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RESIDUAL-BASED A POSTERIORI ERROR ESTIMATES FOR

SYMMETRIC CONFORMING MIXED FINITE ELEMENTS FOR

LINEAR ELASTICITY PROBLEMS

LONG CHEN, JUN HU, XUEHAI HUANG, AND HONGYING MAN

Abstract. A posteriori error estimators for the symmetric mixed finite ele-
ment methods for linear elasticity problems of Dirichlet and mixed boundary

conditions are proposed. Stability and efficiency of the estimators are proved.

Finally, we provide numerical examples to verify the theoretical results.

Keywords. symmetric mixed finite element, linear elasticity problems, a

posteriori error estimator, adaptive method.

AMS subject classifications. 65N30, 73C02.

1. Introduction

In this paper, we are concerned with the development of residual-based a pos-
teriori error estimators for the symmetric mixed finite element methods for planar
linear elasticity problems. Let Ω ⊂ R2 be a bounded polygonal domain with bound-
ary Γ := ∂Ω, based on the Hellinger-Reissner principle, the linear elasticity problem
with homogeneous Dirichlet boundary condition within a stress-displacement form
reads: Find (σ, u) ∈ Σ× V := H(div,Ω;S)× L2(Ω;R2), such that

(1.1)

{
(Aσ, τ) + (divτ, u) = 0 for all τ ∈ Σ,

(divσ, v) = (f, v) for all v ∈ V,

where S ⊂ R2×2 is the space of symmetric matrices, and the symmetric tensor space
for stress and the space for vector displacement are, respectively,

H(div,Ω;S) :=
{(
τij
)

2×2
∈ H(div,Ω)

∣∣∣ τ12 = τ21

}
,(1.2)

L2(Ω;R2) :=
{(
u1, u2

)T ∣∣∣ u1, u2 ∈ L2(Ω)
}
.(1.3)

Throughout the paper, the compliance tensor A : S → S, characterizing the
properties of the material, is bounded and symmetric positive definite. In the
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2 LONG CHEN, JUN HU, XUEHAI HUANG, AND HONGYING MAN

homogeneous isotropic case, the compliance tensor is given by Aτ = (τ − λ/(2µ+
2λ)trτ I)/(2µ), where µ > 0, λ ≥ 0 are the Lamé constants, I is the identity matrix,
trτ = τ11 + τ22 is the trace of the matrix τ . For simplicity, we assume A is a
constant matrix in this paper and comment on the generalization to the piecewise
constant matrix case.

Because of the symmetry constraint on the stress tensor, it is extremely difficult
to construct stable conforming finite elements of (1.1) even for 2D problems, as
stated in the plenary presentation to the 2002 International Congress of Mathe-
maticians by Arnold [3]. An important progress in this direction is the work of
Arnold and Winther [6] and Arnold, Awanou, and Winther [5]. In particular, a
sufficient condition of the discrete stable method is proposed in these two papers,
which states that a discrete exact sequence guarantees the stability of the mixed
method. Based on such a condition, conforming mixed finite elements on the sim-
plical and rectangular meshes are developed for both 2D and 3D [1, 4, 7, 18, 25].
Recently, based on a crucial structure of symmetric matrix valued piecewise poly-
nomial H(div) space and two basic algebraic results, Hu and Zhang developed a
new framework to design and analyze the mixed finite element of elasticity prob-
lems. As a result, on both simplicial and tensor product grids, several families of
both symmetric and optimal mixed elements with polynomial shape functions in
any space dimension are constructed, see more details in [23, 24, 26, 27, 28]. The-
oretical and numerical analysis show that symmetric mixed finite element method
is a popular choice for a robust stress approximation [12, 14].

Computation with adaptive grid refinement has proved to be a useful and efficient
tool in scientific computing over the last several decades. When the domain contains
a re-entering corner, the stress has a singularity at that corner, non-uniform mesh is
necessary to catch the singularity. Adaptive finite element methods based on local
mesh refinement can recovery the optimal rate of convergence. The key behind this
technique is to design a good a posteriori error estimator that provides a guidance
on how and where grids should be refined. The residual-based a posteriori error
estimators provide indicators for refining and coarsening the mesh and allow to
control whether the error is below a given threshold. Various error estimators for
mixed finite element discretizations of the Poisson equation have been obtained
in [2, 10, 16, 19, 22, 30, 32]. Extension to the mixed finite element for linear
elasticity is, however, very limited. In [11, 29, 31], the authors gave the a posteriori
error estimators for the nonsymmetric mixed finite elements only.

The symmetry of the stress tensor brings essential difficulty to the a posteriori
error analysis. Since only the symmetric part is approximated and not the full gra-
dient, the approach of a posteriori error analysis developed in [11, 15, 29, 31] cannot
be applied directly. In order to overcome this difficulty, Carstensen and Gedicke
propose to generalize the framework of the a posteriori analysis for nonsymmetric
mixed finite elements to the case of symmetric elements by decomposing the stress
into the gradient and the asymmetric part of the gradient. A robust residual-based
a posteriori error estimator for Arnold-Winther’s symmetric element was proposed
in [13], but an arbitrary asymmetric approximation γh of the asymmetric part of
the gradient skew(Du) = (Du −DTu)/2 was involved in this estimator. Further-
more γh was chosen as the asymmetric gradient of a post-processed displacement
to ensure the efficiency of the estimator. More details can be found below.



A POSTERIORI ERROR ESTIMATE FOR LINEAR ELASTICITY PROBLEMS 3

The goal of this paper is to present an a posteriori error estimator together with
a theoretical upper and lower bounds, for the conforming and symmetric mixed
finite element solutions developed in [6, 26]. We shall follow the guide principle in
[6]: use the continuous and discrete linear elasticity complex, c.f. (2.2) and (2.3).

Given an approximation σh on the triangulation Th consisting of triangles, we
construct the following a posteriori error estimator, denoted by η,

η2(σh, Th) :=
∑
K∈Th

η2
K(σh) +

∑
e∈Eh

η2
e(σh)

where

η2
K(σh) := h4

K‖curl curl (Aσh)‖20,K , η2
e(σh) := he‖Je,1‖20,e + h3

e‖Je,2‖20,e,

Je,1 :=

{ [
(Aσh)te · te

]
e

if e ∈ Eh(Ω),(
(Aσh)te · te

)
|e if e ∈ Eh(Γ),

Je,2 :=

{ [
curl(Aσh) · te

]
e

if e ∈ Eh(Ω),(
curl(Aσh) · te − ∂te

(
(Aσh)te · νe

))
|e if e ∈ Eh(Γ),

with Eh being the collection of all edges of Th. We write Eh = Eh(Ω)
⋃
Eh(Γ), where

Eh(Ω) is the collection of interior edges and Eh(Γ) is the collection of all element
edges on the boundary. For any edge e ∈ Eh, let te = (−n2, n1)T be the unit
tangential vector along edge e for the unit outward normal νe = (n1, n2)T . Let
hK be the diameter of the element K and he be the length of edge e. The data
oscillation is defined as

osc2(f, Th) :=
∑
K∈Th

h2
K‖f −Qhf‖20,K ,

where Qh is the L2 orthogonal projection operator onto the discrete displacement
space.

