Fig 2).
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The dominant phylum Actinobacteria throughout the core depths was represented primar-

ily by an unclassified genus within the order Acidimicrobiales, comprising 11.0% to 38.0% of

all OTU sequences, and members of the order Actinomycetales (Nocardioidaceae family), com-

prising 9.9% to 21.5% of OTUs (Fig 3, S3 Table). The phenotypic basis for the success of these

particular groups within this habitat remains to be determined. The phylum Proteobacteria
was represented mainly by the classes Betaproteobacteria (Comamonadaceae, Oxalobacteraceae
and Delftia), Gammaproteobacteria (Enterobacteriaceae family, Serratia genus), and Deltapro-
teobacteria (Myxococcales order, Haliangiaceae family). Members of the genus Delftia are

known to be distributed in the microbial communities of a deep subsurface thermal aquifer

system (Siberia, Russia), a deep subsurface crystalline rock the Pyhäsalmi mine (Finland), and

ornamental limestone from buildings [33–35]. Among the phylum Chloroflexi there was an

abundance of an uncultured P2-11E order of bacteria.

Microbial community composition correlating with depth

Non-metric Bray-Curtis dissimilarity analysis (at a 97% similarity level) showed that microbial

communities of the serpentine core samples collected from the different depths were closely

related (Fig 4). Similar results were obtained using PCoA analysis, which explained 37.16% of

the observed variation (Fig 4B).

Mineral porosity and water circulation are expected to be important factors influencing the

microbial community of the Khalilovsky massif. Weathering-induced cracking at shallower

depths as well as the fibrous tubular-type serpentinite nanostructures contribute to rock poros-

ity [12] that should in turn positively impact serpentine-associated microflora since microbial

colonization can only occur within fissures of rocks. Statistically significant correlations of the

OTU abundances from the rock core relative to their distribution according to depth are pre-

sented in Table S4 Table. The orders Acidimicrobiales, Gaiellales, Solirubrobacterales, Gemma-
timonadetes, Rhizobiales, Burkholderiales, P2-11E and unidentified members related to the

GAL15 phylum positively correlated with depth. Additionally, several orders show a negative

correlation with depth. Precipitation of hydromagnesite from magnesium-rich alkaline water

percolating through fissures can occur without microbial mediation [36]but extracellular poly-

meric substances of adherent biofilms can accelerate such precipitation[37]. Whether the

microbes residing in the serpentine rock fissures have contributed to the hydromagnesite

deposition cannot by ascertained from our results.

Comparison to other serpentine-related microbial communities

To date, investigations have largely focused on microbial communities hosted in aqueous

actively serpentinizing systems, enriched hydrogen and methane[24, 26–32]. However, rela-

tively limited publications have reported on microbial communities associated with fully ser-

pentinized rocks. Our results indicate that the microbial community of the mature serpentine

Khalilovsky massif are more similar to serpentine mineral surface-associated (Fig 2A) than

aqueous phase-associated microbial communities (Fig 2B & 2C).

These findings are consistent with those of Daae et al. [25]who found the groundwater

microbial communities to be substantially different from the fracture-coating microbial com-

munities within partially serpentinized dunite from the Leka ophiolite, Norway (Fig 2A & 2B).

The Actinobacteria phylum, similar to our findings, predominated in the mineral fractions

Fig 1. SEM of Khalilovsky massif serpentine rock core samples collected at (A) 0.1 m, (B) 3.1 m and (C) 6.85 m in

depth.

https://doi.org/10.1371/journal.pone.0225929.g001
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Fig 2. Comparative analysis of mineral- and aqueous-associated serpentine-hosted bacterial communities according to Phylum. (A) Community profiles

of the Khalilovsky massif compared to those associated with serpentine minerals in other terrestrial environments. (B, C) Profiles of selected aqueous-

associated planktonic communities from (B) terrestrial environments and (C) seawater serpentine- and ultramafic-hosted systems [24–32].

https://doi.org/10.1371/journal.pone.0225929.g002
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Fig 3. A heat map of the bacterial genera found in serpentine rock core samples collected at different depths. Colors indicate percent relative abundance of 74 genus

level taxonomic groupings (i.e. 97% OTU sequence identity) that occur within the major phyla (each representing�0.5% of all OTUs) detected at different depths.

Names of the most highly represented genera are given.

https://doi.org/10.1371/journal.pone.0225929.g003

Microbial diversity of weathered serpentine of the Khalilovsky massif

PLOS ONE | https://doi.org/10.1371/journal.pone.0225929 December 12, 2019 9 / 14

https://doi.org/10.1371/journal.pone.0225929.g003
https://doi.org/10.1371/journal.pone.0225929


taken from 15 and 160 cm in depth, whereas in the fluid passing through minerals were domi-

nated by members of Betaproteobacteria.

