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Abstract

Genome-wide association studies have transformed psychiatric genetics and provided novel 

insights into the genetic etiology of psychiatric disorders. Two major discoveries have emerged; 

the disorders are polygenic, with a large number of common variants each with a small effect 

and many genetic variants influence more than one phenotype, suggesting shared genetic etiology. 

These concepts have the potential to revolutionize the current classification system with diagnostic 

categories and facilitate development of better treatments. However, to reach clinical impact, we 

need larger samples and better analytical tools, as most polygenic factors remain undetected. 

We here present statistical approaches designed to improve the yield of existing genome-wide 

association studies for polygenic phenotypes. We review how these tools have informed the 

current knowledge on the genetic architecture of psychiatric disorders, focusing on schizophrenia, 

bipolar disorder and major depression, and overlap with psychological and cognitive traits. We 

discuss application of statistical tools for stratification and prediction.
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Introduction

Psychiatric disorders are recognized as leading causes of morbidity and are among the most 

costly disorders to affect humans (GBD 2015 DALYs and HALE Collaborators, 2016). 

At the individual level, suffering is large, and the disorders are associated with impaired 

quality of life and low socioeconomic status. Identifying the underlying pathophysiology 

for these disorders, as well as resilience factors, is imperative and can lead to major health 

benefits through better treatment regimens. Further, development of risk prediction in mental 

disorders could inform prevention strategies and enrich clinical trials. Although there has 

been a remarkable improvement in life expectancy for the general population the last 

decades, there is a marked social inequality in the field of mental disorders (Laursen et 
al., 2011). Patients and their families display significantly higher mortality than the general 

population (Eaton et al., 2008; Ringen et al., 2014), both from natural causes (somatic 

conditions where cardiovascular disease is most important) and unnatural causes (suicide, 

homicide or accidents). Register-based studies demonstrate that patients with mental illness 

have 15–20 years shorter life expectancy than the general population (Wahlbeck et al., 
2011). To reduce this gap, knowledge of underlying disease causes and effective prevention 

strategies are urgently required (Insel, 2010).

Psychiatric disorders are regarded as complex disorders with heritability estimates between 

40% and 80% (Lichtenstein et al., 2009). Although there is clear evidence for rare 

sequence variants and copy-number variants with large effects associated with schizophrenia 

(Marshall et al., 2017) and attention deficit hyperactivity disorder (Williams et al., 2010), 

large-scale genome-wide association studies (GWAS) conducted during the last decade 

have shown that a moderate fraction of the heritability of most psychiatric disorders 

is accounted for by numerous common genetic variants with small ‘polygenic’effects 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Demontis 

et al., 2019; Grove et al., 2019; Howard et al., 2019; Stahl et al., 2019). Due to the 

revolution in genetics technology and the assembly of large genotyped samples, many 

genetic variants have successfully been associated with severe psychiatric disorders in recent 

years. Today, updates from the Psychiatric Genomics Consortium (PGC) include discoveries 

of 30 genomic loci for bipolar disorder (Stahl et al., 2019), 102 for major depression 

(Howard et al., 2019), five for autism spectrum disorder (Grove et al., 2019), 12 for ADHD 

(Demontis et al., 2019) and approximately 250 for schizophrenia (Pardiñas et al., 2018). One 

characteristic finding is the large degree of genetic overlap between mental disorders (Lee 

et al., 2013; Anttila et al., 2018), and between mental disorders and related psychosocial 

traits (Lo et al., 2017; Day et al., 2018; Savage et al., 2018; Jansen et al., 2019), which 

may indicate shared molecular genetic mechanisms and possibly overlapping etiology. Yet, 

despite the assembly of very large GWAS samples, often involving more than 100 000 

participants, most of the polygenic architectures underlying psychiatric disorders still remain 

undetected (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; 

Demontis et al., 2019; Grove et al., 2019; Howard et al., 2019; Stahl et al., 2019). This 

can be attributed to the polygenic nature of psychiatric disorders that poses considerable 

challenges on analytical methods and GWAS sample size (Sullivan et al., 2018). In short, 

a GWAS allows for genome-wide analysis of millions of common genetic variants [tag 
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single-nucleotide polymorphisms (SNPs)], estimating their effects on a given phenotype. 