Using the Helmholtz decomposition induced from the linear elasticity complex
[6, 11], we establish the following reliability

‖σ − σh‖A ≤ C1(η(σh, Th) + osc(f, Th)).

In addition, we will prove the following efficiency estimate

C2η(σh, Th) ≤ ‖σ − σh‖A

by following the approach from [2].
We also generalize the above results to the mixed boundary problems, for which

the error estimator is modified on the Dirichlet boundary edges. Reliability and
efficiency of the modified error estimator can be proved similarly.

In [17], a superconvergent approximate displacement u∗h was constructed by a
postprocessing of (σh, uh) . Using this result and the a posteriori error estimation
of the stress, we also give the a posteriori error estimation for the displacement
‖u− u∗h‖1,h in a mesh dependent norm.



4 LONG CHEN, JUN HU, XUEHAI HUANG, AND HONGYING MAN

In order to compare with the a posteriori error estimator in [13], we present their
estimator as follows:

η̃2(σh, Th) := osc2(f, Th) + osc2(g, Eh(ΓN ))

+
∑
K∈T

h2
K‖curl(Aσh + γh)‖20,K

+
∑

e∈Eh(Ω)

he‖[Aσh + γh]eτe‖20,e

+
∑

e∈Eh(ΓD)

he‖(Aσh + γh −∇uD)τe‖20,e.

(The estimator is rewritten in our notation and the details of the standard no-
tation can be found below.) To ensure the efficiency of the estimator, a suffi-
ciently accurate polynomial asymmetric approximation γh of the asymmetric gra-
dient skew(Du) := (Du − DTu)/2 is involved in the above estimator. Since the
global approximation or even minimization may be too costly, Carstensen and
Gedicke compute the sufficiently accurate approximation γh = skew(Du∗h) by the
post-processed displacement u∗h in the spirit of Stenberg [35]. As we can see, this
estimator is totally different to ours. The estimators we propose use the symmetric
stress directly and do not need any estimation of the asymmetric part. Therefore
it is more computationally efficient.

The remaining parts of the paper is organized as follows. Section 2 presents
the notations and the discrete finite element problems. Section 3 proposes an a
posteriori error estimator for the stress and proves the reliability and efficiency of
the estimator. Section 4 generalizes the results of section 3 to mixed boundary
problems. Section 5 gives a posteriori error estimation for the displacement. Sec-
tion 6 presents numerical experiments to show the effectiveness of the estimator.
Throughout this paper, we use “. · · · ” to mean that “≤ C · · · ”, where C is a
generic positive constant independent of h and the Lamé constant λ, which may
take different values at different appearances.

2. Notations and preliminaries

Standard notations on Sobolev spaces and norms are adopted throughout this
paper and, for brevity, ‖ · ‖ := ‖ · ‖L2(Ω) denotes the L2 norm. (·, ·)K represents,

as usual, the L2 inner product on the domain K, the subscript K is omitted when
K = Ω. 〈·, ·〉Γ represents the L2 inner product on the boundary Γ. For brevity,
let ∂xi := ∂/∂xi and ∂2

xixj
:= ∂2/∂xi∂xj , j = 1, 2, ∂ν := ∂/∂ν, ∂t := ∂/∂t. For

φ ∈ H1(Ω;R), v = (v1, v2)T ∈ H1(Ω;R2), set

Curlφ := (−∂φ/∂x2, ∂φ/∂x1) , Curlv :=

(
−∂v1/∂x2 ∂v1/∂x1

−∂v2/∂x2 ∂v2/∂x1

)
.

For τ = (τi,j)2×2 ∈ H1(Ω;R2×2), set

curlτ :=

(
∂τ12/∂x1 − ∂τ11/∂x2

∂τ22/∂x1 − ∂τ21/∂x2

)
, divτ :=

(
∂τ11/∂x1 + ∂τ12/∂x2

∂τ21/∂x1 + ∂τ22/∂x2

)
.

Namely the differential operators curl and div are applied rowwise for tensors.
Let Th be a shape-regular triangulation of Ω̄ into triangles with the set of edges

Eh. Denote by Eh(Ω) the collection of all interior element edges in Th and Eh(Γ) the
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collection of all element edges on the boundary. For any triangle K ∈ Th, let E(K)
be the set of its edges. For any edge e ∈ E(K), let te = (−n2, n1)T be the unit
tangential vector along edge e for the unit outward normal vector νe = (n1, n2)T , hK
be the diameter of the element K and he be the length of the edge e, h = max

K∈Th
{hK}

be the diameter of the partition Th. The jump [w]e of w across edge e = K̄+ ∩ K̄−
reads

[w]e := (w|K+
)e − (w|K−)e.

Particularly, if e ∈ Eh(Γ), [w]e := w|e.
Let Σh × Vh ⊆ Σ × V be a symmetric conforming mixed element defined on

the mesh Th, then the discrete mixed formulation for the problem (1.1) is: find
(σh, uh) ∈ Σh × Vh, such that

(2.1)

{
(Aσh, τh) + (divτh, uh) = 0 for all τh ∈ Σh,

(divσh, vh) = (f, vh) for all vh ∈ Vh.
In the sequel, we briefly introduce Hu-Zhang element [23, 26, 28]. For each

K ∈ Th, let Pk(K) be the space of polynomials of total degree at most k on K and

Pk(K;S) := {τ ∈ L2(K;R2×2)|τi,j ∈ Pk(K), τij = τji, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2},

Pk(K;R2) := {v ∈ L2(K;R2)|vi ∈ Pk(K), 1 ≤ i ≤ 2},
define an H(div,K;S) bubble function as

BK,k := {τ ∈ Pk(K;S) : τν|∂K = 0} .
The Hu-Zhang element space is given by

Σh := Σ̃k,h +Bk,h,

Vh :=
{
v ∈ L2(Ω;R2) : v|K ∈ Pk−1(K;R2) ∀K ∈ Th

}
,

with integer k ≥ 3, where

Bk,h := {τ ∈ H(div,Ω;S) : τ |K ∈ BK,k ∀K ∈ Th} ,

Σ̃k,h :=
{
τ ∈ H1(Ω; S) : τ |K ∈ Pk(K;S) ∀K ∈ Th

}
.

