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Abstract

fMRI visualization and methods

by

James Shuang Gao

Doctor of Philosophy in Vision Science

University of California, Berkeley

Professor Jack Gallant, Chair

fMRI is a proven technique for recording brain activity. Although it measures a signal that
is coupled with neural firing through a complex chain of events, it is the only method by
which we can non-invasively observe an entire healthy brain at millimeter scale resolution.
The technique of fMRI is now fairly well known, yet there are still many gaps in the tools we
use to analyze it and our understanding of its underpinnings. Indeed, the complexity and
depth of the data is the source of many of its shortcomings.

In this dissertation, I detail a set of tools I developed to make better use of fMRI data. In
chapter 2, I describe a tool that I created to visualize fMRI data. It provides an intuitive and
powerful interface to explore and share your data with others. In chapter 3, I created a device
that significantly improves the performance of fMRI by virtually eliminating head motion.
This plastic insert relies on commodity 3D printing technology to create personalized helmets
that address many of the shortfalls of fast scan sequences. Finally, in chapter 4, I utilize
these fast scan sequences to investigate the temporal response of hemodynamics. I show that
BOLD timecourses have very little high frequency power, but the high dimensional nature
of fMRI can be used to perform classification extremely quickly.
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Chapter 1

Introduction

1.1 Prologue
The brain remains one of final frontiers in our understanding of the natural world. Un-

derstanding the function of the brain would allow us to understand and predict animal and
human behaviors. Unfortunately, it is also one of the most difficult things to study in natural
science. Unlike other fields, the fundamental processes that govern the operation of the brain
are well known. The anatomical description of neurons were well documented by scientists
such as Santiago Ramón y Cajal as early as 1890. Mathematical models of neural function
were detailed in Hodgkin and Huxley (1952). Despite the extensive understanding of the
neural subunits, we still do not have a full predictive model of the brain and the origin of
behavior.

Much of this fault lies with the organization of neurons that form the brain. Neurons
form complex, highly interconnected networks that are nearly impossible to segment and
track. Even with the power of today’s computers, only small segments of neural tissue have
been fully characterized at an anatomical level. Electrophysiology has been an important
tool in understand subsystems in the brain, since it measures function rather than anatomy.
However, electrophysiology is fundamentally limited by sampling. Sinking individual needles
into the brain allows the modeling of individual neurons. Such individual recordings are
unable to provide insight into more global organization.

Fundamentally, neuroscience research has been limited by instrumentation. At one end,
electrophysiology provides deep insight into very small neural systems. Before 1990, the
global behavior of the brain could only be studied through psychophysics and behavior.
Without the necessary instrumentation, the global organization of the brain and how it
interfaces with behavior remained a mystery.

In 1990, a pivotal advancement in instrumentation finally provided a tool which allowed
us to study the global organization of the brain. Seiji Ogawa’s landmark paper, “Brain mag-
netic resonance imaging with contrast dependent on blood oxygenation.” (Ogawa et al. 1990)
introduced the direct imaging of brain function at a global scale with functional magnetic
resonance imaging. Prior to 1990, MRI had been used for noninvasive imaging of anatomy



1.2. FUNCTION MAGNETIC RESONANCE IMAGING 2

(Lauterbur 1973). Ogawa’s key contribution was that the oxygenation state of the blood
could be measured with MRI. Combined with what was previously known about hemody-
namic response (Roy and Sherrington 1890), it became possible to noninvasively study the
function of the brain at a global scale.

1.2 Function Magnetic Resonance Imaging
Since the invention of fMRI, the technique has revolutionized the field of neuroscience.

fMRI has allowed us to peer into the inner workings of the brain (Friston et al. 1996; Huettel
et al. 2009). Important discoveries have been made by fMRI such as the existence of func-
tional subdomains (Kanwisher et al. 1997) and validation of neural models at scale (Wandell
1999; Nishimoto et al. 2011). However, there are many technical challenges when using fMRI
to study the brain.

On an extremely practical level, MRI measures tissue properties at a grid of points
(voxels) in a volume. By recording individual snapshots in time, we add an additional
time dimension that further obfuscates the data. The visualization of 3D and 4D data has
typically been addressed by simply marginalizing across dimensions. In other words, we
look at 2D slices of the data. This simple visualization is easy to generate, but difficult to
interpret and understand (Figure 2.1). This is because the brain is not organized along 2D
sheets, but is instead a folded 2D manifold in 3D space (Van Essen et al. 2001; Felleman and
Van Essen 1991; Kaas 2012).

To address this issue, researchers interested in function of the cortex typically segment
the cortical mantle using high resolution anatomical images (Van Essen et al. 2001; Dale
et al. 1999). This segmentation is processed with computational geometry tools to generate
triangular mesh models of cortex. This mesh model can be used to select voxels for analysis,
and results can be plotted across this surface (Fischl et al. 2001; Cox 1996). Even with
a mesh model, visualization is still a challenge. Folds in the cortex obscure data plotted
deep in sulci, and alternate views such as inflated or flattened surfaces introduce distortions.
However, modern 3D rendering algorithms enable interactive exploration of data, a technique
that is underutilized in science (chapter 2).

At a more fundamental level, fMRI relies on changes in a tissue’s magnetic properties
to infer activation. The largest and most robust change that naturally occurs in the brain
is the hemodynamic response (Roy and Sherrington 1890). When neurons fire, there is a
transient and local burst of metabolic activity that triggers vascular dilation and subsequent
reoxygenation (Logothetis et al. 2001; Logothetis 2003). This change in blood oxygenation
can be detected by functional MRI. By choosing a TE that maximizes the T2* dephasing
effect, oxygen-bound hemoglobin creates changes in tissue contrast that is visible in MRI
(Nishimura 2010). In summary, neural firing leads to a small metabolic change that is visible
in a tailored MRI sequence. This complex chain of events results in a measurable response
peaking 4-8 s after neural firing (Glover 1999; Buxton et al. 2004).

Thankfully, the link between neural firing and hemodynamic response has been well
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established (Logothetis et al. 2001; Yablonskiy and Haacke 1994; Mukamel et al. 2005; Issa
et al. 2013; Heeger and Ress 2002). Many papers have studied the shape of the hemodynamic
response function that results from transient stimulation of the brain (Glover 1999; Buxton
et al. 2004), and it is very evident that the hemodynamic response function (HRF) applies
some type of low-pass filter to underlying neural activity (Logothetis 2008). However, the
limits of the temporal frequency space have never been probed until now (chapter 4).

In the last 10 years, a key innovation in MRI acquisition allowed us to measure changes
in oxygenation at these high frequency bands. By utilizing coil sensitivity maps across
multiple receive channels, it is possible to separate images that have been intentionally
aliased together (Larkman et al. 2001; Setsompop et al. 2012). This technique known as
“multiband” imaging has moved fMRI far beyond the realm of 0.25 Hz sampling rates.
Multiband allows nearly loss-free acceleration of acquisition, however it is not without its
downsides. This imaging technique relies on having a static map of coil sensitivities; any
disturbance results in incomplete image separation and signal misattribution (Larkman et al.
2001). Unfortunately, awake behaving subjects typically move around, which is exactly what
disturbs these maps of coil sensitivities. However, this problem can again be solved with
innovative technical solutions (chapter 3).

These innovations in fMRI have allowed us to study the link between brain and behavior
at an unprecedented scale. The volumetric measurements provide extremely high dimen-
sional data that spans the entire brain. Our understanding of the link between hemodynam-
ics and neural function allow us to meld the information gleaned using electrophysiology
with the measurements taken in fMRI. These technological advances in fMRI have resulted
in predictive models of behavior and function, one of the end goals of neuroscience research.

1.3 Future research
Now that predictive models of the brain exist, one tantalizing application of these models

is that of real time feedback and control. With the right model of brain activity, it may be
possible to decode covert intention in a behaving subject. For a healthy subject, real time
decoding would merely be a very interesting parlour trick. The science behind accurate
decoding can be tested equally well with encoding models (Wu et al. 2006). For subjects
with severe disabilities such as locked-in syndrome or late-stage ALS, such an application
would restore function and would likely prove life-changing. Further innovation in brain
recording techniques could provide neural decoding in a more portable and accessible form.

An appealing early use case for real-time feedback would be for movement control. In
Andersson et al. (2013), a subject within a magnet used covert spatial attention shifts to
drive a small robot car around an arena. While this was an excellent proof of concept for
real-time control, it utilized a slow 20 second block design to maximize the decoded signal.
With better models of spatial representation and the latest multiband sequences, it may be
possible to provide more naturalistic control with a much shorter feedback cycle.
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1.4 Overview
In this thesis, I laid the groundwork for a future real-time decoding experiment. I devel-

oped tools for the visualization of fMRI data and streamlined the process of voxel selection
and display (chapter 2). I tested new fast sequences that will allow better real-time feedback
(chapter 4). Finally, I developed a device that will maximize the SNR from these accelerated
sequences (chapter 3). It is my hope that these methods that I have developed can be used
with a real-time decoding experiment in fMRI in the future.
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Chapter 2

Pycortex: an interactive surface
visualizer for fMRI

2.1 Introduction
Functional magnetic resonance imaging (fMRI) experiments produce rich data revealing

the patterns of hemodynamic activity throughout the brain (Huettel et al. 2009). However,
tools for visualization of fMRI data remain relatively primitive. Volumetric views that show
single slices or maximum intensity projections (Figure 2.1) reveal only a small portion of
the available data. More sophisticated tools use 3D reconstructions of the cortical surface
to create inflated or flattened cortical surfaces (Cox 1996; Dale et al. 1999; Goebel 1997;
Van Essen et al. 2001). However, most of these tools produce static views of the data so
it is often difficult to interpret the relationship between cortical anatomy and inflated and
flattened surfaces. Furthermore, current packages use standard computer graphics libraries
that are not optimized for accurate visualization of volume projections. They tend to under-
sample the underlying volumetric data and do not produce optimal visualizations. Finally, no
current visualization packages provide a convenient platform for creating interactive online
visualizations for a broad audience.

We addressed the shortcomings of 3D visualization tools by developing pycortex, an in-
teractive software package for viewing fMRI data that is optimized for displaying data on
the cortical surface. Pycortex streamlines the process of surface visualization and produces
interactive displays that switch smoothly between anatomically correct (wrinkled), inflated,
and flattened views of the cortical surface. Pycortex implements a pixel-wise mapping algo-
rithm for projecting volumetric data onto the cortex. This method samples the underlying
functional data densely and produces accurate, visually appealing renderings of the fMRI
data. Finally, pycortex uses WebGL to display the results of the analysis. These WebGL-
based visualizations can be created and viewed on the fly, or they can be saved as a web page
that can be viewed by anyone with a modern web browser. These standalone visualizations
can easily be shared with colleagues, included as links in published articles, or shared online
with a broad audience.
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Figure 2.1 : Typical fMRI Visualization methods
Three typical methods for visualizing fMRI data are used here to visualize a single data set (Huth
et al. 2012). (a) A single axial slice from an anatomical image is shown overlain with functional
data exceeding statistical threshold. It is difficult to recognize anatomical features in this view
and much of the functional data is hidden. (b) A maximum intensity projection (i.e., a glass brain
view) is shown along with all functional data that exceeds statistical threshold. This view shows
more of the functional data than can be seen in the single slice but the anatomical location of these
signals is obscured. (c) An inflated cortical surface is shown with curvature highlighted in grayscale,
and overlain with functional data exceeding statistical threshold. The anatomical location of the
functional data is clearer than in the other views, but multiple views are required to see all of the
data. None of these standard visualizations show all of the data in a succinct and interpretable
way.
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To see a demonstration of what can be achieved with pycortex, please visit http://
www.gallantlab.org/brainviewer/retinotopy_demo. This demo shows the results of a
retinotopic mapping fMRI experiment that was performed on one subject. Retinotopic
mapping is one of the workhorse tools in fMRI experiments of human vision, and it is used to
identify the cortical extent and distribution of many human visual areas (Engel et al. 1997;
Sereno 1998; Sereno et al. 1995). In this online demo, the retinotopic mapping stimulus
that the subject saw appears on the right, and measured blood oxygenation level-dependent
(BOLD) responses measured across the cortical sheet are shown at left.