Given the large numbers of SNPs tested, a GWAS must correct for multiple testing using 

a stringent threshold of genome-wide significance (typically, P < 5 × 10−8) to avoid 

false-positives. Thus, only a subset of all involved genetic variants is revealed, with a 

large fraction of the polygenic architecture remaining to be uncovered (i.e. ‘the missing 

heritability’) (Manolio et al., 2009). This has motivated efforts to develop ‘Big Data’ 

analytical approaches that improve the yield of existing GWAS. In particular, mathematical 

models building on empirical Bayesian statistical approaches have emerged, which are 

specifically designed to handle polygenic scenarios, resulting in substantially improved 

power for genetic discovery (Andreassen et al., 2013b; Schork et al., 2016). Here we review 

some of the recent discoveries of polygenic architecture in major psychiatric disorders 

(schizophrenia, bipolar disorder, major depression) enabled by novel statistical tools, which 

has revealed genetic overlap across psychiatric disorders, psychosocial traits and several 

somatic traits and diseases. Moreover, we discuss how these tools may improve genetic 

prediction and estimate discovery trajectories of future GWAS for psychiatric disorders. For 

example, whereas the PGC now aims for 1 million genotyped participants for each mental 

disorder (Sullivan et al., 2018), recent causal mixture modeling analysis (Frei et al., 2019) 

estimated that this will explain approximately 60% of the SNP-heritability in schizophrenia 

and bipolar disorder, but only approximately 10% in major depression (Fig. 1).

Genetic overlap between psychiatric disorders and traits

The increasing wealth of GWAS data now available on human traits and disorders have 

shown that a large number of genetic variants influence more than one phenotype (Visscher 

et al., 2017), that is, they exhibit allelic pleiotropy. This has profound implications for 

understanding the underlying biology of complex phenotypes. The standard approach to 

evaluate the polygenic relationship between two phenotypes today is to measure genetic 

correlation using tools such as polygenic risk scores (Purcell et al., 2009) and linkage 

disequilibrium (LD) score regression (Bulik-Sullivan et al., 2015). These tools have 

provided important insights into the shared genetic etiology between human phenotypes, 

including mental disorders (Visscher et al., 2017; Bipolar Disorder and Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2018; Anttila et al., 2018). 

However, the methods do not provide a complete picture of the complex genetic relationship 

between polygenic phenotypes. Similar to twin studies, genetic correlations are unable to 

reveal the individual genetic variants shared between the phenotypes, which is needed to 

identify the molecular genetic mechanisms involved. Further, the tools estimating genetic 

correlation can only detect genetic overlap when the effect directions are consistent (Purcell 

et al., 2009; Bulik-Sullivan et al., 2015). This is a clear limitation, as increasing evidence 

shows that overlapping genetic variants between several human phenotypes involve a mixed 

pattern of allelic effect directions (Baurecht et al., 2015b; Lee et al., 2016; Schmitt et 
al., 2016; Bansal et al., 2018; Bipolar Disorder and Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2018; Smeland et al., 2018; Frei et al., 2019; Smeland et 
al., 2019).

Cross-trait analytical approaches such as the conditional False Discovery Rate (condFDR) 

approach complements the standard measures of genetic correlation by allowing 
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identification of individual overlapping variants that did not reach genome-wide 

significance, and by allowing identification of variants regardless of their allelic effect 

directions. The condFDR is a model-free strategy designed for polygenic phenotypes 

inspired by Empirical Bayes approaches (Efron, 2010). It leverages overlapping SNP 

associations (cross-trait enrichment) between two separate GWAS to improve statistical 

power for genetic discovery (Andreassen et al., 2013a; Schork et al., 2016). The 

conjunctional FDR (conjFDR) is a natural extension of the condFDR, which allows 

discovery of overlapping loci by providing a conservative estimate of the FDR for a 