For the above elements, the following a priori error estimate holds.

Theorem 2.1 (A priori error estimate [23, 26, 28]). The exact solution (σ, u) of
problem (1.1) and the approximate solution (σh, uh) of problem (2.1) satisfy

‖σ − σh‖0 . hm‖σ‖m, for 1 ≤ m ≤ k + 1,

‖div(σ − σh)‖0 . hm‖divσ‖m, for 0 ≤ m ≤ k,
‖u− uh‖0 . hm‖u‖m+1, for 1 ≤ m ≤ k.

In the continuous case, the following exact sequence

(2.2) P1(Ω) −→ H2(Ω)
Curl Curl−→ H(div,Ω;S)

div−→ L2(Ω,R2)

holds for linear elasticity [6]. In the discrete case, the exact sequence holds similarly

(2.3) P1(Ω) −→ Φh
Curl Curl−→ Σh

div−→ Vh.

As stated in [6], the space Φh for the Arnold-Winther element is precisely the
space of C1 piecewise polynomials which are C2 at the vertices, that is, the well-
known high-order Hermite or Argyris finite element. The Hu-Zhang element is an
enrichment of the Arnold-Winther element, adding all the piecewise polynomial
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matrices of degree k which are not divergence-free on each element and belong to
H(div,Ω;S) globally. So the space Φh for the Hu-Zhang element is the same as the
one for the Arnold-Winther element.

Lemma 2.1 (Helmholtz-type decomposition [6, 11]). For any τ ∈ L2(Ω;S), there
exists v ∈ H1

0 (Ω;R2) and φ ∈ H2(Ω)/P1(Ω), such that

(2.4) τ = Cε(v) + CurlCurlφ,

and the decomposition is orthogonal in the weighted L2-inner product (C−1·, ·) :=
(A ·, ·), i.e.,

(2.5) ‖τ‖2A = ‖ε(v)‖2A−1 + ‖CurlCurlφ‖2A,
where P1(Ω) is the linear polynomial space on Ω, the norm ‖ · ‖A = (A ·, ·).

Since

(A−1Aτ, τ) = (τ, τ) = (A(A−1τ), τ),

by the boundedness and coerciveness of the operator A, we obtain the following
relationship of the norms: for any τ ∈ Σ, there exist positive constants C1 and C2,
which are independent of the Lamé constant λ, such that

C2‖τ‖2A = C2(Aτ, τ) ≤ ‖τ‖20 ≤ C1(A−1τ, τ) = C1‖τ‖2A−1 .(2.6)

It is the goal of this paper to present a posterior error estimate of σ − σh for
the Hu-Zhang element method. It is worth mentioning that the a posterior error
estimator designed in this paper can be easily extended to the Arnold-Winther
element [6].

3. A posteriori Error Estimation for Stress

In this section, we shall prove the reliability and efficiency of the error estimator.
The main observation is that: although it is a saddle point problem, the error of
stress σ − σh is orthogonal to the divergence-free subspace, while the part of the
error that is not divergence- free can be bounded by the data oscillation using the
stability of the discretization.

For any τh ∈ Σh, the error estimator is defined as

(3.1) η2(τh, Th) :=
∑
K∈Th

η2
K(τh) +

∑
e∈Eh

η2
e(τh),

where

η2
K(τh) := h4

K‖curl curl (Aτh)‖20,K , η2
e(τh) := he‖Je,1‖20,e + h3

e‖Je,2‖20,e,

Je,1 :=

{ [
(Aτh)te · te

]
e

if e ∈ Eh(Ω),(
(Aτh)te · te

)
|e if e ∈ Eh(Γ),

Je,2 :=

{ [
curl(Aτh) · te

]
e

if e ∈ Eh(Ω),(
curl(Aτh) · te − ∂te

(
(Aσh)te · νe

))
|e if e ∈ Eh(Γ).

The data oscillation is defined as

osc2(f, Th) :=
∑
K∈Th

h2
K‖f −Qhf‖20,K ,

where Qh is the L2 orthogonal projection operator onto the discrete displacement
space Vh.
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3.1. Stability result. For the easy of exposition, we write the mixed formula-
tion for linear elasticity as L(σ, u) = f . The natural stability of the operator is
‖σ‖H(div) + ‖u‖ . ‖f‖. However, a stronger stability can be proved for a special
perturbation of the data.

Lemma 3.1. Let fh be the L2 projection of f onto Vh and let (σ, u) = L−1f and
(σ̃, ũ) = L−1fh. Then we have

(3.2) ‖σ − σ̃‖A . osc(f, Th).

Proof. Use the first equation of (1.1) and let v = u− ũ

(A(σ − σ̃), σ − σ̃) = −(div(σ − σ̃), u− ũ) = −(f −Qhf, u− ũ)

= (f −Qhf,Qhv − v)

≤
∑
K∈Th

‖f −Qhf‖0,K‖v −Qhv‖0,K

.
∑
K∈Th

‖f −Qhf‖0,KhK |v|1,K

.

( ∑
K∈Th

h2
K‖f −Qhf‖20,K

) 1
2

‖ε(v)‖0,

where the Korn’s inequality is used and the symmetric gradient ε(v) = 1
2 (∇v +

(∇v)T ). Since ε(v) = A(σ − σ̃), by (2.6), ‖ε(v)‖0 . ‖σ − σ̃‖A. We acquire the
desirable stability result. �

The oscillation osc(f, Th) is an upper bound of ‖f − fh‖−1 and is of high order
comparing with the error estimator.

3.2. Orthogonality. For any φ ∈ H2(Ω), CurlCurlφ ∈ H(div,Ω;S), we can use
the exact sequence property divCurlCurl = 0 to get

(3.3) (Aσ̃,CurlCurlφ) = −(ũ,divCurlCurlφ) = 0.

Similarly

(Aσh,CurlCurlφh) = −(uh,divCurlCurlφh) = 0

for any φh ∈ Φh. Therefore we have a partial orthogonality

(3.4) (A(σ̃ − σh),CurlCurlφh) = 0 ∀ φh ∈ Φh.

3.3. Upper bound. Let S5
h denote the Argyris finite element space, which consists

of C1 piecewise polynomials of degree less than or equal to 5

S5
h :=

{
v ∈ L2(Ω̄) : v|K ∈ P5(K), ∀K ∈ Th, v and its all first and second

derivatives are continuous on the vertices, v is continuous

along the normal direction on the edge midpoints} .

