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SUMMARY

Coordinated organ behavior is crucial for an effec-
tive response to environmental stimuli. By studying
regeneration of hair follicles in response to patterned
hair plucking, we demonstrate that organ-level
quorum sensing allows coordinated responses to
skin injury. Plucking hair at different densities leads
to a regeneration of up to five times more neigh-
boring, unplucked resting hairs, indicating activation
of a collective decision-making process. Through
data modeling, the range of the quorum signal was
estimated to be on the order of 1 mm, greater than
expected for a diffusible molecular cue. Molecular
and genetic analysis uncovered a two-step mecha-
nism, where release of CCL2 from injured hairs leads
to recruitment of TNF-a-secreting macrophages,
which accumulate and signal to both plucked and
unplucked follicles. By coupling immune response
with regeneration, this mechanism allows skin to
respond predictively to distress, disregarding mild
injury, while meeting stronger injury with full-scale
cooperative activation of stem cells.

INTRODUCTION

The effective coordination of organ behavior, either under phys-

iological conditions or as a response to injury, is essential for sur-

vival. Integration at the level of large-scale organ systems has
been extensively studied, but the role of shorter range, local co-

ordination has not. For example, is the regeneration of repeated

tissue units within an organ (e.g., hair follicles [HFs] in skin, villi in

intestine) coordinated so as to achieve collective decision-mak-

ing? If so, what are the mechanisms of communication, and how

is information integrated? In particular, if injury or malfunction af-

fects only a subset of tissue units in an organ, how is such a col-

lective decision made whether to mount a response that is local

(e.g., local repair) or global (e.g., tissue level regeneration)?

Mammalian skin offers an excellent platform to address such

questions, because its numerous HFs behave as discrete, re-

peating, semi-autonomous tissue units (Jahoda and Christiano,

2011) distributed on a 2D plane. HFs undergo cyclic regeneration

(Paus et al., 1998) by regulating both intra- and extra-follicular

cues for hair stem cell activation (Stenn and Paus, 2001; Plikus

et al., 2008, 2011; Festa et al., 2011; Chen and Chuong, 2012),

both during physiological regeneration and in response to injury

(Chuong et al., 2012). The experimental accessibility of HFs

makes them an ideal model to study collective decision making

in an organ population in vivo.

Classical studies show that hair plucking produces a micro-

injury that can potentially lead to hair regeneration (Collins,

1918; Silver and Chase, 1970). This process is thought to be

mediated by an autonomousmechanism in each follicle, in which

early apoptosis in the bulge leads to activation of hair germ pro-

genitors (Ito et al., 2002). Here, we uncover evidence that the de-

cision of hair stem cells to be activated or remain quiescent also

depends on information coming from neighboring follicles. This

possibility was first suggested by our earlier study in which

plucking fewer than 50 refractory telogen hairs did not induce

hair regeneration, while plucking more than 200 hairs did (Plikus
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et al., 2008). Here, by varying the spacing, arrangement, and

shapes of plucked regions, we unexpectedly found that plucking

200 hairs, with a proper topological distribution can cause up to

1,200 hairs to regenerate. These results demonstrate marked

non-autonomy in HF regeneration and a distinctly non-linear

quantitative relationship between plucking and regeneration.

As discussed below, the collective HF response to injury may

be seen as an example of quorum sensing, a form of social

behavior in which population decisions depend on the density

of signaling individuals within a given spatial territory (Bassler,

2002; Pratt, 2005). In order togain insights into thepossiblemech-

anisms underlying this behavior, we first used mathematical

modeling to identify the characteristic spatial range over which

quorums are sensed, which led us to suspect that the signaling

mechanism consists of more than just a diffusible molecule. The

time course of molecular changes after plucking, together with

the results of genetic and pharmacological manipulation, impli-

cated a two-stage mechanism, involving the release of diffusible

signals that recruit immune cells (M1 macrophages) which then

actively spread among follicles, where they locally induce regen-

eration through the release of substances such as Tnf-a.

This work identifies a mechanism for quorum sensing that op-

erates on the millimeter scale to coordinate the behaviors of

semi-autonomous tissue units within an organ. Such coordina-

tion enables the skin to condition its responses to the spatial

extent of injuries, launching a full scale regenerative response

only when a sufficient threshold is reached.

RESULTS

Topology-Dependent Hair Plucking Can Induce the
Regeneration of More Hairs Than Were Plucked by
Activating Neighboring, Unplucked Follicles
To gain insight into the mechanisms leading to hair renewal

following follicle injury, the relationship between hair plucking

density and regeneration were examined in the mouse. To stan-

dardize the experiments, we synchronized all the dorsal pelage

HFs into refractory telogen before plucking (see Extended

Experimental Procedures). Normal hair density in adult C57BL/

6 mouse dorsal skin is �45–60 hairs/mm2, corresponding to a

distance between each follicle of �0.15 mm (Figure S1E). In

the first set of experiments, 200 evenly distributed refractory tel-

ogen hairs were plucked within a circular skin area (the ‘‘injury

field’’; Figures 1B and 1C, red circle). By plucking a constant

number of hairs but altering the size of the injury field (Figures

1A, 1B, and S1), plucking densities from 2–50 hairs/mm2 were

obtained (Figures 1 and S1; Extended Experimental Proce-

dures). We then studied the regenerative behavior of the HFs.

We observe three types of responses (Figure 1F). First, if 200

hairs were plucked in a large area (>6 mm diameter, 28.3 mm2,

plucking density <10 hairs/mm2) (Figures 1BandS1), no regener-

ation of plucked or unplucked follicles occurs even after 30 days

(Figures 1A, 1B, and S1). This is because the plucking density is

too low and does not generate accumulated signals above the

threshold level (Figure 1F, zone of very low density plucking,

gray area). Second, when 200 hairs are plucked from 3-, 4-, or

5-mm diameter circular areas (plucking density >10 hairs/mm2,

the threshold density), we induce a simultaneous regeneration
278 Cell 161, 277–290, April 9, 2015 ª2015 Elsevier Inc.
of the whole region (including the plucked and surrounding