The rest of this paper is divided into three sections. The first section describes the ad-
vantages of cortical surface-based analysis and visualization over other methods. The second
explains the innovative aspects of pycortex as a tool for surface visualization. Finally, the
third section describes a typical pycortex workflow and presents examples of the major fea-
tures in pycortex. Readers are encouraged to download the package (https://github.com/
gallantlab/pycortex/) to follow along. Additional in-depth examples and explanations
are included in the pycortex documentation (http://gallantlab.org/pycortex/docs/).

2.2 Background
fMRI generates rich volumetric data which can be difficult visualize. Imaging data are

often presented as 3D projections onto 2D planes. However, contiguous functional domains
in volume visualizations may appear as unconnected patches. Surface visualization provides
an intuitive way to simultaneously view all cortical activity recorded in an fMRI data (Van
Essen et al. 2001). The organization of the mammalian cortex ensures that discrete functional
domains can be visualized as contiguous patches on the cortical surface (Felleman and Van
Essen 1991; Kaas 2012). However, the folding of the cortex obscures information deep
in sulci, so functional information is difficult to visualize on the raw surface. To permit
better visualization, surface visualizations can unfold the sulci and gyri while maintaining
anatomical contiguity.

Many fMRI data analysis packages include a surface visualization module, and these
all make use of a standard three-step pipeline: (1) a triangular mesh representation of the
cortical surface is extracted from an anatomical scan; (2) functional and anatomical data
are coregistered; (3) functional data (or the results of some analysis of the functional data)
are projected onto the cortical surface mesh representation. In the following sub-sections,
we detail how each of these steps is accomplished.

2.2.1 Cortical surface mesh generation
The cortical surface is usually modeled as a triangular mesh in 3D. The mesh is created

by first segmenting the brain at the tissue boundaries in a volumetric anatomical scan, then
applying a mesh generation algorithm such as marching cubes (Dale et al. 1999). Once the
triangular mesh has been created, 3D geometrical operations are performed to inflate and

http://www.gallantlab.org/brainviewer/retinotopy_demo
http://www.gallantlab.org/brainviewer/retinotopy_demo
https://github.com/gallantlab/pycortex/
https://github.com/gallantlab/pycortex/
http://gallantlab.org/pycortex/docs/
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flatten the cortical surface (Fischl et al. 2001). Flattened views of the cortical surface show
data across the entire cortex without the need for multiple views in 3D. In order to create
a flattened cortical surface representation from the three-dimensional cortical sheet without
introducing excessive spatial distortion, relaxation cuts must be introduced into the cortical
surface model. This operation is typically performed manually. To avoid splitting regions
of interest on the flattened surface it is best to use functional localizer information when
determining the location of relaxation cuts.

2.2.2 Coregistration
Functional MRI data are typically collected using an imaging sequence that is optimized

for functional rather than anatomical tissue contrast (Nishimura 2010). Thus, the func-
tional data and the anatomical data that produced the surface must be spatially aligned
before projecting the functional data onto the cortical surface model. This process is called
coregistration (Jenkinson and Smith 2001) and results in a transformation matrix that maps
between the 3D coordinates of voxels in the functional data and the 3D coordinates of vox-
els in the anatomical data. Coregistration is typically performed automatically by global
optimization of an affine transform from the functional image to the anatomical image used
to generate the surface (Jenkinson et al. 2002). Since the contrast between anatomical and
functional images are different, these frequently generate poor alignments.

In contrast, recent coregistration algorithms optimize surface intersections with the func-
tional data. By maximizing the gradients across the surface, these algorithms can achieve
accurate coregistration with no manual intervention. This technique—called boundary based
registration (BBR) (Greve and Fischl 2009)-performs extremely well for data collected using
a whole-head slice prescription. However, BBR can still fail unexpectedly. Imaging artifacts
related to echo-planar imaging such as distortions and dropout negatively affect the perfor-
mance of BBR, and it rarely works well with partial-head slice prescriptions. (This is why
the accuracy of automatic coregistration should always be verified visually by overlaying the
transformed functional image on the anatomical data.)

In most fMRI analysis pipelines, the functional-anatomical transformation estimated by
the coregistration procedure is used to re-slice functional data into the same space and res-
olution as the anatomical scan. Re-slicing allows interpretation of functional results with
respect to volumetric anatomical landmarks and provides a straightforward means of trans-
forming data into standardized anatomical spaces (e.g. MNI or Talairach space) (Friston
et al. 1995). Re-sliced data can also be projected onto the inflated or flattened cortical
surface. However, as we will describe in more detail below, re-slicing data into volumetric
anatomical space is not strictly necessary for projection of the data onto the cortical surface.
Only the functional-anatomical transformation is necessary.
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Figure 2.2 : Standard vertex-based mapping
Standard OpenGL rendering implements an algorithm that can be used for vertex-based mapping.
First, a fragment of the surface (gray) embedded in the voxel data (3D grid) is used to sample the
data. Sampling occurs at only the vertices of the triangle (red, green, blue cubes). The surface
triangle is projected to the screen on a regular 2D grid through a standard frustum projection (Woo
et al. 1999). Only the data sampled by the vertices are carried over to the screen. Finally, the
automatic graphics pipeline rasterizes the triangle by interpolating the colors across a barycentric
coordinate space. Vertex-based mapping is generic, but does not adequately sample all underlying
data in the case of plotting fMRI data.

2.2.3 Projection of functional data.
Visualization of the functional data on the cortical surface is usually accomplished us-

ing a 3D graphics pipeline that implements simple vertex-based projection. Vertex-based
projection (Woo et al. 1999) can be split into three steps (Figure 2.2). First, each vertex
in the cortical surface mesh is mapped into the functional volume. Second, the volumetric
functional data are sampled at the vertex locations. If functional data have been re-sliced
to anatomical space then this is trivial. However, by using the functional-anatomical trans-
formation information this mapping can be applied directly from the functional data (in
its native space) onto the cortex without re-slicing. Finally the color of each pixel on the
display is determined by a 3D renderer, usually by linear interpolation between the values of
the nearest vertices. This three-step method is not optimal because it requires two separate
sampling steps: once from volume space to vertex space, and then again from vertex space to
display (pixel) space. If the data are re-sliced to anatomical space then this adds a third sam-
pling step. Each sampling step leads to aliasing and loss of resolution. Furthermore, mesh
smoothing and other surface manipulations may cause uneven vertex spacing, and therefore
uneven spatial resolution across the cortical surface. This effect is especially apparent with
high resolution data (for example, < 2mm3 voxel data collected using 7T fMRI).

One possible way to address this problem is to subdivide the mesh surface to increase
the number of vertices, and thus the number of sampling locations. This is the solution is
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adopted by BrainVoyager QX. However, increasing the number of vertices greatly increases
the computational load, and can only be applied to small portions of the cortex at one time.

2.3 Innovations in pycortex
Pycortex improves the process of fMRI visualization in a number of ways. First, pycortex

integrates a number of tools to generate high quality cortical surface reconstructions. Py-
cortex uses these surfaces to sample functional data using a novel projection algorithm that
results in much higher resolution visualizations. Finally, we draw on the power of modern
graphics cards to provide a highly interactive, accurate, and portable visualization platform
that works from within any modern web browser.

2.3.1 Surface generation and coregistration
Software packages such as Caret (Van Essen et al. 2001), Freesurfer (Dale et al. 1999),

SUMA (Cox 1996), and BrainVoyager QX (Goebel 1997) are typically used to generate
a high quality mesh representation of the cortex. Since these surface segmentation and
mesh manipulation algorithms are already well developed, they are not reimplemented in
pycortex. Instead, pycortex uses surface information output from these packages to create
three-dimensional visualizations that can be easily manipulated and viewed. Pycortex is
most closely integrated with Freesurfer, a free, open-source software package that is already
used by a large community (e.g., the Human Connectome Project (Glasser et al. 2013)).
However, pycortex can import most of the 3D formats that are used by standard MRI
segmentation packages.

Since the advent of BBR, automatic coregistration algorithms usually produce high qual-
ity alignment for whole-brain studies without manual intervention. However, when partial-
head slice prescriptions are used then it is best to perform manual coregistration, and it is
always wise to visually check any coregistration solution. Pycortex provides an alignment
tool that plots the surface mesh overlaid on the functional data. This allows users to view
the alignment in orthogonal slice planes (to simulate traditional piecewise linear transfor-
mations), or using a global 3D view. The surface may be translated, rotated, and scaled
interactively relative to the functional volume. The user can use these tools to visually match
the surface with the underlying functional volume.

Some of the available tools for coregistration and segmentation are difficult to use. For
example, the Freesurfer interface for marking relaxation cuts for surface flattening is ex-
tremely poor. Therefore, pycortex integrates several different tools to simplify the process of
segmentation and coregistration. Pycortex replaces the default Freesurfer tool with Blender,
an open source mesh editing program that is relatively easy to use. Pycortex also integrates
with the BBR implementation provided by FSL to provide automatic coregistration that is
compatible with surfaces generated by Freesurfer. The simple command pipeline provided
by pycortex makes the entire process of surface generation and visualization smooth and
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relatively straightforward.

2.3.2 Pixel-based mapping
As discussed above, vertex-based mapping can be a lossy process that involves unneces-

sary interpolation. Pycortex implements a simpler, more accurate sampling scheme called
pixel-based mapping (Figure 2.4). This scheme replaces the three separate projection steps
with a two-step process that only samples the data once. This pixel-based algorithm directly
maps the pixel coordinates on the display into the functional volume, thereby eliminating
the intermediate vertex space representation. Pixel-based mapping therefore produces much
higher fidelity images of the underlying data than those produced by the typical vertex-based
method. Compared to other surface visualization methods, pixel-based mapping is compu-
tationally costly, since the functional volume must be resampled for every viewpoint in 3D.
If the view is rotated even a degree, every pixel must be mapped anew into volume space.
However, pycortex renders visualizations smoothly and in real time when used with modern
graphics cards and shader pipelines.

Once pixel locations are mapped into volume space, they must sample the underlying
data to derive their color. Different sampling methods trade off between speed and accuracy
and generate visually distinct images. Pycortex includes several different sampling methods
which allow very fine-grained control over this trade-off. The simplest method is nearest-
neighbor sampling in which the mapped pixel is assigned the value from the nearest voxel.
Nearest-neighbor sampling is fast and easy to compute and simple to interpret. However,
nearest-neighbor sampling renders hard edges between adjacent voxels, so it can create a
false impression of sharpness in the data. Trilinear sampling interpolates between the eight
closest voxels to compute each sample. Trilinear interpolation uses a triangular filter that re-
duces aliasing compared to nearest-neighbor sampling. However, this suppresses high spatial
frequency information and may produce results that are too smooth. Sinc filtering results in
samples with the lowest reconstruction error (Oppenheim and Willsky 1996). Sinc filtering
can be approximated with a lanczos filter that optimally preserves the spatial frequencies
present in the functional data. However, this truncated filter is slow to apply so this sam-
pling scheme cannot be used for real-time rendering. Other sampling schemes can also be
implemented in pycortex through an extensible interface.