Following [34, 20], we can define a quasi-interpolation operator Ih : H2(Ω) → S5
h,

which preserves the values of the function on all vertices of Th. On each element
K ∈ Th, for any v ∈ H2(Ω), Ihv|K ∈ P5(K) and it satisfies

• Ihv|K(ai,K) = v(ai,K), 1 ≤ i ≤ 3;
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• ∂xj
(Ihv|K)(ai,K) = 1

Nh(ai,K)

∑
K′∈S(ai,K)

∂xj
(Phv|K′)(ai,K), 1 ≤ i ≤ 3,

j = 1, 2;

• ∂2
xjxl

(Ihv|K)(ai,K) = 1
Nh(ai,K)

∑
K′∈S(ai,K)

∂2
xjxl

(Phv|K′)(ai,K), 1 ≤ i ≤ 3, 1 ≤

j ≤ l ≤ 2;

• ∂ν(Ihv|K)(a3+i,K) = 1
Nh(a3+i,K)

∑
K′∈S(a3+i,K)

∂ν(Phv|K′)(a3+i,K), 1 ≤ i ≤

3;

where ai,K , 1 ≤ i ≤ 3, are the vertices of K, a3+i,K , 1 ≤ i ≤ 3, are the edge
midpoints of K, ν is the edge outer normal of the element K on the edge midpoint,
S(ai,K) =

⋃
{K ∈ Th : ai,K ∈ K} and Nh(ai,K) = card{K : K ∈ S(ai,K)}, Ph

is the projection operator from L2(Ω) onto the piecewise linear polynomial finite
element space on Th. It is obvious that the interpolation operator Ih is uniquely
determined by the above degrees of freedom. Furthermore, Ih is a projection, i.e.

Ihv = v ∀v ∈ S5
h,(3.5)

and it preserves the value of the function on vertices for any v ∈ H2(Ω), i.e.

Ihv(ai,K) = v(ai,K) ∀K ∈ Th, 1 ≤ i ≤ 3.(3.6)

A similar scaling argument as in [34, 20] gives the following interpolation estimates

(3.7) |v − Ihv|m,K . h2−m
K |v|2,SK

, 0 ≤ m ≤ 1, ∀K ∈ Th,

(3.8) |v − Ihv|m,e . h
2−m− 1

2
e |v|2,Se

, 0 ≤ m ≤ 1, ∀ e ∈ Eh,

where SK =
⋃
{Ki ∈ Th : Ki

⋂
K̄ 6= ∅}, Se =

⋃
{Ki ∈ Th : Ki

⋂
e 6= ∅}.

Applying the Helmholtz decomposition to the error σ̃ − σh, we have

(3.9) σ̃ − σh = Cε(v) + CurlCurlφ

and

(3.10) ‖CurlCurlφ‖A ≤ ‖σ̃ − σh‖A,

where v ∈ H1
0 (Ω;R2) and φ ∈ H2(Ω)/P1(Ω). By this orthogonal decomposition

and the fact div(σ̃ − σh) = 0,

‖σ̃ − σh‖2A = (A(σ̃ − σh), Cε(v) + CurlCurlφ)

= −(div(σ̃ − σh), v) + (A(σ̃ − σh),CurlCurlφ)

= (A(σ̃ − σh),CurlCurlφ).

Since CurlCurl (Ihφ) ∈ Σh, by the orthogonality (3.4) and the equation (3.3),

(A(σ̃ − σh),CurlCurlφ) = (A(σ̃ − σh),CurlCurl (φ− Ihφ))

= −(Aσh,CurlCurl (φ− Ihφ)).
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An integration by parts gives

(Aσh,CurlCurl (φ− Ihφ))

= −
∑
K∈Th

(curl(Aσh),Curl(φ− Ihφ))K +
∑
K∈Th

〈(Aσh)t,Curl(φ− Ihφ)〉∂K

=
∑
K∈Th

(curl curl (Aσh), φ− Ihφ)K +
∑
K∈Th

〈(Aσh)t,Curl(φ− Ihφ)〉∂K(3.11)

−
∑
K∈Th

〈curl(Aσh) · t, φ− Ihφ〉∂K .

The second term of the right hand side can be rewritten as∑
K∈Th

〈Aσht,Curl(φ− Ihφ)〉∂K =
∑
K∈Th

〈(Aσh)t · t,Curl(φ− Ihφ) · t〉∂K

+
∑
K∈Th

〈(Aσht) · ν,Curl(φ− Ihφ) · ν〉∂K

Since the compliance tensor A is symmetric and continuous, (Aσht) · ν = (Aσhν) · t
and (Aσht) · ν is continuous across the interior element edge. This implies∑

K∈Th

〈(Aσht) · ν,Curl(φ− Ihφ) · ν〉∂K =−
∑

e∈Eh(Γ)

〈(Aσhte) · νe, ∂te(φ− Ihφ)〉e

=
∑

e∈Eh(Γ)

〈∂te((Aσhte) · νe), φ− Ihφ〉e

where the fact (φ− Ihφ) vanishing at the boundary vertices (3.6) is used. So∑
K∈Th

〈Aσht,Curl(φ− Ihφ)〉∂K =
∑

e∈Eh(Ω)

〈
[
(Aσhte) · te

]
e
, ∂νe(φ− Ihφ)〉e

+
∑

e∈Eh(Γ)

〈(Aσhte) · te, ∂νe(φ− Ihφ)〉e

+
∑

e∈Eh(Γ)

〈∂te((Aσhte) · νe), φ− Ihφ〉e.

Substituting it into (3.11), we get

(Aσh,CurlCurl (φ− Ihφ)) =
∑
K∈Th

(curl curl (Aσh), φ− Ihφ)K

+
∑

e∈Eh(Ω)

〈
[
(Aσhte) · te

]
e
, ∂νe(φ− Ihφ)〉e

−
∑

e∈Eh(Ω)

〈
[
curl(Aσh) · te

]
e
, φ− Ihφ〉e

+
∑

e∈Eh(Γ)

〈(Aσhte) · te, ∂νe(φ− Ihφ)〉e

+
∑

e∈Eh(Γ)

〈∂te((Aσhte) · νe)− curl(Aσh) · te, φ− Ihφ〉e.
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Then applying the Cauchy-Schwarz inequality, the error estimate of the quasi-
interpolation (3.7), (3.8), we have

‖σ̃ − σh‖2A = (A(σ̃ − σh),CurlCurlφ)

.

[ ∑
K∈Th

h4
K‖curl curl(Aσh)‖20,K +

∑
e∈Eh

(
he‖Je,1‖20,e + h3

e‖Je,2‖20,e
)] 1

2

|φ|2(3.12)

.

[ ∑
K∈Th

η2
K(σh) +

∑
e∈Eh

η2
e(σh)

] 1
2

‖CurlCurlφ‖0.

