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Abstract

Cloth is a complex visual pattern with flexible 3D shape and illumination variations. Computing the

3D shape of cloth from a single image is of great interest to both computer graphics and vision researches.

However, the acquisition of 3D cloth shape by Shape from Shading (SFS) is still a challenge. In this paper, we

present a two-layer generative model for representing both the 2D cloth image and the 3D cloth surface. The

first layer represents all the folds on cloth, which are called “shading primitives” in [1], and thus captures the

overall “skeleton structures” of cloth. We learn a number of typical 3D fold primitives using some training

images obtained through photometric stereo. The 3D fold primitives yield a dictionary of 2D shading

primitives for cloth images. The second layer represents non-fold parts with very smooth (often flat) surface

or shading, which interpolates the primitives in the first layer with a smoothness prior like conventional

SFS. Then we present an algorithm called “cloth sketching” to find all the shading primitives on cloth image

and simultaneously recover their 3D shape by fitting to the 3D fold primitives. Our sketch representation

can be viewed as a 2-layer Markov random field (MRF), and it introduces some prior knowledge on the folds

and has lower dimension and is more robust than the traditional shape-from-shading representation which

assumes a MRF model on pixels. We show a number of experiments with satisfactory results in comparison

to previous work.



(a)

(b)

(c)

Fig. 1. (a). One cloth hung on wall under some lighting. (b).Sketches of folds on the cloth. (c). The

computed 3D surface of the cloth.

I. Introduction

Cloth is a complex visual pattern with flexible 3D shape and shading variations. A

compact representation for 2D cloth images and 3D cloth surfaces is important for many

applications in both computer graphics, e.g. cloth animation, and computer vision, e.g

human understanding, tracking, and non-photorealistic human portrait and cartoon sketch.

In the graphics literature, cloth is always represented by a mesh surface with a large

number of polygons for geometric based, physical based and particle based cloth modeling

and simulation techniques [7], [6].

In computer vision, our objective is to compute the shape of cloth from a single image

using mostly the shading information. In the literature, people proposed some shading

representations for the folds of cloth [4] and developed methods for detecting the folds from



2D images [1], [2].

However, computing the cloth surfaces using shape-from-shading (SFS) techniques [11],

[12], [13] is still a challenge. The representation underlying the SFS techniques is a Markov

random field on the lattice of pixels with smoothness prior to regularize the ill-posed problem

(i.e. under-constrained). Such smoothness prior (MRF) only characterizes the changes

among nearby pixels and is too weak to model the global information. We show some

results on cloths using some highly ranked shape-from-shading algorithms [11] in Fig.10.

In this paper, we present a two-layer generative model for representing both the 2D cloth

image and the 3D cloth surface. The first layer represents all the folds on cloth, which

are called “shading primitives” in [1], and thus captures the overall “skeleton structures”

of cloth. An example is shown in Fig.1. We collect a number of 3D cloths surfaces using

photometric stereo (see Fig.6) and manually sketch the various types of folds on the 3D

surfaces. Thus we learn a number of typical 3D fold primitives using these training images

(see Fig.7). The 3D fold primitives yield a dictionary of 2D shading primitives for cloth

images as shown in Fig.8. We represent the 3D folds using an illumination cone model [8].

The second layer represents non-fold parts with very smooth (often flat) surface or shading,

which interpolates the primitives in the first layer with a smoothness prior like conventional

SFS [11]. Our sketch representation can be viewed as a 2-layer Markov random field (MRF),

and it introduces some prior knowledge on the folds and has lower dimension and is more

robust than the traditional shape-from-shading representation.

Then we present an algorithm called “cloth sketching” to find all the shading primitives on

cloth image and simultaneously recover their 3D shape by fitting to the 3D fold primitives.

With the 3D shape of the folds being boundary conditions, we compute the surface of the

non-fold part using the shape-from-shading method on the second layer lattice of pixels.



Fig. 2. A subgraph of G consisting of fold primitives.

We show a number of experiments with satisfactory results in comparison to previous work

The organization of the paper is as follows: Section (2) presents a two-layer representation

for both 2D image and 3D surface. Section (3) and Section (4) discuss the learning and

inference issues for the new model to do cloth sketching and reconstruction. Then we

show the experimental results and comparison in Section (5). The paper is concluded in

Section (6) with a summary and future work.

II. Cloth representation

A. Two-layer model

Let Λ be the lattice, I the image, and S the surface height map defined on Λ. The lattice

is divided into two disjoint parts: the pixels on the folds and the rest pixels without folds,

Λ = Λfd ∪ Λnfd.