With other visualization packages such as Caret, only a single position between the pial
and white matter surface (typically halfway between) is sampled to generate the visualiza-
tion. However, human cortex varies in thickness from 1.5-3mm (Fischl and Dale 2000); thus
sampling only a single position may ignore voxels which are closer to the white matter or
pial surface. Pycortex uses a special sampling scheme called thickness sampling to take mul-
tiple samples between pial and white matter surfaces, which captures activity distributed
through the thickness of the cortex. In thickness sampling, each pixel is mapped to a line
in volume space that stretches between the pial and white matter surfaces. Several samples
are taken along this line and the samples are averaged to derive the final pixel value (see
Figure 2.3(c)). Alternatively, a single plane within the cortical mantle can be selected so that
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Figure 2.3 : Typical fMRI data Projections.
On the left, simulated 2D volumes are projected onto a 1D screen. The large colored blocks represent
voxel data and the small rectangles represent screen pixels. Three different mapping methods are
illustrated along with their effect on the surface. (a) Standard vertex-based mapping uses vertices
in the surface mesh to sample the underlying functional data. The vertices (red x’s) sample the
functional data using a nearest-neighbor algorithm and the values are automatically interpolated
by the rasterizer. Although the surface passes through the orange voxel at bottom right, there are
orange pixels on the screen because there is no enclosed vertex. (b) Pixel-based mapping projects
screen pixels into the volume to sample the underlying data. Orange pixels now appear on the
screen since the surface passes through that voxel. (c) Thickness mapping samples data along the
entire line between the white matter and the pial surface, thereby reflecting activity throughout the
thickness of the cortical mantle. (d) The difference in sampling density between pixel-based and
vertex-based mapping is shown for a 1mm slice through the cortical volume as it is mapped onto
a flat map. Vertex samples are shown as red x’s and pixel samples are shown as blue dots. The
increased density improves the accuracy of functional data display, particularly with high-resolution
functional data.
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Figure 2.4 : Retinotopic data for example subject.
Pixel-based mapping in pycortex renders voxels true-to-form. Here, a retinotopic map as in Hansen
et al. (2007) is plotted using webgl. Note that the slanted slice prescription and the isotropic voxel
size is easily visible due to pixel-based mapping and nearest-neighbor sampling. The inset shows
how a single voxel intersects the surface.

the data can be viewed anywhere between the pial and the white matter surfaces. Thickness
sampling is a costly process to run on a CPU, but it is fast and efficient when implemented
using custom shaders and a modern graphics card. To further improve responsiveness with
thickness sampling, samples along a random set of positions through the cortical sheet can
be averaged. This dithering trades off accuracy in favor of interactivity, but still accurately
represents information through the thickness of the cortex.

2.3.3 WebGL and data sharing
Graphics card acceleration allows highly complex datasets to be rendered in real time on

standard computers. Typical 3D data visualization software relies on programming interfaces
like OpenGL to access this powerful hardware. However, software which relies on OpenGL
typically requires extensive installation procedures to visualize even simple datasets. WebGL
is a new technology which melds the OpenGL programming interface with Javascript, a lan-
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guage used to program websites. This allows powerful data visualizations to be programmed
directly inside a web browser. Bringing graphics card acceleration to web pages provides the
opportunity to create portable, interactive visualizations of fMRI data.

Pycortex takes full advantage of the power of WebGL by implementing custom shaders on
the graphics card. Modern graphics cards include programmable shaders that allow custom
code to be uploaded to the card, thus enabling highly parallel rendering operations. By using
custom shaders, pycortex can use accelerated rendering algorithms that would otherwise be
too slow to be practical. When data is visualized in the WebGL view, only volumetric data
and surface structure is passed into the web browser; all other functionality is accomplished
by shader programs. Custom shaders included in pycortex enable the surface to be drawn
quickly, even when pixel-based mapping and a user-selectable sampling method are used.

Because web browsers are ubiquitous on modern personal computers, no special installa-
tion is required to view pycortex visualizations. The use of a web browser as the front end
for pycortex also allows an unprecedented level of interactivity. For example, the anatomical
surface can be flattened interactively simply by dragging a slider. This interactive design
helps the user to develop a clear sense of the correspondence between flattened and anatom-
ically correct surfaces. Pycortex can also display temporally varying time-series data on
the cortical surface in real time. This allows simultaneous visualization of the experimental
paradigm and the functional data in real time (for an example of such a visualization, see
http://www.gallantlab.org/brainviewer/retinotopy_demo).

It is simple to post pycortex visualizations to a web page for public viewing. These
static visualizations are generated using a simple command that generates a single web page
with most resources embedded directly. The surface structure, data, and the webpage can
then be posted to any public facing web site. For example, the online Neurovault data
repository (http://neurovault.org) now makes use of pycortex, and any fMRI data uploaded
to Neurovault can be visualized automatically in pycortex. These visualizations are visible
at a static web address that can be referenced in papers and shared with anyone with a web
browser.

2.4 Pycortex functionality
Pycortex is free, open-source software written in python and javascript. Pycortex adds

to the growing body of python tools for neuroscience (Halchenko and Hanke 2012; Millman
and Brett 2007; Pedregosa et al. 2012). Installation instructions for pycortex and associated
software can be found at http://pycortex.org.

In pycortex user interaction is handled through the python command line. Here, we
present the typical workflow for pycortex, proceeding from anatomical and functional images
to a web-based 3D visualization. In the simplest possible case, only three commands are
required to generate a fully interactive surface visualization in pycortex:

http://www.gallantlab.org/brainviewer/retinotopy_demo
http://pycortex.org
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>>> cor tex . segment . i n i t_sub j e c t ( " S1 " , " T1_anatomical . n i i . gz " )
>>> cor tex . a l i g n . automatic ( " S1 " , " transform_name " ,

" f un c t i o n a l . n i i . gz " )
>>> cor tex . webshow ( ( data , " S1 " , " transform_name " ) )

Figure 2.5 : Pycortex module diagram.
Pycortex provides an integrated visualization
toolkit for fMRI. Several pycortex modules are
used to transform the user-provided anatomi-
cal and function data into an interactive visu-
alization. The segment module integrates with
Freesurfer to generate the surface. The align mod-
ule uses the functional data and the surfaces to
generate a transform. The quickflat and webgl
modules generate static 2D flatmaps and interac-
tive 3D visualizations, respectively. The overlays
module is used to generate vertex-based ROIs and
extract surface-defined volume ROIs.

These commands illustrate three impor-
tant python modules for cortical segmenta-
tion and visualization. The segment mod-
ule initializes the cortical segmentation us-
ing an anatomical image. The align module
provides both automatic and manual coreg-
istration tools for coregistering the surface
and functional images. The webgl module
is used to generate interactive web visual-
izations. Two other modules are also doc-
umented here to highlight additional pycor-
tex functionality; the overlay module can be
used to define surface overlays and regions
of interest (ROIs), and the quickflat module
is used to generate figure-quality images.

Pycortex makes use of a large amount
of internal data such as subject surfaces,
alignments and other metadata. All data
required for pycortex is kept in a database
that is implemented as a simple directory
on the user’s hard drive. In most cases py-
cortex uses this database seamlessly without
requiring any interaction from the user. (For
more information about the database and all
supported file formats, consult the pycortex
documentation.)

2.4.1 The segment module
Pycortex integrates with Freesurfer to

generate surfaces from anatomical images.
For optimal results from Freesurfer, anatomi-
cal MRI images should be collected using the
scanning protocols defined in the Freesurfer
documentation (MGH 2009). Freesurfer is
optimized to work with a specific multi-echo T1 scan sequence, and we have found that this
sequence maximizes surface quality and minimizes the need for manual editing of the surface
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after automatic segmentation. Once the requisite anatomical images have been collected,
only a two lines of code is necessary to initiate surface segmentation in pycortex:
>>> from co r t ex import segment
>>> segment . i n i t_sub j e c t ( " S1 " , " T1_anatomical . n i i . gz " )

This command uses Freesurfer to generate the surface files automatically and stores the
surface in the pycortex database with the identification code S̈1̈. (All further pycortex
processing steps will refer to this surface by the identification code assigned at this stage of
processing). Segmentation is a slow process that can take up to 12 hours, but it can be run
unattended.

Freesurfer generally performs very well on normal brains, but minor topological errors
may occur in areas of low contrast, such as at the cerebellar boundary and around the optic
nerve. Segmentations may also be compromised around diseased tissues that may be present
in diseases such as stroke or aneurysm. It is therefore wise to check all surfaces before further
processing using one of the following commands:
>>> segment . fix_wm( " S1 " )
>>> segment . f i x_pia ( " S1 " )

These commands open an interface that permits segmentation edits to be applied directly
to the white matter or pial surfaces. One window is from Freesurfer’s segmentation editor
tool; white matter voxels can be added or removed in this interface to alter the final surface.
A 3D view also opens in another window to view the surface that resulted from the current
segmentation. Minor segmentation errors typically manifest as spikes or lumpy areas on the
surface. Having both interfaces open simultaneously allows location information to be shared,
facilitating manual editing to improve surface extraction. (For more information about how
to make these edits, consult the Freesurfer documentation, or follow the segmentation tutorial
in the pycortex documentation.) Saving and exiting from all windows will automatically run
Freesurfer once more to apply changes and generate new surfaces.

Once the surfaces are deemed satisfactory, relaxation cuts can be introduced to facilitate
creation of cortical flatmaps. This is accomplished with one command:
>>> segment . cut_sur face ( " S1 " , " lh " )

This command automatically exports the surface and opens it in Blender. Vertex selec-
tion and face deletion tools can be used to remove the medial wall. Vertices can be marked
in conjunction with functional data to facilitate relaxation cutting. For example, retinotopic
mapping data can be projected onto the brain to facilitate cutting along the calcarine sul-
cus to separate visual hemifields. Marked cuts are processed automatically for use in the
flattening procedure. (In-depth instructions on performing this step can be found in the
documentation for pycortex.) When the changes are saved, pycortex automatically flattens
the surface and makes the new flat surface available for visualization. Functional data can
immediately be plotted on this flatmap.

If segmentation is performed outside of the segment module, it is still possible to use
these surfaces in pycortex. For example, if surfaces from older experiments were generated
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by CARET, copying the surface files directly into the pycortex database allows them to
be used in any pycortex visualization. (For more information about how to use external
surfaces, please consult the pycortex documentation.)

2.4.2 The align module
To project functional data onto anatomical surfaces accurately the functional data must

first be coregistered with the anatomical surface. Pycortex supports automatic coregistration
using the BBR tool within FSL (see Background). Pycortex also provides a fully manual
alignment tool. Three arguments are required to launch the automatic coregistration tool:
the subject, the name of the transform, and a functional reference image. For example,

>>> from co r t ex import a l i g n
>>> a l i gn . automatic ( " S1 " , " test_al ignment " ,

" r e f e r enc e_ep i . n i i . gz " )
This will automatically coregister the function image with the surface, and store the

transform into the pycortex database. After an automatic coregistration, the transform can
(and should) be checked with the manual alignment tool to ensure accurate coregistration:

>>> a l i g n . manual ( " S1 " , " test_al ignment " )

This manual alignment tool has three panels that show the current surface slice intersec-
tion with the reference image, and a fourth panel that shows the full 3D rendering with slice
positions. Showing the data this way facilitates accurate alignment of the gray matter with
the functional data. A sidebar contains options to adjust the contrast and brightness, along
with some additional settings. The surface can be moved using key commands listed in the
sidebar. Hotkeys and buttons in the graphical interface allow the anatomical volume to be
translated, rotated and scaled in order to align it optimally with the functional data. The
alignment can be saved using a button or by exiting the interface.

Transforms in pycortex are stored in the pycortex database in the form of an affine trans-
form matrix that operates in magnet isocenter right anterior superior (RAS) space (as defined
by NIFTI headers). The matrix transforms surface coordinates, which are typically stored
with respect to the anatomical space, into the functional space. This format is compatible
with AFNI’s transform format. Utility functions are included to allow conversion between
AFNI/pycortex format and the FSL format.

