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Abstract

This paper presents the formulation of conserving time-stepping algorithms for frictionless dy-
namic contact of solids. A new class of finite element methods for these problems is proposed
that exhibit the same conservation laws as the underlying continuum dynamical system. The
proposed methods are based on a penalty regularization of the constrained contact problem, and
lead to full conservation of the total energy of the system (including the regularization penalty
potential) during persistent contact, and restoration of the original energy upon release. Both
linear and angular momenta are conserved by the scheme. Furthermore, the proposed methods
have the ability to enforce the associated constraints in the velocity besides the impenetrability
constraint in the displacements, while preserving the conservation/restoration properties of the
final numerical scheme. A modification of these schemes is proposed that assures positive energy
dissipation if desired (even in the highly nonlinear setting of contact/impact problems), leading
to contact schemes with high frequency energy dissipation. Representative numerical simulations
are presented illustrating the performance of the proposed numerical schemes.

1. Introduction.

The accurate modeling of contact interfaces in solids is one of the main difficulties in
common engineering applications. Typical examples are crashworthiness analyses and the
simulation of metal forming processes. See the contributions in REID & YANG [1993] and
DESIDERI et al [1996], respectively, for recent accounts of these considerations. The ex-
perience accumulated in the past regarding the numerical analysis of contact problems
indicates the inherent difficulty of their solution, the cause being not only the highly non-
linear nature of the problem, but also its unilaterally constrained character. The lack of
robustness of current implicit methods that impose the contact constraint has led in the
past to the consideration of explicit schemes for the numerical solution of contact prob-
lems. The difficulties in the enforcement of these constraints appear often as oscillations
between contact and released states.

* Assistant Professor, Dept. of Civil and Env. Engr., University of California at Berkeley.
! Graduate Research Assistant, Mech. & Comp., Dept. of Mechanical Engr., Stanford University.
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Additional difficulties arise when dynamic problems are considered. The limited con-
ditional stability in time of explicit integration schemes appears as a clear drawback.
Implicit schemes may be employed to recover the desired stability properties but, as it
is well-known, stable numerical schemes for linear problems may loose this property in
the nonlinear context, leading to an unstable increase of the energy during the numerical
simulations. Characteristic examples are the trapezoidal and mid-point rules, two energy
conserving schemes for linear problems that result in energy increase (and actual blow up
of the computation) in nonlinear problems. See e.g. SIMO & TARNOW [1992] for represen-
tative simulations. These drawbacks have led to the consideration of energy/momentum
conserving schemes that do not suffer of this limited (energy) stability properties, as de-
scribed in SIMO & TARNOw [1992], CRISFIELD & SHI [1994], SIMO et al [1995], among
others. We can anticipate that the presence of the high nonlinearity due to the contact
constraint may lead to similar instabilities, as the simulations of Section 4 show. The goal
of the research presented in this paper is the formulation of time-stepping algorithms that
possess the desired temporal stability properties by controlling the evolution of the energy
and that, at the same time, lead to a stable (non-oscillatory) enforcement of the contact
constraints.

A complete account on the numerical analysis of contact problems until the late 1980’s
can be found in KikucHI & ODEN [1988]. Finite element methods for dynamic contact
problems can be found in BELYTSCHKO & NEAL [1991], CARPENTER et al [1991], HAL-
LQUIST et al [1985], HUGHES et al [1976] for explicit integrators, and BATHE & CHAUD-
HARY [1985], KIKUCHI & ODEN [1988] involving implicit integrators for frictionless and
frictional problems, to cite just a few references. The recent works presented in TAYLOR
& PAPADOPOULOS [1993], LEE [1994], and MUNJIZA et al [1995], among others, show the
current interest in the formulation of more robust implicit algorithms for frictionless con-
tact. See also the results presented in ARMERO & PETOCZ [1996]. The robustness of the
numerical scheme requires good stability properties in the limit conservative case, without
relying in the physical dissipation introduced by frictional effects.

The approach proposed herein makes use of the properties of the continuum dynami-
cal system for the formulation and analysis of new and more robust implicit time-stepping
algorithms for contact problems. Assuming no external forces, the total energy, linear and
angular momenta of a system of solids in frictionless contact are conserved. These con-
servation properties are introduced in the newly developed schemes by construction, thus
leading not only to a better modeling of the physical system but also to improved numerical
properties. The new schemes are second order accurate and unconditionally (energy) stable
even in the fully nonlinear finite strain range, as implied by the conservation of the total
energy of the system. The (unilaterally) constrained problem is regularized via a penalty
formulation. Both the constraint in the displacements and the associated constraint in the
velocities are enforced in this manner at the end of each time-step. The (positive) energy
corresponding to the penalty potential is taken into account in the evolution of the energy,
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leading to full restoration of the initial energy of the system of solids upon release (i.e.,
when the regularization potentials are inactive), while the energy never increases during
persistent contact. The total energy of the system (solids plus regularization potentials)
is conserved at all times, leading to the unconditional (energy) stability of the numerical
schemes. These properties are combined with full conservation of angular and linear mo-
menta. Numerical experiments have shown that these improved stability properties lead
to a superior numerical performance when compared to similar traditional schemes (like
the second order mid-point rule). As noted above, high-order standard numerical schemes
usually involve an artificial increase of the energy, which eventually leads to the actual
blow-up of the numerical computation.

Fully energy conserving schemes are appropriate for the long-term simulations of the
interactions of solids in contact, where the main interest is in the accurate resolution of
the configuration of the system in the long-term (and thus its energy content). On the
other hand, short term simulations are employed for the study of high-velocity frontal
impacts (e.g. a rod impacting a rigid wall), requiring then the resolution of solutions
involving a wide frequency spectrum. In fact, weak shocks (discontinuities in the velocity
and strain) dominate completely the solution at these time scales. In these conditions,
high frequency energy dissipation is a desired feature. We emphasize that the application
of standard dissipative schemes developed typically for linear problems do not assure in
general a positive energy dissipation in the numerical scheme, the cause being again the
highly nonlinear nature of the contact problem. We propose herein a simple modification
of the conservative schemes previously developed that accomplishes this feature, and whose
dissipative properties can be rigorously proven.

An outline of the rest of the paper is as follows. Section 2 includes a complete de-
scription of the problem under consideration. The governing equations are summarized in
Section 2.1, with the conservation laws for frictionless contact described in Section 2.2. The
finite element implementation considered in this paper is described in Section 2.3. Next, the
formulation of the new energy-restoring, momentum-conserving scheme proposed herein
is described in detail in Section 3.1, when only the gap constraint in the displacement
is enforced. Rigorous proofs of the conservation properties of the proposed methods as
well as extensions involving high-frequency dissipation are described in detail. Section
3.2 considers the enforcement of the velocity gap constraint, arriving to a similar class
of conserving algorithms. Representative numerical simulations are presented in Section
4 to assess the performance of the proposed methods. Section 5 includes some concluding
remarks. Finally, the consistent linearization of the proposed methods is summarized in a
separate appendix.

2. Problem Description.

We describe in this section the problem and numerical simulation of dynamic contact
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of elastic bodies. Section 2.1 summarizes the governing equations. Section 2.2 describes
the conservation laws associated to this Hamiltonian system. Finally, the finite element
implementation of the governing equations is described in Section 2.3.

