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Abstract

Detecting epistatic drivers of human phenotypes is a considerable challenge. Traditional

approaches use regression to sequentially test multiplicative interaction terms involving

pairs of genetic variants. For higher-order interactions and genome-wide large-scale data,

this strategy is computationally intractable. Moreover, multiplicative terms used in regres-

sion modeling may not capture the form of biological interactions. Building on the Predict-

ability, Computability, Stability (PCS) framework, we introduce the epiTree pipeline to

extract higher-order interactions from genomic data using tree-based models. The epiTree

pipeline first selects a set of variants derived from tissue-specific estimates of gene expres-

sion. Next, it uses iterative random forests (iRF) to search training data for candidate Bool-

ean interactions (pairwise and higher-order). We derive significance tests for interactions,

based on a stabilized likelihood ratio test, by simulating Boolean tree-structured null (no

epistasis) and alternative (epistasis) distributions on hold-out test data. Finally, our pipeline

computes PCS epistasis p-values that probabilisticly quantify improvement in prediction

accuracy via bootstrap sampling on the test set. We validate the epiTree pipeline in two

case studies using data from the UK Biobank: predicting red hair and multiple sclerosis

(MS). In the case of predicting red hair, epiTree recovers known epistatic interactions sur-

rounding MC1R and novel interactions, representing non-linearities not captured by logis-

tic regression models. In the case of predicting MS, a more complex phenotype than red

hair, epiTree rankings prioritize novel interactions surrounding HLA-DRB1, a variant previ-

ously associated with MS in several populations. Taken together, these results highlight
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the potential for epiTree rankings to help reduce the design space for follow up

experiments.

Introduction

Epistasis between genetic alleles describes a non-additive relationship among different loci

governing a single trait [1]. While epistatic interactions have been hypothesized to play an

important role in regulating phenotypes [2, 3], most large-scale studies on polygenic contribu-

tions have focused on additive effects. Discovering epistatic interactions involved in human

phenotypes has been a slow, small-scale process with relatively modest or minimal evidence

from large-scale studies [4, 5].

The most commonly accepted statistical definition of epistasis dates back to Fisher [6]: the

“deviation from the addition of superimposed effects (. . .) between different Mendelian fac-

tors.” However, Fisher’s definition does not correspond to a well-defined statistical model for

either the null (no-epistasis) or alternative (epistasis) hypotheses. Additivity depends on the

scaling of a response (e.g., penetrance for a binary trait). For example, a multiplicative function

becomes additive on a log-scale. Moreover, for a fixed scaling there are many ways to write an

additive model of individual components. For example, taking the inverse normal or other

transformation of each feature before running logistic regression. Although these issues have

been noted repeatedly in the literature [7–11], their impact on statistical results are often not

highlighted.

While there is no unique model of Fisherian epistasis, traditional approaches evaluate epis-

tasis through linear (continuous response) or logistic (binary response) regression with two

genetic variants (possibly incorporating covariates for population structure and genetic-link-

age) [12–15]. In this setting, the null (no-epistasis) model has linear additive components for

the two involved genes and the alternative (epistasis) model has an additional multiplicative

interaction term. However, complex phenotypes can involve more than two genes and the

functional relationship between genes and phenotype can be highly complex. Interactions

identified as highly significant by brute-force, pairwise searches with logistic/linear regression

may not always provide a good fit to the data, and may fail to generalize to new/unobserved

samples. Moreover, statistical hypothesis testing based on heavily mis-specified null or alterna-

tive models are often unstable and can lead to irreproducible results [16–19].

Beyond the challenges of modeling complex interaction forms, the massive search space of

genomic interactions presents several barriers to classical approaches. First, brute force

searches can become computationally intractable for genome-scale data. This is a particular

issue when considering high-order (i.e., beyond pairwise) interactions. Second, the standard

approach of modeling a single interaction at a time may lead to model misspecification by fail-

ing to take the entire genetic background into account. Finally, analyses typically limit their

focus to marginally important variants due to high-dimensional genomic data. Interactions

involving variants with weak marginal effects cannot be detected in this setting.

Here, we propose the epiTree pipeline, which makes four key contributions to the challenge

of detecting polygenic, epistatic interactions in genome-scale data. First, epiTree makes a con-

ceptual contribution: using data splits to separate the discovery of interactions, performed on

training data, from statistical inference, performed on testing data. Second, epiTree uses a

two-step, biologically inspired dimension reduction to tractably search for Boolean, epistatic

interactions of arbitrary size, considerably reducing the search space of high-order
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interactions. Third, epiTree fits tree-based models to learn data-adaptive representations of

interactions and evaluate deviations from additivity directly on the penetrance scale. Fourth,

epiTree builds on the recently proposed predictability, computability, and stability (PCS)

framework [20] to derive an inference procedure, epiTree test. epiTree test is used to obtain p-

values for interactions that demonstrate accurate prediction on the hold-out test set without

relying on chi-square distributional approximations, which can suffer from poor distributional

tail approximations under model misspecification [21].

We validate the epiTree pipeline in two case studies of UK Biobank data: (i) predicting red

hair and (ii) predicting mutliple sclerosis (MS). In the red hair case study, pairwise epistatic

interactions among unlinked genes surrounding MC1R have been previously reported [15].

We rediscover MC1R-related interactions and discover new interactions, for example pairwise

interactions among genes that were not previously associated with red hair (e.g. UPF3A,

SIAH2); pairwise interactions between genes individually associated with hair color but not

previously reported as interacting; as well as high-order (up to order-4) interactions which

other methods cannot typically detect. In the MS case study, we discover several pairwise and

one order-3 interaction among unlinked genes surrounding HLA-DRB1, which has been asso-

ciated with MS across several populations [22–24], and involving genes associated with biolog-

ical processes implicated in MS. We note that epistatic interactions in the MS case study are

less-studied, see however [25–27]. The ranked epistastic interactions by our PCS p-values

serve as a predictive and stable source of evidence for designing follow-up experiments to con-

firm such interactions. We believe the proposed epiTree pipeline reduces the design space of

such experiments compared to standard analyses of epistasis.

Materials and methods

Ethics statement

This research was covered by the UK Biobank ethics agreement. UK Biobank has approval

from the North West Multi-centre Research Ethics Committee (MREC). Complete details of

all UK Biobank procedures are available at www.ukbiobank.ac.uk. All participants provided

written informed consent.