2.4.3 The quickflat and webgl modules
Pycortex provides two visualization tools to plot functional data on surfaces. quickflat

visualizations use matplotlib to generate figure-quality 2D flatmaps and webgl uses a web
browser for interactive visualizations. Both tools use pixel-based mapping to project func-
tional data onto the cortical surfaces accurately.
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Figure 2.6 : High quality flatmaps generated by pycortex.
Cortical flatmaps can be quickly generated in pycortex using the quickflat module. Matplotlib is
used to view figure-quality flatmaps in a standard size. Options are available to include a colorbar,
ROI outlines, ROI labels, and curvature information. This figure shows retinotopic organization of
visual cortex for one subject as in Hansen et al. (2007)



2.4. PYCORTEX FUNCTIONALITY 19

Quickflat was used to generate the figures in Figure 2.6; to load the same visualization,
>>> import cor t ex
>>> datase t = cor tex . load ( " S1_retinotopy . hdf " )
>>> cor tex . quickshow ( datase t . ang le )

This sequence of commands loads the example dataset
(http://gallantlab.org/pycortex/S1_retinotopy.hdf) and then plots the flatmap in a
matplotlib window. (For more informations about additional display options include options
to select the sampling function, please consult the pycortex documentation.)

To generate these flatmaps quickly, the quickflat module precomputes a mapping from
volumetric samples to figure pixels. These mappings are represented as sparse matrices so
visualizations can be generated from new data quickly by taking the dot product of the ma-
trix with the unraveled volume. To generate these sparse matrix mappings, a grid of pixel
locations are generated that span the extent of the flatmap surfaces. A Delaunay triangu-
lation is then generated for the flat surfaces and the simplex membership is found for each
pixel. Next, the barycentric coordinate on the simplex is generated from the triangulation
transform for every pixel. The original surface coordinate is then computed by substituting
the mid-cortical vertex (or averaged across multiple depths for thickness sampling) for the
flatmap vertex in the Delaunay triangulation, and weighting the vertices with the barycen-
tric coordinate. Finally, a sampler argument determines which function is used to sample
the 3D coordinate.

The webgl visualization can be launched using syntax similar to that used for the quickflat
visualization:

>>> import cor t ex
>>> datase t = cor tex . load ( " r e t ino topy . hdf " )
>>> cor tex . webshow( datase t )

This starts a web server in python and opens a browser window to display the visualiza-
tion. After a brief loading period, the cortical surface is shown with the retinotopy demo
data projected on the surface. The rendered 3D view is a fully dynamic visualization that
allows real time rotation, panning, and scaling.

The data display can be modified interactively in numerous ways. The dynamic view has
two sliding windows that contain display options. The large slider at the bottom linearly
interpolates the shape of the cortical mesh between the original (folded) anatomical, inflated,
and flattened surfaces. This allows the unfolding process to be visualized continuously, and
it clarifies the correspondence between 3D anatomical features and the cortical flatmap. The
sliding window located at the top contains options that change how the data is displayed.
Different colormaps can be selected and the colormap ranges can be altered dynamically.
2D colormaps are also supported, allowing two datasets to be contrasted simultaneously.
Multiple datasets can be loaded and compared directly by simply toggling between them.
Sliders are provided to change the transparency of the dropout, overlay, data, and curvature
layers.

http://gallantlab.org/pycortex/S1_retinotopy.hdf
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As explained earlier, pycortex uses custom shaders that implement pixel-based mapping.
During 3D graphics rendering, the color of each pixel is determined by some predefined code
at the fragment shading step. Under a traditional fixed-function pipeline, fragment shading
is performed by a rasterizer that implements vertex-based mapping (Woo et al. 1999). In
contrast, the fragment shader in pycortex projects each pixel into the functional space in 3D,
and then samples the underlying volume data by reading from a texture. Nearest-neighbor
or trilinear sampling is automatically performed by OpenGL when the data is read from the
texture. This generates a fully interactive and accurate real-time visualization.

The webgl module contains code that parses and generates the HTML and javascript
code required to display surface data in a web browser. It provides two possible use cases: a
dynamic view that can be controlled by a back end python web server, and a static view that
generates static HTML files for upload into an existing web server. The OpenCTM library
(Geelnard 2009) is used to compress the surface mesh into a form that can be utilized by the
web browser. If a dynamic view is requested, the webgl module sets up a local web server
with all the required surface and data files accessible to the web browser. If a static view is
requested, all HTML and javascript code is embedded into a single HTML document and
saved to a set of files. Data (in the form of compressed mosaic images) and surface structures
are stored separately. These standalone visualizations can then be copied to a web server
to be shared with colleagues, included as links in published articles, or shared online with a
broad audience.

Pycortex also includes a javascript plugin architecture that allows new interactive visu-
alizations to be developed easily. For example, the static viewer released with Huth et al.
(2012) http://gallantlab.org/brainviewer/huthetal2012/ contains a plugin that al-
lows the user to visualize how 1765 distinct semantic features are mapped across the cortical
surface. Clicking a point on the brain picks the closest voxel and the viewer displays the
semantic category tuning for the associated voxel.

Finally, pycortex provides a bi-directional communication framework between python
and javascript, so that actions in javascript can be scripted and manipulated in python.
This powerful interaction dynamic allows exploratory data analysis in a way never before
possible.

2.4.4 The overlays module
One common requirement of fMRI studies is to visualize regions of interest (ROIs). ROIs

are typically defined in volume space, using a statistical threshold applied to a functional
localizer contrast (Poldrack 2007). Because these thresholded regions are not anatomically
constrained their intersection with the cortical surface is not guaranteed to be contiguous or
smooth. Another common requirement is to visualize retinotopic ROI defined by identifying
hemifield inversions on a cortical flat map (Hansen et al. 2007). The overlays module provides
a means to define overlays, such as ROI borders and other surface markers, directly on the
cortical surface. These ROIs are automatically rendered by pycortex as paths or regions on
the rendered surfaces.

http://gallantlab.org/brainviewer/huthetal2012/
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Figure 2.7 : Static view for web presentation.
Pycortex uses webgl to generate a static view that can be hosted on a web site. The static view
allows users to share data with colleagues, collaborators, and the public. No additional software
needs to be installed. This figure, published with Huth et al. (2012), shows a typical static view.
A static plugin written in javascript on the right interacts with the 3D view, allowing dynamic
interaction between the plugin and the view.
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To add an ROI, the user must provide contrast data and a named transform:
>>> import co r t ex
>>> cor tex . add_roi ( ( contrast_data , " S1 " , " f u l l h e ad " ) ,

name=’ROI␣name ’ )
This automatically starts Inkscape, an open source vector editing program. A flatmap as

generated by quickflat is shown with multiple layers corresponding to different overlays. If
a closed path is drawn into the ROI layer, pycortex regards it as a complete ROI. A simple
utility function can then extract the volumetric mask of this ROI:

>>> mask = cor tex . get_roi_mask ( " S1 " , " f u l l h e ad " , "V1" )
>>> mask [ ’V1 ’ ] . shape
(31 , 100 , 100)
This returns a volume that indicates the number of ROI vertices within each voxel. The

volume can be converted into a binary mask by finding all nonzero voxels. This simple
thresholding is equivalent to a nearest-neighbor sampling. Pycortex also provides other
projection options that may include additional voxels. (For more information, please consult
the pycortex documentation.)

Pycortex stores overlays as 2D vector paths in the standard SVG image format that
is easily parsed by many libraries. This allows flexible handling of surface overlays either
in pycortex (via Inkscape) or in other programs outside of pycortex. Because the original
contrast flatmap is embedded within the SVG the files retain a permanent record of the
contrast used to draw the border.

2.5 Future development
The pycortex WebGL view provides an unprecedented method for exploration of cortical

MRI data. The interactive interface allows results to be manipulated in innovative ways
that facilitate comprehension, and the ability to generate static views greatly simplifies
data sharing and publication. However, the current WebGL viewer contains a limited set
of plugins for interactive data visualization. We plan to develop a large set of interactive
plotting tools that will facilitate dynamic data analysis in a web browser. We are also working
on extensions to pycortex that allow EcoG and EEG data to be visualized on the cortical
surface. Unfortunately because WebGL is a very new standard, support is still unreliable.
Therefore, we are also exploring options to stabilize the software on additional platforms
(including mobile platforms) and to improve accessibility.

2.6 Acknowledgements
Pycortex draws on and makes use of code from a large set of open source libraries, without

which it would not exist. Please see the README file included with the software for a full
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Chapter 3

Reducing head motion during fMRI
by means of a personalized
3D-printed insert

3.1 Introduction
Subject head motion is a continual source of problems for fMRI and diffusion MRI re-

search (Friston et al. 1996; Le Bihan et al. 2006). Head motion can reduce the magnitude of
functional signals, create spurious signals (Oakes et al. 2005), and drastically affect estimates
of functional connectivity (Power et al. 2012; Van Dijk et al. 2012). These problems are com-
pounded by modern fMRI acquisition techniques such as GRAPPA (Griswold et al. 2002)
and simultaneous multi-slice (aka multiband) (Larkman et al. 2001), which offer increased
scan efficiency at the cost of increased motion sensitivity. Current methods for reducing
head motion include foam padding, inflatable pneumatic pads and bite bars (Bettinardi
et al. 1991). However, these methods reduce head motion only modestly and they can be
very uncomfortable. One promising method is prospective motion correction, where subject
motion is tracked in real time using an infrared camera and the scan window is moved to
compensate (Zaitsev et al. 2006). However, any motion during a scan reduces the efficacy
of shimming. Furthermore, motion that occurs within a slice acquisition causes shearing of
that slice along with misalignments in subsequent slices. Thus, prospective motion correction
cannot fix all motion-related artifacts and it is best to eliminate motion at the source.

One previous study immobilized subjects by means of a personalized plaster cast which
was attached to the head coil (Edward et al. 2000). This proved very effective at reduc-
ing subject motion, but it required substantial effort, time, and skill to produce the cast.
Furthermore, each subject must be enrolled well before the experiment in order to allow
sufficient time to produce a working plaster cast of the head.

Here we present an alternative method for reducing head motion: a rigid plastic insert
that fills the space between the MRI head coil and an individual subject’s head. The insert
is designed so that it conforms to the inside surface of the head coil and the outside surface
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of the subject’s head. A fused-deposition 3D printer is used to manufacture the insert out
of polylactic acid (PLA). The resulting insert constrains head motion far more effectively
than padding and it substantially reduces the effort required from the subject to keep still.
Furthermore, the rigid plastic insert does not compress over the duration of an experiment,
reducing subject drift. One drawback of this method is that it requires a separate insert to
be manufactured for each individual subject. However, this cost is likely worthwhile when
subjects will be used in multiple experiments, when each subject will participate in many
scanning sessions or when subject motion is a particular problem or concern. Furthermore,
recent mass-market adoption of 3D printing has made individual manufacture of these inserts
a relatively economical option given the cost of subject disqualification due to motion.

We scanned two subjects to test the effectiveness of the insert using an experimental
paradigm designed to measure effects on functional signal-to-noise ratio (fSNR). We found
that the insert substantially reduced motion parameters estimated by retrospective motion
correction and it increased fSNR in much of the brain. Our results suggest that the 3D-
printed insert could drastically reduce the problems of head motion in fMRI studies.

3.2 Materials & Methods

3.2.1 Insert design & construction
An insert that matches precisely the shapes of both the head coil and subject’s head

requires a high quality 3D model of both the coil and subject. We used a NextEngine 3D
scanner HD (NextEngine, Santa Monica, CA, USA) to obtain a 3D model of the head coil.
(A photograph of the laser scanning procedure is shown in Figure 3.1A.) We then used the
Blender animation software to model the inside surface of the coil (Figure 3.1B).

To obtain a 3D model of the subject’s head, a T1-weighted anatomical MRI was acquired
(Figure 3.2A and below). The anatomical image was smoothed and median filtered to reduce
noise. A canny edge filter was performed on 2D slices of the image. Holes in the edges were
closed with binary dilation followed by binary erosion. A flood fill algorithm was performed
in 2D slices to generate a scalp volume. The marching cubes algorithm was used to generate
a surface reconstruction (Figure 3.2B). Laplacian smoothing and quadric decimation was
applied to smooth and simplify the surface reconstruction. Finally, this scalp surface model
was expanded by 2mm along each vertex normal to account for hair and pulsatile expansion
of the head.