Whether a pixel is on Λfd or Λnfd will be inferred in computation. Thus both the image and

the surface are divided into two parts,

I = (Ifd, Infd), S = (Sfd,Snfd).

The image Ifd and surface Sfd are represented by a number of low dimensional fold prim-

itives. We denote these primitive by a set

V = {πi = (`i, θ
geo
i , θpht

i , γtpl
i ), i = 1, 2, ..., K}.



Each 3D fold primitive πi is selected from a learned dictionary ∆ (to be introduced shortly),

and is specified by four sets of attributes:

1. A label `i indexing the type of the 3D fold primitive in the dictionary. Fig. 4 shows three

type of folds.

2. The geometric transformation θgeo
i for location, orientation, scale (size) and deformation

(shape) of the fold primitive.

3. The photometric attributes for illumination θpht
i : lighting direction and surface albedo.

4. Each primitive is connected to other primitives to form a graph. This is represented

by the topological attributes γtpl
i , which is a set of addressing pointers to the primitives

connected with current primitive.

These fold primitives connect with each other like a chain without over-lapping to generate

each fold in Sfd, while the fold lattice Λfd is covered by a number of windows corresponding

to these fold primitives as Fig.2 illustrates.

Using each fold primitive as a vertex and denoting neighboring structure among these

fold primitives by an edge set

E = {e = (p, g) : πp, πq ∈ V },

we can further represent the fold layer as an attribute graph G = (V, E). Figure 2 shows

an example subgraph.

For each 3D primitive πi, it can generate an image patch RΛ(πi) on window Λ(πi) based

on its attributes:

RΛ(πi)(x, y) = B(`i, θ
geo
i , θpht

i ),

where B() is the Lambertian reflectance model process.

Then we can generate the whole pixels in Λfd as,

Ifd(x, y) = RΛ(πi)(x, y), ∀(x, y) ∈ Λfd(πi).



(a) input (b)folds graph G (c)Ifd (d) Filling result

Fig. 3. Filling in Infd by using Ifd as boundary condition.

As to the pixels in Λnfd, they can be filled in by using the pixels in Λfd as boundary

condition with some smoothness prior.

Infd(x, y) = arg max p(Infd(x, y))|Ifd(x, y), β),

where β is the parameter to control smoothness prior. Figure 3 shows such an example.

Similarly, each 3D primitive πi can also generate a depth patch DΛ(πi)(x, y) in 3D. So the

Sfd can be generated as,

Sfd(x, y) = DΛ(πi)(x, y),∀(x, y) ∈ Λfd(πi).

As to the 3D shape of non-fold areas Snfd(x, y), they can be computed by traditional SFS

by using Sfd(x, y) as boundary condition. With this recovered surface plus lighting, we can

have the other way to generate Infd. Usually, the result is almost the same as the above

method.

B. Two-layer representation based SFS model for cloth reconstruction

Assuming a Lambertian reflectance model and Sfd and Snfd share the same illumination

and constant surface albedo, with this two-layer representation, we can formulate computing

cloth surface S by Shape from Shading in Bayesian framework as:



Fig. 4. Three types of folds defined on cloths are shown at the top. The folds in the cloth image are marked

with different format of lines to show the type.

Fig. 5. Some typical surface cross-section profiles for the three type of folds showed in Fig. 4

S ∼ p(S|I)

∼ p(Sfd)p(Ifd|Sfd)p(Infd|Snfd,Sfd).

In this model, the fold part of image I is explained by an unknown number of low dimen-

sional 3D fold primitives. The non-fold part of image I is explained by Snfd, using Sfd as

boundary condition. p(Sfd) represents the spatial regularity for the folds, which is defined

on the attribute graph G.



(a) (b) (c) (d)

Fig. 6. (a), (b), (c) are three images out of the sequence used to reconstruct the 3D cloth shape in (d).

(a)

(b)

Fig. 7. (a). The 2D appearance of 6 extracted fold patches. (b). The 3D shape of 6 extracted fold patches

rendered in OpenGL.