By [11], the φ defined in (3.9) satisfies that div(Curl Curl φ) = 0 and∫
Ω

tr(Curl Curl φ)dx =

∫
Ω

tr(σ̃ − σh − Cε(v))dx = −
∫

Ω

tr(Cε(v))dx = 0.

Using Proposition 9.1.1 in [8], we get

‖CurlCurlφ‖0 ≤ C‖CurlCurlφ‖A,

where the constant C is independent of the Lamé constant λ. Combining this with
(3.10), (3.12), we obtain

‖σ̃ − σh‖A .

[ ∑
K∈Th

η2
K(σh) +

∑
e∈Eh

η2
e(σh)

] 1
2

.

Together with the triangle inequality and perturbation result (3.2), we get the
desired error bound

‖σ − σh‖A ≤ ‖σ − σ̃‖A + ‖σ̃ − σh‖A

.

[ ∑
K∈Th

η2
K(σh) +

∑
e∈Eh

η2
e(σh)

] 1
2

+ osc(f, Th).

In summary, we obtain the following upper bound estimation.

Theorem 3.1 (Reliability of the error estimator). Let (σ, u) be the solution of
the mixed formulation (1.1) and (σh, uh) be the solution of the mixed finite ele-
ment method (2.1). If the compliance tensor A is continuous, there exists positive
constant C1 depending only on the shape-regularity of the triangulation and the
polynomial degree k such that

(3.13) ‖σ − σh‖A ≤ C1(η(σh, Th) + osc(f, Th)).

Remark 3.1. When A is discontinuous, we can modify η(σh, Th) as follows:

η2(σh, Th) : =
∑
K∈Th

h4
K‖curl curl(Aσh)‖20,K +

∑
e∈Eh

he‖[(Aσh)te · te]‖20,e

+
∑
e∈Eh

h3
e‖
[
curl(Aσh) · te − ∂te((Aσh)te · νe)

]
‖20,e.

Compared to the case of continuous coefficient A, this estimator includes an ad-
ditional term, the jump of ∂te((Aσh)te · νe) on all interior edges, owing to the
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discontinuity of the matrix A. Similarly, we can prove the reliability of the estima-
tor

‖σ − σh‖A . η(σh, Th) + osc(f, Th).

Remark 3.2. By Proposition 9.1.1 in [8], it holds

‖τ‖0 . ‖τ‖A + ‖ div τ‖−1 ∀ τ ∈ Σ̂

where Σ̂ := {τ ∈ Σ : (trτ, 1) = 0} with tr being the trace operator of matrix. Then
we also have from (3.13) and the fact that ‖f − fh‖−1 . osc(f, Th)

‖σ − σh‖0 .‖σ − σh‖A + ‖ div(σ − σh)‖−1 . η(σh, Th) + osc(f, Th).

That is we can control the L2 norm of the stress with constant independent of the
Lamé constant λ. �

3.4. Lower bound. We shall follow Alonso [2] to prove the efficiency of the error
estimator defined in (3.1). Similar to [2], we need the following lemma.

Lemma 3.2. For any K ∈ Th, given pK ∈ L2(K), qe ∈ L2(e), re ∈ L2(e), e ∈ ∂K,
there exists a unique ψK ∈ Pk+4(K) satisfying that

(3.14)


(ψK , v) = (pK , v)K for any v ∈ Pk−2(K),
〈ψK , s〉e = 〈qe, s〉e for any s ∈ Pk−1(e),

〈∂νψK , s〉e = 〈re, s〉e for any s ∈ Pk(e),
∂αψK(P ) = 0 |α| ≤ 2, for any vertex P ∈ K,

where Pk(e) denotes the spaces of polynomial of degree less than or equal to k on
edge e. Moreover it holds that

‖ψK‖20,K . ‖pK‖20,K +
∑
e∈∂K

(
he‖qe‖20,e + h3

e‖re‖20,e
)
.(3.15)

Proof. Similar as in [33], such a function ψK is determined uniquely by the above
degrees of freedoms. A standard homogeneity argument gives (3.15). �

Theorem 3.2 (Efficiency of the error estimator). Let (σ, u) be the solution of
the mixed formulation (1.1) and (σh, uh) be the solution of the mixed finite ele-
ment method (2.1). If the compliance tensor A is continuous, there exists positive
constant C2 depending only on the shape-regularity of the triangulations and the
polynomial degree k such that

(3.16) C2η(σh, Th) ≤ ‖σ − σh‖A.

Proof. The estimator η2(σh, Th) can be rewritten as

η2(σh, Th) =
∑
K∈Th

(
curl curl (Aσh), h4

Kcurl curl (Aσh)
)
K

+
∑
K∈Th

∑
e∈∂K

〈(Aσh)te · te, heJe,1〉e

+
∑
K∈Th

∑
e∈∂K

⋂
Eh(Ω)

〈curl (Aσh) · te, h3
eJe,2〉e

+
∑
K∈Th

∑
e∈∂K

⋂
Eh(Γ)

〈curl (Aσh) · te − ∂te ((Aσh)te · νe) , h3
eJe,2〉e.

On each element K ∈ Th, we apply Lemma 3.2 for pK = h4
Kcurl curl (Aσh)|K ,

qe = −h3
eJe,2, re = heJe,1 for each edge e ∈ ∂K. Let ψ|K = ψK , such a defined ψ
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is in the high-order Argyris finite element space of degree k+ 4, hence ψ ∈ H2(Ω).
Using (3.15), it follows that

‖ψ‖20,K . h8
K‖curl curl (Aσh)‖20,K +

∑
e∈∂K

(
h7
e‖Je,2‖20,e + h5

e‖Je,1‖20,e
)
.(3.17)

This, in conjunction with (3.14), yields

η2(σh, Th) =
∑
K∈Th

(curl curl (Aσh), ψK)K

−
∑
K∈Th

∑
e∈∂K

〈curl (Aσh) · te, ψK〉e

+
∑
K∈Th

∑
e∈∂K

〈(Aσh)te · te, ∂νeψK〉e(3.18)

+
∑
K∈Th

∑
e∈∂K

⋂
Eh(Γ)

〈∂te ((Aσh)te · νe) , ψK〉e.

Since (Aσh)te · νe is continuous across the element edge e, [Aσhte · νe]e = 0 on
interior edges. Noting that ψ ∈ H2(Ω) and vanishes at the mesh vertices,∑

K∈Th

∑
e∈∂K

⋂
Eh(Γ)

〈∂te ((Aσh)te · νe) , ψK〉e

= −
∑
K∈Th

∑
e∈∂K

⋂
Eh(Γ)

〈(Aσh)te · νe, ∂teψK〉e(3.19)

= −
∑
K∈Th

∑
e∈∂K

〈(Aσh)te · νe, ∂teψK〉e.