Once the head model was completed, a model of the interstitial space was obtained by
boolean constructive solid geometry operations performed in Blender. This simply involved
taking the difference of the inside surface of the coil and the subject’s head. Extra holes
were created to make room for the ears, nose, eyes, and mouth, and for additional hardware
such headphone wires and lenses for refractory correction (Figure 3.3A). The resulting insert
model was split in half vertically to allow subject entry, and each half was further divided
into top and bottom pieces to facilitate printing (Figure 3.3B).
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Figure 3.1 : 3D scanning and reconstruction of the space inside the MRI head coil
(A) A 3D scanner is used to generated a high quality 3D mesh reconstruction of the head coil (B)
Open source mesh editing software is used to generate a closed model of the inside of the head coil.
Spaces are cut into the model for the eyes, ears, and nose using boolean difference operations.
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Figure 3.2 : Anatomical scan and reconstruction of the outside surface of the subject’s head.
(A) A quality T1 image with 1mm isotropic resolution and a wide field of view is collected for the
subject. (B) The outside surface of the subject’s head is reconstructed from the anatomical MRI
using flood-fill and binary morphology algorithms. This surface is expanded by 2mm to account
for hair and pulsatile expansion.

Figure 3.3 : Final insert design
The subject head model is subtracted from the head coil model to obtain a model of the space
between the head and the coil. The spaces for eyes, ears, and nose are matched with the head
model to ensure adequate space for the subject. (B) This model is split into four pieces to aid 3D
printing.
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Figure 3.4 : Fused deposition 3D printer
The insert is printed on a fused deposition 3D printer. Each of the four pieces is printed separately.
Printing takes approximately 24 hours total.
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Figure 3.5 : Completed insert
The top and bottom pieces of each half of the insert are glued together. To place the subject in
the scanner, the two pieces are held on either side of the head and then the head is lowered into
the coil. The insert snugly fills the space between the subject and coil.
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Finally, the four pieces were printed out of polylactic acid (PLA) using a custom-built
delta robot fused deposition 3D printer (Figure 3.4). PLA was used as the material because
it has little to no MRI signal (Wapler et al. 2014), and its low shrinkage results in high
fidelity printed models. The top and bottom pieces of each half were then bolted together
with nylon bolts and glued together with superglue (Figure 3.5).

Although the device is made of hard plastic, our subjects reported that the insert was
reasonably comfortable.

3.2.2 MRI methods
In order to generate an accurate scalp segmentation, T1-weighted anatomical images

were collected on a 3T Siemens TIM Trio scanner (Siemens, Erlangen, Germany) using a 12-
channel Siemens volume coil. This coil was used for anatomical imaging because it produces
homogeneous images of the entire head and so improves automatic scalp segmentation.

fMRI data were collected on the same scanner using a 32-channel Siemens volume coil.
This coil was used for functional imaging because it provides much higher functional SNR
(fSNR) than the 12-channel coil. Functional scans were collected using gradient echo EPI
with TR = 2.0045s, TE = 34.5ms, flip angle = 74 degrees, voxel size = 2.24 x 2.24 x 4.1
mm (slice thickness = 3.5 mm plus 18% slice gap), matrix size = 100 x 100 and field of view
= 224 x 224 mm. Twenty-four axial interleaved slices were prescribed to cover the majority
cortex for the subjects. A standard fat-saturation sequence was used to suppress signal from
scalp fat.

fMRI experimental methods. To test the effect of the insert on head motion and fSNR,
subjects were shown a 2-minute movie sequence (with sound). This movie consisted of
10-15 second clips assembled from various creative commons licensed videos downloaded
from Vimeo.com. Throughout the scan the subject maintained fixation on a small point
superimposed at the center of the screen. Scanning took place in two separate sessions
separated by two days. In the first session, subjects was first scanned five times while
watching the movie without the insert. The subjects then came out of the magnet in order
to put the insert in place and five more movie scans were then acquired with the insert.
In the second session this procedure was reversed so that the first five scans were with the
insert and the last five without.

Visual stimuli were presented using an MR-compatible Avotec projector (Avotec, Stuart,
FL, USA) mounted behind the scanner and projecting onto a screen mounted inside the
bore of the magnet. The stimuli subtended approximately 24 x 24 degrees of visual angle.
Auditory stimuli were presented using Sensimetrics S14 in-ear piezoelectric headphones (Sen-
simetrics, Malden, MA, USA). A Behringer Ultra-Curve Pro hardware parametric equalizer
was used to flatten the frequency response of the headphones based on calibration data
provided by Sensimetrics.
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3.2.3 Subjects
Functional data were collected from two male subjects (both age 28). Subjects were

healthy and had normal hearing and vision. Both subjects are experimenters with extensive
experience in the scanner and both remain quite still even without the insert.

3.2.4 fMRI data analysis
Rigid-body motion parameters (translation and rotation) were estimated for each volume

in each functional run using the FMRIB Linear Image Registration Tool (FLIRT) from FSL
5.0 (Jenkinson and Smith 2001). All volumes in each run were then averaged to obtain a high
quality image. FLIRT was also used to automatically align this average image for each run
to a template image collected in a separate scanning session. The cross-run transformation
matrix was then concatenated to the motion-correction transformation matrices obtained
using MCFLIRT, and the concatenated transformation was used to resample the original
data directly into the overall template space. Low-frequency voxel response drift was modeled
as a quadratic polynomial and then subtracted from the signal. The remaining signal for
each voxel was then z-scored across time within each scan.

To measure fSNR, the mean explainable variance was computed separately for each voxel
in each of the two conditions (i.e. with and without the insert). This was done by computing
the fraction of variance in each voxel timecourse for each individual scan that could be
explained by the mean timecourse of that same voxel across all ten scans. This metric ranges
between 0 when the voxel timecourses for each scan are independent, and 1.0 when a voxel
has exactly the same timecourse on every scan. Statistical significance of fSNR was estimated
by randomly selecting repeats from the two conditions, computing their explainable variance
and taking their difference. This procedure was repeated for 100 bootstrap samples, and the
p value for the two actual difference was computed on a per voxel basis.

3.3 Results
To determine whether the insert reduced head motion we compared estimated motion

parameters with and without the insert present . Both subjects tested here are highly experi-
enced experimenters who remain quite still in the scanner even without the insert. However,
examination of the estimated translation and rotation parameters shows that the insert sig-
nificantly reduced the amount of steady motion for one subject (Figure 3.6). The second
subject had exceptionally good motion parameters, but showed a large non-intentional mus-
cle twitch in one trial. Total root-mean-squared (RMS) motion was significantly reduced for
all motion parameters except for yaw-rotation in subject 1. RMS motion was significantly
reduced in roll rotation and x-axis translation in subject 2. In conclusion, the insert dramat-
ically reduces motion to less than 0.25mm translation in any direction and less than 0.15
degrees rotation for any subject whose motion exceeds these parameters.
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Figure 3.6 : Estimated motion parameters with and without the insert
Subjects were scanned to evaluate motion. FLIRT was used to apply motion correction to each
run separately to estimate motion. Motion traces from all 10 runs are plotted for a single subject.
In the top panels, estimated translation with and without the insert are plotted as time series.
Estimated rotations with and without the insert are plotted in the bottom panels. Estimated
motion parameters show that the motion is substantially reduced when the insert is in place.
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Figure 3.7 : Summary of motion parameters
Motion parameters are summarized here for both subjects with an RMS measure of translation and
rotation. Estimated motion parameters are significantly reduced for many motion parameters. *
indicates p < .05, ** for p < .01, and *** for p < .001.

Next we compared estimated voxel-wise functional SNR (fSNR) values between the two
conditions. For the subject who moved relatively more during the scan, the insert signif-
icantly improved fSNR in approximately 15% of the voxels across the cortex (p < 0.05).
Even for the subject who moved relatively little in total, fSNR was significantly improved in
10% of voxels across the cortex. Thus, the printed insert improves fSNR even in compliant
subjects who move very little.

3.4 Discussion
Here we showed that subject head motion during fMRI scanning can be reduced sub-

stantially by using a personalized 3D-printed plastic insert to stabilize the head. This rigid
insert, which is custom designed and manufactured for each subject, completely fills the space
surrounding the subject’s head and so makes head motion nearly impossible. Preliminary
tests showed that the insert significantly reduces motion and increases functional SNR.

The insert substantially improves head stability within a session, but it requires some
effort and resources for initial construction. At this point the design and manufacturing
process have been developed sufficiently that they are largely automated and require little
human intervention. However, an anatomical MRI must be acquired for each subject before
the insert can be designed, and 3D printing one full insert still takes at least 24 hours on our
home-built 3D printer. These limitations suggest that this method will be most useful when
the same subjects will be tested in multiple sessions or when it is particularly important to
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Figure 3.8 : Estimated fSNR with and without the insert.
fSNR was estimated for every voxel in the scanned volume with and without the insert. The
difference in fSNR between the two conditions was computed for each voxel and then plotted here
on a flattened cortical map for one subject. A significance test was carried out by shuffling the
conditions and displaying only voxels where p < 0.1. Here red voxels have higher fSNR with the
insert and blue voxels have higher fSNR without the insert.
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minimize head movement.
While 3D printers are currently very slow, they utilize commodity hardware that can be

obtained cheaply. Thus, it might be feasible to perform parallel production of inserts using
multiple machines. Furthermore, newer 3D printing technologies such as DLP resin curing
might be able to produce an insert in as little as 20 min (Tumbleston et al. 2015). Thus,
it might soon be possible to produce an insert almost automatically and effortlessly at the
beginning of a scanning session.

The ability to rapidly design and manufacture personalized inserts also opens up many
other possibilities for future improvement of MRI data acquisition. For example, it is cur-
rently difficult to perform concurrent fMRI and transcranial magnetic stimulation (TMS)
because the TMS coils must be positioned precisely over the subject’s scalp and then locked
firmly into place. This problem might be solved by designing inserts with mechanisms to
lock the TMS coils into particular positions.

Radiofrequency (RF) transmit inhomogeneity is a severe problem in ultra-high field fMRI
(7+ Tesla). This problem can be alleviated by surrounding the subject with dielectric pads
made of materials such as calcium titanate (Haines et al. 2010), but these pads are difficult
to position accurately and consistently. This might be solved by designing voids in the insert
that can be filled with dielectric material, giving perfect consistency and a high degree of
control over the placement of the dielectrics. Since these inserts are generated using a high
resolution anatomical scan, finite element modeling could also be used to precisely align
additional hardware and model how they interact with the tissues in the head.

Perhaps the most exciting potential application of the approach proposed here is to
improve fSNR in fMRI by integrating receive coils directly into the insert. One of the main
fSNR limitations in conventional fMRI is the distance from the receive coils to the brain.
Because conventional whole-head receive coils are manufactured to accommodate 90% of
human heads, the coils are often quite far from the brain. It has recently been shown that
flexible surface MRI coils provide higher fSNR than volume coils when imaging shallow
structures near the cortical surface (Arias et al. 2014). Thus, one very exciting possibility is
that flexible coils could be integrated directly into the insert. This would place the coils as
near as possible to each individual’s brain, and so could provide substantially higher fSNR
than can be obtained with conventional head coils.

All of these possibilities suggest that the customized 3D-printed insert proposed here
could help alleviate many problems with current fMRI research.
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Chapter 4

Fast fMRI improves signal quality by
separating signal and noise spectra

4.1 Introduction
Recent advances in parallel imaging methods have made it possible to acquire whole-

brain fMRI images in as little as 100ms (Feinberg et al. 2010; Setsompop et al. 2012), 20-30
times faster than typical fMRI experiments (Friston et al. 1999). However, the BOLD signal
measured by fMRI changes very slowly and takes many seconds to peak after an impulse
of neural activity (Glover 1999; Boynton et al. 1996). Therefore it is unlikely that fast
measurements contain more functional information than slow measurements. Still, several
recent studies have shown that fast fMRI can improve BOLD sensitivity in resting state
(Feinberg et al. 2010; Smith et al. 2013), block design, and continuous natural stimulus
fMRI experiments (Chen et al. 2014). These results are enticing but do not offer a clear
picture of why fast fMRI is helpful.