III. Learning

A. Learning 3D fold primitives

To learn the 3D fold primitives to represent the 3D shape of folds, we divide all the folds

into three types as shown in Figure 4. The first type is the regular folds seen from front view,

while the other two are those half-folds seen from side view. Figure 5 shows some typical

cross-section profiles of these three types of 3D folds based on the 3D surface of the cloth in

Figure 1 obtained by photometric stereo [5]. To get some 3D cloth surfaces as training data,



Fig. 8. The rendering results for the learned mean fold shape under different viewing directions and lighting

conditions.

we use the photometric stereo algorithm in [5]. For each of the sample cloths, we take a

sequence of images (∼ 20) under different lighting conditions. Two sample cloths are shown

in Figure 6, in which (a), (b), (c) are three images from the sequence used to get the cloth

surface in (d). Based on the 3D data of sample cloths, we build up an interface program to

help manually extract fold patches as training data to learn the 3D fold primitives. Some

of typical extracted fold patches are shown in Figure 7. It can be clearly seen from Figure

5 that the 3D shapes are consistent for each type of 3D folds. Therefore, we use PCA to

represent the shapes of these three types of fold primitives.

Thus, we have a dictionary with three types of 3D primitives to represent folds,

∆ = {B1, B2, B3}.

Each primitive Bi is represented by the coefficient of the eigenfunctions of the PCA model.

The mean shape and eigenfunctions for 3D primitives Bi are learned from the training

patches extracted from the 3D surfaces of sample cloths. Figure 8 shows the learned mean



fold shape under different viewing directions and lighting conditions. It shows that these

3D fold primitives generate some 2D shading primitives on images.

In the attributed graph G of folds, each vertex is a 3D fold primitives Bi from the

dictionary ∆, but goes under some translation, rotation, scaling and deformation (changing

the coefficients of eigenvectors) of the unit fold primitive with mean shape as height map.

B. Learning spatial regularity prior model for folds p(G)

The folds on cloths are not randomly spreading in space. Instead, they follow some spatial

regularities, not only for each individual fold, but also for the relative spatial relations among

folds.

For each individual fold, the overall shape should be smooth in 3D space without sudden

change. To enforce this regularity, we use a Markov chain model to force the smoothness of

3D folds.

Let fi, i = 1, 2, ..., Nf be all the folds in G and vij, j = 1, 2, ...|fi| be all the vertices on

fold fi. The smoothness prior model for fold fi can be represented as,

p(fi) = p(vi1, vi2)p(vi3|vi1, vi2)
ni∏

j=4

p(vij|vi,j−1, vi,j−2, vi,j−3)

The probability p(vi1, vi2) is assumed to be uniform, p(vi3|vi1, vi2) is a two gram represented

by a 2-way joint histogram and p(vij|vi,j−1, vi,j−2, vi,j−3) is a trigram representation by three

way joint histogram. The first histogram is learned from some 2D curves of folds, while the

second histogram is learned from some manually obtained 3D curves of folds by computing

three variables:

1. the angle between (vi,j−1, vi,j−2) and (vi,j−2, vi,j−3),

2. the angle between (vi,j−1, vi,j−2) and (vi,j−1, vi,j),

3. the distance from vi,j to the plane fitting through vi,j−1, vi,j−2 and vi,j−3.



So the spatial regularity prior model for folds is,

p(G) =
Nf∏

i=1

p(fi).

IV. Inference

The two-layer representation based SFS model for cloth reconstruction may need MCMC

method for global inference. Here we propose a two step greedy method: First, we run a

process called “cloth sketching” to find all the folds and recover their 3D shape at the same

time using the 3D fold primitives in learned dictionary ∆. Second, after obtaining the 3D

shapes of fold areas, we infer the 3D shape of non-fold areas by using these 3D folds as

boundary condition.

A. “Cloth sketching” process

In this process, we try to find all the folds in the given image I and recover their 3D shape

simultaneously. The process is explained as below.

1. run a ridge detection algorithm [16] on the image I.

2. Initialize the attribute graph G of Sfd to ∅ and Snfd to be a constant plane.

3. Find the highest ridge strength position (x0, y0), which is not covered by G and is not

marked as visited. At this position, mark it as visited and fit the three types of fold

primitives with different scale, rotation, and deformation to get the one with largest log-

posterior ratio.If this largest log-posterior ratio is larger than a threshold, then represent

this scaled, rotated and deformed fold primitive by a vertex and insert it to G and go to

step 4; otherwise stop.

4. Try to grow the newly inserted vertex from both ends, which is shown in Figure 9. Do

the log-posterior ratio test as in step 3. If the largest log-posterior ratio is larger than a

threshold, insert a new vertex and continue to grow until the grow operation is rejected for



Fig. 9. To grow the newly inserted vertex in fold graph G, we test the areas as illustrated in the figure.

both ends.

5. Repeat step 3 and 4 until all the positions are either visited or covered by G.

After this process, we have the attribute graph G for Sfd. From this, we can synthesize

the image in fold part and get the 3D shape of folds, which are shown in Figure 11 (c) and

(d) respectively.