2.1. The governing equations.

Consider the motion of two elastic bodies with a reference placement 2% (o = 1, 2),
characterized by the deformations ¢® : 2% x [0,T] — R™™ (ngim = 1,2, or 3). The
results presented herein extend trivially to multi-body interactions, as well as to self-contact
of solids. We identify the material particles of each solid with the reference coordinate
X e unec R™im, Let ¢ := ¢*(X,t) be the current placement of the material particle
X € 2% of the solid « at time t € [0, T]

Denote by P the nominal stresses (first Piola-Kirchhoff stresses) in each solid. The
case of interest corresponds to two hyperelastic solids characterized by respective stored
energy functions W(F'®), where F* = Grade*®, and

_owe

P =Fa

(2.1)

By the principle of material frame indifference, the stored energy function is invariant
under the action of the proper orthogonal group (the rotation group) SO{ngim), that is,

WQF®) = We(F®) vQ € SO(ngim) - (2.2)
Considering a one-parameter group of rotations Q(n) with

d

@ (n) = W e 50(Ndim) (2.3)

(where so(n4im) denotes the linear space of skew-symmetric tensors), and taking the deriva-
tive of (2.2) with respect to n, we obtain the relation
owe

WF“T W =0 YW e $0(Ndim) » - (24)

implying the symmetry of the Kirchhoff stress tensor

owe _ r T
T = WFQ =74 (25)
The symmetry relation (2.2), or equivalently, the relation (2.5), leads to the classical
conservation law of the total angular momentum as discussed below. Furthermore, a
classical argument (see e.g. TRUESDELL & NOLL [1965]) leads then to the dependence of

the stored energy function on the Green-Lagrange strain tensor E = %(FTF —1),1ie.,

We(F%) = We(E®) (2.6)
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As an example, the simulations presented in Section 4 consider the Saint-Venant Kirchhoff
model, characterized by
W(F)=W(E)=1E:CE, (2.7)

where C denotes the material secant tangent.

Let V@ := % be the material velocity field of the solid «, and p* the corresponding
reference density. The superimposed dot () refers to the (material) derivative with respect
to time ¢t. Denoting the common current boundary in contact by 7. := Ngv* (where
v¥ = 0p®(§2%) = boundary of the current configuration of solid «), with references
boundaries I'* := %~ (y®) and I, := cprl(%), the weak form of momentum balance
equations reads

/ Pp% V. ™ d2 + P : Grad(6p®) df2 = / p%b - 5™ d2
UQO’ UQQ

u2e

) (2.8)
+/ t-op” dF+/ t {5¢1(X)—5¢2(Y(X))] dr,
urg I.
for all admissible variations d® (a = 1, 2)
6 € 2% = {n: Q° SR | nlre =0} (2.9)

Here, I denotes the part of the reference boundary of solid o with imposed displacements,
and I'Y is the part of the reference boundary with imposed external tractions £. The specific
body forces are denoted by b. The decomposition

r«=reulpul, with nrfnl,=0, (2.10)

is assumed for a well-posed boundary value problem:.

The vector ¢ in the last term of (2.8) denotes the contact nominal traction between
the solids in contact along the common boundary I.. For frictionless contact, this traction
is given in terms of the contact (nominal) pressure p > 0 as

t=opv, (2.11)

with v denoting the unit outward normal to the current contact boundary 42 n~.. The
contact pressure p corresponds to the Lagrange multiplier imposing the unilateral contact

constraint _
9(X) = v o (X) - A(¥(X)| 20, (2.12)

for the gap g(X) of a particle X € I''. In (2.8) and (2.12), the mapping Y = Y (X) € I'?
defines the closest-point projection of a material point X € I'! on the contact surface with
I'? at the current configuration of the solids, that is,

Y(X)=arg  min {le"(X) = * M)} (2.13)
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FIGURE 2.1. Definition of the gap function g(X) and unit normal
v through the closest-point projection mapping

where || - || denotes the usual Euclidean vector norm. Figure 2.1 depicts the geometrical
construction behind the definition of the gap function ¢(X) and the normal »(Y (X)) in
(2.12). We note for future use the relation

¢! (X) - P (Y (X)) = g(X) v(Y (X)) (2.14)

as a consequence of the definition (2.13) for the closest-point projection. The unilaterally
constrained system under consideration is then completely characterized by

p>0, g>0, pg=0, (2.15)

the so-called Kuhn-Tucker conditions (see SIMO & LAURSEN [1992]).

During persistent contact, the time derivative of (2.12), which now holds as an equality,
implies
ho=g=v (VIX) - VAT(X)) =0, (2.16)

where we have made use of the property

5 (¢1(X) - P*(F(X)) =0, (2.17)
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a consequence of the the closest-point projection Y = l-/(X ). Therefore, the velocity field
is constrained by (2.16). After using the Kuhn-Tucker conditions (2.15), the condition
(2.16) can be recast as

pg =0, (2.18)

commonly referred to as the persistency condition (see SIMoO & LAURSEN [1992]).

2.2. The conservation laws.

The system of nonlinear elastodynamics equations described in the previous section
is a characteristic example of an infinite dimensional Hamiltonian system; see SIMO et
al [1988]. The consideration of contact states converts the system in a unilaterally con-
strained Hamiltonian system of evolution. The presence of symmetries like (2.2) leads to
the conservation laws described in this section.

Consider the following standard definition of the total linear momentum
L ::/ p® Ve dQ , (2.19)
une
and the total angular momentum
J :=/ P x p* V¥ dR, (2.20)
une

of the system of solids. The symbol x denotes the cross product of two vectors in R? if
Ndim = 3, and their equivalent reductions (embeddings of R™= < R?®) in lower dimensions
Ndim < 3. Similarly, denote the total energy of the system by

8::/ %po‘ Ve.vedo+ WedR2=K+W, (2.21)
ugne

ue
A=

.

K W
for the total kinetic energy K and strain energy W.

The case of interest for the analysis presented below corresponds to the homogeneous
Neumann problem, characterized by no imposed boundary displacements and no external
loading. In this case, the total energy £, linear momentum L and angular momentum J
are conserved as summarized in the following proposition

Proposition 2.1 Let [ =0 (o« =1,2),t =0 and b = 0. Then, the linear momentum
L, the angular momentum J, and the total energy £ are constants of motion.
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PRrROOF: The proofis based on a classical argument, and is included herein for completeness.
The discrete counterpart presented in Section 3 follows closely the same argument.

i. Conservation of the linear momentum. Since I'® = (), an admissible variation is
obtained by
dp*=a for a=1,2, (2.22)

with @ € R"™™ constant. Hence, Grad (6¢®) = 0 in this case. Using (2.8) with the
admissible variations (2.22) and noting that £ = 0 and b = 0 by assumption, we have

Ed___Ii _ ayra . Tdim

a- = p*Ve.ad2=0 Va € R . (2.23)

dt UQQ
Therefore, dL/dt = 0 or equivalently L(t) = L(0) = constant. The conservation of linear
momentum follows then from the invariance of the equations under the variations (2.22),
i.e., the action of the linear (additive) group R"™¢™ (spatial translations).

ii. Conservation of the angular momentum. Similarly, we can consider the admissible

variations defined by
(X)) =wxa® for a=1,2, (2.24)

where w € R"¥™ constant, and z® = ¢*(X). Thus, we have
Grad (6¢%) = WFe, (2.25)

where W ¢ $0(nqim) is the skew-symmetric tensor with axial vector w (i.e. Wa=wxa
Va € R™=), Writing (2.8) with the variations defined by (2.24), we obtain after making
use of (2.20) and (2.25)

w~£;itf—:w~ on [a’c"‘ X p*V* 4 XPO‘VO‘] as
=w- % x p°Ve dN = PPV (w x %) df2
une une
= - P® . WF® dQ—I-/ t-[wxcpl(X)—wxgoz(l?(X))] dr
une r.
— agpaT | {57 . 1 L ¥
= /UQQPF W dﬂ+/rcpu [wx\(cp (X) cp(Y(X)))J dr’]
=o by (2.5) =g v by (2.14)
:/pgu~('w><u) dl' =0 Yw € R™im | (2.26)
Fc N, s’

0

Therefore, dJ /dt = 0 or equivalently J(t) = J(0) = constant. The conservation of angular
momentum follows then from the invariance of the equations under the variations (2.24)
(infinitesimal rotations), i.e., the action of the rotation group SO(ngim)-
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ili. Conservation of energy. Finally, the evolution of the total energy is obtained using
the weak equation (2.8) with the variations d¢® = V* and (2.21) as

dE . awe
de _ aya o . Grad (V®) df2
7 /Ump +/Um ope + Grad (V)

:/ ¢ (Vl(X) - v2(17(X))) dF::/ pjdl =0, (2.27)
I, I
after using the persistency condition (2.18). Therefore, the total energy is conserved £(t) =

£(0) for all time t. O

The goal of this paper is the design of time-stepping algorithms that possess these
conservation laws.