SNP association with both phenotypes simultaneously (Andreassen et al., 2013a; Schork 

et al., 2016). Application of the condFDR and conjFDR approaches has increased genetic 

discovery and uncovered genetic overlap in a wide specter of complex human traits, 

including the psychiatric disorders schizophrenia (Andreassen et al., 2013b; Andreassen et 
al., 2015; Le Hellard et al., 2017; McLaughlin et al., 2017; Smeland et al., 2017a; Smeland 

et al., 2017b; Shadrin et al., 2018; Smeland et al., 2018; van der Meer et al., 2018; Zuber et 
al., 2018; Smeland et al., 2019), bipolar disorder (Andreassen et al., 2013b; Andreassen et 
al., 2015; Drange et al., 2019; Smeland et al., 2019) and ADHD (Shadrin et al., 2018).

Notably, the conjFDR approach has demonstrated genetic overlap between several 

phenotypes that are not genetically correlated, such as schizophrenia and brain structure 

volumes (Smeland et al., 2018), schizophrenia and personality traits (Smeland et al., 2017a), 

and bipolar disorder and intelligence (Smeland et al., 2019). Moreover, it has helped 

elucidate the complexity of the genetic relationship between many complex phenotypes, 

for example, that between schizophrenia and cognitive function. It is well established that 

schizophrenia is associated with cognitive impairment (Kahn and Keefe, 2013), and many 

genetic studies have demonstrated a negative genetic correlation between schizophrenia and 

various cognitive measures using tools such as polygenic risk scores (Lencz et al., 2014; 

Hubbard et al., 2016) and LD score regression, with genetic correlations ranging between 

−0.2 and −0.4 (Hagenaars et al., 2016; Hill et al., 2016; Liebers et al., 2016; Sniekers et 
al., 2017; Trampush et al., 2017; Anttila et al., 2018; Davies et al., 2018; Savage et al., 
2018). Complementing these studies, a recent condFDR investigation analyzed large GWAS 

on schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014) and intelligence (Savage et al., 2018), and identified 75 shared loci at conjFDR 

<0.01 (Smeland et al., 2019). A gene-set enrichment analysis of the shared loci implicated 

biological processes related to neurodevelopment, synaptic integrity and neurotransmission, 

among others. Among the shared loci, schizophrenia risk was linked to lower intelligence 

at 61 (81%) of the loci (Smeland et al., 2019). These findings corroborate a prior condFDR 

study on smaller GWAS samples on cognitive traits which found that schizophrenia risk was 

associated with poorer cognitive performance at 18 of 21 shared loci, where the implicated 

genes were globally expressed across the developing and adult human brain (Smeland et 
al., 2017b). Thus, in addition to identifying more loci shared between schizophrenia and 

cognitive traits compared to the standard GWAS analysis, these conjFDR studies indicate 

that the shared genetic etiology between schizophrenia and cognitive function involves a 

mixture of agonistic and antagonistic effect directions, and is more complex than what is 

suggested by their moderate negative genetic correlation (Hagenaars et al., 2016; Hill et al., 
2016; Liebers et al., 2016; Sniekers et al., 2017; Trampush et al., 2017; Anttila et al., 2018; 
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Davies et al., 2018; Savage et al., 2018). This is clinically important and in compliance 

with some reports that not all patients with schizophrenia perform poorly on cognitive tests 

(Palmer et al., 1997).