Phenotype and genotype data from the UK Biobank

As positive control case study for epiTree, we analyzed epistatic interactions in UK Biobank

data associated with a previously-studied, genetically-driven phenotype: red hair [15]. We con-

sidered a total of 337,535 unrelated white British individuals and their self-reported hair color

(Data field 1747; 15,326 with Red hair: positive cases and 322,209 individuals with Blonde,

Light Brown, Dark Brown, Black, or Other hair color: controls). We searched for

interactions in a balanced, random sample of cases and controls (15,000 red hair individuals

and 15,000 controls). To assess the generalizability of our results to unobserved data, we per-

formed a random sample split into training and test sets with 26K training samples and 4K test

samples. We note that, in general, one might prefer non-randomly to randomly sampled test

sets—e.g., a data from an external experiment. Such an external data set was non available to

us in this setting.

We modeled hair color using * 15, 000, 000 common variants imputed to the Haplotype

Reference Consortium (HRC) and UK10K reference panels from *800, 000 directly geno-

typed variants, which were obtained by UK Biobank using one of two similar arrays [28].

Details regarding the ascertainment and quality control of these genotypes have been previ-

ously described [15, 28]. In brief, genotyped variants were subject to outlier-based filtration on

effects due to batch, plate, sex, array, as well as discordance across control replicates. Samples
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with excess heterozygosity or missingness were excluded from the data release. Imputed vari-

ants were further subject to filtration based on Hardy-Weinburg equilibrium, missingness in

white British individuals, minor allele frequency (> 10−4), and imputation quality. Respective

details on phenotype and genotype data for the MS case study can be found in Section S1.8. in

S1 File.

Two-step interaction screening with biologically inspired dimension

reduction

We developed a two-step procedure for screening interactions to improve computational effi-

ciency and help stabilize of results. First, we aggregated SNP-level information by gene to

search for gene-level interactions associated with the target phenotype. This initial step (i) sub-

stantially reduced dimensionality of the data and (ii) detected interactions at the level of a bio-

logically interpretable unit. Second, variants surrounding putatively interacting genes were

selected to search for SNP-level interactions.

Gene-level interactions. For the red hair case study we estimated gene expression levels

in skin tissue (see Section S1.8 in S1 File for respective details on the MS case study), which

captures melanocyte biology and pigmentation, from the individual SNP data using PrediXcan

[29]. In brief, PrediXcan predicts tissue-specific gene expression levels using elastic net models

trained on GTEx v7 data [30]. From a statistical perspective, this mapping serves as dimension-

ality reduction step, reducing the number of genetic features from * 107 variants to * 104

genes. We then searched for non-linear interactions between estimated expression levels and

the target phenotype using iterative random forests (iRF) [31] (see below).

SNP-level interactions. We selected variants within +/- 1MB of putatively interacting

genes and re-ran iRF over this reduced subset to search for candidate SNP interactions. The

selection of 1MB is a trade-off between (i) being large enough to include variants surrounding

a gene that may also be associated with the response and (ii) being small enough to result in a

reasonable absolute number of SNP features. From a statistical perspective, it would be suffi-

cient to only select variants included in putatively interacting genes’ PrediXcan models. How-

ever, it is possible that variants within a gene region but not included in the PrediXcan model

exhibit stronger interactive effects.

The overall two-step procedure is illustrated in Fig 1. Our procedure identified variant- and

gene-level interactions that capture nonlinear dependencies over arbitrary sets of variants/genes.

The ability to model interactions among any set of genes arises directly from our use of iRF,

which models the joint contribution of all genes simultaneously. We also explored a complemen-

tary one-step approach to directly search for variant-level interactions, by pre-filtering variants

based on iRF applied to variant-sub-batches, which is discussed in further detail in the S1 File.

It is important to note that individual SNP weights in PrediXcan models are based on each

SNP’s association with a gene’s expression levels. Our proposed approach is therefore explicitly

focused on detecting interactions where changes in gene expression levels are non-additively

associated with the target phenotype. By filtering to these gene-level interactions in the first

stage, we expect to detect SNP-level interactions among variants that are also associated with

changes in gene. Variants that result in functional changes to a protein without influencing its

expression level may be missed by our approach.

iRF non-linear model selection

Given a set of features (either estimated gene expression or individual genetic variants), we

applied iRF [31, 32] as a non-linear model selection step to extract candidate interactions from

the training data. The iRF algorithm fits a series of feature-weighted random forests (RF) [33]
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to iteratively stabilize feature selection along the decision paths of trees in the forest. After the

final iteration, iRF identifies stable candidate interactions by searching for features that fre-

quently co-occur on decision tree paths using random intersection trees (RIT) [34]. In addi-

tion to the interactions explicitly identified by iRF, we further expanded our set of candidate

interactions for PCS epistasis inference (see below) by taking all inter-chromosome pairwise

interactions among the top 50 iRF genes (with respect to Gini importance).

A key benefit of iRF is that the computational complexity of searching for interactions does

not grow exponentially with the size of an interaction. This allowed us to identify high-order

(i.e. beyond pairwise) Boolean interactions in a computationally tractable manner. Moreover,

accuracy of iRF predictions on the hold-out test data provides a measure of generalizability for

our non-linear model selection method, and correspondingly, the identified interactions.

Finally, iRF detects known interactions in both simulation and biological case studies [31, 32, 35,

36] and analytically tractable versions of iRF yield provably consistent interaction discovery [37].

Predictability, Computability, Stability (PCS) inference for epistatic

interactions based on Boolean models

The significance of a candidate interaction for a binary phenotype is traditionally evaluated

through logistic regression (see Section S1.1.2 in S1 File for a recap). However, the model

Fig 1. Illustration of the two-step procedure, from gene level analysis (A.) to variant level analysis (B.), for extraction of candidate interactions. A.

First row from left to right: from approx. 107 variants (a.) tissue specific transcripts for approx. 104 genes (b.) are imputed using the software PrediXcan.