2.3. Finite element implementation.

The weak equation (2.8) is discretized in space through a standard isoparametric finite
element formulation,

Tlnode Mnode
X=> NY&)Xs and @*X)=X+ Y NA¢ds, (2.28)
A=1 A=1

based on the shape functions N4 : [] — R defined in the parent domain & € [] for
A = 1, Nyode, the total number of nodes, with references coordinates X4 € R™i=. The
nodal displacements d? € R™™ (A = 1,np0q4¢) are grouped in d € R™, where Neg =
Ndim X Mpode-

Following a standard procedure, the above interpolations lead to the semi-discrete
system of equations

d(t)= M~ 'p(t),

(2.29)
p(t) = —fint (d(t)) + fe (d(t)) + fezt
where we have introduced the nodal (linear) momenta
p :=Mv, with v:=d(t), (2.30)

as an intermediate var{iable. Here, M is the mass matrix defined by the standard assembly
el .
procedure M = A ) Me of the elemental mass matrices M® (n.; = total number of
e=

elements). For an element with n., nodes, we have
Mlnen 1ndim

Mnenllndim M Mnennen 1ndim
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M4

Master Segment

2
@ (Y(Xy)
2
Slave node

¢.(Xs)

g<o0

FIGURE 2.2. A slave node contacts a mater segment consisting of
four master nodes.

where 1, is the rank-two identity matrix in R™im and the mass coefficients M4p are
given by the usual expression

Mg = / p*NANE 40 . (2.32)
2z

In Section 3.2, we make use of the lumped mass matrix obtained by the standard row-sum
technique

Musp = Msbap (nosum), where My ::/ p*NA d (2.33)
2g

for the element 2¢.

The external force fo;: € R™¢ corresponds to the contributions of the volumetric
external force b and imposed external tractions £. The internal force vector fi,; € R™s
corresponds to the stress-divergence term in the continuum, and is given by the usual
expression

fint = BiT d2, (2.34)
une
for the standard linearized strain operator By, with

B;6d = Vidu = sym [Grad [6u] F, ]

for the displacement field u := ¢;(X)—X. Here, the subscript ¢ refers to the configuration
at time ¢.
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The force of contact f. in (2.29) is obtained with the use of the now standard mas-
ter/slave data structure; see HALLQUIST et al [1985] for details. In this context, S denotes
the slave node in contact with a master surface, at a point located in a master surface
element defined by nodes {M1, M2,...}; see Figure 2.2. Thus, we can assign two or more
master nodes (belonging to the same master surface element) to each slave node in contact,
thus establishing a contact element. The force of contact f. is then expressed as

Mslave
.fc - A fs,c s with fs,c = psGs 3 (235)
s==1
where f\2'¢*¢ denotes the assembly over the n,4,¢ slave nodes/master segment pairs, and
Vg
~ —NM1(€S)VS (14n yxn
o master dim
GS = '"NMZ(ES)VS € R t 3 (236)

where n7, .o 18 the number of master nodes in the master segment in contact with the
slave node S. In (2.36), NMI(¢,) denotes the standard shape function of node M I in the
master segment at the point of contact £ with normal v;, obtained by the closest-point
projection mapping as in equation (2.13); see Figure 2.2. The discrete counterpart of (2.14)
holds as

]
master

z¥— Y NMI(g )M = g(X ), (2.37)
I=1

where £° = !(X¥) and £M! = ©?(XM!) are the current positions of the slave and
master nodes, respectively. We note that

s
master

> O NMIg) =1, (2.38)
I=1

n

at any point £ of the master segment.

For later use, we introduce the notation

d° v°
. dMl ,le
ds = and v, := , (2.39)
v

that is, objects denoted by (/5 , refer to individual slave nodes/master segment pairs. The
simulations presented in Section 4 consider linear master elements consisting of two master
nodes.
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2.3.1. Temporal discretization of the continuum contributions.

We consider a mid-point approximation of (2.29) and (2.30) leading to the discrete
equations

1
z\:’t‘ (dn+1 - dn) = vn-l—% ?
1 (2.40)
n+3 i 3
E M(vn+l - 'vn) = i(nt+2) + fC(n+2) + fé;lt_*-z) ’

where At = t,41 — t, for a given time partition {0, 1, ...} of the time interval of interest,
d, = d(t,), vn = v(ts), and v,41/2 = (Un41 + v5)/2. The momenta

Pt = Mo, fort € Un[tn,tn+1] ) (241)

have been eliminated in (2.40).

The discrete force of contact fé"Jrl/ ?) is defined in the following section. The vec-
1
tor fi(;t+2) in (2.40) corresponds to the time discretization proposed in SiMO & TARNOW

[1992]. It defines a second order conserving approximation of the internal force vec-
tor at t,y1/2, and is given by (2.34) with B; evaluated at the mid-point configuration

Prt1/2 = (Pns1 +pn)/2 as
Flnte) T an, (2.42)

wnt -4
Ui

with the discrete Kirchhoff stresses 7("*t1/2) calculated as

n

rn+3) . F,. (AC (E. + E.i1)) FT+% : (2.43)

for the Saint-Venant Kirchhoff model defined by equation (2.7). In (2.43), the deformation
gradient F,,,1/o := Grade, /2 is computed at the mid-point configuration, and the
Green-Lagrange strain tensors E, and E,y; are evaluated at the configurations n and
n + 1, respectively. The case involving a general stored energy function W(E) can be
found in GONZALEZ & S1MoO [1995].

As shown in SiMO & TARNOW [1992], the following properties hold for the time
discrete internal forces (2.42):

i. Internal linear momentum contributions

Nnode ntl
S e a= Voei(a): 7™ d0 =0  VacR™=  (2.44)
o uQRe :

where the vectors fA,EZ;L 2) ¢ Rm refer to the nodal forces corresponding to (2.42).
We conclude that the summation in the left-hand side of (2.44) vanishes.
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ii. Internal angular momentum contributions

Nnode ('I’L+ 1 ) Nnode T .

A A z _ A A N4 &
Y wh, < A -w..Z/ By @y xw)] 1D de
A=1 A Jus

— . +3)
=/ o Vst (ccn+% X w) (3 4

= W s 4R =0 vweR™=  (2.45)
U2

given the symmetry of r(nt3) in (2.43). We conclude that the summation in the
left-hand-side of (2.45) vanishes.

iii. Internal energy contributions
Mnode

> [fAEZT%) (dngr = df)] = Vit (Ung — ) : 7072 dg2
A=1 U2«

_ / Busi = B 4O B + By a2
U o

=Wh, — W, (2.46)

where the superscript (-)" refers to the discretized system of solids.

General (non-conserving) time discretizations of the internal force term, involving in
particular high-frequency dissipation, are considered in Section 4 in combination with the
contact scheme developed next.

3. Conserving Algorithms for Frictionless Dynamic Contact.

Our goal is the design of the time-discrete counterpart of (2.35), such that imposes the
unilateral contact constraint, and retains at the same time the conserving properties of the
final algorithm. We develop in Section 3.1 a penalty scheme that possesses these properties.
An extension is presented in Section 3.2 that imposes the velocity constraint (2.16).

3.1. An energy-restoring, momentum-conserving scheme.

Consider for a typical time interval [t,,,t,+1] the second order approximation of the
gap evolution equation (2.16) given by

gg,n-}—l = gsd,n + Vs,n—}—-% ) [ (‘p711+1(XS) - ‘pi+1(i/n+% (XS)))
(3.1)

- (X% @y () |
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TABLE 3.1. Contact/release logic.