unplucked follicles) (Figures 1C and 1D). Thus, by plucking only

200 hairs, the eventual regeneration of approximately 450, 780,

or 1,300 hairs are obtained (with 200 hairs plucked in injury field

sizes of 3, 4, and 5 mm in diameter, or 7.1, 12.6, and 19.6 mm2,

respectively) (Figures 1C–1F, S1, and S2). As an example, we

can induce regeneration of up to 600 unplucked hairs within a

5-mm plucked region (zone of quorum sensing-dependent hair

regeneration, orange/light green area in Figure 1F) and 400 hairs

outside of the plucked region, resulting from propagation. Third,

when 200 hairs are plucked from a 2.4-mm diameter region (high

density, 100% plucking), every follicle in the field is plucked (Fig-

ure 1A). In this case, all follicles re-entered anagen �12 days

(12.3 ± 3.37, n = 13) after plucking, and the number of regenerat-

ing follicles equals the number of plucked follicles (zone of all fol-

licles plucked, dark green). Plucking-dependent regeneration

from refractory telogen requires thepluckingof at least 50 follicles

to reach the basal threshold (Plikus et al., 2008). This zone

is equivalent to the frequently used wax stripping procedure

(Müller-Röver et al., 2001) in which melted wax was used to strip

away all follicles in a large region, usually centimeters in diameter

or bigger. This method involves thousands of HFs which will

regenerate in synchrony without using quorum sensing.

The Hair Follicle Population as a Quorum-Sensing
System
The density-dependence of regeneration, together with the

simultaneous regeneration of both plucked and unplucked

follicles within the injury field, suggests that plucked follicles pro-

duce a signal that (1) spreads to neighboring follicles, (2) accu-

mulates to a level that depends upon the density and position

of other plucked follicles, and (3) when present above some

threshold level will trigger any follicle—plucked or unplucked—

to re-enter anagen.

The idea that HFs produce signals that affect other HFs can be

inferred from the coordinated waves of hair cycling that travel

across the skin of mice and rabbits (Plikus et al., 2008, 2011).

Yet the signals that coordinate such ‘‘hair waves’’ cannot explain

the collective regenerative responses seen here, at least not

those within the injury field itself. This is because hair waves

reflect the ability of follicles in anagen to accelerate the progres-

sion of neighboring telogen follicles into anagen, whereas pluck-

ing causes injured and uninjured follicles to progress from refrac-

tory telogen to regenerate collectively and simultaneously (i.e.,

regeneration is not driven by neighboring anagen follicles). Just

outside the plucked injury fields (e.g., Figure 1C, outside of the

red circle), however, the ring of delayed regeneration likely re-

flects the ‘‘hair wave’’ phenomenon, since follicles in this zone

enter anagen only after regeneration in neighboring follicles is

well underway. To avoid confusion between initial, collective

regeneration and later hair wave spreading, the present study fo-

cuses exclusively on early regenerative events.

One way to gain insight into the nature of the quorum signal—

thatweshall initially call the ‘‘distressor’’—that coordinates collec-

tive regeneration is to characterize its decay length, i.e., the

characteristic spatial scale over which the strength of the signal

decays. Decay lengths quantify the balance between the rate at

which a signal spreads and the rate at which it is destroyed or



Figure 1. Plucking-Induced Hair Regenera-

tion Is a Population-Based Behavior that

Depends on the Density and Distribution of

Plucked-Hair Follicles within the Unplucked

Follicle Population

(A and B) Plucking 200 hairs from a circular 2.4 mm

in diameter area (100% plucking) leads to hair

regeneration 12 days later. Plucking 200 hairs in a

12 mm diameter area (100 mm2 area; low density

plucking) fails to induce follicle regeneration even

30 days later.

(C) Plucking induces regeneration of all follicles

(the 200 plucked and 600 unplucked) within the

plucked area (red circle, 5 mm in diameter).

Unplucked follicles (400 HFs in total) outside the

plucked area boundary then regenerate due to hair

wave propagation (blue circle).

(D) High power view showing unplucked follicle

regeneration: the old gray club hair (yellow) is

pushed out by the regenerating black anagen hair

(red).

(E) In this schematic drawing, gray dots represent

telogen HFs. Black lines encircle exemplary

plucked regions. Plucked follicles (purple dots).

Regenerating plucked HFs (green dots). Re-

generating unplucked HFs (tan dots).

(F) Plot showing the hair regeneration response

versus the size of the plucked field. For all different

field sizes, 200 hairs are plucked evenly dispersed

throughout the field. A regenerative response is

observed when 200 hairs are plucked at a

density above a threshold (10 hairs/mm2), which

corresponds to plucking 200 hairs from a 5-mm

diameter circular surface area (red line). Three re-

sponses represented by different colors (gray, tan,

green), are observed (please see text for explana-

tion). The quorum sensing zone is highlighted in

orange.

See also Figures S1 and S2.
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removed. Diffusible molecules that are captured by high-affinity,

cell surface receptors (e.g., morphogens, growth factors, cyto-

kines, and chemokines) tend to have relatively short decay

lengths, typically on the order of no more than 100 mm (Teleman

and Cohen, 2000; Müller et al., 2012; Sarris et al., 2012; Weber

et al., 2013;Shimozonoetal., 2013), approximately thesamescale

as the inter-follicular distance in mouse skin. In contrast, as we

show in the next section, the decay length of the putative distres-

sor inducedbypluckingappears tobe substantially larger—on the

order of 1 mm, or four to six inter-follicular distances.

Estimating the Range of Action of the Quorum Signal
Regardless of the physical nature of a signal (i.e., if it spreads

from cell to cell via an undirected random walk), its spread can

usually be modeled as a diffusion process, and it will display a

decay length, l, equal to the square root of the ratio between

its diffusivity (an intrinsic measure of how fast it moves) and the

rate constant that characterizes its removal or destruction in

the tissue through which it spreads (Lander, 2007) (a physical

interpretation of l is the distance over which the steady-state

signal from a point source falls by a factor of 1-1/e, or �63%).

The results of modeling plucked hairs as an array of point sour-

ces of a diffusible distressor in a 2Dmedium (Figure 2A; see also

Extended Experimental Procedures) tell us that the expected

steady-state distressor concentration should be a function not

only of plucking density, but also of injury field size, shape, and

l. For example, with a constant plucking density, concentrations

of distressor should rise as a function of field size/l, leveling off

as that ratio gets large (Figure 2A). Assuming that regeneration is

triggered when the distressor concentration around an HF ex-

ceeds a certain threshold, these results suggest that one could

estimate the value of l from a series of experiments in which

plucking density and injury size/shape are both varied.