Then the epiTree pipeline is applied to extract interactions for the gene expression features. B. Second row from left to right: for all genes that appear in

interactions from the first step (f.), variants within 1MB of the start or end of an interacting gene are extracted (g.). Then the epiTree pipeline is applied to

extract interactions for the variant features. For both, gene and variant level analysis, the epiTree pipeline first applies iRF (c./h.) to extract candidate

interactions and then calculates PCS p-values for these candidate interactions on hold-out test data (d./i.). This results in the final set of selected gene-level

interactions (e.) and variant level interactions (j.).

https://doi.org/10.1371/journal.pone.0298906.g001
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imposed by logistic regression—including a response rescaling, transformations of gene

expression data, and the polynomial interaction term—does not arise from a known biological

observation or mechanism. Indeed, additive or multiplicative forms may not capture the sto-

chastic nature of living systems or threshold effects commonly observed in molecular and cel-

lular phenomena [38–41]. A mathematically inaccurate representation of the biological

mechanism of action between multiple genetic loci may result in unstable and irreproducible

results that provide a poor fit of the data.

To address these issues, we developed a PCS epistasis p-value to evaluate. The PCS frame-

work, recently proposed in [20], is based on the three core principles of data science: Predict-

ability, Computability and Stability (PCS). It unifies and expands ideas from machine learning

and statistics by using predictivity as a universal reality (or model) check, appropriate compu-

tational strategies for every step of an analysis process including simulating realistic reference/

null distributions, and stability analysis to assess reproducibility at every stage of an analysis—

from problem formulation/data collection, to modeling including inference, and to post-hoc

model interpretations. PCS epistasis p-values are based on Boolean models of non-epistasis

(null) and epistasis (alternative), learned adaptively from training data, and evaluated on hold-

out test data. This approach has the advantage of being able to learn flexible interaction forms

from the training data, rather than assuming multiplicative interactions that lack biological

justification [8, 9, 11, 42].

No epistasis (null) model. Consider an interaction between genes A and B, (or a collec-

tion of interacting features in the set). We define the non-epistasis (null) model as an additive

combination of decision trees fit to individual features using the training set samples and com-

bined with backfitting:

H0 : Pðy ¼ 1 j a; bÞ ¼ CARTAðaÞ þ CARTBðbÞ;

where CART denotes a “Classification And Regression Tree” (see [43]). We stress that the null

model H0 also covers the case where the response P(y = 1|a, b) only depends on one of the

genes A or B, or on neither of them, with CARTA and/or CARTB equal to a constant.

For higher-order interactions, say of the feature set I with |I| > 2, the null model can be

defined in a similar way. In this case however, lower-order interactions among features I0 ⊊ I
must also be taken into account. We address this by defining the null model of no-epistasis

based on disjoint partitions of features I into two groups I1 and I2, which can be considered as

two disconnected graphs. Features within each group (subgraph) can interact with each other

via a decision tree model CARTIi
, with i = 1, 2, but features between the two groups (sub-

graphs) cannot. The overall no-epistasis null model for the epiTree p-values then corresponds

to the sum of the two individual trees, such that features between the two groups do not inter-

act with each other. More precisely, for a dth-order interaction with d features I = {A1, . . ., Ad},

we consider

H0 : Pðy ¼ 1 j a1; . . . ; adÞ ¼ CART1ðI1Þ þ CART2ðI2Þ;

with I1 [ I2 ¼ fa1; . . . ; adg; I1; I2 6¼ ;; and I1 \ I2 ¼ ;;

where I1 and I2 correspond to the partition which yield the highest prediction accuracy on the

test data. We give details on the construction of p-values for higher-order interactions in the

S1 File (see Section S1.1.9 in S1 File).

Epistasis (alternative) model. The epistasis (alternative) model is based on a single deci-

sion tree fit on training set samples and all features in an interaction. That is, the alternative
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model (no-epistasis) for a pairwise interaction is of the form

H1 : Pðy ¼ 1 j a; bÞ ¼ CARTABða; bÞ:

For a higher-order interaction of size d the alternative model corresponds in an analog way to

a single decision tree taking all d features as input. E.g., for an interaction of size 4 with genes

A,B,C, and D, the alternative model takes the form H1 : P(y = 1|a, b, c, d) = CARTABCD(a, b, c,
d). See Section S1.1.9 in S1 File for further details. An example from the red hair case study for

fitted null and alternative models is shown in Fig 2 for the two genetic features A = ASIP and B

= DEF8, see also the S9 Fig in S1 File for response surfaces that show penetrance as a function

of interacting genes.

Tuning parameter selection. The CART algorithm, which is used to fit the models

CARTA, CARTB, CARTAB on the training data, depends on tuning parameters that influence

the depth of these trees. We select these tuning parameters for each candidate interaction sepa-

rately to ensure that the interaction model CARTAB is as shallow as possible, while still captur-

ing interactions between genes A and B—i.e., both genes A and B appear in the CART model.

This depth constraint helps prevent overfitting, while guaranteeing that the complexity of all

trees, CARTAB, CARTA, CARTB, is comparable.

We note that our approach to tuning parameter selection results in different tuning param-

eters for each candidate interaction (i.e., decision tree model). If one selected a single (fixed)

parameter for all interactions, then CART models would not necessarily contain all gene fea-

tures involved in an interaction. More details on how we select the tuning parameters are

given in Section S1.4 in S1 File, where we demonstrate that interactions with significant PCS

p-values using shallow trees remain significant with deeper trees (i.e., our results are stable

Fig 2. Example for the decision tree-based null model (no-epistasis) shown in top row (A.) and alternative model (epistasis) shown in bottom row

(B.), for gene expression features A = ASIP and B = DEF8, which are tested for via the PCS p-values. The models where fitted using the CART

algorithm [33] on the training data. The decimal digits at the tip nodes correspond to the predicted probability of red hair. The percentage at the tip nodes

corresponds to the percentage of training observations falling into this tip node.

https://doi.org/10.1371/journal.pone.0298906.g002
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with respect to the tuning parameters of CART). Finally, we stress that by choosing shallow

trees for the interaction model, our results also become more interpretable.

PCS inference. For an order-d interaction, PCS p-values are computed by comparing pre-

diction error of the epistasis and the no-epistasis models. Prediction error is quantified using

the log-likelihood, equivalent to cross-entropy for binary responses, and evaluated on hold-out

test data. The epistasis and no-epistasis models are fitted on training data. When the epistasis

model has a worse (or equal) prediction error compared to the no-epistasis model, we report

no significant finding by formally setting the PCS p-value equal to one. That is, prediction on

the test set is used as a screening as stipulated by PCS inference in [20]. Otherwise, we compute

PCS p-values using a modified version of the classical likelihood ratio test, which is designed

to take finite sample variability into account.