Let conty , = contact flag at t,, (.true. or .false.), and g5 41 the
(real) gap at t,, for slave node S. Then, contg ,1; is defined as

IF (conts, .or. (gsn+1.le.0)) THEN
Compute g¢, ., using (3.1).

IF (g92,4,-1e.0) THEN

cont; 541 = .true.
ELSE
cont; 41 = .false.

IF (gsny1-ge.0) THEN
The dynamic gap will be initialized to the current
gsn+1 When evaluating (3.1) in the next time step.
ELSE
The dynamic gap will be initialized to the current
g;{n +1 wWhen evaluating (3.1) in the next time step.
ENDIF

ENDIF
ELSE
conts 541 = .false.

ENDIF

involving the unit normal v, /o defined by the closest-point projection f’n +1 (X5) of
the slave node S at the configuration ¢,1/2. The evaluation of the current positions of
the contact particle 17'” +1 (X®) at the times t,, and t,4; is to be noted. We refer to the
scalar quantity gg’n the dynamic gap (at t,,) in contrast with the real gap g, , defined by

the closest-point projection algorithm given by (2.13) at t,,.

Expression (3.1) can be written equivalently in the notation introduced in the previous
section as

o~

gg,n+1 - gg,n + @T [ds,n-H - Js,n] ) (32)

s,n+—§~

for the corresponding displacements of slaves and master nodes at ¢, and t,,;. The
evolution of the dynamic gap (3.2) is initialized with the real gap g, for the last time
step before contact. The first contact state is detected at t,4; if gs 41 is positive. See
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details in Table 3.2 and the discussion below for the contact/release logic afterwards.

The difference gin +1 7 9sn+1 (real gap) as employed in traditional treatments of the
problem is to be noted. We point out that (3.1) corresponds to a second-order approx-
imation of the equation (2.16) for the evolution of the real gap g, and accounts for the
(geometric) change of normal during contact. In one dimensional problems, for instance,
both gaps coincide. No loss of accuracy has been observed because of this approximation.
We note in this regard that the definition of the gap function in terms of the closest-point
projection (2.13) is, from a theoretical point of view, completely arbitrary.

The contact pressure p; for the slave node S at the time step [tn,tn+1] is defined by
the penalty regularization of the contact constraint (2.12) given by the difference quotient

Ulgsns1) —U(g,) .
. s,dn+1 — s,n if gin_H # gg,n >
ps = gs,n+1 gs,n (3.3)

—U,(%(gg,n + gg,n-i—l)) if gg,n+1 - gg,n ’

where U(g) is a penalty regularization potential of the form, e.g.

Le g% ifg<o,
Ug):=4 2™ " 9= (3.4)
0 otherwise |,

with a (large) penalty parameter k,. The force of contact is then given by
:(Z+1/2) =PsGsnit s (3.5)

with ps as in (3.3). The evaluation of the normal contributions G in (3.2) and (3.5) at the
mid-point configuration becomes crucial for the conservation of the total angular momenta
as shown in the following section. A standard calculation shows that the final numerical
scheme is formally second order accurate in time.

The contact/release logic is summarized in Table 3.2, and proceeds as follows. As
noted above, the dynamic gap gg’n is initialized with the value of the real gap at the last
converged value before initial contact. The first contact state is detected at tnt1if gs ny is
negative. Subsequently, contact is detected if gf,n +1 18 negative. We note that the contact
pressure depends on the contact states at ¢, and t,,, and vanishes when both states at tn
and t,4; are released states. We note that p, # 0 while releasing (i.e., conts, = .true.
and conty 431 = .false., following the notation in Table 3.2). It has a negative value
given by the contribution U (gg,n) at t,,. This final “kick” restores the energy to the system
of solids upon release.

Observe also that the same contribution to (3.3), U (gg,n), vanishes in the first contact
increment. Therefore, the proposed penalty formulation enforces the gap constraint at the
end of the time step ¢,;. This situation is to be contrasted with schemes enforcing only
the velocity constraint (2.16) (the rate of the gap), thus requiring small time steps to avoid
excessive penetrations of the solids, like in the conservative schemes of WASFY [1995] or
LAURSEN & CHAWLA [1996], as it has come to our attention recently.

et
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3.1.1. Properties of the proposed scheme.

The consideration of the interpolation functions in the definition of the linear momen-
tum (2.19) leads to the expression

Tnode

L}:= Y Mapvf, (3.6)
AB=1

for its discrete counterpart at t € Up[t,,, t,+1], where 'vtB (B = 1, npoq4e) denote the nodal

velocities. We note that the same expression is reached by the consistent mass (2.32) or
lumped mass (2.33).

We define the total angular momentum for the discretized system at t € Uy, [t,, tny1]

as
Tenode

Jth = Z MAB 11324 X vtB . (37)
A,B=1
For the consistent mass matrix, this expression follows from the inclusion of the isopara-
metric interpolations in (2.20). Similarly, we define the total energy of the discretized
solids as

EF=KP+ WP, with K':=lv/Mv, and W}:= W*(F*(dy)) d2, (3.8)
U2«

for the mass matrix considered in the numerical simulation. The superscript (-)" refers to
(finite element) discrete quantities.

Noting that by (2.41)

Mnode

p? = Z Mag v{g A =1,Nn0de , (3.9)
B=1

we can write the equivalent expressions

Ly:= Y pf, (3.10)
A=1
for the discrete linear momentum, and
Nnode
Jhi= > af xpf, (3.11)
A=1

for the discrete angular momentum. The evolution of these quantities in the scheme defined
by equations (3.2) to (3.4) is characterized by the following proposition.
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1
Proposition 3.1 Let ['* =@ (a=1,2), and fé;‘;*z) = 0 for a time increment [t,, t,11]

(i.e., a homogeneous Neumann problem in that time interval). Then, the following evolu—
tion relations hold

1. The linear momentum is conserved, i.e.

L., =L". (3.12)

ii. The angular momentum is conserved, i.e.

Jh o =Jh. (3.13)
ili. The energy evolves as
where
Nislave
= > Ulgl) >0  forte€[te,tnsi], (3.15)

with P} = 0 in a released state.

PROOF: The proof follows closely the proof of the Proposition 2.1, its continuum counter-
part.

i. Comnservation of linear momentum. Adding the nodal components of the equation
(2.40)9, we obtain

Npode Nnode

h _ B

Ln+1 Ln - E : (pn+1 E : MAB n+1 — Uy )
A=1 A,B=1

Tinode

Nnode

A + A (n+i

— _At § ALV N At
A=1

=0 by (2.44)
Nslave :naster
= At Z Ds - NMI(Ss,n+%) Vs,n+% =0, (3.16)
I=1
=0 by (2.38)

after using the definition (3.5) of the contact force fo 3
ii. Conservation of angular momentum. We first note the algebraic identity

A A A A A A A
m'r?—}-l X p1/7.1+1 - mvle X Pn = $n+_% X (pn+1 “pn) + (mn-l-l - mn) X pn«{»%— 3 (317)
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for A = 1,np04e- Equation (2.40); reads in nodal components

Tinode

eh —an =dig —di = At =AY (MY 0l (3.18)
B=1 :
which leads to
Mnode Nnode
Z (zn —27) pr/3+§— = At Z (AJ—I)ABPTH-] X pn+1 =0, (3.19)
A=1 A B=1

by the symmetry of the mass coeflicients (M “1) 4B = (M "1) pa> and the skew-symmetry
of the cross product.