For example, in Figure 2B, data on whether regeneration in cir-

cular injury fields occurred (green dots) or failed (red dots) was

tabulated as a function of field radius and plucking density

(plotted, in this case, as the inverseof the plucked fraction). Fitting

the boundary between positive and negative data to the predic-

tions of the steady-state diffusionmodel yields estimates of l be-

tween 0.6 and 1.6 mm (Extended Experimental Procedures).

The same model also predicts that, for sufficiently large

plucked fields and/or sufficiently high plucking densities, imme-

diate regenerative responses should not be limited to the precise

boundaries of the injury field, but should extend a small distance

beyond those boundaries (here we refer only to regeneration that

occurs at the same time as that within the injury field and not

what is triggered significantly later by hair wave propagation).

Careful examination of experimental data showed that a small

rim of early regeneration indeed occurred just outside of some

injury fields. Fitting the sizes of these rims to the model (Fig-

ure 2C) yields an independent estimate for l = 1 mm.

Finally, the same diffusion model suggests that l can also be

estimated by holding both plucking density and injury field area

constant, but varying the shape of the injury field. To test this pre-

diction, experiments were carried out in which 50 hairs were

plucked evenly at a density of every other hair, either in a straight

line (Figure 2D), a narrow rectangle (6:1 aspect ratio; Figure 2E) or

a square (Figure 2F). Under these distinct topological conditions,
280 Cell 161, 277–290, April 9, 2015 ª2015 Elsevier Inc.
plucked single rows never regenerated, while squares always re-

generated robustly. Rectangles occasionally exhibited modest

regeneration, suggesting a distressor concentration very close

to threshold under these circumstances. Fitting these three be-

haviors requires a value of l between 0.7 and 1.2 mm.

The good agreement among these three methods supports

the validity of the steady-state diffusionmodel for describing dis-

tressor spreading and places the value of l at �1 mm. Fitting to

themodel does not imply, however, that the distressor is a single

substance, or even a diffusible molecule, but simply that it

spreads according to the same rules. In fact, the observed

magnitude of l suggests that the distressor is not simply a diffus-

ible receptor-binding molecule, since these typically display

decay lengths of one tenth this magnitude or less (Teleman

and Cohen, 2000; Müller et al., 2012; Sarris et al., 2012; Weber

et al., 2013; Shimozono et al., 2013). As described below, further

investigation of the molecular nature of the distressor signal sup-

ports the idea that it consists of both diffusible molecules and re-

cruited cells that migrate actively between follicles.
Plucking Induces a Cascade of Inflammatory, Cellular,
and Molecular Events
Results from wax-stripping experiments indicate that HF kerati-

nocytes undergo apoptosis�4 hr after injury (Ito et al., 2002; see

also Figure 3A). To identify molecules and mechanisms that

might be involved in plucking-induced regeneration, we carried

out microarray analysis of plucked fields at 12, 24, 48, and

96 hr after injury. Among the notable, time-dependent changes

in gene expression, we observed:

(1) Transient increase in expression of pro-inflammatory

cytokines. Immune, inflammatory and wound healing

response genes constitute the major portion of early tran-

scriptional activity following plucking. Analyzing the most

altered genes by RT-PCR, we found that immune cyto-

kines, chemokine (C-C motif) ligand 2 (CCL2), chemokine

(C-X-C motif) ligand 2 (CXCL2), and interleukin 1, beta

(IL-1b) were upregulated soon after plucking (i.e., 12 hr),

although expression of these genes peaked at different

times (Figure 3B). For example, CCL2 expression peaked

around 12 hr (Figure 3B).

(2) Reduced refractory telogen inhibitor expression. During

refractory telogen, the extra-follicular macro-environment

expresses high levels of inhibitors, including Bmp2, Dick-

kopf (Dkk1), and soluble frizzled related protein (Sfrp4) that

block anagen re-entry and hair wave propagation (Plikus

et al., 2008, 2011). Expression of Sfrp4, a representative

gene, decreased markedly at day 1 but rebounded by

days 2 and 4 (Figure 3B).

(3) Increased tumor necrosis factor alpha (Tnf-a) expression.

Tnf-a increases between 1–2 days after plucking and

reached a plateau at �day 2 (Figures 3B and 3C). The

plateau of Tnf-a expression corresponds to a time when

activated hairs are in early anagen phase (Figure 3C).

We also observe changes of other molecular pathways.

For example, platelet derived growth factor A (Pdgf-a)

increased at later stages after plucking (day 4), compat-

ible with published results (Festa et al., 2011) (Figure 3B).



Figure 2. Mathematical Modeling Identifies the Decay Length of a Putative Quorum Signal

(A) Calculated steady-state concentrations for a diffusible substance produced within injury fields in proportion to the numbers of plucked HF. Each curve

represents a different sized circular injury field, with the red circle placed at the value on the abscissa corresponding to the injury field radius, in units of the

diffusing substance decay length. Specifically, the 11 curves represent increasing field sizes of 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, and 8 decay lengths. As plucked

regions grow larger, the value at the boundary asymptotes to one half the value at the center. l is a decay length. Please see Results and Supplemental In-

formation for more explanation.

(B) Data from a variety of regeneration experiments involving circular wound fields are plotted as a function of the inverse of the plucked fraction (4) and the radius

of the wound field. The curve drawn between the points corresponding to cases of successful (green) and unsuccessful (red) regeneration was obtained from the

equations that produced the curves in (A), by fitting two parameters, the decay length and the threshold concentration for regeneration. The range of possible

values consistent with the data was manually explored to yield a range of decay length estimates.

(C) The same model was used as in (B), but the data that were fit consisted of the distances, d, just beyond the edges of injury fields at which initial regeneration

was seen. (b, radius of the injury field; 4, the plucked fraction). The plotted surface represents a least-squares best fit to the data.

(D–F0) Effects of injury field shape. Fifty hairs were plucked evenly, at a density of every other hair, either in a straight line (D and D0), a narrow rectangle (6:1 aspect

ratio; E and E0) or a square (F and F0). In (D0)–(F0), a discrete form of the equation used in (A)–(C), in which each HF ismodeled as a discrete source, was used to plot

the steady-state spatial distributions of a distressor released by plucked follicles (distances are plotted in units of the inter-follicular distance, �0.15 mm).