Specifically, for an interaction of size d with gene features A1, . . ., Ad and binary responses

Y (e.g., red hair yes/no), we consider b = 1, . . ., B bootstrap samples from the test datasets. We

use the no-epistasis (i.e., additive tree) model, f0(A1, . . ., Ad) = CART1(I1) + CART2(I2), with

I1 [ I2 = {A1, . . ., Ad}, to estimate each observation’s response probability P0|b. We then sample

null perturbation responses Y0|b* Bernoulli(P0|b). Thus, for each bootstrap sample we have a

pair of vectors, Y0|b and Y|b, representing simulated (from the null perturbation) and true

responses, respectively.

We use the likelihood ratio statistic,

TðY;A1; . . . ;AdÞ ¼
PðYjno-epistasis modelÞ
PðYjepistasis modelÞ

¼
PðYjCART1ðI1Þ þ CART2ðI2ÞÞ

PðYjCARTðA1; . . . ;AdÞÞ
;

to quantify the improvement in prediction error of the epistasis model relative to the no-epis-

tasis model. We extend the classical test for finite sample variability by asking whether the

improvement, as quantified by T, is greater under the observed response compared with the

null-perturbation response. That is, we evaluate T(Y|b, A|b)> T(Y0|b, A|b). The PCS p-value is

given as

PCS p � value ¼
1

B

XB

b¼1

TðYjb;AjbÞ > TðY0jb;AjbÞ;

a stabilized version of the likelihood ratio p-value. We provide further details on the derivation

of the PCS p-value in Section S1.1 in S1 File. In practice, one should choose B sufficiently large

such that the PCS p-value converges. A simple derivation (see Section S1.1.8 in S1 File for

details), shows that it is easy to approximate the PCS p-value (conditioned on the data) as B

tends to infinity, which we have done for the red hair analysis.

We call this new test the epiTree test. As a result, the quality of an interaction is directly

related to its prediction accuracy on hold-out test data. A detailed description of underly-

ing assumptions and derivation of the PCS p-value is presented in the Supplementary

Information, see Section S1.1 in S1 File. We also provide an illustrative example for PCS

p-values, which provides some additional intuition about PCS p-values in Section S1.6 in

S1 File.

The results presented next are PCS epistasis p-values for gene level interactions found by

iRF. We also present comparisons to the p-values obtained by a standard logistic regression

analysis, see e.g., S15, S16 Figs in S1 File. We note that PCS inference could also be used to

assess the significance of interaction terms in a logistic regression model, but we do not con-

sider such an analysis in this paper.
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Results

Red hair

To assess how well genotype/phenotype relationships learned by iRF (e.g., predicting ‘red hair’

phenotype from the gene and variant features, respectively) generalized to new samples, we

evaluated prediction accuracy on the hold-out test set. Fig 3 reports ROC curves for the predic-

tion accuracy of iRF and competitors on the gene level (left) and variant level (right) (all fit

using training data): penalized logistic regression with L1 penalty term and random forests

(RF). With an area under the ROC curve (AUROC) of 0.93 (95% bootstrap confidence interval

was [0.922, 0.936]) on hold-out test data, iRF demonstrates high prediction accuracy and out-

performs its closest competitor (penalized logistic regression AUROC = 0.9, 95% bootstrap

confidence interval of [0.894, 0.913]; ranger AUROC = 0.88, 95% bootstrap confidence interval

of [0.871, 0.892]).

Before conducting inference on interactions recovered by iRF, we applied two filtering

steps. First, we performed n.bootstrap = 50 bootstrap replicates of the iRF search and

removed interactions appearing in fewer than 50% of these replicates. Second, we removed

interactions among genes/variants that were in high linkage disequilibrium (LD) as it has been

well-documented that LD can lead to spurious estimates of epistasis [19, 44, 45]. We note that

many of the gene-level interactions we detected were among genes in the vicinity of MC1R

(S23 Fig in S1 File; LD R2 of at least 40% for all removed interactions); our LD filtering was

equivalent to restricting results to interactions among genes/variants on different chromo-

somes. This resulted in 10 order-2, 6 order-3, and 2 order-4 interactions (gene-level analysis,

Fig 5, see also Fig 4) as well as 25 order-2 and 3 order-3 interactions (SNP-level analysis, Fig 6),

Fig 3. ROC curves of iRF prediction model and competitors on hold out test data. “Lasso” stands for a logistic regression model with an additive L1

penalty term on the parameter vector, i.e., a lasso type estimator. The lambda tuning parameter was selected via cross validation using the cv.glmnet R

function from the glmnet R package. The “ranger” competitor corresponds to the random forest implementation of the R package ranger with default

parameters. Left (A.): using the gene expression features to train a model which predicts ‘red hair’. Right (B.): using the variant features to train a model

which predicts ‘red hair’. P-values testing for a difference between iRF’s ROC curve and the respective competitors are computed using the R package pROC
and function roc.test, using DeLong’s Algorithm [63].

https://doi.org/10.1371/journal.pone.0298906.g003
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representing a massive reduction in the* 1016 possible order-4 interactions among * 104

genes. See also S23 Fig in S1 File, which shows the number of discovered interactions per inter-

action-order within the individual screening steps. Interactions primarily centered around

genes in the MC1R and ASIP regions, which corroborates previously reported epistatic interac-

tions surrounding red hair, see [15]. We stress that while other works a priori restrict their

search to interactions involving MC1R, our approach does not require such pre-selection.

We evaluated the significance of the individual candidate interactions using PCS epistasis

inference (Figs 5 and 6; comparisons with logistic regression reported in S15, S16 Figs in S1

File). Interactions with significant PCS p-value (< 0.05 with Bonferroni correction) corre-

spond to those for which the epistasis model results in a stable decrease in prediction error rel-

ative to the no epistasis model. For several of these interactions, CART tree-based models

show a considerable improvement in prediction error relative to logistic regression (e.g. ASIP,

TUBB3; ASIP, VPS9D1; S15, S16 Figs in S1 File). In contrast, prediction accuracy of the epista-

sis model shows little improvement over the no epistasis model for interactions that are signifi-

cant with respect to the logistic regression p-value. This finding suggests that the thresholding,

Boolean form of interactions used by CART is a more accurate model of interaction behavior

between genes comapred with the polynomial interaction model used by logistic regression.