By equation (2.40)9, we also have

Nnode Mlnode Nnode
A A("+ ) . zA A,(n+3)
Z Tntl (pn+1 = -4t Z z;, nti X Finy +At Trgg X
A=1 P A=1
=0 by (2.45)
(3.20)
Combining the definition (3.7) and equations (3.17) to (3.20), we obtain
Nrnode MNnode A ( )
n+i
J,,’;Jrl-—J,,’f:AtZ(w,ﬁ‘ﬂxp,‘fﬂ—mﬁxpn At2m+1 X fe
A=1
Mslave maste'r
MI
= At ZP n+1"" Z N sn+) n+1 xus,n-k-é—
S=1
Mslave
= At Z Ps 9ot (Vs,,H_%_ X us’n+%) =0, (3.21)
s=1

after using (2.37).

iii. Energy evolution. Combining the evolution equations (2.40) with the symmetry
of the mass matrix M, we can write

Kk —Kh=1v vl Muny — -v My, = vl +1 M (V1 — vy)
n 1
= — (dp41 — dn)" fz(nt+ D 4 (dny1 — dn)T FHD
Nglave

=~ (Wng1 = Z PG n+ ( smt+l ™ Ci”) ’ (3:22)
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where we have used the relation (2.46) for the internal forces. After noting that £" =
K" + W"_ and using the definitions of the dynamic gap (3.2) and contact pressure (3.3)
from the regularization potential U(g%) , we conclude that

Nslave

Emir—EF =Y ps (98041 —92,)
s=1
MNslave
== > (Uletni) - U(s20) = = (Phsy - P2) . (3.23)
s=1

which proves (3.14). We note that P} = 0 in a released state given the definition (3.4) of
the regularization potential. O

Proposition 3.1 shows that the time-stepping defined by (3.2) to (3.4) conserves the
total linear and angular momentum of the system of solids in a homogeneous Neumann
problem, as the original continuum system does. The relation (3.14) indicates that the total
energy of the system solids plus the regularization potential is conserved during persistent
contact. We note the important role of the definition of the dynamic gap for this property
to hold. Furthermore, given the definition of the regularization potential (3.4), we have
U = 0 in a released state, so we conclude that the energy of the system of solids is conserved
upon release. We summarize these observations in the following corollary.

Corollary 3.2. Let E! denote the initial energy of the system of solids, corresponding to
a released state (in the sense that P = 0). Consider a homogeneous Neumann problem.
Then, the energy at any time 0 > t,, € Unltn,tns1] is such that 8,’{ = 8(’} for a released
state and EF < EP for a contact state.

PROOF: The result follows from (3.14) and the fact that P"* > 0. ||

We note that the Corollary 3.2 indicates that the energy of the system of solids will
never increase during the numerical simulation regardless of the size of the time-step At.
We conclude the unconditional (energy) stability of the proposed scheme. The numerical
simulations presented in Section 4 illustrate these stability properties.

3.1.2. A contact scheme with positive energy dissipation.

As noted in the introduction, when short-term simulations are employed for the study
of high-velocity impacts, high-frequency energy dissipation may be a desired feature. We
describe in this section a simple modification of the conserving contact scheme developed
above that incorporates this property.

During persistent contact, the expression (3.3) for the contact pressure reduces to

Pe=—% kp (9241 +92,) (3.24)
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a mid-point approximation. Then, a contact scheme with (positive) energy dissipation can

be easily obtained by replacing (3.24) during persistent contact (i.e., cont,, = .true.
and cont, ,41 = .true., following the notation in Table 3.2) by
Ps = —Kp ('lgg(si,n-{-l + (1 - 19) gg,n) ) (3=25)

for ¥ > 1/2. The difference scheme (3.3) is maintained during initial contact and release.
Expression (3.24) is recovered with ¥ = 1/2 in (3.25). The accuracy of the scheme drops
to first order for 9 # 1/2.

With this modification, the balance of energy (3.23) reads

Nslave

EQH - 57’11 = Z Ps (gsd,n+1 - gsd,n)
s=1

Mslave
= Z Kp (79 gg,nﬂ +(1-9) gg,n) (Qg,n+1 - gsd,n)

g=1

Tslave

= - Z Kp [% (gg,n-f-l + gg,n) + (19 - %) (gg,n+1 - gg,n)] (gg,n-{—l - gg,n)
s=1

Nslave Tislave

2
= - Z n—{—l (79 -3 Z Kp gs,n+1 wg(si,n) ’ (3'26)
s=1

for a time step in persistent contact. We conclude that
Eh  +PE L <EF 4 PR, (3.27)

if ¥ > 1/2. The conservation of linear and angular momentum still holds, since the proof
of these properties in Proposition 3.1 does not depend on the actual value of the contact
pressure p;.

It is important to emphasize that energy dissipation is not assured for schemes that
are dissipative for linear problems (e.g. HHT type schemes). This fact is illustrated in the
numerical simulations presented in Section 4. The contact pressure may create positive
work on the initial and final release gaps (see MUNJIZA et al [1995]). In contrast, the
proposed scheme has the proper dissipative properties as required. We note the important
role played by the use of the dynamic gap (3.1) in this argument.

3.2. Enforcement of the velocity constraint.

In situations where an extended time of contact appears, penalty schemes imposing
only the gap constraint are known to lead to oscillations of the contact forces in general.
These oscillations are also present in traditional schemes, and their origin can be traced
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in part to the lack of satisfaction of the constraint in the velocities (2.16). As discussed
in Section 2.1, the velocity field is constrained by (2.16) during persistent contact. Finite
element formulations where this constraint is enforced explicitly can be found in LEE
[1994], and TAYLOR & PAPADOPOULOS [1993], among others. It is the goal of this section
to present a modification of the penalty scheme described in Section 3.1 that accomplishes
the imposition of (2.16) while maintaining the appropriate conservation properties.

To this end, we modify (2.41), and write the nodal linear momenta for a typical slave
node/master segment pair as

. e
Bo = |My1 +myi GouGL| o,

(3.28)
= s,Las,t + Mg ¢ hs,t Gs,t s
for t € Up[tn,tns1], a typical time increment, where
nfnaste-r
hst = GL G,y =0 tvf - > Nf”“(gs,t)v{“”J , (3.29)
I=1

the discrete counterpart of (2.16), the normal gap of the velocity. We consider the lumped
mass matrix M; 1 of the slave and master segment pair, 1.e.,

MS]'ndim

= ]\/IMllndim s 5
MS,L = MMandim - R(1+nmaster)x(l+nmaster) , (3'30)

to simplify the final numerical implementation. In (3.28), ms 41 denotes a mass added
to the contacting slave and master nodes, which depends on the contact state as follows

m, if g¢,<0 or ps;>0,
Mt ;:{ P st ! (3.31)

0 otherwise ,

for a large penalty parameter m, > 0. In (3.31), ps; denotes the contact pressure for a
slave node S at time t obtained via (3.3). We note that we consider the penalty mass
active when this pressure is positive, including the time increment when the contact is
released. We have observed a better performance of the final numerical scheme with this
combination (less oscillatory response of the final contact force, as described in Section 4).
As m, — o0, the constraint h, ,41 = 0 for a typical time interval [tn,tn+1] In contact is
effectively imposed.

A mid-point approximation of equations (2.29) is considered again. This leads, after
the elimination of the momenta p,41, to the following contribution of a typical slave
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node/master segment pair

o~ o~

1 ~ _
Z—t (ds,n+1 - ds,n) = 'Us"n,-f-.% + 5 M L (ms n+1hs n+1Gs n+1 + ms, nh's nGs n) 3

5 Mot Bonir = o) = T + T E L+ D
where the modified contact force ﬂ?:;{azs) is given by (532
PO H = F) 3 (3.33)
with FI5t? given by (3.5), and
A(n+ ) Alt (ms nt1he n+lG8 nt+l — ms,nhg,nés,n) . (3.34)

+1
Physically, isn 2) corresponds to the impulse enforcing the velocity constraint (2.16). We

,(TL+ )(A

denote by zq = 1, Npoge) the corresponding nodal components, which vanish for

the nodes not in contact.

3.2.1. Properties of the proposed scheme.

The evolution of the linear momentum (3.6), the angular momentum (3.7), and the
energy (3.8) in the scheme defined by equations (3.32) and (3.33) is characterized by the
following proposition.

1
Proposition 3.3 Let I'* =0 (a«=1,2), and féﬁj“ = 0 for a time increment [t,, tny1]
(i.e., a homogeneous Neumann problem in that interval). Then,

i. The linear momentum is conserved, i.e.