Wherever plotted surfaces extend above a regeneration concentration threshold (gray plane), red dots mark the location of each HF indicating successful

regeneration. The requirement that these curves be consistent with the observed regeneration patterns in all three cases was sufficient to provide yet a third

estimate of the distressor decay length. See also Supplemental Information on mathematical model.
Since the Wnt pathway is critical for hair growth (Enshell-

Seijffers et al., 2010; Lowry et al., 2005), we examined the

expression of Wnt pathway members, using whole mount

in situ hybridization, and compared their expression patterns,

over time, with those of Tnf-a. Wnt6, b-catenin, and lymphocyte

enhancer factor (Lef-1) were upregulated within new anagen

follicles at day 4, but not in the extra-follicular dermal macro-

environment (Figure S3). We also localized Tnf-a expression
to the extra-follicular dermal macro-environment (Figures 3C

and S3).

CCL2 Is a Key Component of the Quorum Signal
The earliest noted signaling molecule expression change that

could potentially communicate information from plucked to un-

plucked follicles was CCL2 (Figure 3B). Immunohistochemistry

showed that CCL2 is primarily produced by HF keratinocytes
Cell 161, 277–290, April 9, 2015 ª2015 Elsevier Inc. 281



Figure 3. Identification of Macro-Environ-

mental Modulators following Hair Plucking

(A) TUNEL assay to measure apoptosis.

(B) Real-time PCR from extra-follicular macro-

environmental tissues revealed the kinetics of gene

expression induced by plucking (normalized to

GAPDH with 40 cycles, data are represented as

mean ± SD, n = 3).

(C) Whole mount in situ hybridization showed that

Tnf-a is markedly upregulated in the inter-follicular

area beginning 2 days after wax stripping.

See also Figures S3 and S4.
and accumulates predominantly in plucked follicles (where

apoptosis occurs), and to a much smaller extent in neighboring

unplucked follicles, which do not undergo apoptosis (Figures

4A, 4B, and S4). This induction is transient and diminishes at

day 5. CCL2 induction in plucked HFs occurred regardless of

plucking density, so CCL2 was expressed even at the densities

that failed to launch regeneration. Epidermal staining of CCL2 is

evident in the 2.4 mm specimen, some is seen surrounding the

plucked follicle in the 5 mm specimen, but staining is sparse in

the 8 mm specimen.

These results are consistent with CCL2 expression providing

an overall measure of the extent of plucking and therefore poten-

tially serving as a quorum signal. To test whether CCL2 function

is required for follicle regeneration, we waxed whole back skin

from both wild-type C57BL/6 and CCL2 null mice. In contrast

to the localized plucking of 200 hairs (that induces hair regener-

ation after �12 days) (Plikus et al., 2008), wax-stripping the

whole back skin drives telogen hairs back into full anagen (ana-

gen VI) within �6 days (Müller-Röver et al., 2001). However,
282 Cell 161, 277–290, April 9, 2015 ª2015 Elsevier Inc.
when the backs of CCL2 null mice were

wax-stripped, follicles remained in telo-

gen 3 days after waxing and were still

in anagen III to IV at day 6 (Figures 4C

and S5A). This delayed hair regrowth in

CCL2 null mice following plucking sup-

ports a role for CCL2 in plucking induced

hair regeneration.

TUNEL staining performed 1 day after

plucking revealed that both wild-type

and CCL2 null mice showed apoptotic

HF cells (Figures 4D and S5B). These re-

sults indicate that CCL2 is not required

for the initial injury response of HFs, but

rather its expression is triggered by that

response, whereupon it plays an impor-

tant role in regeneration. This view is

consistent with a recent study showing

that various HF regions express chemo-

kines including CCL2, CCL20, and CCL8

in response to stress (Nagao et al.,

2012a). The percent HF area with CCL2

expression was highest 1 day after pluck-

ing and decreased thereafter (Figure 4E).

Unplucked follicles located within (x) or

outside (y) of the plucked field showed
low and no CCL2 levels. CCL2 null mice did not express CCL2

after plucking (z).

M1 Macrophages Are Mediators Recruited by CCL2 to
Execute Quorum-Sensing Behavior
The decay lengths of most diffusible signaling molecules, in-

cluding chemokines (Sarris et al., 2012; Weber et al., 2013), are

much shorter than the decay length we measured for the pluck-

ing-induced quorum signal (Figure 2). Chemokines, however,

are known to act as chemo-attractants for immune cells, and

we postulated that this might play a role in boosting the effective

range of action of an initial quorum signal. CCL2 in particular is a

potent recruiter of monocyte/macrophage lineage cells.

Indeed, 2 days after plucking, macrophages had heavily infil-

trated the plucked skin (Figure 5A). We quantified the macro-

phage distribution at different times after plucking (Figure 5E).

At day 1, F4/80 positive macrophages accumulate around and

between the plucked follicles. At day 3, more macrophages

spread to the inter-plucked follicular regions and their density



Figure 4. CCL2 Is Involved in Plucking

Induced Hair Regeneration

(A) HF keratinocytes showed higher CCL2 ex-

pression (green) in plucked follicles (red arrow)

than in unplucked follicles (white arrowhead). The

circle with purple dots indicates the topology of

plucked follicles (see also Figure 1E). Peak

expression occurs 1–3 days after plucking, and

no marked difference between the 2.4, 5, and

8 mm groups were noted. Asterisk represents re-

generating HFs.

(B) Double immunostaining for K14 and CCL2 of

samples 3 days after plucking showed that HF

keratinocytes in plucked follicles are the main

source of CCL2.

(C) Hair re-growth is retarded when hairs were

plucked from CCL2 null mice.

(D) CCL2 null mice showed similar apoptotic HF

cells following plucking as wild-type mice, but

could not induce CCL2 in apoptotic HF cells.

(E) Graph showing the percentage of HF area ex-

pressing CCL2 at 1, 3, 5, and 7 days post-plucking

as well as unplucked HFs within (x) and outside

(y) of the plucked field. CCL2 null mice do not ex-

press CCL2 (z). (n = 3). Data are represented as

mean ± SD.