We hypothesize that this is a result of thresholding behavior that has been previously observed

in biomolecular interactions [38–41].

Multiple sclerosis. We further evaluated the epiTree pipeline in the context of multiple

sclerosis (MS), a chronic, autoimmune disorder of the central nervous system. Since MS is

known to be more prevalent in women [46], we trained separate “Male” and “Female” models

both when searching for interactions and conducting inference. MS is believed to be influ-

enced by both genetic and environmental factors [46], making it an inherently more complex

phenotype to study compared with red hair. There are a range of genetic variants and biologi-

cal processes which have been associated with the disorder [22–24, 47–51]. The most promi-

nent ones correspond to genes in the MHC class II region, in particular surrounding

HLA-DRB1, [26]. There exists evidence obtained from family data for epistatic interactions

Fig 4. Location of the coding region for the 8 chromosome 16 genes which appear in the stable gene level interactions found by iRF, together with the

location of the MC1R gene.

https://doi.org/10.1371/journal.pone.0298906.g004
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within the HLA-DRB1 region [25–27]. However, as noted above, for general cohort data as

considered here, high linkage between variants / genes can result in spurious estimates of epis-

tasis [19, 44, 45]. We are not aware of any results for epistatic interactions for the MS pheno-

type among genetically unlinked genes. In light of this complexity, we sought to determine

Fig 5. List of stable gene level interactions found by iRF (stability score> 0.5). The fist column shows the prediction error (defined as cross-entropy, see

supplementary Section S1.1.6) on the test data of the learned CART models for both, no-epistasis (NULL, orange) and epistasis (alternative, gray). The

second column shows the PCS p-value on a -log10 scale and the numeric value is shown on the very right, up to two significant digits. The black vertical

line in the first column shows the prediction error achieved by iRF using all the gene features simultaneously. The chromosome of the respective gene is

shown in parenthesis. The 8 genes on chromosome 16 all have their coding region in the vicinity of the MC1R gene, as shown in Fig 4. Note that the

prediction error of the Null model can be less than the prediction error of the alternative model, as they are evaluated on hold-out test data. Whenever this

happens the PCS p-values is 1 by construction.

https://doi.org/10.1371/journal.pone.0298906.g005

Fig 6. Same as Fig 5 for the top 10 order two variant level interactions.

https://doi.org/10.1371/journal.pone.0298906.g006
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whether epiTree could identify plausible interaction hypotheses among unlinked genes—sur-

rounding variants and biological processes previously implicated in MS. Here, epiTree rank-

ings can be viewed as narrowing the search space of possible interactions. We found that of the

seven top-ranked interactions with non-significant (with Bonferroni correction) but small

PCS p-value (< 0.1), five involve genes that have all been previously associated with MS or

related processes. These five gene interactions are HLA-DRB1 + ZNF771 and HLA-DRB1

+ SLC1A6 (in male subjects) and HLA-DRB1 + NDUFS2, HLA-DRB1 + STEAP3, and

HLA-DRB5 + WDR18 + POC5 (in female subjects). Further details are provided in the ‘Bio-

logical findings’ section below.

PCS detects different types of epistasis

PCS epistasis and logistic regression p-values can differ substantially. This reflects the fact that

each captures a different form of interaction, and thus, different genotype/phenotype relation-

ships. The PCS p-values, based on CART models, operate directly on the penetrance scale and

capture thresholding-type behavior. Logistic regression considers epistasis on a logit scale and

is restricted to polynomial interaction terms. A key advantage of having CART as the building

block for PCS p-values in our epiTree test is that interaction behavior is interpretable and eas-

ily visualized via the respective decision trees (Fig 2 for an example). We highlight two exam-

ples from the red hair case study below.

First, we considered interactions where PCS epistasis p-values were significant and logistic

regression p-values were not. For example, the interaction between ASIP and TUBB3 shows

the greatest difference between PCS and classical p-values (see S15 Fig in S1 File and Fig 5).

Fig 7 reports response surfaces, indicating penetrance (P(red hair)) as a function of interacting

features (top/bottom rows: logistic regression/CART, left/right columns: non-epistasis/epista-

sis models). For comparison, we report the smoothed distribution of test data as ground truth

(Fig 7e). Here, the polynomial interaction term assumed by logistic regression fails to capture

the non-monotic relationship between TUBB3 and P(red hair). On the other hand, the CART

model more accurately captures this relationship, which is confirmed by the improvement in

prediction accuracy relative to logistic regression (S15 Fig in S1 File). In other words, the PCS

p-value detects a non-additive, epistatic relation between the two genes that cannot be cap-

tured by the logistic regression model. Such non-monotonic behaviour, as it is observed in Fig

7, is common among PrediXcan estimated gene expression features. This is due to the fact that

estimated expression of a single gene corresponds to a weighted linear combination of discrete

variants. When a small number of variants are strongly associated with the response and have

large PrediXcan weights for a given gene, the response surface exhibits marked transitions that

correspond to different values of the highly weighted variants. This is exactly the case for

TUBB3, with 25% of its weight mass on the variant rs8048449, which shows strong marginal

association with red hair. A similar example for the interaction ASIP—DBNDD1 is shown in

Fig 8.