Hence the last two terms of (3.18) become∑
K∈Th

∑
e∈∂K

〈(Aσh)te · te, ∂νeψK〉e

+
∑
K∈Th

∑
e∈∂K

⋂
Eh(Γ)

〈∂te ((Aσh)te · νe) , ψK〉e

=
∑
K∈Th

∑
e∈∂K

〈(Aσh)te · te, CurlψK · te〉e(3.20)

−
∑
K∈Th

∑
e∈∂K

〈(Aσh)te · νe, −CurlψK · νe〉e

=
∑
K∈Th

∑
e∈∂K

〈(Aσh)te, CurlψK〉e.

Substituting (3.20) into (3.18) leads to

η2(σh, Th) =
∑
K∈Th

( (
curl curl (Aσh), ψK

)
K
−
∑
e∈∂K

〈curl (Aσh) · te, ψK〉e

+
∑
e∈∂K

〈(Aσh)te, CurlψK〉e
)
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Integrating the first term by parts twice,

η2(σh, Th) =
∑
K∈Th

(Aσh, CurlCurlψK)K

=
∑
K∈Th

(A(σh − σ),CurlCurlψK)K

. ‖σ − σh‖A

( ∑
K∈Th

h−4
K ‖ψ‖

2
0,K

) 1
2

,

where CurlCurl ψ ∈ Σ and the inverse inequality are used. By (3.17),∑
K∈Th

h−4
K ‖ψ‖

2
0,K .

∑
K∈Th

h4
K‖curl curl (Aσh)‖20,K +

∑
e∈Eh

(
he‖Je,1‖20,e + h3

e‖Je,2‖20,e
)

=̂η2(σh, Th).

Combining the above two inequalities, we have that

η(σh, Th) . ‖σ − σh‖A.

�

Remark 3.3. For discontinuous A and the modified error estimator in Remark
3.1, efficiency can be also proved using a similar argument.

4. A posteriori error estimation for mixed boundary problems

The a posteriori error estimation for the linear elasticity problems with the ho-
mogeneous Dirichlet boundary condition can be generalized to problems with mixed
boundary conditions. In this section, we will discuss the following linear elasticity
problems with mixed boundary conditions. Let Ω ⊂ R2 be a bounded polygo-
nal domain with boundary Γ := ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, ΓN 6= ∅. Given
data f ∈ L2(Ω;R2), uD ∈ H1(Ω;R2), and g ∈ L2(ΓN ;R2), seek the solution
(σ, u) ∈ Σg × V , such that

(4.1)

{
(Aσ, τ) + (divτ, u) = 〈uD, τν〉ΓD

for all τ ∈ Σ0,

(divσ, v) = (f, v) for all v ∈ V,

where

Σ0 :=
{
σ ∈ H(div,Ω;S)|

∫
ΓN

ψ · (σν)ds = 0, for all ψ ∈ D(ΓN ;R2)
}
,

Σg :=
{
σ ∈ H(div,Ω;S)|

∫
ΓN

ψ · (σν)ds =

∫
ΓN

ψ · gds, for all ψ ∈ D(ΓN ;R2)
}
,

where D denotes the space of test functions. Let Σ0,h := Σ0

⋂
Σh, Σg,h := Σg

⋂
Σh,

the mixed finite element method seeks (σh, uh) ∈ Σg,h × Vh, such that

(4.2)

{
(Aσh, τh) + (divτh, uh) = 〈uD, τhν〉ΓD

for all τh ∈ Σ0,h,

(divσh, vh) = (f, vh) for all vh ∈ Vh.

We modify the a posterior error estimator defined in Section 3 as the following:

η2(σh, Th) :=
∑
K∈Th

η2
K(σh) +

∑
e∈Eh

η2
e(σh)
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where

η2
K(σh) := h4

K‖curl curl (Aσh)‖20,K , η2
e(σh) := he‖Je,1‖20,e + h3

e‖Je,2‖20,e,

Je,1 :=


[
(Aσh)te · te

]
e

if e ∈ Eh(Ω)(
(Aσh)te · te − ∂te(uD · te)

)
|e if e ∈ Eh(ΓD)(

(Aσh)te · te
)
|e if e ∈ Eh(ΓN )

Je,2 :=


[
curl(Aσh) · te

]
e

if e ∈ Eh(Ω)(
curl(Aσh) · te + ∂tete(uD · ν)− ∂te

(
(Aσh)te · νe

))
|e if e ∈ Eh(ΓD)(

curl(Aσh) · te − ∂te
(
(Aσh)te · νe

))
|e if e ∈ Eh(ΓN )

where Eh(ΓD), Eh(ΓN ) are the collection of element edges for Dirichlet boundary
and Neumann boundary respectively.

Similar to Section 3, we can prove the reliability and efficiency of this a posteriori
error estimator.

Theorem 4.1 (Reliability and efficiency of the error estimator). Let (σ, u) be the
solution of the mixed formulation (4.1) and (σh, uh) be the solution of the mixed
finite element method (4.2). If the compliance tensor A is continuous, there exist
positive constant C3 and C4 depending only on the shape-regularity of the triangu-
lation and the polynomial degree k such that

(4.3) ‖σ − σh‖A ≤ C3

(
η(σh, Th) + osc(f, Th) + osc(g, Eh(ΓN ))

)
,

and

(4.4) C4η(σh, Th) ≤ ‖σ − σh‖A + osc(uD, Eh(ΓD)),

where the data oscillations for the Dirichlet boundary uD and the Neumann bound-
ary condition g are defined as

osc(g, Eh(ΓN ))2 :=
∑

e∈Eh(ΓN )

he‖g − gh‖20,e

osc(uD, Eh(ΓD))2 :=
∑

e∈Eh(ΓD)

he‖∂te(uD · te)− ∂te(uD,h · te)‖20,e

+
∑

e∈Eh(ΓD)

h3
e‖∂tete(uD · νe)− ∂tete(uD,h · νe)‖20,e,

gh is the piecewise L2 projection of g onto Pk(Eh(ΓN ),R2) and uD,h is the piecewise
L2 projection of uD onto Pk(Eh(ΓD),R2).

5. A Posteriori Error Estimation for Displacement

In this section, we shall discuss the a posteriori error estimate for a superconver-
gent postprocessed displacement recently constructed in [17]. The key points of the
theoretical analysis involve the discrete inf-sup condition and the norm equivalence
on H1(Th;R2) developed in [17], and the a posteriori error estimates (3.13) and
(3.16). Here the broken space

H1(Th;R2) :=
{
v ∈ L2(Ω;R2) : v|K ∈ H1(K;R2) ∀K ∈ Th

}
.
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For any v ∈ H1(Th;R2), define mesh dependent norm

|v|21,h := ‖εh(v)‖20 +
∑
e∈Eh

h−1
e ‖[v]‖20,e.