Several methods for cross-trait GWAS analysis have been developed during the last decade, 

which have been extensively reviewed elsewhere (Gratten and Visscher, 2016; Schork et 
al., 2016; Hackinger and Zeggini, 2017; Pasaniuc and Price, 2017). Building on the meta-

analysis approach (Willer et al., 2010), many techniques aim to identify shared or unique 

genomic loci across separate GWAS, including the COMBINE approach (Ellinghaus et 
al., 2012), restricted and weighted subset search (association analysis based on subsets) 

(Bhattacharjee et al., 2012), and compare and contrast meta-analysis (Baurecht et al., 
2015a). In contrast to such meta-analytical approaches, condFDR analysis intrinsically 

incorporates multiple testing via the FDR framework by directly working with the entire 

original set of P values from two investigated GWAS (Efron, 2010). Newer methods such 

as MTAG (Turley et al., 2018) or Genomic SEM (Grotzinger et al., 2019) leverage genetic 

correlation between phenotypes to improve discovery of shared loci. This is a powerful 

feature for highly correlated phenotypes, but not optimal for phenotypes with a low or non-

significant genetic correlation. Conversely, the condFDR method improves genetic discovery 

by leveraging overlapping SNP associations regardless of the direction of their allelic effects 

and may boost discovery of loci jointly influencing phenotypes even in the absence of 

genome-wide correlation, such as done for bipolar disorder and intelligence (Smeland et al., 
2019). Loci prioritized by standard GWAS analysis or other cross-trait analytical methods 

can be further interrogated with tools that aim to disentangle LD structure and uncover 

causal genetic mechanisms. For example, several available Bayesian approaches can explore 

whether two association signals in the same genomic region obtained from two different 

GWAS share a single causal variant or multiple causal variants (Giambartolomei et al., 2014; 

Pickrell et al., 2016).

Variations in polygenicity and heritability define ‘discoverability’

To provide further insights into the genetic relationship between complex human 

phenotypes, we have developed a statistical model that estimates the number of causal 

genetic variants influencing a given phenotype (which is termed ‘polygenicity’) (Holland et 
al., 2019) and the number of variants unique and shared between phenotypes (Frei et al., 
2019). The mathematical models build on a mixture modeling framework (Thompson et 
al., 2015; Holland et al., 2016), in which only a fraction of causal variants in the genome 

are assumed to influence a given phenotype, while a null-component is assumed to have 

no effect on the phenotype. The mixture modeling framework is increasingly applied by 

novel statistical tools for analysis of complex polygenic phenotypes (Zeng et al., 2018; 

Zhang et al., 2018). Our model works with GWAS summary statistics, and incorporate 

detailed LD structures, disentangling their effects on the GWAS signals. Building on this 

approach, we have introduced the term discoverability (Fan et al., 2018). This is defined as 

the power to detect genetic variants for a given phenotype depending on its unique genomic 

architecture and GWAS sample size. Given a fixed GWAS sample size, the power to detect 

novel loci is determined by the effect size distribution of the causal loci. Correspondingly, 

a larger number of true causal loci (i.e. higher polygenicity) at a fixed heritability, will 
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make SNP effects harder to detect, since they will be increasingly difficult to separate from 

the background signal (Fan et al., 2018). In addition to estimating polygenicity, the models 

also estimate the narrow-sense heritability, and the proportion of heritability captured by 

genome-wide significant SNPs (Frei et al., 2019; Holland et al., 2019). The latter is a 

function of GWAS sample size and enables power analysis of existing and future GWAS 

(Holland et al., 2019). The univariate model thus explains why certain traits have lower 

yield of genome-wide significant hits despite having larger GWAS sample size and higher 

heritability (Holland et al., 2019) (Fig. 1). For example, even though current GWAS sample 

sizes are substantially larger for major depression (246 363 cases and 561 190 controls) 

(Howard et al., 2019) than for schizophrenia (34 241 cases, 45 604 controls and 1235 

parent-affected offspring trios) (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014) and bipolar disorder (20 352 cases and 31 358 controls) (Stahl et al., 
2019), recent univariate analysis shows that while the proportion of identified variance 

is around 3% in schizophrenia, and close to 1% in bipolar disorder, it is even lower in 

major depression (Fig. 1). This both reflects the larger number of variants estimated to 

influence major depression (14.9k variants) compared to schizophrenia (8.3k variants) and 

bipolar disorder (6.4 variants), as well the lower SNP-heritability of major depression (0.08) 

compared to the other two disorders (0.45 for schizophrenia and 0.34 for bipolar disorder) 

(Holland et al., 2019). Altogether, these parameters yield a lower discoverability for major 

depression variants, and the model estimates that with 1 million GWAS participants, the 

expected genome-wide significant loci will explain approximately 60% of SNP-heritability 

in schizophrenia and bipolar disorder, but less than 10% for major depression (Fig. 1). 