See also Figure S5.
is substantially elevated (at least four times over background) up

to 66% of that found for plucked follicles. The spread can span a

distance of 1 mm. Thesemacrophages start to dissipate at day 7

post-plucking.

To test whether macrophages play a functional role in pluck-

ing-induced hair regeneration, we used chemical inhibitor and

genetic deletion assays. The application of Clodronate lipo-

somes to suppress macrophage function caused an �12-day

delay in hair plucking induced regeneration (Figure 6F). For the

genetic approach, we used LysM-Cre;R26R transgenic mice to

examine the distribution of LacZ positive myeloid cells following
Cell 161, 277
hair plucking. Myeloid cells are nearly ab-

sent in normal mice, but are induced at

days 3–5 and diminish at day 7 in the

transgenic mice (Figure 5F).

To evaluate their role, we generated a

triple transgenic mouse model where

myeloid cells are specifically depleted by

diphtheria toxin upon doxycycline treat-

ment (LysM-Cre;Rosa-rtTA;TetO-DTA).

We plucked 200 hairs/5 mm diameter re-

gion, which usually launches a quorum

sensing response, leading to regenera-

tion. In this mutant, hair regeneration did

not occur (Figures 5G and S2D). These

myeloid cells represent mainly macro-

phages, although technically we cannot

rule out other cell types completely. All

together, the data suggest macrophages

play a major role in this process.

Macrophages can be divided into two

major types; M1 macrophages (classi-
cally activated) exert proinflammatory activities, and M2 macro-

phages (alternatively activated) are involved in resolving inflam-

mation (Gordon, 2003; Willenborg et al., 2012). Immunostaining

showed that M1, but not M2 macrophages, were present

5 days post-plucking (Figures 5B, 5C, and S6A).

These findings are consistent with other studies implicating

chemokines in the recruitment of inflammatory macrophages

during wound healing and a role for such cells in tissue

repair (Willenborg et al., 2012). Since M1 macrophages ex-

press CCR4 (Figures 5D and S6A), the receptor for CCL2,

we think that these macrophages are recruited to plucked
–290, April 9, 2015 ª2015 Elsevier Inc. 283
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follicles by plucking-induced CCL2. Consistent with this view,

plucking failed to induce the accumulation of M1 macro-

phages in CCL2 null mouse skin (Figure 5H). These data

support the model that CCL2 expressed by plucked follicles

recruits CCR4-expressing M1 macrophages, which play an

essential role in regeneration. We next explored how this

comes about.

Hair Regeneration Induced by Quorum Sensing Is Tnf-a
Dependent
Macrophages are known to produce Tnf-a. Tnf-a mRNA was

induced �2 days after plucking, before anagen initiates (Figures

3B, 3C, and S3). Low power whole mount in situ hybridization

reveals that, under conditions in which regeneration occurs,

Tnf-a is enriched in the extra-follicular environment of both

plucked and unplucked hairs (Figure 6A). Double immunostain-

ing showed that these cells are indeed M1 macrophages (Fig-

ures 5B, 5C, 5D, 6B, and S6).

Semiquantitative analysis of immunostained specimens ob-

tained from regions of different plucking densities support the

view that Tnf-a expressing macrophages accumulate around

HFs that regenerate after plucking (both plucked and un-

plucked), but do not accumulate under plucking conditions

that fail to activate hair regeneration (Figure S6D).

Quantitative measurements of macrophage-derived Tnf-a

immunoreactivity over time in a threshold-plucking density re-

gion (200 hairs/5 mm diameter) showed that Tnf-a positive cells

are induced around plucked follicles. They then increased signif-

icantly at day 3 and 5 after plucking, spreading into the dermal

region between plucked follicles. They decreased at day 7 to

approach basal levels (Figures 5E, 6C, and S7B).

To investigate the functional importance of Tnf-a in plucking-

induced hair regeneration, beads coated with Tnf-a-related

peptide were injected into refractory telogen stage mouse skin.

Hair regeneration was induced, followed by propagation to the

surrounding region (Figure 6E). Control bead injection did

not induce hair regeneration even after 30 days (Figure 6G).

Conversely, when hairs were plucked at high density in Tnf-a

null mice (Figure 6F), a 15-day delay in regeneration was

observed. These results indicate that Tnf-a is one of the major

players for plucking-induced hair regeneration.

Last, we searched for molecules and signals that might func-

tion further downstream in hair regeneration. For example, Tnf-a

is known to stimulate both JNK and NF-kB (nuclear factor
Figure 5. CCL2 Stimulates Tnf-a Production by Attracting CCR4 (+) M1

(A) Tnf-a is upregulated in the dermal macro-environment on day 2 after wax s

macrophages (F4/80+ cells, yellow arrow) and adipose cells (red arrow; see also F

after plucking. These macrophages do not express Tnf-a.

(B and C) Staining shows that Tnf-a is mainly produced by M1 (iNOS-positive) ra

(D) Tnf-a (+) cells express CCR4 in response to CCL2.

(E) The number of F4/80+ cells is highest near plucked follicles and their density de

the unit area we quantified for each data point. The number of F4/80+ cells is ra

diminishing at 5 and 7 days after plucking.

(F) LysM-Cre;R26R reporter mice show that the myeloid lineage-derived cells m

(G) When 200 hairs were plucked from myeloid cell-deficient mice from 5 mm re

(H) Tnf-a (+) cells was not induced in CCL2 null mice.

(I) Tnf-a serum levels are similar between wild-type and CCL2 null mice. Data ar

See also Figures S6 and S7.
kappa-light-chain-enhancer of activated B cell) signaling. It is

also known that activation of the FGF signaling pathway can

trigger hair regeneration (Greco et al., 2009). We therefore

screened inhibitors of NF-kB, JNK, PI3K, FGF receptor, p38

MAPK, and Erk for effects on plucking-induced hair regenera-

tion. Only NF-kB inhibitors delayed hair regeneration, doing so

by 10 days (Figures 6H and S7C). In addition, Tnf-a-related pep-

tide significantly stimulates the expression of Wnt3, Wnt10a,

and Wnt10b in keratinocytes (Figure 6I). Although the Eda-NF-

kB pathway is important in hair development, a previous study

indicated that Eda participates in anagen to catagen transition

during the postnatal hair regeneration cycle (Fessing et al.,

2006). Hence, it is not likely that Eda is involved in the plucking

induced hair regeneration response. Together the results raise

the possibility that Tnf-a, acting through the NF-kB pathway, ul-

timately stimulates hair regeneration through activation of Wnt

signaling.