B. Infer the shape of non-fold parts

After finding all the folds and obtaining their 3D shape, we infer the shape of rest parts

by SFS using these folds shape as boundary condition. Since we don’t know the relative

positions among all the folds yet, we try to recover the normal of non-folds areas first. Then

we recover the depth from the obtained normals. Since the recovered 3D folds can not

only give us a good initialization for the 3D shape of non-fold areas, but also act as extra

constraints to dramatically constraint the solution space, this part can be done by a lot

of existing SFS algorithms. Considering both speed and accuracy, we choose a latest one

based on energy minimization in [10] with some modifications.

Denoting the normals for Snfd in (p, q) format, the energy to be minimized in [10] is

modified as:

E = ζ2
∑

(x,y)∈Λnfd

δ(I(x, y) > τ)(I(x, y)−R(x, y))2



+λint

∑

(x,y)∈Λnfd

(py(x, y)− qx(x, y))2

+λsmo

∑

(x,y)∈Λnfd

(w1(x, y)px(x, y)2 + w2(x, y)py(x, y)2

+w2(x, y)qx(x, y)2 + w1(x, y)qy(x, y)2),

where px(x, y) = p(x + 1, y) − p(x, y), py(x, y) = p(x, y + 1) − p(x, y), qx(x, y) = q(x +

1, y) − q(x, y), qy(x, y) = q(x, y + 1) − q(x, y), ζ is the distance between two neighboring

pixels, λint and λsmo are two positive constants named “integrability factor” and “smoothing

factor” respectively, while δ() and w will be introduced next.

The non-fold areas are more noisy than the fold areas since the former always has oc-

clusions and sharp valleys, where the assumed Lambertian reflectance model doesn’t hold

anymore. Therefore, these noisy areas should not be counted in the data term and their

shape be recovered by the prior model. Since these noisy areas are always very dark, we

filter them out by a threshold τ with a delta function (e.g. δ(I(x, y) > τ) = 1).

In addition, we weight the smoothness prior by looking at the data as in [9] with {wj(x, y), j =

1, 2, 3} being local smoothness weights:

w1(x, y) = (1− |Ix(x, y)|)2

w2(x, y) = (1−
√

2
2
|Ix(x, y) + Iy(x, y)|)2

w3(x, y) = (1− |Iy(x, y)|)2

which are chosen to be inversely proportional to the intensity gradient along the x, diagonal,

y directions respectively. This choice is intuitive and confirms well with the fact that

smoother images should be produced by smoother surfaces in usual cases.

After obtaining the normals for non-folds areas, we can compute the whole 3D cloth shape

as in [10] by minimizing an energy function. (Refer to [10] for details.)



V. Experiments

We test our whole algorithm on four cloth images as shown in Figure 11. The first three

are big cloths hanged on wall, while the last one is a patch extracted from a clothing on

a person. In the experimental results, the first row are input images, second row are the

sketches of folds in the input images, third row are the synthesises based on the generative

sketch model for the fold areas, third row are the 3D reconstruction results for the fold areas,

while fourth and fifth rows are the final reconstruction results of the whole cloth shown in

two different views.

For comparison with other SFS algorithms, we run two minimization approaches in [11]

on the same testing images used for our algorithm since minimization approaches are more

robust and accurate even though much slower than other approaches. The first approach is

from [14], while the second one is from [15]. The results for these two approaches are shown

in first row and second respectively in Figure 10.

VI. Summary and Future Work

In this paper, we present a two-layer generative model for representing both the 2D cloth

image and the 3D cloth surface. The first layer represents all the folds on cloth with some

low dimension 3D fold primitives, while the second layer represents the non-fold part. Based

on this model, the 3D shape of folds are recovered by a process called “cloth sketching” first

and then the shape of non-fold areas are recovered by using these fold shapes as boundary

condition. In the future work, we will learn more 3D shape primitives and extend the “cloth

sketching” process to recover more structured parts. In this way, we can use it for other

objects than cloth.



(a)

(b)

(c)

Fig. 10. (a). input cloth images. (b). cloth reconstruction results by approach in [15]. (c). cloth

reconstruction results by approach in [9].
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Fig. 11. (a). input cloth image. (b). 2d fold sketches. (c). synthesis for 2D fold sketches. (d). 3D recon-

struction results for fold areas. (e). final reconstruction results for the whole cloth. (f). final reconstruction

results for the whole cloth shown in a novel view.