Hence, although the PGC now aims for 1 million genotyped participants for each mental 

disorder (Sullivan et al., 2018), this will seemingly not be sufficient to completely uncover 

the common variant architecture for these psychiatric disorders using standard statistical 

tools, in particular not for major depression. This warrants phenotypic refinement to reduce 

disease heterogeneity or applying more cost-effective statistical approaches to increase the 

yield of existing and future GWAS, for example, by leveraging overlapping genetic signal 

across traits and disorders to improve discovery.

The bivariate extension of the causal mixture model can estimate the extent of polygenic 

overlap between complex phenotypes, allowing shared GWAS participants (Frei et al., 
2019). For example, it estimated that there is substantial polygenic overlap between 

schizophrenia and educational attainment, which involves almost all causal variants for 

schizophrenia. However, there is a mixture of agonistic and antagonistic effect directions 

among the shared variants, yielding a low effect size correlation of 0.06 within the shared 

genomic fraction (Frei et al., 2019). This is in line with the genome-wide correlation of 

0.08 estimated between these phenotypes using LD score regression (Okbay et al., 2016; 

Lee et al., 2018), and prior genetic studies reporting mixed allelic effects among their 

overlapping genomic loci (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014; Okbay et al., 2016; Le Hellard et al., 2017). Moreover, the bivariate 

model estimated a substantial polygenic overlap between schizophrenia and bipolar disorder, 

which seems to involve almost all causal variants conferring risk to bipolar disorder (Frei 

et al., 2019) (Fig. 2). Interestingly, the model also estimated that there are smaller fractions 

of causal variants that are specific to either schizophrenia and bipolar disorder, which may 
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offer important insights into the genetic differences between these disorders. We also find 

extensive overlap between bipolar disorder and major depression, but less overlap between 

schizophrenia and major depression (Fig. 2). Overall, these data suggest that in order to 

more completely understand the distinct genetic architecture underlying these disorders, it 

is important to characterize both their disorder-specific effect size distributions within the 

shared genomic fractions, as well as the disorder-specific non-overlapping fractions. To this 

end, three-way causal mixture model analysis may help mapping out unique and overlapping 

genetic mechanisms between groups of traits and disorders. This is a subject of our future 

research.

Improved prediction and clinical utility of polygenic statistical tools

Despite the significant advances in psychiatric genetics during the last decade, there is still 

no utility for individual genetic prediction in clinical psychiatry to aid prevention, diagnostic 

accuracy and predict therapeutic response and disease course. In comparison, polygenic 

risk scores have reached promising predictive power for various somatic conditions, but 

the evidence for clinical use is still sparse (Torkamani et al., 2018; Abraham et al., 2019; 

Khera et al., 2019). Nevertheless, the discovery of genetic influences underlying mental 

traits and disorders may already inform psychiatric nosology, epidemiological associations, 

and provide insights into pathobiological underpinnings (Smoller et al., 2018). For example, 

the converging evidence that psychiatric disorders share a considerable proportion of genetic 

risk variants with each other (Lee et al., 2013; Anttila et al., 2018; Frei et al., 2019), poses 

a challenge to the current diagnostic classification systems, in which psychiatric disorders 

are considered categorically distinct (Smoller et al., 2018). Additional data indicate that 

psychiatric disorders overlap genetically with a range of normal psychosocial traits such 

as cognition (Savage et al., 2018), personality (Lo et al., 2017), sleep patterns (Jansen 

et al., 2019) and social traits (Day et al., 2018). This indicates that most psychiatric 

disorders and psychosocial traits may exist on continua in genomic space, and are influenced 

by many overlapping genetic variants. Importantly, these results may support ongoing 

efforts to develop novel classification systems in which psychiatric disorders are considered 

continuous with normal variation in neurobiological and behavior dimensions (Cuthbert and 

Insel, 2010). Such a refinement of the psychiatric diagnostic system may help in establishing 

diagnostic categories that are more closely linked to distinct pathobiological processes.