Some progress has been made in characterizing microbial communities associated with ser-

pentinite-derived soils. A study of bacterial community structure by 16S rRNA gene clone

library analysis found the dominant bacterial phyla in serpentine soil to be Actinobacteria,

Acidobacteria, Alphaproteobacteria, Verrucomicrobia, Green-nonsulfur-related bacteria and

Gemmatimonadetes[28], whose members are known to be well adapted to low moisture soils.

We found Gemmatimonadetes consistently at frequencies ranging up to 6% in all of our min-

eral samples from the Khalilovsky massif (S3 Table).

Endolithic microbial communities of the heavily serpentinized open-pit chrysotile asbestos

Jeffrey mine (Québec, Canada) were dominated by Proteobacteria, Cyanobacteria and Plancto-
mycetes[29].

Analysis of ultramafic serpentine soils including harsh and lush serpentines of the

McLaughlin Reserve in the Northern Coast Ranges of California revealed that Proteobacteria
and Actinobacteria were two abundant phyla in the microbial communities of minerals taken

from a depth of 7.5 cm[26]. Among Actinobacteria, the orders Acidimicrobiales and Gaiellales
were relatively abundant.

Firmicutes, a ubiquitous bacterial phylum inhabiting a wide range of ecosystems, is more

highly represented in actively serpentinizing systems. Within the deep-seated weathered ser-

pentinite of the arid Khalilovsky massif, the capacity to survive desiccation conferred by endo-

spores may be responsible for the status of Bacillus as the dominant genus for this phylum (S3

Table). Acceleration of serpentinite dissolution by a Bacillus species under laboratory condi-

tions was postulated to occur through the action of secreted organic acids and ligands[38].

Fig 4. Clustering analyses performed based on Bray-Curtis dissimilarity distances of prokaryotic OTU sequence abundance. (A) A hierarchical cluster

tree; and (B) principal coordinate analysis (PCoA) scatter plot. PCoA1 and PCoA2 explained 25.7% and 11.46% of the observed variation. Black and grey-

colored circles indicate the depth of the microbial communities.

https://doi.org/10.1371/journal.pone.0225929.g004
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Thus, Bacillus as well as other bacteria that secrete such compounds could have a role in initi-

ating and widening fissures within serpentine rock, leading to soil formation.

Similar to our findings at the Khalilovsky massif, Archaea were not found on the rocks

from the Jeffery mine [29] and are proportionally less represented on mineral surface commu-

nities within other serpentinized systems [25, 26] relative to aqueous-associated communities

of actively serpentinizing fields[8, 24, 31, 32, 39–41]. Consistent with the lack of Archaea, we

did not detect the methyl coenzyme-M reductase (mcrA) gene, which is a common indicator

of methane production within actively serpentinizing environments [8]. Similarly, we were

not able to amplify from our samples the hydA gene, a marker of bacterial hydrogen metabo-

lism in actively serpentinizing environments[8, 27, 42]. Furthermore, the H2-oxidizing genus

Hydrogenophaga did not exceed 0.26% of the sequences in any given core sample (S3 Table),

whereas they reached up to 58% of the total bacterial community in samples collected from a

chimney of the PHF[27].

Conclusions

The results of this study demonstrate the texture, microstructure, geochemical composition

and microbial diversity within nutrient-poor, fully serpentinized weathered rock found at the

Khalilovsky massif, Russia. SEM analysis revealed plate and fibrous tubular structures charac-

teristic of lizardite and chrysotile, respectively, of the serpentinites collected from different

depths. Geochemical analysis showed increasing serpentinite-type mineral content and

decreasing content of magnesium hydrocarbonates with depth, indicative of weathering-

induced fissuring closer to the surface. 16S rRNA phylogenetic analysis of the endolithic

microbial communities demonstrated a similar distribution of phyla throughout the 0.1 m to

6.85 m sampled depth, with Actinobacteria, and Proteobacteria being the predominant phyla

followed by Chloroflexi and Acidobacteria. The basis for the dominance among the Actinobac-
teria of a single unclassified genus of Acidimicrobiales deserves further study. The Khalilovsky

massif rock core microbial communities were substantially different from aqueous serpentine

environments and relatively close to those of fully serpentinized rock surfaces and soils, nota-

bly in regard to the predominance of Actinobactera.
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