We first recall the superconvergent postprocessed displacement from (σh, uh)
developed in [17]. To this end, let

V ∗h :=
{
v ∈ L2(Ω;R2) : v|K ∈ Pk+1(K;R2) ∀K ∈ Th

}
.

Then a postprocessed displacement is defined as follows [17, 32, 9]: Find u∗h ∈ V ∗h
such that

(5.1) (u∗h, v)K = (uh, v)K ∀ v ∈ Pk−1(K;R2),

(5.2) (ε(u∗h), ε(w))K = (Aσh, ε(w))K ∀ w ∈ (I −Qh)V ∗h |K ,
for any K ∈ Th.

We recall the following two useful results [17]: the discrete inf-sup condition

(5.3) |vh|1,h . sup
06=τh∈Σh

(div τh, vh)

‖τh‖0
∀ vh ∈ Vh,

and norm equivalence

(5.4) |v −Qhv|1,h h ‖εh(v −Qhv)‖0 ∀ v ∈ H1(Th;R2).

Theorem 5.1. Let (σ, u) be the solution of the mixed formulation (1.1), (σh, uh)
be the solution of the mixed finite element method (2.1), and u∗h be the postprocessed
displacement defined by (5.1)-(5.2). Then we have

(5.5) ‖σ − σh‖A + |u− u∗h|1,h . η(σh, Th) + ‖Aσh − εh(u∗h)‖0 + osc(f, Th).

(5.6) η(σh, Th) + ‖Aσh − εh(u∗h)‖0 . ‖σ − σh‖A + |u− u∗h|1,h.

Proof. Using the discrete inf-sup condition (5.3) with vh = Qh(u − u∗h), (5.1), the
first equations of (1.1) and (2.1), we get

|Qh(u− u∗h)|1,h . sup
0 6=τh∈Σh

(div τh, Qh(u− u∗h))

‖τh‖0
= sup

06=τh∈Σh

(div τh, u− uh)

‖τh‖0

= sup
06=τh∈Σh

(A(σ − σh), τh)

‖τh‖0
≤ ‖A(σ − σh)‖0.

Choosing v = u− u∗h in (5.4),

|v −Qhv|1,h h‖εh(v −Qhv)‖0 ≤ ‖εh(u− u∗h)‖0 + |Qh(u− u∗h)|1,h
=‖Aσ − εh(u∗h)‖0 + |Qh(u− u∗h)|1,h
.‖Aσh − εh(u∗h)‖0 + ‖A(σ − σh)‖0.

Then it follows from the last two inequalities that

|u− u∗h|1,h . ‖Aσh − εh(u∗h)‖0 + ‖A(σ − σh)‖0,
which combined with (3.13) implies (5.5).

Next we prove the efficiency (5.6). By the triangle inequality,

‖Aσh − εh(u∗h)‖0 ≤‖A(σ − σh)‖0 + ‖Aσ − εh(u∗h)‖0
=‖A(σ − σh)‖0 + ‖εh(u− u∗h)‖0
.‖σ − σh‖A + |u− u∗h|1,h.
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Therefore we can end the proof by using (3.16). �

6. Numerical experiments

We will testify the a posteriori error estimator by some numerical examples in
this section.

In the first example, let Ω = (0, 1)2, k = 3, µ = 1, the right-hand side

f(x, y) = π3

(
− sin(2πy)(2 cos(2πx)− 1)
sin(2πx)(2 cos(2πy)− 1)

)
,

and the exact solution [13, Section 5.2]

u(x, y) =
π

2

(
sin2(πx) sin(2πy)
− sin2(πy) sin(2πx)

)
.

We subdivide Ω by a uniform triangular mesh. The a priori and a posteriori error
estimates for λ = 10 and λ = 10000 are listed in Tables 6.1-6.2, from which we
can see that the convergence rates of ‖σ − σh‖A, ‖∇h(u − u∗h)‖0, η(σh, Th) and
‖Aσh − εh(u∗h)‖0 are all O(h4). Hence the a posteriori error estimators η(σh, Th)
and η(σh, Th) + ‖Aσh − εh(u∗h)‖0 are both uniformly reliable and efficient with
respect to the mesh size h and λ for smooth solutions.

Table 6.1. Numerical errors for the first example when λ = 10

h ‖σ − σh‖A order ‖∇h(u− u∗h)‖0 order η(σh, Th) order ‖Aσh − εh(u∗h)‖0 order
2−1 6.6998E-01 − 7.9544E-01 − 1.6615E+01 − 4.0073E-02 −
2−2 5.2451E-02 3.68 6.0585E-02 3.71 1.3585E+00 3.61 9.3899E-03 2.09
2−3 3.6139E-03 3.86 4.5839E-03 3.72 1.0918E-01 3.64 7.1387E-04 3.72
2−4 2.2714E-04 3.99 3.0676E-04 3.90 7.4510E-03 3.87 4.5925E-05 3.96
2−5 1.4193E-05 4.00 1.9600E-05 3.97 4.7919E-04 3.96 2.8824E-06 3.99
2−6 8.8742E-07 4.00 1.2347E-06 3.99 3.0263E-05 3.99 1.8040E-07 4.00
2−7 5.5567E-08 4.00 7.7435E-08 3.99 1.8992E-06 3.99 1.1306E-08 4.00

Table 6.2. Numerical errors for the first example when λ = 10000

h ‖σ − σh‖A order ‖∇h(u− u∗h)‖0 order η(σh, Th) order ‖Aσh − εh(u∗h)‖0 order
2−1 6.6096E-01 − 7.7905E-01 − 1.6050E+01 − 4.3292E-02 −
2−2 5.1630E-02 3.68 5.8762E-02 3.73 1.3066E+00 3.62 9.0182E-03 2.26
2−3 3.5430E-03 3.87 4.3977E-03 3.74 1.0508E-01 3.64 6.8780E-04 3.71
2−4 2.2220E-04 4.00 2.9277E-04 3.91 7.1542E-03 3.88 4.4330E-05 3.96
2−5 1.3873E-05 4.00 1.8668E-05 3.97 4.5947E-04 3.96 2.7853E-06 3.99
2−6 8.6708E-07 4.00 1.1751E-06 3.99 2.8998E-05 3.99 1.7442E-07 4.00
2−7 5.4210E-08 4.00 7.3695E-08 4.00 1.8195E-06 3.99 1.0922E-08 4.00

Next we use the a posteriori error estimator η(σh, Th) to design an adaptive
mixed finite element method, i.e. Algorithm 1. The approximate block factorization
preconditioner with GMRES [17] is adopted in the SOLVE part of Algorithm 1,
which is verified to be highly efficient and robust even on adaptive meshes by our
numerical examples.