Second, we considered interactions where PCS epistasis p-values were not significant and

logistic regression p-values were. For example, the interaction between DEF8 and ASIP has

highly significant logistic regression p-value (S1 File). The response surfaces indicate that these

models differ most in the region where DEF8 is small and ASIP is large. While the logistic

regression model estimates a high probability of red hair in this region, there is limited data to

support how responses behave here. Indeed, all four models (logistic regression non-epistasis,

logistic regression epistasis, CART non-epistasis, CART epistasis) achieve nearly identical pre-

diction accuracy (with average cross entropies of 0.624, 0.620, 0.622, 0.630, see S15 Fig in S1

File and Fig 5). In other words, there is no evidence with respect to prediction accuracy that a
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Fig 7. Response surface for ASIP—TUBB3, right plot (e.): smoothed test data is shown with colored hexagons providing percentage of red hair as a color

code for the test data in specific hexagon (hexagons are drops when they contain less than 5 data points); left plot (a.—d.): response surfaces for fitted

models; top (a./b.): logistic regression model, bottom (c./d.): CART based model, right (b./d.): epistasis model, left (a./c.): non-epistasis model.

https://doi.org/10.1371/journal.pone.0298906.g007

Fig 8. Response surface for ASIP—DBNDD1, otherwise as Fig 7.

https://doi.org/10.1371/journal.pone.0298906.g008
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particular model should be preferred, despite the significance of the classical logistic regression

p-value. S12 Fig in S1 File shows another example for the interaction ZNF276-RPL36P4 where

the PCS p-value is not significant but the logistic regression p-value is. Here, the data clearly

shows a non-linear relationship in one of the variables, which cannot be captured by the linear

components of the null model for logistic regression. CART can capture such a relation well

and outperforms logistic regression with a simple additive relationship. That is, the logistic

regression significant p-values appear to be driven by a main effect that is not captured by the

linear form of main effect in logistic regression.

We provide a similar discussion for the remaining three pairwise interactions for which

either the PCS p-value or the logistic regression p-value was significant (with Bonferroni cor-

rection) in Section S1.2. in S1 File.

Biological findings

EpiTree interactions recapitulate epistasis between MC1R and ASIP. For the red hair

case study, the epiTree pipeline recovered several epistatic interactions between the MC1R and

ASIP region, both on the gene and variant levels (Figs 5 and 6), that have previously been

linked to red hair [15]. The MC1R gene on chromosome 16 is an evolutionarily conserved reg-

ulator of pigmentation with a strong association with the red hair phenotype in humans. As a

result, other works, studying epistasis related to red-hair, restrict to interactions between vari-

ants in the MC1R region and other marginally associated regions as a pre-filtering step to

reduce the overall search space for interactions, see [15]. We stress that our pipeline does not

rely on any such a priori knowledge and still recovers the MC1R and ASIP interaction, making

it particularly valuable for phenotypes that have not been studied extensively.

EpiTree identifies novel higher-order interactions associated with red hair. The epi-

Tree pipeline recovered several higher-order interactions, which is not computationally feasi-

ble in most other epistasis pipelines with a few exceptions where order three interactions are

considered, e.g., in [52]. For example, the top order three interaction between ASIP, DBNDD1,

and SPIRE2 had significant PCS p-value with Bonferroni correction. Moreover, the respective

CART interaction model showed a strong increase in prediction accuracy, compared to the

additive CART model (no-epistasis), as well as both logistic regression models (epistasis and

non-epistasis). We note that DBNDD1 and SPIRE2 are both genes on chromosome 16 which

are just 200 kb apart. Thus, in this case, we cannot rule out the effect of strong genetic linkage

which may result in spurious detection of epistasis.

EpiTree suggests interactions among genes not previously associated with red hair. In

addition to recapitulating well established epistatic interactions between MC1R and ASIP, our

pipeline epiTree also provides new insights for the red hair phenotype. The iRF model selec-

tion step identified two genes that were not previously associated with red hair: UPF3A and

SIAH2, both involved in interactions with genes neighboring MC1R (DBNDD1 + UPF3A and

CDK10 + SIAH2). However, neither the PCS p-values nor the logistic regression p-values were

significant for these interactions and also the subsequent iRF variant interaction filtering did

not result in any epistasis related to these genes. Consequently, we cannot report those interac-

tions as significant findings. Nonetheless, we do see some further indication for potential asso-

ciation of these genes with red hair. In the pairwise gene level search of the top iRF genes,

both, UPF3A and SIAH2, appear among the top interactions with respect to logistic regression

p-value, with logistic regression p-value< 0.01, see S20 Fig in S1 File. We note however, that

with Bonferroni correction the respective p-values are not significant. Moreover, we note that

the PCS p-value, while providing comparable or even higher prediction accuracy, was not sig-

nificant for the same interactions. In summary, with the current data at hand, we cannot report
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any strong statistical evidence for the association of UPF3A and SIAH2 with red hair, but these

are suggestive of further investigations with new data.

EpiTree identifies evidence of epistasis among genes previously associated with red

hair. For the pairwise, inter-chromosome gene-level analysis of the top 50 iRF genes, we

found that an interaction between PKHD1 (chr 6) and XPOTP1 (chr 20) was among the top

interactions in terms of PCS p-value, with the CART model from PCS also showing some

improvement in terms of prediction accuracy compared to the logistic regression models. The

respective response surface and interaction CART model, shown in S13, S14 in S1 File, sug-

gests a thresholding of gene expression levels with the red hair phenotype. In particular, one

observes a decrease in red hair penetrance when gene expression of both, PKHD1 and

XPOTP1, are small and an increase when both are large. Otherwise, when one is small and the

other is large, one observes an average red hair penetrance of around 50% (recall that we con-

sider a balanced sample in this analysis). This interaction behavior is well described by the

tree-based model used in the PCS p-value and results in a PCS p-value of * 10−3, although we

note that this p-value is not significant after Bonferroni correction for all pairs of genes that

were tested and thus, we cannot report this interaction as a statistically significant finding. We

note that both, PKHD1 and XPOTP1, have been associated with hair color previously. In par-

ticular, in the recent work [15] both genes had reported epistasis with MC1R. However, epista-

sis between the two genes has not been previously described.