The frequently used liability threshold models in genetic testing algorithms are designed to 

be insensitive of age (Falconer, 1965; Martin et al., 2018). Yet, most psychiatric disorders 

have strong age-dependent clinical manifestations. To capture time-dependent pathological 

changes and predict onset of brain diseases, we have developed the Polygenic Hazard Score 

(PHS) (Desikan et al., 2017), which provides a framework for exploitation of polygenic 

information towards clinical utility. In short, PHS models the time-dependent disease 

process by estimating the risk of onset as a hazard function, incorporating genetic variants 

that influence the age-of-disease-onset (Desikan et al., 2017). By profiling disease risk in the 

temporal domain, PHS can quantify age-specific genetic risk for Alzheimer’s disease and 

other complex diseases (Desikan et al., 2017; Seibert et al., 2018), providing grounds for 

clinical prediction and disease risk stratifications. We are currently working to revise and 

extend the PHS method by integrating other approaches to improve prediction of psychiatric 
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disorders, where an important feature will be to include non-genetic data (Seibert et al., 
2018). Although the genetic impact on temporal pathophysiological processes may not 

be monotonically increased over time for psychiatric disorders, it is of high importance 

to investigate whether there are polygenic effects that may accelerate or delay disease 

mechanisms. The PHS algorithms may also aid clinical trials as improved genetic risk 

stratification can help in selecting groups of high-risk individuals for study inclusion that are 

more likely to develop disease further on or respond to novel therapeutic agents.

Conclusion

Increasing evidence has shown that psychiatric disorders are highly polygenic and that 

genetic pleiotropy is pervasive among psychiatric disorders and related traits, providing 

important biological insights into underlying mechanisms. Although larger GWAS samples 

will increase the number of disease-associated variants, recent analyses suggest that not 

even GWAS sample sizes reaching 1 million participants will uncover most of the SNP-

heritability for schizophrenia, bipolar disorder and major depression. Hence, more efficient 

statistical tools, that better take into account the distinct polygenic architecture underlying 

each disorder, may help move the field forward. As more disease-associated variants for 

psychiatric disorders will be uncovered, this may have a profound impact on understanding 

their underlying etiology and provide novel biomarkers to increase diagnostic accuracy and 

prediction algorithms.
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Fig. 1. 
Power plots for schizophrenia (SCZ, blue), bipolar disorder (BIP, orange), major depression 

(MD, green), educational attainment (EDU, red) and height (purple) estimated using the 

causal mixture model (Holland et al., 2019). The plots were originally presented in the 

article by Holland et al. (2019). Proportion of SNP-heritability, captured by genome-wide 

significant SNPs, projected to current and future GWAS sample sizes, N. Values for current 

GWAS sample sizes are shown in parentheses. GWAS, genome-wide association studies; 

SNP, single-nucleotide polymorphism.
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Fig. 2. 
Venn diagram of unique and shared polygenic components at the causal level, showing 

polygenic overlap (gray) between schizophrenia (SCZ, blue), bipolar disorder (BIP, orange) 

and major depression (MD); the numbers indicate the estimated quantity of causal variants 

(in thousands) per component, explaining 90% of SNP heritability in each phenotype, 

followed by the standard error. The size of the circle reflects the degree of polygenicity. 

The diagrams were generated using the bivariate causal mixture model (Frei et al., 2019), 

and were originally presented in the article by Frei et al. (2019). SNP, single-nucleotide 

polymorphism.
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