Lt =L!. (3.35)

n

ii. The angular momentum is conserved, i.e.

Jh =Jh. (3.36)

iii. The energy evolves as
Eh AP MR =EL P+ ML (3.37)
where P > 0 is defined in (3.15), and

MNslave
Mp = mogh2, [ 14 4m, 6T, M LG, ] >0, (3.38)

s=1

fort € [tn, tny1].
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ProOOF: We first observe that the equivalent expressions (3.10) and (3.11) for the linear
and angular momenta in terms of the nodal momenta p*? (A4 = 1,n,0q4e) still hold for
the modified momenta (3.28). Indeed, we have for the linear momentum at any time

te [tna tn—t—l]

Mnode
B
> Mag v,
A,B=1
Nnode Nslave master Minode
MI § A
Z Z ms thst 1-— Z N Sst VvV = P: (339)
A=1 A=1
=0 by (2.38)
and for the angular momentum
Minode
Jh = Z Map i x vP
A,B=1
Minode Nglave njnaster
A A S MI MI
= Z xz; X p; — Z msthsy | 7 — NY (&5 1)z Xy
A=1 s=1 \ I=1 /
=gs‘tl/t by (2.37)
Minode Mslave MNnode
A
= Z T Z Mg ths 1s.¢ ( ut X V) Z x4 xpt . (3.40)
A=1 s=1

:0

The conservation of linear and angular momentum by the scheme follows then easily
by rewriting the equations (3.32) in terms of the modified momenta p given by (3.28)

1 —~~ -~ /\_ o~
N (ds,n+1 - ds,n) =M, [Ponis -
(3.41)

1= = _FHD | fnd)

Z—t (ps,n+1 ‘ps,n) = s,int +

for the homogeneous Neumann problem under consideration. After noting that the equa-
tions (3.32) are the same as the original equations (2.40) in terms of the momenta p, the
equivalencies (3.39) and (3.40) imply the conservation properties

Lh =Lt and JE,=JF, (3.42)

by the results (3.12) and (3.13) of Proposition 3.1 (whose proof has been developed in
terms of the momenta p).
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Similarly, using again the result (3.14) of Proposition 3.1, we can write for the scheme
defined by (3.41) and (3.28) the following relation

’CZ+1 + Wr’f+1 + Pg+1 = Egﬂ + Wﬁ+1 + Pr}:+1 ) (3.43)

where
Ky = 3p] My 'p: (3.44)

for t € [tn,tn+1]. With the use of the definition (3.28), we can write

Nslave

K? = }Ci1 + Z mS,thg,n+1 [ 1+ %msvté{,tﬁs—,lés,t] , (3.45)
s=1
=M
which combined with (3.43) results in (3.37). O

We observe that an extra contribution appears in this case in the energy balance
corresponding to a kinetic energy contribution associated to the mass penalty introduced
in the formulation. Given the energy balance (3.14) and the fact ms = 0 after full release
as defined by (3.31), we conclude that the total energy of the system is restored upon
release. We can say that, during persistent contact, part of the energy is stored in the
spring-like and the mass-like penalty regularization potentials. In fact, Corollary 3.2 still
holds in this case resulting in the no increase of energy during the numerical simulation
and the desired nonlinear energy stability of the proposed method.

Remarks 3.1.

1. An augmented Lagrangian scheme for the velocity constraint can be introduced easily
by adding to (3.28) a Lagrange multiplier field of the form

ﬁs,n«}—l = Ms,L'as,n—{»l + (ms,n+1 hs,n+1 + )\s,n+1) Gs,n+1 . (346)

The Lagrange multiplier A; 41 is obtained by the update

k+1 k
)‘g,:+% = )‘2,11-1-1 + My nt1 Rsntr s (3.47)
in the iteration (k) of a nested iteration procedure with the solution of the equations
of motion, accomplishing the satisfaction of hs 41 = 0 with finite values of the mass
penalty msn+1. See GLOWINSKI & LETALLEC [1989], SiMO & LAURSEN [1992],
among others, for details on augmented Lagrangian methods.

2. The mass penalty scheme described in this section can be combined with the energy
dissipative scheme proposed in Section 3.1.2. |
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FIGURE 4.1. Impact of a rod on a rigid wall. Problem definition.

4. Representative Numerical Simulations.

The goal of this section is to evaluate the performance of the newly proposed numerical
schemes in several representative numerical simulations. To this end, we consider in Section
4.1 the impact of a linear elastic rod on a rigid wall, and the impact of two nonlinear elastic
cylinders in Section 4.2.

4.1. Impact of a rod on a rigid wall.

The purpose of this simulation is to show the important role that an energy restoring
contact algorithm plays in the overall stability of the numerical scheme. As noted in
Section 3.1, numerical schemes that are (unconditionally) dissipative for linear problems,
and consequently (unconditionally) stable, do not possess this property in general nonlinear
settings. As an example, we consider the well-known dissipative HHT schemes (or a-
method as sometimes called), and show that the energy increases due to contact if the
numerical scheme is not used with an adequate contact algorithm.

To this end, we consider an one dimensional model of a rod impacting a rigid wall using
a combination of different continuum and contact algorithms. The problem is sketched in
Figure 4.1. Linear elasticity is assumed for the one dimensional continuum, so that the
only nonlinearity arises from the contact conditions. We consider general discretizations
in time of the continuum to accommodate dissipative schemes. In this setting, the three
parameter family of HHT algorithms (see HILBER et al [1977])

Man+1 -+ K [adn+1 + (1 - Q)dn] = fc,n+a y (41)
dn+1 = d'n, + At'v'n, + %Atz [2ﬂan+1 + (1 - 2/8) a'n] ’ (42)
Vnt1 = U + At [Y@ni1 + (1 =) an) , (4.3)

is considered, where K denotes the usual stiffness matrix of linear elasticity. We note that
equation (4.1) have been written in the form presented in SIMO et al [1995], which differs
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from the original presentation of the a-method in HILBER et al [1977] (the a parameter in
(4.1) corresponds to 1 + a of HILBER et al [1977]).

We consider the following schemes:
1. Trapezoidal rule: a = 1.0, 8 = 0.25 and v = 0.5.
2. Midpoint rule: a = 0.5, 8 = 0.5 and v = 1.0.
3. HHT: a = 0.51, 3 = 0.555025 and v = 0.99.

All three schemes are combined with a standard penalty scheme for the contact, with the
contact constraint imposed at t,4q, consistent with (4.1). We consider also:

4. The new energy restoring contact scheme, with midpoint rule for the continuum
(as in Algorithm 2).

5. The new energy dissipative contact scheme of Section 3.1.2 (¢ = 1.0), with HHT
for the continuum (as in Algorithm 3).

We note that for the linear elastic continuum under consideration the conserving algo-
rithm considered in Section 2.3.1 reduces to the midpoint rule and trapezoidal rule, which
would coincide in this linear setting. As it is well-known, both schemes are conservative for
linear problems. Similarly, the HHT Algorithm 3 is energy dissipative in the linear elas-
tic case. However, the nonlinearity of the contact conditions when the simulation starts
at a non-zero gap, destroys these conservative and dissipative properties respectively. In
essence, the work done by the contact pressure on the initial gap is not zero, and without
control, leading to an increase of energy; see MUNJIZA et al [1995]. This situation is to be
contrasted with the newly proposed schemes. For Algorithms 4 and 5 the energy will not
increase during the simulation, and for Algorithm 4 it will be restored completely upon
release.

The rod considered in the simulations has unit length and is discretized with 100 linear
finite elements. The Young’s modulus is £ = 1, and density p = 1. The initial velocity
of the rod before impact is vg = —0.5. The initial configuration of the rod is located at a
distance of 7.5 - 1073 from the wall. A Courant condition of CFL = 2 is considered. In all
the cases, the contact penalty parameter is k, = 108, and the mass penalty parameter has
the value m,, = 102 for the Algorithms 4 and 5.