Top-ranked interactions associated with MS surround HLA-DRB1. In the MS case

study, iRF models obtained AUROC of 0.58 and 0.63 for male and female samples respectively,

see S24 Fig in S1 File. As in the red hair case study, we considered stable interactions

(stability > 0.5) with genes from different chromosomes to avoid spurious interactions from

high linkage. iRF detected 209 and 60 such interactions for male and female subjects, respec-

tively. After applying the epiTree test to these interactions, we found that most of them had

PCS p-value equal to 1 and none of them were significant after Bonferroni correction. How-

ever, for the male subjects we found that 2 and for the female subjects 5 interactions had a PCS

p-value < 0.1 (without Bonferroni correction). These interactions are displayed in S25 Fig in

S1 File. In both male and female samples, all of these interactions involved HLA-DRB1, which

has been associated with MS across multiple populations [22–24], or HLA-DRB5, which is in

high LD with HLA-DRB1. Of the two interactions surrounding HLD-DRB1 detected in males,

one involves ZNF771—a gene that has been associated with male MS in transcriptomic meta

analysis [47], while the other involves SLC1A6—a gene involved in regulation of the neuro-

transmitter glutamate [53], which is present in excess levels in MS patients [48]. In females, 3 /

5 interactions surrounding HLA-DRB1 involve genes that are either explicitly associated with

MS or involved in processes known to be dysregulated in MS. NDUFS2, which is involved in

Mitochondiral Complex I, has been previously associated with MS [51]. STEAP and WDR18

are involved in ion transport and RNA metabolism, processes that have been previously

reported as dysregulated in MS [49, 50], while mutations in POC5 have been associated with

increased BMI [50], a known risk factor for MS [54]. While there is no gold standard for

genetic interactions associated with MS, these results point to interesting hypotheses—the

majority of which involve genes that are individually linked to MS and/or processes believed

to be involved in its etiology.

PCS epistasis p-values detect diverse interaction forms in simulation

studies

To evaluate the performance of epistasis inference methods, we conducted a series of data-

based simulations comparing (i) epiTree PCS epistasis p-values (ii) logistic regression p-values
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(iii) permutation random forest (pRF) p-values [55]. We generated responses using four differ-

ent models, each corresponding to a different form of interaction, applied to the gene expres-

sion data from the red hair case study. For each response generating model, we generated a set

of candidate interactions using iRF and computed p-values for each inference method. For

three of the four response generating models, epiTree both consistently recovered true interac-

tion(s) (along with subsets of interacting features) and ranked these interactions as most signif-

icant across all candidates. In contrast, pRF consistently recovered true interactions in 2/4

response generating models. However, pRF tended to rank any candidate interaction that

included the true interaction as highly significant (even if the candidate included inactive fea-

tures). Finally, logistic regression recovered the true interaction in 2/4 response generating

models, though at a lower significance level and with greater variability. For a detailed descrip-

tion of our simulation study and results, see Section S1.7 in S1 File.

Discussion

Summary of findings

Here we introduce the epiTree pipeline, building on a novel tree-based method and PCS

framework, to detect epistasis. epiTree is grounded in a biologically relevant dimensional-

reduction schema derived from tissue-specific gene expression to derive variant-level interac-

tions, and additionally, may detect interactions of between more than two loci. A particular

advantage of our methodology is that it allow for flexible forms of Boolean interactions and

additive components. For many interactions, we find that this flexibility provides better fit to

the data compared with multiplicative terms used in logistic regression. Moreover, by model-

ing responses directly on the penetrance scale, our approach avoids the need for transforming

responses as, e.g., performed in logistic regression.

Without prior knowledge of the phenotype of red-hair coloration, our approach detects

known interactions between MC1R (and nearby genes related to pigmentation) and ASIP, as

well as novel interactions between CDK10 and SIAH2. Our findings may suggest a previously

unrecognized relationship between SIAH2 and the red hair phenotype. Interestingly, SIAH2 is

known to be associated with breast cancer risk and cellular response to hypoxia -a phenotype

that has been associated with melanoma and pigmentation in general [56]. The red hair phe-

notype, which was considered in this manuscript, mainly served as an illustrative example for

the epiTree pipeline. We selected this phenotype because of its well established epistasis that

provides a positive control for interaction discovery. We stress that for further validation

regarding new epistasis findings for the red hair phenotype independent data will be needed.

We also consider another case study for the more complex phenotype of multiple sclerosis

(MS). While epiTree detects interactions among genes related to processes dysregulated in

MS, we are not aware of previously reported findings on gene-level interactions among

unlinked genes associated with MS to benchmark against.

Related work. Previous approaches typically screen variants based on main effects due

to computational constraints [15, 52, 57, 58], which may miss interacting genetic variants

with weak main effects. The tree-based approach presented here does not limit analysis to

variants with a strong main effect, however we note that decision tree-based methods have

been proposed before in epistasis, e.g., [52, 57, 59, 60]. In [52, 57] they are used to obtain

marginal feature importance for the individual variant features from which candidate inter-

actions are extracted either via a brute force search or with the help of phasing, in particular,

independent of the phenotype under consideration. In contrast, going beyond main effect

genes, iRF explicitly exploits the structure of the trees in a forest to extract Boolean interac-

tions by interpreting frequently co-occurring features along the paths of trees as
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interactions. Similar to iRF, [59, 60] take the joint appearance of features on a decision path

as a measure of interaction. [59] interpret every path in a collection of boosted decision

trees as a candidate interaction. To ensure the set of reported interactions is a manageable

size, the authors restrict their search to interactions among at most d variants (with d = 5

being the default value). In contrast, iRF employs the stability principle [20, 61]—reporting

feature combinations that frequently co-occur rather than the entire set of decision paths—

to filter the set of candidate interactions with no restriction on size, after soft-dimensional-

ity reduction through iterations of RF. [60], on the other hand, extract a measure of interac-

tion strength from an RF for a pre-selected interaction. Moreover, their approach does not

provide a way to extract candidate interactions from the trees as is done in iRF via the RIT

algorithm; thus, it also requires a brute force search in practice. We are not aware of any

other tree-based method for epistasis that incorporates stability driven bootstrap sub-sam-

pling into its pipeline for screening interactions. More importantly, all these previous works

do not develop a significance test or p-value that is based on tree models to evaluate the

found interactions.

Limitations and directions for future work

Our application of iRF is based upon biologically-relevant dimensional reduction in the form

of estimated tissue-specific expression values derived from GTeX via PrediXcan [29]. While

this approach detects both known and previously undescribed epistasis, it depends on the

accuracy of gene expression estimates derived from bulk RNA sequencing on heterogeneous

cell types. We make the assumption that tissue-specific data is sufficiently representative of the

biology from which the phenotype of interest is derived. This assumption of representativeness

is not likely to hold for traits deriving from rare cell types or from tissues and cell-types, which

are not sampled in GTeX in the first place. Additionally, we note that the number of individu-

als in GTeX is not currently representative of all population strata, which serves to limit the

application of our approach for detection of epistasis to human phenotypes by excluding

diverse genetic populations. Finally, our use of PrediXcan for dimensionality reduction models

epistatic relationships at the level of transcription, which may miss variants that are not associ-

ated with changes in gene expression levels. Nevertheless, our epiTree test is a stand-alone test

for epistasis of any given interaction relative to a phenotype that arises from other knowledge

rather than the PrediXcan.