DISCUSSION

Social Behaviors in an Organ Population
Many organs are composed of repeated, semi-autonomous

tissue units, such as acini, crypts, and follicles. The potential

for dynamic coupling between the behaviors of such units

creates opportunities for collective phenomena. A dramatic

example of this is the ‘‘hair wave,’’ a coordinated hair cycle

wave that can travel across the skin of mammals (Suzuki et al.,

2003; Plikus et al., 2008, 2011; Murray et al., 2012).

In this work, we characterize another collective behavior of

HFs; density- and topology-dependent, plucking-induced re-

generation, which can be viewed as a form of quorum sensing.

Quorum sensing is a process whereby a population makes a col-

lective decision based on the number or density of individuals

that meet a certain criterion. Typically, a response occurs only

when a threshold is exceeded. Quorum sensing has been

invoked to describe bacterial cell-to-cell communication (Bass-

ler, 2002) that serves to influence gene regulation in response to

population density fluctuations (Miller and Bassler, 2001). Syn-

thetic quorum sensing circuits in yeast were used to demon-

strate the diversity of social behaviors that can come fromcollec-

tive communication (Youk and Lim, 2014). Quorum sensing also

has been used to explain the collective decision-making

behavior of social insects such as ants and honey bees (Pratt,

2005; Visscher, 2007).
Macrophages

tripping. Tnf-a in the dermal macro-environment is produced by both dermal

igure S5C). Few macrophages (yellow arrow) are present at hour 4 and day 10

ther than M2 (Arginase-positive) macrophages.

creases with increasing distance from the plucked follicles. See Figure S7A for

pidly elevated at day 1 post-plucking, reaching a maximum at day 3 and then

ostly are induced in the dermis around plucked HFs.

gion, hairs cannot be induced.

e represented as mean ± SD.
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Molecular Nature of the Quorum-Sensing Circuit
Briefly, the quorum sensing circuit we describe here provides a

way for injured HFs to collectively assess the magnitude and

extent of injury that the skin has sustained and make an all-or-

none decision whether or not to regenerate. A striking feature

of this circuit, revealed through molecular modeling, is that the

information being shared among follicles decays with a charac-

teristic length of�1mm, substantially greater than themeasured

decay lengths of diffusible signaling molecules (Teleman and

Cohen, 2000; Müller et al., 2012; Sarris et al., 2012; Weber

et al., 2013; Shimozono et al., 2013). The explanation for this

apparent paradox seems to reside in the multi-stage nature of

the quorum signal, which begins with diffusible molecules, but

eventually involves the recruitment of motile cells (inflammatory

macrophages) that spread within the tissue. Below we summa-

rize the sequence of molecular and cellular events revealed by

the present study (Figure 7).

(1) Micro-injury and inflammation. Hair plucking leads to hair

keratinocyte apoptosis (Ito et al., 2002) (Figure 3A). This in

turn leads to inflammatory changes and to the localized

overexpression of several inflammatory cytokines, espe-

cially CCL2, which may be detected within 12 hr post-

plucking (Figures 3B and 4).

(2) Molecular signal release and dissemination. CCL2 and

other cytokines are secreted from plucked follicles and

may also involve epidermis around the plucked follicle.

The importance of CCL2 is demonstrated by the fact

that, in CCL2 null skin, regeneration is markedly delayed

(Figure 4). The fact that it is not prevented entirely sug-

gests that some other cytokines induced by plucking

may act redundantly with CCL2.

(3) Recruitment of macrophages as motile vectors. The local

production of CCL2 appears to recruit CCR4 (+) M1 mac-

rophages in the dermis (Figure 5). Whereas macrophages

initially appear to be enriched around plucked follicles, re-

cruited macrophages soon spread throughout the whole

region. By relaying a signaling response with a motile

cellular vector, HFs effectively solve the problem of

spreading quorum information over long distances.
Another motile vector candidate is the epidermal dendritic

Langerhans cell since it also expresses F4/80 antigen. How-

ever, F4/80 positive cells appear in dermis at day 1, but do

not appear in the epidermis until days 5–7. Our microarray

data also did not reveal upregulation of Langerhans cell

markers, such as CD207 (Langerin) and CD11b. Although we

do not completely rule out the involvement of Langerhans in

this process, our data so far suggest a major role for dermal

macrophages in this process.

It is worthwhile to mention here that more examples of

extended cellular process that mediate signal communication

are being identified. For example, in zebrafish stripe pattern

formation, pigment cells can utilize their contact-dependent

depolarization and repulsive behavior as non-diffusible inhibitors

that follow Turing principles (Inaba et al., 2012). In Drosophila

epithelia, cytonemes can establish a dynamic hedgehog mor-

phogen gradient that may reach afar (Bischoff et al., 2013).
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Future in vivo imaging studies of the mouse skin model studied

here will allow us to elucidate the interactive cellular behaviors

between HFs, immune system and regeneration.

(4) Release of Tnf-a and collective regeneration. Inflamma-

tory macrophages that are recruited to wound fields

secrete Tnf-a, which has been shown to activate hair cy-

cle regeneration (Figure 6E) (Duheron et al., 2011). Regen-

eration is greatly impaired in Tnf-a null mice (Figure 6F);

moreover, Tnf-a serum levels are normal in CCL2 null

mice that show impaired plucking-induced regeneration

(Figure 5I). These studies indicate that local, not systemic

Tnf-a is required for regeneration. Although the exact

mechanism by which Tnf-a triggers follicle regeneration

is not clear, the data suggest that Tnf-a may act through

NF-kB which in turn activate canonical WNT signaling

(Figure 6D) (Cawthorn et al., 2007; Schwitalla et al.,

2013). While Tnf-a immunoreactivity is mainly in macro-

phages, it is also detected in other cell types andmay pro-

vide additional possible mechanisms. The EDAR pathway

may also activate NF-kB. However, EDAR it is more

involved in anagen/catagen transition (Fessing et al.,

2006), not telogen/anagen transition. Further, it is not

induced in our microarray data (not shown).
Adaptive Role of Quorum Sensing
Depending on the severity of skin injury, the body may use

different mechanisms to alert, defend, and regenerate the

damaged tissue. Plucking of a single hair follicle is amicro-injury.