In this study we explored why fast fMRI improves BOLD sensitivity under a stimulus-
driven paradigm. We scanned subjects with simultaneous multi-slice (SMS) fMRI sequences
(Setsompop et al. 2012; Larkman et al. 2001) with acceleration factors ranging from 1x
(no acceleration) to 12x (12 slices are simultaneously acquired during each excitation) and
repetition times (TRs) ranging from 2000ms to 167ms. For each pulse sequence, we scanned
subjects 10 times while they watched the same rapidly-changing natural audiovisual stimulus.
This design allowed us to separate the true functional signal in each voxel (which is the same
across repetitions) from the noise (which is different). Under this model, only only stationary
responses to repeated stimuli are considered “signal”. Nonstationary effects such as stimulus
adaptation are lumped into “noise”. We characterized the frequency content of the signal
and the noise under each sequence with a temporal coherence analysis. Then we tested the
temporal precision of the measured responses with a timepoint correlation analysis. Based
on these results we developed a recommended protocol for fast fMRI that can be used in
any fMRI study.
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4.2 Methods

4.2.1 Experimental and Stimulus Design
Stimuli consisted of 18 color natural movies with sound drawn from Vimeo (www.vimeo.com).

A single 5-10s audio-visual clip from each movie was extracted. Kdenlive (www.kdenlive.com)
was used to combine clips to make a 2.5 minute audiovisual stimulus. An MR-compatible
Avotec projector (Avotec, Stuart, FL, USA) was used to present this audiovisual stimulus to
subjects. The movie subtended 24 by 24 degrees of visual angle and the video was played at
24 Hz. A red fixation cross was overlaid on the center of the movie and subjects were asked
to maintain fixation throughout the scan. Eye tracking data were collected to ensure subject
compliance. Sensimetrics S14 in-ear piezoelectric headphones (Sensimetrics, Malden, MA,
USA) were used to present the auditory stimulus. A Behringer Ultra-Curve Pro hardware
parametric equalizer was used to flatten the frequency response of the headphones based on
calibration data provided by Sensimetrics. Sound level was adjusted for each subject at the
beginning of each session.

Subject were scanned 10 times with each of the six fMRI sequences across two sessions.
Each scan lasted exactly 2.5 minutes. The stimulus began playing simultaneously with the
first acquisition of each scan. Within each session, scans were performed in a balanced,
randomized order. Subjects were not aware of the scan order. The magnet was re-shimmed
with advanced automatic shimming every 6 scans (approximately every 15 minutes). B0
fieldmaps were acquired after every shim with a GRE sequence (Alecci et al. 2001).

4.2.2 fMRI Acquisition
All MRI data were collected on a 3T Siemens TIM Trio scanner (Siemens, Erlangen,

Germany) at the UC Berkeley Brain Imaging Center. The 32-channel Siemens head coil
was used for head imaging. Functional data were acquired at repetition times (TRs) of
2000ms, 1000ms, 500ms, 250ms, and 167ms. All functional EPI data were collected with
the multi-band accelerated EPI sequence (version R011a) from the Center for Magnetic
Resonance Research at the University of Minnesota. All functional scans used echo time
(TE) = 34.2ms, voxel size = 2.24 x 2.24 x 4.1mm (3.5mm slice thickness with 18% slice gap;
these parameters match earlier publications from our group (Huth et al. 2012; Çukur et al.
2013)). The z-axis field of view covered roughly 90% of the brain in each subject. All scans
used fat saturation to remove signal from fat.

fMRI acquisition was split into two overlapping experiments. All scan parameters were
matched as well as possible between scan speeds. Only the multiband factor and TR
were altered between each scan. In Experiment 1, 30 stimulus repeats were collected with
TR=2000ms, 1000ms, and 500ms. In Experiment 2, another 30 stimulus repeats were col-
lected with TR=500ms, 250ms, 167ms. A full parameter summary for both experiments can
be found in Table 4.1.
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Experiment 1 Experiment 2
TR 2000ms 1000ms 500ms 500ms 250ms 167ms
Multiband factor 1 2 4 4 8 12
Total volumes 64 128 256 256 512 768
Flip angle 74◦ 62◦ 47◦ 47◦ 34◦ 28◦

FFT scale 1.0x 1.5x 2.0x
Bandwidth 2084 Hz 2174 Hz
Partial Fourier Full 7/8

Echo spacing 0.57 ms 0.69ms
TE 34.2 ms
Resolution 2.24 x 2.24 x 4.1mm
Matrix size 100 x 100 x 24

Table 4.1 : fMRI acquisition parameters

4.2.3 fMRI Preprocessing
Fieldmap-based unwarping was used to correct for EPI distortion in two of the subjects

(AH and AN) but failed in the third (JG). PRELUDE and FUGUE from FSL 5.0 were
used to estimate warp fields for the two unwarped subjects (Jenkinson 2004; Alecci et al.
2001). The boundary-based registration (BBR) algorithm in FLIRT from FSL5.0 was first
used to align each fieldmap magnitude image to the T1-weighted anatomical image for each
subject. The fieldmap mask was generated by reslicing the high quality cortical masks from
anatomical space into the fieldmap space. Each fieldmap was then despiked, median filtered,
and smoothed using a 3D Gaussian kernel with σ = 2mm.

MCFLIRT from FSL5.0 was used to motion correct each functional run (Jenkinson and
Smith 2001). A high quality template volume was then generated by averaging all volumes
in the run. The template volume from the first TR=1000ms run was chosen as the overall
template for each subject. FLIRT was then used to automatically coregister the template
volume for each run with the overall template. The cross-run transformation matrix was then
concatenated to the motion-correction transformation matrices obtained using MCFLIRT.
For the two unwarped subjects, the concatenated linear motion-correction and cross-run
transformations were combined with the estimated warp fields and applied simultaneously
to the untouched input data. For the third subject, the linear transformations alone were
applied to the untouched input data. Figure 4.1 shows the schematic preprocessing pipeline
for unwarping, motion correction, coregistration, and detrending.

Low-frequency response drift in each run was identified using a 5th order Legendre polyno-
mial then subtracted from the signal. The mean response for each voxel was then subtracted
and the remaining response was scaled to have unit variance. To reduce residual drift on
scan start, 6 seconds of data were trimmed prior to detrending. To reduce detrending edge
artifacts, another 8 seconds were trimmed from the start and end of the scan after detrend-
ing. This resulted in exactly 128 seconds of data for analysis (64, 128, 256, 512, and 768
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volumes for the 2000, 1000, 500, 250, and 167ms scans). To account for physiological noise
in our signal, we recorded pulse oximetry and breathing using a BIOPAC system. We then
used RETROICOR (Glover et al. 2000) to model a series of cardiac response functions and
downsampled them to the TR for each scan. We fit these channels as nuisance regressors
with ordinary least squares, and subtracted them from the signal before additional modeling
steps.

Figure 4.1 : fMRI Preprocessing Pipeline

Freesurfer was used to generate cortical
surface meshes from T1-weighted anatomi-
cal scans (Dale et al. 1999). Pycortex was
used to carefully hand-check and correct
anatomical surface segmentations before
surface reconstruction (http://pycortex.org,
chapter 2). Pycortex was again used to intro-
duce relaxation cuts on the surface of each
hemisphere, then Freesurfer was used to flat-
tened the mesh. Retinotopic mapping data
was used as a guide to make the the calcarine
sulcus cut along the horizontal meridian in
V1 (Hansen et al. 2007).

The BBR automatic alignment tool from
FSL was used to align cortical surface to the
overall functional template. The line-nearest
scheme in pycortex was used to project data
onto the surface. This projection scheme
samples the functional data at 64 evenly-
spaced intervals between the inner (white
matter) and outer (pial) surfaces of the cor-
tex, then averages together the samples.
Samples are taken using nearest-neighbor interpolation, wherein each sample is given the
value of its enclosing voxel.

4.2.4 Subjects
Functional data were collected from three male subjects (author JG, age 28; author AH,

age 29; author AN, age 28). All subjects were healthy and had normal hearing and normal
or corrected-to-normal vision.

4.2.5 fMRI Analyses
Total Explainable Variance

First, we evaluated the total usable signal for each sequence. A functional signal-to-noise
ratio (fSNR) was computed using a repeatability metric called explainable variance (EV). EV
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is computed by normalizing the ratio of variance across repeats and the variance along time
for each voxel (Hsu et al. 2004). This metric is 0 for uncorrelated time courses across repeats,
and 1 for identical timecourses across repeats. An EV metric was computed independently
for each scan sequence and plotted in Figure 4.2, blue line.

Data filtering

Temporal filtering was applied to many analyses to evaluate its effect on aggregate met-
rics. To generate low-pass data, an odd-length finite impulse response filter was designed
with a hamming window such that the bandwidth of the resulting filter was the same across
scan speeds. This resulted in filters with 15, 31, 61, and 91 taps for TR=1000, 500, 250, and
167ms, respectively. This filter was applied once forwards and once backwards to cancel any
phase offset, and further analyses were performed on the result.

Temporal Coherence

To evaluate the frequency content of BOLD, we again looked at the timecourse variance
across repeats. We used a measure of temporal coherence to evaluate the signal across
frequencies. This coherence metric measures the repeatability of the signal power at each
frequency band from 0 Hz to Nyquist, and was computed as in Hsu et al. (2004). First, the
ideal signal is estimated as the average timecourse across repeats. The noise was estimated
from the residuals, which were computed by subtracting the average across repeats from each
individual repeat. Power spectral density (PSD) estimation was independently performed
on the signal and the noise to estimate the spectrum of each. Coherence is computed as

S2(ω)
S2(ω)+N2(ω) . Coherence varies between 1

number of repeats due to chance coherence, and 1 for the
exact same signal across repeats. The number of bins used in computing the PSD were
normalized such that frequency bins were equal width across scan speeds.

Coherence was computed for voxels within the top 5th percentile in EV across all 6 scans.
This corresponds to visual and auditory sensory areas driven by the stimulus (Figure 4.2).
Approximately 3000 voxels from each subject were aggregated to plot coherence (Figure 4.3).

Time Point correlation

Both EV and temporal coherence aggregate over time to derive a voxelwise measure of
fSNR. Neither metric attempts to aggregate over voxels to determine a “temporal” fSNR,
which we call temporal specificity. In order to directly measure temporal specificity, we
created a metric called time point correlation. This metric more closely resembles the con-
ditions of a real-time feedback experiment, where we may attempt to minimize lag between
measurement and feedback. In time point correlation, the temporal specificity of a single
image is directly measured by evaluating the accuracy of a classifier that best identifies a
time point from all others.

To create this classifier, a model of brain activity is first built by averaging 9 repeats of
the data, with the 10th held out for testing. In order to select which voxels participate in the
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classifier, we compute EV within the 9 repeats and select the 1000 best voxels. The same
voxels are selected from the testing set and each timepoint is correlated with every other
timepoint in the average model across voxels. The timepoint with the highest correlation
coefficient is selected as the classification result, and the accuracy is evaluated. This process
is repeated holding out each repeat, and the accuracy is averaged across folds. Alternatively,
we attempt to sort the heldout timepoints in order of their appearance by correlating the
heldout response with the average response. All data are upsampled and evaluated at 10 Hz
to compensate for differing TR lengths for each sequence.

Since the data are upsampled (in some cases by a factor of 20), we expect to see lower
accuracies if only the exact timepoint were matched. For example, timepoint 5.4 in the
heldout data may best match timepoint 5.5 in the average model. This would be considered
an error, despite the offset being only 100ms. To account for small offsets in identification,
we computed accuracies at a range of match offsets from -2 to +2 seconds. Accuracies at
each offset are plotted as a curve with the standard error computed across folds.