In principle, the epiTree pipeline can detect interactions of arbitrary order. However, the

maximal detectable interaction order depends on tree depth—for the iRF screening step an

interaction corresponds to subsets of features on individual decision paths. In general, the

depths of a decision tree learned from data scales logarithmically with the number of samples.

This implies that, in general, we cannot detect interactions of order higher than OðlnðnÞÞ.
From a practical perspective, this limitation is fairly minor as even order-3 interactions remain

unexplored in many biological settings. A corollary of this limitation is that the number of

samples falling into an individual leaf node splitting on d features is Oðn=2dÞ (assuming bal-

anced splits), where n is the sample size. Thus for an interaction represented by a single leaf

node, n/2d needs to be large enough to detect deviation from additivity. Thus, detection of

higher-order interactions becomes exponentially more difficult as the size of the interaction

increases. This problem applies not just to the epiTree pipeline, but to interaction discovery in

general, where the size of all possible candidate interactions of order d grows exponentially.

However, while traditional methods that screen through all possible interactions are typically

restricted to pairwise interaction due to computational reasons, the epiTree pipeline can detect

interactions of higher order if the interaction signal is strong enough. More mathematical
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details on how the order of an interaction enters the complexity of the interaction discovery

problem for Boolean interaction recovery with a theoretically tractable version of iRF can be

found in [37].

Another potential limitation of the iRF interaction screening is that it does not explicitly

take the genomic location of individual features into account. Even on the gene expression

level, features that are close-by on the genome are typically highly correlated. Such features

might appear exchangeably in interactions, as observed for the red hair phenotype with MC1R,

see Fig 5. More generally, it is well known that for random forest based algorithms, correlated

features can lead to masking effects, where the effect of a feature might be hidden by another

dominating, correlated feature [62]. Finally, as discussed earlier, genetic features that are close-

by on the genome might show artificial epistasis that is caused by hidden linkage with unob-

served causal variants. In fact, for the red hair phenotype iRF reported various interactions

among genes in the vicitinity of MC1R (recall Results section) that we filtered out subse-

quently. One idea to overcome these limitations, would be to analyze by haplotypes of merged

close-by genes into a single hyper-feature. However, two correlated genetic features do not

necessarily show the same epistatic behaviour. Thus, there is a general tradeoff. Aggregating

features in this way may increase the ability to detect epistasis by concentrating the forest on a

single feature. On the other hand, aggregation may lead to loss of specificity that decreases the

chance of detecting epistasis. For the red hair analysis, all interactions were either among

genes between different chromosomes, in which case there is no correlation or linkage

between them, or among genes that were all in the vicinity of MC1R and contained variants

that were highly linked to each other (recall Results Section). Therefore, we followed the most

simple approach for the red hair analysis and filtered out interactions on the same chromo-

some. In general, we note that more advanced approaches are possible by taking drop-off of

linkage explicitly into account.

Although, the CART tree-based model that we propose for the PCS p-value (see Materials

and method and Supplementary Information) can describe significantly more flexible additive

and non-additive relationships for the epistasis and non-epistasis model than a single linear or

multiplicative term, we also emphasize that not every functional relationship might be well

described by a relatively simple CART model. In particular, when a relationship is truly linear

or multiplicative, clearly, working with a linear model will be more powerful than a CART

approximation. The response surface plots, as shown in e.g., in Fig 7 and discussed in the

Results section, are a powerful tool to investigate whether CART or linear models might be

more appropriate for the given data at hand. Moreover, we stress that PCS p-values are, in

principle, not restricted to CART models, but could be combined with any learning algorithm

that appears appropriate for the data. As with any machine learning algorithms there is typi-

cally a tradeoff between interpretability and prediction accuracy. We find the CART tree-

based models provide a good balance between both, being sufficiently flexible and very

straight-forward to interpret, while capturing the thresholding behavior of interactions among

many biomolecules.

The epiTree pipeline involves several screening steps in order to result in a set of candidate

interactions, such as estimating gene expression features from the SNP data, applying iRF, and

fitting individual tree-based null and alternative models. We stress, however, that all these

screening steps are based on the training data only, while the final evaluation of the PCS p-val-

ues is based on the hold-out test data. With this sample-split approach, which is well accepted

as a post-selection tool, we obtain valid inference that avoids overfitting from the screening

procedure.

Here, we obtained our training and test data sets from a random sample split. While such

an approach results in valid inference, we recognize that using an independent or external
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data set as test data will be preferred. At the same time, we also recognize that in many cases

such an independent data set will not be available (also for our analysis an independent data

set for the red hair phenotype was not available to us). Therefore, our PCS p-values are

designed in such a way that they explore the full data distribution via bootstrap sampling of

the test-data, which makes them more stable to the somewhat arbitrary choice of the random

sample split.

The sample splitting paradigm that we follow in our approach holds the advantage of sepa-

rating the discovery from the inference stage, which prevents overfitting and thus, makes find-

ings more reliable, in general. We note, however, that compared to classical p-values, the need

of a separate training set, will generally imply that there is less data available to evaluate the p-

values, thus, a decrease in power. However, we note that due to the iRF interaction selection

step, in general our approach requires the testing of orders of magnitude fewer hypotheses

than any brute-force p-value approach. Thus, multiplicity correction of p-values will be much

less of a problem in our pipeline, i.e., less stringent significance thresholds for p-values apply,

which can compensate for this effect.

Conclusion

Our new methodology, the epiTree pipeline, provides an approach to identify predictive and

stable Boolean, epistatic genetic relationships. epiTree goes well beyond multiplicative interac-

tion, providing flexibility to represent a more diverse set of biological interactions, and is capa-

ble of detecting predictive and stable genetic interactions of order three and higher. The two

case studies substantiate the promise of epiTree for epistatic interaction discovery, especially

for complex phenotypes such as MS, where epiTree ranking provides a useful source of info to

reduce design space for follow-up experiments.
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