An open, full-thickness wound is a catastrophic event (i.e.,

macro-injury). While wounded skin is known to induce hair

regeneration, small and large wounds may share a fundamental

mechanism, but use different molecular circuits to achieve

different levels of restoration and regeneration. Indeed, HF activ-

ities have been linked to the wound-healing and regenerative

behaviors of the inter-follicular epidermis. This link may be medi-

ated by the immune system (Paus et al., 1998), macrophage

recruitment (Osaka et al., 2007), and increased Tnf-a expression

(Jiang et al., 2010). Interestingly, TNF-a converting enzyme, a

regulator of Tnf-a, is a component of the HF bulge niche (Nagao

et al., 2012b). Anagen phase HFs can influence the surrounding

epidermis to markedly accelerate wound healing (Ansell et al.,

2011). Inmice, loss of full thickness skin larger than 1 cm in diam-

eter could lead to new follicle formation (Ito et al., 2007). How-

ever, plucking does not launch a full wound healing response,

so conceptually plucking works differently from the wound and

our study focuses at a different scale. It provides a novel under-

standing into how HFs respond to injury at the level of a HF pop-

ulation. We analyzed how interactions among HFs and the

dermal environment reach a binary choice based on a collective

measurement of injury. We show that effective damage control is

achieved via co-option of existing signaling mechanisms (e.g.,

Tnf-a, macrophage) for the ‘‘social behaviors’’ of a stem cell

population.

In summary, we report a higher level integration of signals

from hair regeneration, immune cytokines, and wound healing.

Instead of a top-down process, quorum sensing represents a

bottom-up process based on local information. Each follicle



Figure 6. Hair Regeneration Is Proportional

to the Local Concentration of Tnf-a

(A) Whole mount in situ hybridization shows Tnf-a

(brown color in the dermis, red arrows) was

induced under plucked and unplucked hairs (blue

arrows) toward the center of the 3 mm plucked

zone 5 days after plucking.

(B) Semiquantitative assessment of the Tnf-a

concentration using the 5mm group at day 5. Its

expression level was quantified in three different

skin regions (green boxes) that differ in their

proximity to plucked follicles. ‘‘a’’ is closest to the

plucked follicles and shows the highest Tnf-a

levels. ‘‘b’’ is away from the plucked follicles and

shows lower Tnf-a levels. ‘‘c’’ is furthest away and

shows the least Tnf-a.

(C) Quantitative assessment of the Tnf-a positive

cells around plucked follicles and inter-plucked

follicle dermis. See Figure S7B for complete series.

The pattern is similar to that of F4/80 macrophage

distribution (n = 3).

(D) Density-dependent plucking on Axin-LacZ

mice show that the canonical Wnt/b-catenin

signaling pathway was activated 3 days after

plucking and the number of LacZ (+) HFs was

proportional to the plucking density.

(E) Subcutaneous injection of Tnf-a-related pep-

tide coated beads during refractory telogen can

induce anagen re-entry and then propagate to the

surrounding HFs.

(F) Tnf-a null mice exhibit a 15-day delay in anagen

re-entry following plucking of 200 hairs during re-

fractory telogen phase. Intra-peritoneal macro-

phage inhibitor (MI) injection can also delay

plucking induced hair regeneration by 12 days.

(G) Albumin coated beads injection showed no

anagen re-entry even after 32 days.

(H) Subcutaneous NF-kB inhibitor injection can

delay plucking-induced hair regeneration by

10 days.

(I) Wnt3, Wnt10a, and Wnt10b were activated in

keratinocytes by TNF-related peptides. Data are

represented as mean ± SD. **p < 0.001.

See also Figures S6 and S7.

Cell 161, 277–290, April 9, 2015 ª2015 Elsevier Inc. 287



Figure 7. Molecular Basis of Quorum-

Sensing Behavior during the Activation of

Hair Stem Cells in the Follicle Population

Schematic illustration of the process. Stage i: mi-

nor injury / hair keratinocyte apoptosis / CCL2

production. Stage ii: CCL2 secretion / macro-

phage accumulation. Stage iii: macrophage and

Tnf-a permeate the whole region. Stage iv: Tnf-a

activates hair regeneration in the whole region.

Hair regeneration further spreads due to propa-

gation of regenerative hair waves. Please see text

for more detail of the model.
becomes a sensor for the population to assess the level of

damage. The molecular circuit quantifies injury strength by

summing together local signals from different organs. Here,

the communication among tissues reaches a larger scale orga-

nization by coupling local molecular signaling (in the form of a

chemical gradient) with motile cellular vectors. In this study,

macrophages are identified as a motile vector that allows a

length scale of up to 1 mm. In this manner, the injury response

is measured and reflects local needs. This study may just be

one of the examples that reveal collective cellular behaviors

in response to physiological or pathological stimuli. We believe

that the quorum sensing behavior principle is likely to be

present in the regeneration of tissue and organs beyond the

skin.

EXPERIMENTAL PROCEDURES

Surgical Procedures

All procedures were performed on anesthetized animals with protocols

approved by the University of Southern California Institutional Animal Care

and Use Committee (USC IACUC). Hair cycle was synchronized by wax strip-

ping (Müller-Röver et al., 2001). Hairs in refractory telogen were plucked with

the spacing indicated in the result section. Regenerative hair numbers are

counted under a dissection microscope.

RNA Preparation and Microarray

For microarray, all the dermal tissues are collected. RNA was prepared

using TRI Reagent BD (Sigma-Aldrich) following the manufacturer’s

recommendations. Please see Extended Experimental Procedures for detail.
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The microarray data reported here have been submitted to the GEO

(accession number GSE46181). Primer sequences for RT-PCR are listed

in Table S1.

Perturbation of Quantitative Plucking

Small molecular inhibitor or peptides were injected intra-dermally on one side

of mouse dorsal skin for 4 days. Then 200 hairs were plucked in the center of

the injected area. After plucking, these drugs were continuously injected for an

additional 6 days. DMEM was injected to the opposite side as a control. Each

animal was injected with only one reagent.