Figures 4.2 to 4.4 show the results obtained with these schemes. The gap, velocity gap,
contact pressure, and total energy of the rod are plotted versus time. With respect to the
standard schemes, Figures 4.2 and 4.3 (left column) depict the results for the trapezoidal
and midpoint rule, respectively, showing the severe oscillatory behavior associated with
these schemes when trying to enforce the contact constraint. Oscillations between contact
and released states lead to a clear unsatisfactory performance of the scheme. Furthermore,
these oscillations lead to an increase of energy when they occur due to the associated non-
linearity. The trapezoidal rule, with the contact constraint imposed at ¢,4;, improves the
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FIGURE 4.2. Impact of a rod on a rigid wall. Results obtained with
the trapezoidal rule, Algorithm 1.

performance, as shown in Figure 4.2, but the oscillatory response remains, as it does the
unphysical increase of energy. Figure 4.4 (left column) shows the results for the HHT. We
still observe an initial oscillatory response, as well as an energy increase thus leading to
potential instabilities of the scheme. Although the oscillations are eventually damped, this
is obtained at the cost of a clear energy lost.

The performance of the standard schemes is to be contrasted with the newly proposed
methods. Figure 4.3 (right column) shows the results obtained with the energy restoring
contact scheme. The good enforcement of both constraints (g = 0 and § = 0) is to be noted.
Even though small oscillations are observed, these are not between contact and released
states. Persistent contact is maintained during the theoretical contact interval, as reflected
in the persistent positive value of the contact pressure. The energy of the rod is under
control during all the simulation, and it is restored upon final release. The total energy
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FIGURE 4.3. Impact of a rod on a rigid wall. Results obtained with
the midpoint rule, Algorithm 2 (left column), and the energy restoring,
Algorithm 4 (right column).
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FIGURE 4.4. Impact of a rod on a rigid wall. Results obtained with
the HHT scheme, Algorithm 8 (left column), and the energy restoring
scheme, Algorithm 5 (right column).
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FIGURE 4.5. Impact of a rod on a rigid wall. Results obtained
with the energy restoring scheme with no mass-penalty, my = 0. To
be compared with the use of the mass penalty (mp = 103) in Figure
4.3, right column. As observed in this last case, the addition of the
mass-penalty impulse enforces the velocity constraint and eliminates
the oscillation of the contact pressure, as observed in this figure, when
trying to resolve the contact time interval (short-time scales).

in the discrete system (rod and regularization spring) is conserved at all times. Figure
4.4 (right column) shows the results for the energy dissipative scheme proposed in Section
3.1.2. As expected, we observe a damping of the oscillations in this problem involving the
high-frequency part of the spectrum in the solution. The energy never increases, avoiding

any type of instabilities.

To gain a better understanding of the proposed methods, we have included in Figure
4.5 the results obtained with the previously considered energy restoring scheme, out mass
penalty m, = 0 (right column), i.e., no enforcement of the velocity constraint. Whereas the
gap constraint is enforced equally for both schemes, we note the improvement accomplished
in the imposition of the velocity constraint and the contact pressure. This improvement is
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to be traced to the impulse (3.34) introduced by the mass penalty in the definition of the
contact force, and leads to better resolution of the small-time scales in problems where the
contact intervals need to be resolved.

4.2. Impact of two cylinders.

We consider next the impact of two nonlinear elastic cylinders in plane strain. The
cylinders have a diameter of 3.6, and are discretized with displacement bilinear finite
elements, as shown in Figure 4.6. The Saint-Venant Kirchhoff material model is assumed
for both cylinders with Lamé constants, A = 2-10% pu = 1-10%, and density p = 1.
These properties lead to the consideration of quasi-rigid cylinders. A penalty parameter
of kK, = 1-10° is considered with m, = 0, i.e., no imposition of the velocity constraint.
We note that we are interested in the overall response of the system in this case (the long
time scales). A constant time step of At = 0.1 is considered.

Figure 4.6 depicts the results obtained with the proposed new scheme in a simu-
lation involving rigid walls as depicted. The left cylinder is given an initial velocity of
{ve, vy} = {1, -2}, hitting the bottom rigid wall at ¢t ~ 1.5. Figure 4.7 shows the plots
of the total energy of the cylinders (kinetic plus strain energies), the two components of
the linear momentum (L, and L), and the angular momentum (J). The z-direction cor-
responds to the horizontal direction in the plots of Figure 4.6, with the y-direction being
the perpendicular direction. We have included the results for the newly proposed contact
scheme, and a standard midpoint rule contact (non conserving), both in combination with
the conserving scheme considered in Section 2.3.1 for the continuum. Therefore, the energy
and momenta will be conserved for both schemes between contact interactions.

We observe that the initial hit of the left cylinder with the bottom wall leads to an
increase in the y component of the linear momentum (L,) and a change of the angular
momentum, as expected. The increase of L, corresponds to the total force applied during
contact, positive since it is pointing in the positive y-direction. The z-component of the
linear momentum is conserved for both schemes, whereas the energy is only conserved
(restored) after bouncing by the newly proposed scheme. In fact, we observe a sudden
increase of the energy for the midpoint rule contact (to almost four times the original
value), which is accompanied with a large change of linear momentum in the y-direction
(indicating an excessively large force of contact). The computed solutions will then differ
afterwards. We note that due to the quasi-rigid character of the solids, the total energy is
mostly kinetic energy.

After bouncing, the left cylinder impacts the right cylinder which is at rest. This
happens at t & 2.2 for the energy-restoring scheme, and earlier, at ¢t =~ 2.0, for the midpoint
rule contact, due to the excessive energy that the previous impact added to the left cylinder.
As expected, no change of momenta (linear or angular) is associated to this impact for
both algorithms. The energy, on the other hand, is increased again for the midpoint rule
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FIGURE 4.6. Impact of two (quasi-rigid) cylinders. Deformed con-
figurations at different times obtained with the newly proposed energy
restoring scheme. The left cylinder impacts the right cylinder, which is
at rest, after bouncing from the bottom rigid wall.
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FIGURE 4.7. Impact of two (quasi-rigid) cylinders. Results obtained
with the energy conserving scheme for the continuum in combination
with a midpoint-rule contact (left column) and energy restoring contact
scheme (right column).
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FIGURE 4.8. Skew impact of two elastic cylinders. Deformed con-
figurations at different times obtained with the newly proposed energy
restoring scheme. Observe the large finite strains.
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contact, whereas the energy-restoring scheme recovers again the energy after the small
interval where the contact constraints are imposed. We note the good resolution of the
gap constraint g = 0.

Next, the right cylinder impacts the right wall close to the upper right corner (at
t =~ 3.8 for the energy-restoring scheme, and ¢ = 2.6 for the midpoint rule). The x
component of the linear momentum L, is reduced due to the application of the contact
force (pointing to the negative z-direction). A larger contact force is observed again for
the midpoint rule, compared to the value obtained with the energy-restoring scheme. The
total energy doubles in the former.

After bouncing, the right cylinder hits the upper wall (at ¢ =~ 4.3 for the energy-
restoring scheme, and t =~ 3.3 for the midpoint rule). This can be observed by the corre-
sponding decrease (the contact force points in the negative y-direction) of the component
L, of the linear momentum for both schemes. The left cylinder hits the left wall for the
midpoint rule at ¢ ~ 3.7, due to the excessive velocity that has gained in the previous
impacts, leading to the increase of L, observed for this case. This does not happen for the
energy-restoring scheme.

After these interactions, the two cylinders impact each other again in the middle of
the domain. This occurs at t ~ 6.0 for the energy-restoring scheme and ¢t ~ 4.2 for the
midpoint rule. This impact cannot be resolved with the midpoint rule contact scheme.
The numerical computation blows up in this case (no convergence is obtained), with an
unrealistic high value of the energy. The computation with the energy-restoring scheme can
be continued without problems after the impact of both cylinders (no change of momenta,
energy conserved again upon release). After this impact, the left cylinder hits the left wall
at t ~ 8.0 (with the change of L, and angular momenta, no increase of energy again).