Now we construct a problem with singularity in the solution to test Algorithm 1.
Set L-shaped domain Ω = (−1, 1)× (−1, 1)\[0, 1)× (−1, 0]. Let

Φ1(θ) =

( (
(z + 2)(λ+ µ) + 4µ

)
sin(zθ)− z(λ+ µ) sin((z − 2)θ)

z(λ+ µ)
(

cos(zθ)− cos((z − 2)θ)
) )

,
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Algorithm 1: Adaptive algorithm for the mixed finite element method (2.1).

Given a parameter 0 < ϑ < 1 and an initial mesh T0. Set m := 0.

1. SOLVE: Solve the mixed finite element method (2.1) on Tm for the discrete
solution (σm, um) ∈ Σm × Vm.

2. ESTIMATE: Compute the error indicator η2(σm, Tm) piecewise.
3. MARK: Mark a set Sm ⊂ Tm with minimal cardinality by Dörfler marking

such that
η2(σm,Sm) ≥ ϑη2(σm, Tm).

4. REFINE: Refine each triangle K with at least one edge in Sm by the newest
vertex bisection to get Tm+1.

5. Set m := m+ 1 and go to Step 1.

Φ2(θ) =

(
z(λ+ µ)

(
cos((z − 2)θ)− cos(zθ)

)
−
(
(2− z)(λ+ µ) + 4µ

)
sin(zθ)− z(λ+ µ) sin((z − 2)θ)

)
,

Φ(θ) =
(
z(λ+ µ) sin((z − 2)ω) +

(
(2− z)(λ+ µ) + 4µ

)
sin(zω)

)
Φ1(θ)

− z(λ+ µ)
(

cos((z − 2)ω)− cos(zω)
)
Φ2(θ),

where z ∈ (0, 1) is a real root of (λ+3µ)2 sin2(zω) = (λ+µ)2z2 sin2 ω with ω = 3π/2.
The exact singular solution in polar coordinates is taken as [21, Section 4.6]

u(r, θ) =
1

(λ+ µ)2
(r2 cos2 θ − 1)(r2 sin2 θ − 1)rzΦ(θ).

It can be computed that z = 0.561586549334359 for λ = 10, and z = 0.544505718203590
for λ = 10000. We also take k = 3 and µ = 1.

Some meshes generated by Algorithm 1 for different bulk parameter ϑ and Lamé
constant λ are shown in Figure 6.1, where #dofs is the number of degrees of freedom.
The adaptive Algorithm 1 captures the singularity of the exact solution on the
corner (0, 0) very well. The histories of the adaptive Algorithm 1 for ϑ = 0.1, 0.2
and λ = 10, 10000 are presented in Figures 6.2-6.3. We can see from Figures 6.2-6.3
that the convergence rates of errors ‖σ−σh‖A and η(σh, Th) are both O((#dofs)−2)
no matter λ = 10 or λ = 10000, which demonstrates the theoretical results. For
uniform grid, #(dofs)−2 ∼= h4, this means that the errors ‖σ − σh‖A and η(σh, Th)
converge with an optimal rate.

The third example considers the L-shape benchmark problem with general bound-
ary conditions testified in [13, section 5.3] on the rotated L-shaped domain with
the initial mesh as depicted in Figure 6.4. We impose the Neumann boundary con-
dition on the boundary x2 = y2 and the Dirichlet boundary condition on the rest
boundary of Ω. The exact solution in the polar coordinates is given as follows(

ur(r, θ)
uθ(r, θ)

)
=
rα

2µ

(
−(α+ 1) cos((α+ 1)θ) + (C2 − α− 1)C1 cos((α− 1)θ)
(α+ 1) sin((α+ 1)θ) + (C2 + α− 1)C1 sin((α− 1)θ)

)
.

The constants are C1 := − cos((α+1)ω)/ cos((α−1)ω) and C2 := −2(λ+2µ)/(λ+
µ), where α = 0.544483736782 is the positive solution of α sin(2ω) + sin(2ωα) = 0
for ω = 3π/4. The Lamé parameters

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
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(a) Initial mesh (b) #dofs = 198098, θ = 0.1, λ = 10

(c) #dofs = 129624, θ = 0.2, λ = 10 (d) #dofs = 138323, θ = 0.2, λ = 10000

Figure 6.1. Meshes generated in Algorithm 1 with different θ and
λ for Example 2

with the elasticity modulus E = 105 and the Poisson ratio ν = 0.4999. The
volume force f(x, y) and the Neumann boundary data vanish, and the Dirichlet
boundary condition is taken from the exact solution. The histories of Algorithm 1
for k = 3, 4, 5 and ϑ = 0.1 are presented in Figures 6.5-6.6, which indicate that the
convergence rates of errors ‖σ − σh‖A and η(σh, Th) are both O((#dofs)−(k+1)/2).
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[30] M. G. Larson and A. Målqvist. A posteriori error estimates for mixed finite element approx-
imations of elliptic problems. Numer. Math., 108(3):487-500, 2008.

[31] M. Lonsing and R. Verfürth. A posteriori error estimators for mixed finite element methods

in linear elasticity. Numer. Math., 97(4):757-778, 2004.
[32] C. Lovadina and R. Stenberg. Energy norm a posteriori error estimates for mixed finite

element methods. Math. Comp., 75(256):1659-1674, 2006.

[33] J. Morgan and R. Scott. A nodal basis for C1 piecewise polynomials of degree n ≥ 5. Math.
Comput., 29:736-740, 1975.

[34] Z.-C. Shi and M. Wang. Finite element methods. Science Press, Beijing, 2013.

[35] R. Stenberg. A family of mixed finite elements for the elasticity problem. Numer. Math.,
53(5):513-538, 1988.

Department of Mathematics, University of California at Irvine, Irvine, CA 92697,

USA
E-mail address: chenlong@math.uci.edu

LMAM and School of Mathematical Sciences, Peking University, Beijing 100871,

China
E-mail address: hujun@math.pku.edu.cn

College of Mathematics and Information Science, Wenzhou University, Wenzhou
325035, China

E-mail address: xuehaihuang@gmail.com

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing

100081, China
E-mail address: manhy@bit.edu.cn


	1. Introduction
	2. Notations and preliminaries
	3. A posteriori Error Estimation for Stress
	3.1. Stability result
	3.2. Orthogonality
	3.3. Upper bound
	3.4. Lower bound

	4. A posteriori error estimation for mixed boundary problems
	5. A Posteriori Error Estimation for Displacement
	6. Numerical experiments
	References