4.3 Results

4.3.1 Total Explainable Variance
First we computed the fraction of the response variance in each voxel that was shared

across repetitions of the stimulus (the explainable variance, or EV). If a voxel had very
different responses across repetitions (such that the responses average to exactly 0) then the
EV would be 0.0. If a voxel had exactly the same response on every repetition then the EV
would be 1.0. We computed the total EV for every cortical voxel across all subjects, and
made observations based on the top 5% voxels for each scan speed.

Figure 4.2 shows the EV for two scan sequences (2000ms and 500ms from experiment 1)
mapped across the cortical surface for one subject. This figure uses a 2D colormap to show
EV from both sequences simultaneously: black voxels have low EV in both scans, blue voxels
have higher EV in the 2000ms scan than the 500ms scan, red voxels have higher EV in the
500ms scan than the 2000ms scan, and white voxels have equally high EV in both. This
cortical flatmap indicates that the complex audiovisual stimulus drives repeatable activity
across visual and auditory sensory cortex in both sequences. However, the 2000ms scan has
better EV overall. This effect is also visible in the scatter plot in Figure 4.2(a), where the
majority of voxels have better EV in the 2000ms scan than the 500ms scan.

Comparing EV across all sequences reveals an inverse relationship between speed and
EV. The 2000ms scan sequence has as good or better EV than every other sequence, and
the fastest scan sequences suffer the most. This is consistent with the hypothesis that higher
acceleration causes loss of fSNR due to a lower flip angle and multiband separation artifacts.
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Figure 4.2 : Total explainable variance
Total explainable variance (EV) is a measure of the functional SNR in each voxel. EV varies
between 0 for uncorrelated signal across stimulus repetitions, to 1 for same timecourse across
stimulus repetitions. Top, EV computed from the 2000ms and 500ms scans are plotted on a
cortical flatmap for one subject. Blue indicates areas where the 2000ms scan has better EV than
the 500ms scan, red where 500ms is better, white where both are high, and black where both are
low. The naturalistic audiovisual stimulus drives repeatable signal primarily in sensory areas. The
2000ms scan is better in the majority of cortex, consistent with SNR loss due to acceleration. (A)
Each point represents one voxel’s EV computed from the 2000ms vs. 500ms scan. The majority of
voxels show better performance for the 2000ms scan (blue). (B) A summary of the effect of scan
speed and EV. The percent difference in EV for the top 5% voxels are shown for each scan speed.
EV decreases with faster scan speed.
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Figure 4.3 : Coherence, Signal, and Noise spectra
The signal spectrum is computed by taking the power spectrum density (PSD) of the average
timecourse across repeats. The noise spectrum is estimated by taking the PSD of the residuals.
Coherence normalizes the SNR to lie between 0 and 1 for all frequency bins. (A) Coherence plots
are shown for each scan speed. The bulk of repeatable signal in fMRI lies in frequencies below 0.3
Hz. Coherence exceeds the single-band 2000ms scan across all frequencies for all but the 250ms and
167ms scans. (B) The signal spectrum for the 500ms scan is marginally lower than the 2000ms scan.
(C) The total noise power is also higher (red area), but is spread over a much broader frequency
range. Noise power is located primarily in high frequencies with no signal power. Thus, total SNR
can be improved by filtering away high frequency noise.
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4.3.2 Coherence spectra
To visualize the frequency content of stimulus-driven BOLD signal, we plotted the co-

herence spectra of the most repeatable voxels (Figure 4.3). We found that coherence is high
for all sequences at low frequencies, but falls to chance level at about 0.3Hz. Low frequency
coherence (0-0.1 Hz) is between 0.5 and 0.7 for all except the fastest sequence (TR=167ms),
which has lower coherence than the other sequences at all frequencies. This analysis sug-
gests that the BOLD responses contain no usable information at frequencies faster than
0.3Hz (corresponding to TR=1666ms).

Despite the higher acceleration factor, our results suggest that the 500ms scan has higher
low-frequency coherence than the 2000ms scan. To further examine this effect, we separately
plotted the signal and noise power spectra for the 2000ms and 500ms sequences (Figure 4.3).
Here we see that the signal spectra for the two sequences are nearly identical, with both
falling to chance at around 0.3Hz. However, the noise spectrum for the faster sequence is
more distributed than the noise spectrum for the slower sequence. In other words, more
of the total noise is in the highest frequencies where there is little or no signal power. By
applying a low-pass filter to the voxel data as described in section 4.2.5, it may be possible
to retain much of the signal power while eliminating the noise.

To illustrate this effect, we replotted the signal and noise spectrum for the 500ms scan
with naive subsampling and filtered resampling. Naive subsampling simply selects every nth
time sample in order to downsample the signal. Filtered resampling windows the frequency
spectrum of the signal before subsampling. Subsampling aliases high frequencies into lower
frequencies, altering the signal and noise spectra. Filtered sampling conserves the original
noise and signal spectra well. As illustrated in Figure 4.4 (green line), naive subsampling of
the 500ms signal results in a noise spectra that is qualitatively very similar to the 2000ms
acquisition. Thus, the main difference in SNR between the 2000ms and 500ms scans is
the subsampling of the BOLD signal. One might expect this relationship to break down
with faster scan speeds. Indeed, we observe this effect already at 250ms (MB=8). At this
multi-band factor, the signal spectrum of the subsampled signal is lower than the 2000ms
acquisition. The noise spectrum however remains the same. Given these observations, high
speed scanning may improve the SNR of the BOLD response by spreading noise power into
unusable high frequencies. Correct filtering and resampling would eliminate this noise power.

To test our hypothesis that filtered signals improve EV, we recomputed EV for data
which were low-pass filtered at 0.3 Hz (Figure 4.5, green line). We found a 29% increase in
EV relative to the 2000ms scan for the 1000ms and 500ms scans (p < 1 × 10−10). Overall,
the 500ms sequence from experiment 2 had the highest average EV for these voxels, 40%
higher than the 2000ms sequence (p < 1 × 10−10). The fastest sequences (250ms and 167ms)
had lower total EV than the other sequences, even after filtering. These results suggest that
the amount of usable BOLD signal can be maximized by scanning at a TR of around 500ms
(acceleration factor of 4) and then temporally low-pass filtering the data at 0.3 Hz.
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Figure 4.4 : Filtered downsampling vs. subsampling
fMRI images are snapshots in time; sampling introduces aliasing artifacts unless the timecourses
are filtered correctly. The signal and noise spectra are plotted for the 2000ms and 500ms scans,
along with the spectra of naive subsampled data and filtered downsampled data. Naive subsampling
selects every nth sample to downsample the signal. Filtered downsampling first windows the signal
in fourier space before downsampling. If the 500ms scan is filtered then downsampled (red), the
signal and noise spectra match the original 500ms scan and the high frequency noise is eliminated.
If the 500ms scan is subsampled with no filtering, the noise power is dramatically increased. All
high frequency noise power has been aliased into the lower frequencies and the noise spectrum is
remarkably similar to the 2000ms scan.
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Figure 4.5 : Filtered explainable variance
EV was recomputed for low-pass filtered data. Top, EV from the 2000ms scan is plotted against
the filtered 500ms scan on the cortical flatmap. Filtered data recovers much of the EV loss, and
dramatically improves total EV across most of the brain. (A) The majority of voxels now have
better EV in the filtered 500ms scan compared to the 2000ms scan. (B) Filtering significantly
improves EV for all fast scans, p < 1×10−10. EV shows a 28% to 40% improvement for the 1000ms
and 500ms scans compared to the 2000ms scan (p < 1 × 10−10).
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4.3.3 Timepoint correlation
In the previous analyses we showed that fast scans do not contain more signal than slow

scans. Instead, the faster sequences spread the measurement noise across a wider spectrum
allowing their elimination with filtering. However, coherence analysis and total explainable
variance are both insensitive to blur. Smoothing the data across time would improve fSNR
at the expense of spatial and temporal specificity. One potential goal of scanning faster
is reducing feedback delay in a real-time paradigm. Evaluating the temporal specificity
of BOLD would allow us to estimate the lag between measurement and decoded result in
such a paradigm. To directly investigate the temporal specificity, we performed a timepoint
classification analysis. In this analysis, we attempt to sort timepoints in order of their
appearance based on the voxel response. In order to put all the scan sequences on equal
footing we upsampled all responses to 10Hz.

Figure 4.6 shows the timepoint classification curves for all subjects. These curves peak at
an offset of 0 ms, indicating that about 10% of the time we were able to identify timepoints
within 100ms. Classification errors with offsets greater than 1.5 seconds are nearly zero.
For the 1000ms scan the peak accuracy is somewhat lower and the classification offset is
somewhat broader than the 2000ms scan. The 500ms scan sequence has an even lower and
broader accuracy peak. This indicates that without filtering, faster scans have less precise
temporal information than slower scans.

However, low-pass filtering the fast scans to remove high frequency noise power substan-
tially improves time-point classification performance. With the filtered data, the accuracy
curve is noticeably sharper and higher; the 500ms scan achieves a peak performance of 13%
in one subject. This indicates that filtering out high frequency noise substantially improves
timepoint classification performance.

To quantify the effect of filtering on time-point classification, we fit a gaussian to each
accuracy curve and plotted the full-width half-max (FWHM) (Figure 4.6). For unfiltered
data, the FWHM is larger with increasing scan speeds; this indicates that classification errors
have larger offsets and lower peak performance for the faster scans. However, filtering the
data before performing time-point correlation significantly decreases FWHM for faster scans
across all subjects (p < 1×10−5). The 1000ms and two 500ms scans were significantly better
than the 2000ms scan (p < 0.01) with filtering. However, this result varies on a per-subject
basis and may require tuning for the each subject. Surprisingly, this analysis showed that
the temporal accuracy of fMRI data can greatly exceed the time resolution of the scan. Even
for the TR=2000ms scan, the timepoint correlation accuracy achieved a FWHM of 850ms.
This means that the classifier had a 76% accuracy for matching a 100ms time sample within
850 ms of the target.

Our choice of the 0.3 Hz filter cutoff (section 4.2.5) was a result of a rough estimate
of signal power from the coherence analysis. To quantitatively identify the best filter, we
performed a grid search on the filter bandwidth and cutoff frequency to optimize FWHM.
Since the timepoint correlation metric is not biased by temporal smoothing, optimizing for
FWHM will retain low-coherence signal that may reduce total fSNR in a single voxel. This
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Figure 4.6 : Timepoint correlation
We create a timepoint correlation classifier to evaluate the temporal specificity of the BOLD signal.
The timecourse across 9 repetitions are averaged, and the timepoints of the held-out repeat are
sorted in time based on voxelwise correlation with the average. All scans are upsampled to 10 Hz
to account for different TR. (A) The confusion matrix of the timepoint correlation classifier. Red
is for positive correlation, green dots indicate the maximum timepoint correlation. The majority
of timepoints are correctly classified (green dots on diagonal). (C) and (D) Accuracy at time
offsets from -2s to 2s are plotted for each scan speed. Peak accuracy and temporal specificity drops
monotonically with increasing scan speed. However, peak accuracy is recovered and improved for
all scans if the timecourses are filtered with a 0.3 Hz low-pass filter. (B) A gaussian function is fit to
each accuracy curve to summarize the temporal specificity. Higher FWHM indicates less temporal
accuracy. FWHM increases with increasing scan speed, but is reduced for the filtered 1000ms and
500ms scans (p < 0.01).
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Figure 4.7 : Optimal Filter
The timepoint correlation metric is insensitive to temporal smoothing. Low coherence signals
may still be informative if aggregated across voxels. Therefore, we identified the optimal filter by
performing a grid search on filter frequency and bandwidth to minimize FWHM. The TR=500ms
scan from experiment 1 was filtered with various frequency cutoffs and bandwidths, then timepoint
correlation was performed. Minimal FWHM occurs at cutoff frequency 0.29 Hz and a 29 second
bandwidth.

low-coherence signal may still be usable information if signals are aggregated across voxels.
We find that the FWHM is minimal in the TR=500ms scan with data filtered at 0.29 Hz
with a 29 second bandwidth filter. (Figure 4.7).