These results show the improved stability properties of the newly proposed scheme.
These properties are achieved by the proper control of the energy during all the compu-
tation. The correct conservation of energy and momenta has been verified. On the other
hand, the artificial increase in energy for a standard contact scheme, like the midpoint
rule, has been shown to lead to numerical instabilities that force the termination of the
computation. We point out that physically dissipative effects (like friction) would not
stabilize the computations of standard schemes in general, as observed in ARMERO &
SIMO [1993] in the analysis of the stability of staggered algorithms for thermomechanical
problems.

The above results considered quasi-rigid cylinders. In order to test the performance of
the scheme with large finite elastic strains (and thus significant changes of the normal to the
contact surface), we consider the same cylinders with Lamé constants A = 130, u = 43.33,
and density p = 8.93. The left cylinder is given an initial velocity {vs, vy} = {-1,0.1},
while the right cylinder is at rest. Figure 4.8 shows the impact of the two cylinders for
this case. The large finite strains are apparent. Figure 4.9 depicts the evolution of the
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energy, the two components of the linear momentum, and the angular momentum, for
both the midpoint rule contact and the new energy-restoring scheme, both in combination
with the conserving scheme developed in Section 2.3.1 for the continuum as before. The
unphysical increase of energy for the former is to be contrasted with the no increase and
final conservation for the latter. The two schemes conserve all the momenta for this
case. A penalty parameter of k, = 10 is assumed, leading to a good satisfaction of the
unilateral constraint (2.12), as the small energy associated to the regularization potential
U(g) indicates (the ripples in the plot of the energy) in Figure 4.9. The same conclusions
as for the previous simulations involving quasi-rigid cylinders apply to this case.

5. Concluding Remarks.

We have presented the formulation of a new class of implicit time-stepping algorithms
for dynamic contact problems. The main characteristic of the proposed methods is the con-
servation laws that the discrete numerical schemes inherit from the continuum dynamical
system by construction. In particular, it has been shown that the energy is under con-
trol at all times during the numerical simulation, leading to the proper (energy) stability
properties, while efficiently enforcing the contact constraints.

These properties lead to improved performance in comparison with standard numerical
techniques currently in use. The simplicity of the implementation of the proposed scheme,
a modification of standard penalty formulations, is to be noted. Modifications involving
the imposition of the velocity constraint and the introduction of positive high-frequency
energy dissipation have been discussed in detail. Several numerical simulations have been
presented that show the improved numerical stability properties of the new schemes over.
standard time-stepping algorithms.
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Appendix I. Consistent Linearization of the Proposed Schemes.

We develop in this appendix the consistent linearization of the time stepping algo-
rithms developed in this paper. To this purpose, we derive in Section L.1 the linearized
equations of the problem. The contributions of the contact arrays to the tangent matrix
are derived in Section I1.2.

1. The linearized equations.

We consider the discrete equations (2.29) in terms of the nodal momenta p. As
indicated below, the final implementation is carried out in terms of the nodal velocities
v, and the nodal momenta p of the nodes in contact need to be considered only for a
non-vanishing mass penalty m,. Define the residuals

Rd = M (dn+1 - dn) - pn—{-—% )

At
(L.1)

1 n
Rg = £ 4 5 +1) f(n+ bH o

ext int -A'Z (pn+1 ‘pn) .

Given the nodal values {d,, v, }, and corresponding p, (see below), at time ¢, a consistent
linearization of these equations leads to

RY + - Madlt) - Saply =0,

d = At
1 (1.2)
R('L) + Af(n+ ) f1(TTLLt+ ) _ E Ap;:“’:ll) =0 ,
with
(i 1 ) i 7 i ]
ditD) =d9, +adltY . and  plY =P+ oRL (L.3)

for the update between iterations (¢) and (z+1) in time step [t, tn41] of a Newton-Raphson

scheme for the solution of (I.1). The elimination of Ap,:ill ) leads to the final expression

[ (K(”t + K(‘)) + —A%M] AdSH = Ry - = 2 R (L4)
where we have introduced the notation
AfTY =K, adlt) (with adlT) = -;-Adﬁjjfl”) : (L.5)
for the continuum contributions to the tangent stiffness, and
AFTE) = g O Adl) (L.6)
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(note the change of sign) for the contribution of the contact arrays. A closed-form expres-
sion for the contact stiffness KC(Z) is derived in Section 2 below.

Once the updated nodal displacements dibil) and nodal momenta pSill ) are known,
(i+1) (i+1)

the nodal velocities v, [, are recovered using the definition (3.28) of p, ", i.e.,
Nslave
+1 it1 +1 i+1 +1
piit = (M+ A mé,anG(‘nJl@Gﬁ;l)) vt (L7)

in the general case involving the mass penalty m, # 0. For the case of no mass penalty,
my, = 0, the dynamic update equation (I.1); is linear, leading to RZH) = 0 and to the
standard update

41 i+1 7 i+1
7(1+1) = ”iw)rl + Av7(1+1) = '”7(111 A7 Adfzil) ) (L.8)

without the need to consider the extra array pﬁf;f} ). As noted in Section 3.2, we consider
a lumped mass matrix M = M, for the general case where we enforce the velocity gap
constraint (m, # 0), leading to the standard update (I.8) for the nodes not in contact,
and the update (1.7) involving the nodes in contact only.

Remark 1.1. An implementation avoiding the use of nodal momenta p for the nodes
in contact can be easily devised by considering the linearized version of equation (I1.7).
Details are omitted.

2. The contact stiffness.

The linearization of the contact force f., defined by (2.35) as

n . n+i -~
( +3) _ A A(n+ ) with fs(,c+z) =psGny1 (L1)
is given by
AFEFD = Ap,G AG
fS,C = APs s,n+% +ps 3)n+% . (12)
ma;errial geor:etric

The material part of the tangent is defined by

UI gd .
_ (g s,n+1) Ags n+1 if gf,nﬂ # gg,n ’
Aps = Is,n+1 gs n (13)

_U" (gg,n«}—l) Agg,n-}-l if gg,n-{»l = gg,’n ’
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and
d ~ —~ ~ T
Ags,n-}-l = 2Gs,n+-1- Cle,n+1 - C2Ts,n+%jl Ads,n-%—% ) (14)
At =T o~ gs,n-}—1 T
c] = —Z;Ts,n+%08,n+é- + ls 2 n+% (Tn+1 - Tn) y (15)
c2=Vyy1 (Tap1 = 7a) (1.6)
with
R "'N,]gl(gc)un+l R ‘“NMl(fc)Tn+%
Dn+% "'N,]gm(éc)l/n.;._ ) an n+3 “NM2(€c)Tn+% (L.7)
Here, we employed the notation
'Adfl+%' -va-i-%—
M1 M1
R Adn+% ~ Vil
Ads,n«k% = AdMQ ’ and vs,n—{—% = ,UMZ (18)
n+i n+3

The expression g, ,41 refers to the real gap found through the closest point projection at

the configuration at ¢, 1, Thy1 is the normalized tangent vector to the master surface at .
the point of contact ( i.e. VZ;% Trpl = 0), and I, is the length of the surface element of

the master surface corresponding to the given slave node S.

The geometrical part of the tangent, arising from the change of normal and contact
point in G, 41, is obtained as follows

o~

7 [Ts,ndr% @ Ds,n—}-é— + Ds,n+% ® Ts,n+%
(L.9)

o~

Ad

—~

gs n+s ~
)
D,y ®D, 11

Ls

+

s,n+% ’

after an involved calculation. The final expression of the contact stiffness is then given by

Nslave

K.

s=1

DPs
+ I

A

g

U’ (gg,n+1) — Ps
gg,n+1 - gg,n

)
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with the difference quotient in the first term replaced by U” (g%, 1) if 92,41 = g2,
We note the non-symmetry of the material part as it occurs with its counterpart for the
energy-momentum conserving algorithms considered in this paper for the continuum.