ACCESSION NUMBERS

The GEO accession number for the microarray data reported in this paper is

GSE46181.
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figures, and one table and can be found with this article online at http://dx.doi.
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Supplemental Information

Figure S1. Threshold Response of Regeneration after Quantitative Plucking, Related to Figure 1

(A) Table showing the density of plucked hair and the regenerative response.

(B) The total number of follicles that regenerated from plucked areas of 4.5, 7.1, 12.6, and 19.6 mm2 was 237.7, 452, 776.8, and 1,276, respectively.

(C) Schematic illustration of quantitative hair plucking design. Two hundred hairs were plucked from each circular area, ranging from 2.4 to 8 mm in diameter

(quantitative hair plucking). Plucked regions are encircled with a marker pen. The 200 hairs were evenly spaced within the circle area, then the plucking density of

2.4, 3, 4, 5, 6, 7, and 8 mm in diameter will be 44.44, 28.17, 15.87, 10.20, 7.07, 5.19, and 3.98 hairs/mm2, independently.

(D) Normal hair density in adult mouse is about 44.44 hairs/mm2. The distance between each hair follicle is �0.15 mm.

(E) When we plucked the hair follicles in high density (thus 200 hairs occupy�4.5mm2 of skin surface [area = 2.4mm in diameter; area =p3 radius2]), all the hairs

within this area will be plucked and the distance between plucked hair follicles will be 0.15 mm.

(F) When we plucked the hair follicles in threshold density (200 hairs from the circle with 5 mm in diameter), only 25% of the total hairs within this area will be

plucked and the distance between plucked hair follicles will be 0.30 mm. Data are represented as mean ± SD. **p < 0.001.
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Figure S2. Time Course of Hair Regeneration following Density-Dependent Plucking, Related to Figure 1

(A) Two hundred hairs were plucked from different sized circular regions (2.4, 3, 5, and 7 mm diameter, respectively). When the plucked area was <5 mm in

diameter, all the hair follicles within this area entered anagen simultaneously, and the anagen wave also propagated outside the boundaries of the plucked area.

(B) Detail of regenerating region. High-magnification view of regenerative response to plucking involves the regeneration of all follicles (the 200 plucked and 600

unplucked) within the plucked area (dotted red circle).

(C) This is followed by regeneration of unplucked follicles (400 HFs in total) outside the boundaries of the plucked area due to hair wave propagation (dotted blue

circle).

(D) Two replicate samples demonstrate that myeloid deficient mouse hair follicles do not regenerate like control samples in response to the plucking of 200 hairs

within a 5 mm diameter circle.
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Figure S3. Endogenous Expression Pattern of Wnt Signaling Pathway and Eda at Different Time Points after Plucking, Related to Figure 3

Wholemount in situ hybridization of skin strips (Plikus et al., 2008) showWnt6, Lef-1 and b-catenin are upregulatedwithin new anagen follicles four days after wax

stripping and expression is retained throughout the anagen phase. The expression of Eda continues during anagen phase and is restricted inside the hair follicles

without any extra-follicular distribution. Tnf-a is upregulated in the inter-follicular area beginning two days after wax stripping.
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Figure S4. Plucking-Induced Apoptosis in HF Cells, with Peak at Day 1, Related to Figure 3

TUNEL staining on quantitative plucking samples demonstrates that apoptosis only occurs in pluckedHFs and the percentage of apoptotic cells is proportional to

plucking density (Red arrow: plucked hair follicle; white arrow head: unplucked hair follicle). Areas in the dotted boxes are enlarged in the insets. Red asterisks

indicate regenerating HFs.
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Figure S5. CCL2 Is Involved in Plucking Induced Hair Regeneration, and Tnf-a Is Partially Released by the Adipocyte Layer, Related to

Figure 4

(A) Hair re-growth is retarded when whole back skin was waxed fromCCL2 null mice. In wild-typemice HFs start to proliferate 3 days after waxing and regenerate

to anagen VI by 6 days. In contrast, CCL2 null mouse HFs remain in telogen 3 days after waxing, and are still at anagen III to IV at day 6.

(B) CCL2 null mice show similar apoptotic HF cells following plucking compared with wild-type mice, but do not induce CCL2 in apoptotic HF cells as determined

by immunostaining.

(C) Immunostaining shows a small amount of Tnf-a expression is contributed by inter-follicular adipocytes.
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Figure S6. CCR4 (+) M1 Macrophage Are Recruited to the Plucking Field, and the Expression Level of Tnf-a Is Proportional to the Plucking

Density, Related to Figures 5 and 6

(A) M1 marker iNOS staining showed that Tnf-a is mainly produced by M1 macrophages.

(B) M2 marker arginase staining is negative in Tnf-a (+) macrophages.

(C) Tnf-a (+) macrophages express CCR4.

(D) Immunostaining shows Tnf-a (+) cells (pink) are attracted to plucked (red arrows) and neighboring unplucked (white arrowheads) follicles in the 2.4mm and

5mm groups, but not in the 8mm group. The circle with purple dots indicates the topology of plucked follicles (please also see Figure 1F). In the 5mm group (Day

5), the regenerating follicles (green asterisks) were only observed within the high-Tnf-a zone induced by follicle plucking.
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Figure S7. Shift of Tnf-a-Positive Cells at Different Days after Plucking and NF-kB Involves in Plucking-Induced Hair Regeneration, Related

to Figures 5 and 6

(A) Method to count of F4/80 macrophages and Tnf-a positive cells. 200 mm segments are marked by using a metered eyepiece. The number of positive cells in

the area are counted. The unit area are purposefully aligned to be parallel to the axis of the hair follicle. 3 sections were counted.

(B) The number of Tnf-a positive cells in relation to their distance from plucked hair follicles are quantified. At day 1, Tnf-a positive cells are close to the plucked

hair follicles, but some are also seen in the inter-plucked dermis. In day 3 and 5, there are more macrophages distributed in the inter-plucked follicle dermis,

making a more even distribution. The response reaches its maximum at 5 days and falls off at day 7. Plucked (black) and unplucked (green) follicles are show

schematically beneath the plots. (Data are represented as mean ± SD).

(C) Subcutaneous injection of NF-kB inhibitor can delay plucking-induced hair regeneration by 10 days when 200 hairs were plucked in high density.
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