4.3.4 High speed stimulus
In Figure 4.3, we claim that BOLD frequency content falls to zero at about 0.3 hz.

However, it is possible that our BOLD frequency spectrum is biased by the stimulus. Since
we chose to use a natural movie stimulus, the 1/f temporal spectrum of the stimulus (Dong
and Atick 1995) may reduce the amount of high frequency information present in the BOLD
signal.

To address this issue, we scanned one subject with a scrambled natural movie stimulus.
In this high frequency stimulus, we spliced 3-frame sections of the natural movies with sound
into a scrambled order. This results in a movie with a mostly uniform frequency content, and
a fundamental frequency at 8 Hz. We chose 8 Hz because this frequency drives the strongest
BOLD response (Thomas and Menon 1998) and is well outside the Nyquist frequency of the
fastest scan used (1 Hz, 500ms TR). We scanned this subject with the 2000, 1000, and 500ms
scans from experiment 1 and computed EV and coherence. Plotting the coherence spectra of
this high-speed stimulus reveals no additional power above 0.3 Hz (Figure 4.8). The 500ms
scan had significantly more low-frequency coherence than the other two scans, but still fell
to chance at 0.3 Hz (Figure 4.8). In addition, peak accuracy for timepoint correlation for
the 500ms scan was not significantly different from 1000 and 2000ms (p > .2 for both), and
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Figure 4.8 : High speed stimulus
If the brain operates as a filter on input, our coherence analysis may have a low frequency bias.
This is because our natural stimulus has a 1/f temporal frequency spectrum (Dong and Atick 1995).
To control for this low frequency bias, we collected data from one subject with a high frequency
stimulus composed of scrambled natural movies. Top, EV computed from the downsampled 500ms
scan is plotted on a single subject’s flatmap. EV is much lower for scrambled movies compared to
coherent natural movies. (A) A scatter plot for each voxel shows the EV as computed from the
2000ms scans and the non-downsampled 500ms scans. Total EV is lower than coherent movies,
and downsampled 500ms scans have improved repeatability. (B) No additional high frequency
information is present in the coherence spectrum despite the fast stimulus. (C) Timepoint classifier
accuracy is lower than the natural stimulus.
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all three were significantly lower than the naturalistic stimulus-driven response (p < .001 for
all).

4.3.5 Physiological noise
The highest speed scans used in this study allow the direct observation of cardiac phase

without aliasing. Typically, the cardiac signal is aliased down into lower frequencies (Oppen-
heim and Willsky 1996) that reduce the SNR of low frequency BOLD. To test this effect, we
computed coherence spectra and EV on data without physiological regression (Figure 4.9).
Overall, physiological regression had relatively minor impact on all analyses. Total EV
across all subjects was improved for the 2000ms scan (5% improvement for top 5% voxels,
p < 1 × 10−5, Figure 4.9) with a decreasing effect at faster speeds.

Since physiological noise is uncorrelated with the stimulus presentation (the heart beat
phase and frequency is not the same for each repetition of the stimulus), we did not expect to
find any changes in the coherence spectrum. However, any heart rate power should be visible
in the noise spectrum. Indeed, a small increase in noise power can be seen at 0.4 and 0.8 Hz,
corresponding to breathing (5s period) and heart rate (potentially aliased down from 1.2 Hz).
Physiological noise regression did reduce the noise power at these two frequencies. However,
this makes no effect on filtered analyses for the faster scans. The low-pass filter eliminates
all frequencies above 0.3 Hz, thereby eliminating any noise contribution from physiological
sources.

4.4 Discussion
In this study, we attempted to isolate the frequency response of the HRF in the presence

of an audiovisual stimulus. We also attempted to optimize our measurement of the response
using the latest multiband and simultaneous multi-slice imaging methods. We replicated
the fact that the BOLD response spectrum is heavily biased toward low frequencies (Glover
1999; Boynton et al. 1996). Very little usable signal is left above 0.3 Hz, corresponding to an
ideal sampling rate of 1.6 seconds. However, we found that supersampling the BOLD signal
at a higher rate (1 Hz) improves SNR. The mechanism behind this SNR improvement is a
sampling rate dependent noise power modulation which allows the removal of high frequency
noise with a filter to improve low frequency SNR. We found that the ideal tradeoff between
acceleration-induced signal loss and supersampling signal gain is around TR=500ms with a
multiband factor of 4.

4.4.1 Timepoint classification
The timepoint correlation analysis leads to some surprising and seemingly counterintu-

itive results. Although the hemodynamics have no response faster than 0.3 Hz, we can
accurately identify 100ms timepoints within 800ms of where they actually occur. This result
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Figure 4.9 : Physiological noise
Scan speeds in excess of 500ms can directly measure BOLD variation due to heart rate. We test
the effect of physiological noise removal on EV, signal, and noise spectrum. Top, EV computed
for the 2000ms scan with and without physiological noise removal is plotted across a single subject
flatmap. EV improvement is evident along sulci and in known locations of veins. EV improvement
is strongest for the 2000ms scan (shown), since physiological noise is aliased into signal frequencies.
(A) Each dot indicates the EV of a single voxel. EV computed from noise-removed data is plotted
on the y-axis. A small improvement is observed in many voxels. (B) The signal and noise spectra
are plotted for the 2000 ms sequence. Physiological noise removal has nearly no effect on the signal
spectrum, but reduces noise power in a broad range of middle to high frequencies. The physiological
factors alias down into signal frequencies; removal through regression improves the final SNR. (C)
Physiological noise removal makes a more pronounced effect on the noise spectrum for the 500ms
scan. Putative noise frequencies at 0.4 Hz and 0.8 Hz are reduced in power.
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is due to the aggregation of information across all the voxels in the decoder. As a voxel’s
time series is upsampled, its individual time course does not provide any additional informa-
tion above the 0.3 Hz cutoff frequency of our filter. However, the decoder is built using the
1000 best voxels in each fold. Additional temporal specificity is encoded in the trajectory
of different voxels, even though each individual voxel provides no additional information.
This additional trajectory information across the whole decoding set allows the enhanced
matching of timepoints well outside the frequency response of any single voxel.

This result is extremely promising for real-time MRI feedback experiments. Despite the
extremely low temporal resolution of fMRI, very fine grained temporal differences can be
captured using slow data. By aggregating information across many voxel trajectories, it is
possible to make predictions about outcome at a much faster pace than the traditional 2-3s
TR. With the use of multi-band acceleration, the boost in SNR from supersampling allows
lower decoding latency and shorter feedback cycles. Further advances in data processing
and algorithm development need to be made in order to process and predict real-time multi-
band accelerated data for decoding. For example, image reconstruction of the TR=167ms
sequence took nearly 10 minutes, four times slower than the collection time.

4.4.2 Acceleration errors
One significant problem with multi-band and simultaneous multi-slice sequences is that

multiple slices are collected in a single excitation. Since slices are intentionally aliased
together in multiband imaging, minor errors in slice dealiasing could lead to signal misat-
tribution (Larkman et al. 2001). For fMRI studies, this presents the possibility that signal
from one anatomical region may be misattributed to signal from another. One effect that
is extremely damaging to multiband acceleration is subject movement, especially during the
pre-acquisition calibration phase. During this phase, the sequence automatically collects
single-band reference images that allow it to allocate signal to each slice using coil sensi-
tivities. If the reference images are misaligned with any subsequent images, the sensitivity
profiles become invalid and misattribution becomes a significant problem.

The generalization of our observed SNR improvement finding may depend on the coop-
eration of the subject. Scanning a naive subject with a multi-band factor of 4 (500ms TR)
will not necessarily result in higher SNR relative to 2000ms TR. Large subject movements
throughout the scan or during reference scans might reduce the SNR improvement. In order
to address this, we have developed a rigid plastic insert that dramatically reduces subject
motion (chapter 3), and allows the use of high multi-band acceleration factors with naive
subjects. This rigid plastic insert virtually eliminates all subject motion and allows the use
of multiband and simultaneous multi-slice scans with much less signal misattribution than
without.
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4.5 Conclusion
Our analyses show that under a stimuli-driven paradigm, the BOLD signal has no sta-

tionary response faster than 0.3 Hz. However, SNR at frequencies lower than 0.3 Hz can
be improved by temporal supersampling with multiband imaging. Our coherence analysis
shows that signal repeatability drops to chance levels at around 0.3 Hz, which is only slightly
higher than the Nyquist frequency of ordinary non-accelerated scans. Although multiband
alone results in a reduction in total EV compared to non-accelerated scans, proper filtering
dramatically improves EV for some of the faster scans. This suggests that fast fMRI allows
us to collect more samples that have independent noise. In addition, scanning faster un-
wraps aliased noise from heart rate and respiration into higher frequency bins, allowing us
to eliminate the noise with a low pass filter.

Given the effects observed in our analysis, the ideal scan sequence for a stimulus-driven
paradigm is a multiband 4x scan with TR=500ms. Uncorrelated measurement noise can be
filtered away because the high speed scan supersamples the signal. The 4-fold multiband
acceleration factor results in minimal loss of signal power, may improve total SNR by up to
40%.
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Chapter 5

Conclusion

Since its conception in 1990, fMRI has proven to be a pivotal tool in the study of neuro-
science. It is a technique that is still being developed. Exciting innovations such as multiband
imaging allow us to study the brain at higher and higher spatial or temporal resolution. Un-
fortunately, fMRI is not a magic bullet. The imaging of hemodynamics limits us to only
modeling the metabolic activity of the brain, rather than the underlying neural coding. Fast
changes in firing cannot be measured by fMRI, and millisecond timing resolution will never
be achieved with hemodynamics.

Despite these limitations, predictive models of neurons can still be validated with fMRI.
The high spatial dimensionality of fMRI guarantees that organization that varies on a large
spatial scale can be observed and predicted. Critically, this prediction of activity hints at a
future where computers can read our thoughts. Interaction between humans and computers
would not be limited by slow keyboard interfaces, but could be a seamless conversation
between brain and machine.

In this thesis, I contributed to the development of fMRI as a tool. I identified some of
limitations of MRI, but showed that interesting applications are still possible. I attempted to
pave the way for a proof of concept application, where MRI can be used to decode conscious
intention.

In chapter 2, I presented a new visualization tool that streamlines surface visualization
of MRI data. Not only does it provide an accurate and convenient way to plot volumetric
intersections of mesh surfaces, it creates a visualization that is easily shareable with other
scientists and the general public alike. This tool also supports interactive data exploration
through the dynamic flattening of surfaces, and the simultaneous visualization of the stimulus
that elicited brain response. This open source software project promotes the ideals behind
open science by encouraging users to share their results and data in an accessible form.
My hope is that this software project will continue to be developed by myself and other
researchers to expand its functionality and utility.

In chapter 3, I used commodity 3D printers to develop a personalized head stabilization
device. This device virtually eliminates all head movement, a problem that plagues the latest
multiband sequences. These sequences rely on the static placement of the head to accurately



56

locate signal origins. Although this application was tailored for fMRI imaging, these devices
could be generated for medically crucial placement of devices around the body. Such plastic
inserts could dramatically improve the outcome of things like radiation therapy for cancer,
or fiducial markers for orthopedic surgery.

In chapter 4, I utilized multiband scanning sequences to evaluate the temporal frequency
response of the BOLD signal. I found that hemodynamics retain nearly no information that
occur faster than 2 seconds; however their spatial distribution is extremely varied and high
dimensional. I found that despite the extremely low temporal cutoff of BOLD, the spatial
variation can be used to perform very fast classification. This means that realtime feedback
experiments can achieve feedback cycles shorter than 10 seconds.

I hope that these technical innovations will lead to the development of a real-time control
experiment where the subject can drive a robot car around with their minds as easily as using
a joystick. Such an experiment would validate of many theories of spatial representation in
the brain, and would provide a tantalizing glimpse into the future of neuroscience.
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