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1 Introduction

Anomaly-mediated supersymmetry breaking (AMSB) models [1, 2], where soft supersym-

metry (SUSY) breaking is caused by loop effects, provides a constrained mass spectrum of

SUSY particles. In particular, the ratios of the three gaugino masses are given approxi-

mately by M1 : M2 : M3 ≈ 3 : 1 : 7 , where Mi (i = 1, 2, 3) are the bino, wino and gluino

masses, respectively. The lightest gaugino is the wino, and the lightest chargino (χ̃
±

1 ) and

neutralino (χ̃
0
1 as the lightest supersymmetric particle) are the charged and neutral winos.

The mass of χ̃
±

1 (mχ̃±

1
) becomes slightly heavier than that of χ̃

0
1 due to radiative corrections

involving electroweak gauge bosons. The typical mass splitting between the charged and

neutral winos (∆mχ̃1) is 160-170 MeV.1 This phenomenological feature of the nearly de-

generate χ̃±

1 and χ̃0
1 has the important implication that the χ̃±

1 has a considerable lifetime

and predominantly decays into χ̃0
1 plus a low-momentum (∼ 100 MeV) π±. The mean

1Throughout this paper, natural units are used, such that ~ = c = 1.
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lifetime of the χ̃±

1 (τχ̃±

1
) is expected to be typically a fraction of a nanosecond. Therefore,

some charginos will have decay lengths exceeding a few tens of centimeters at the energies

of the Large Hadron Collider (LHC) and their tracks may have no or few associated hits

in the outer region of the tracking system, causing them to be classified as “disappearing

tracks”.

This paper describes a search for the production of long-lived AMSB charginos, via

electroweak processes in pp collisions at
√
s = 7 TeV:

pp → χ̃±

1 χ̃
0
1j, pp → χ̃+

1 χ̃
−

1 j.

with their subsequent decays, where j denotes an energetic jet from initial-state radiation

used to trigger the signal event. Since the χ̃
±

1 could decay in the inner tracking volume and

the χ̃
0
1 escapes from the detector, the resulting signal topology is characterized by a high-pT

(transverse momentum) jet, large missing transverse momentum (its magnitude is denoted

by Emiss
T ), and a high-pT disappearing track. A previous search for a disappearing-track

signature [3] by the ATLAS collaboration was based on signal production via the strong

interaction, resulting in final states with multiple high-pT jets and large Emiss
T . Given the

ratio M3/M2 ≈7, the masses of coloured particles are comparatively large and thus the

cross-sections are small compared to those from electroweak production.

2 The ATLAS detector

ATLAS is a multi-purpose detector [4], covering nearly the entire solid angle2 around the

collision point with layers of tracking devices surrounded by a superconducting solenoid

providing a 2 tesla axial magnetic field, a calorimeter system, and a muon spectrometer.

The inner detector (ID) provides track reconstruction in the region |η| < 2.5 and consists

of pixel and silicon microstrip (SCT) detectors inside a straw tube transition radiation

tracker (TRT). Of particular importance to this analysis is the TRT detector. The barrel

TRT covers the region |z| < 780 mm and is divided into inner, middle, and outer concentric

rings of 32 modules each, comprising a stack in azimuthal angle. They cover the radial

ranges 563 mm to 694 mm (inner), 697 mm to 860 mm (middle), and 863 mm to 1066 mm

(outer). A module consists of a carbon-fiber laminate shell and an array of straw tubes.

The average numbers of pixel, SCT and TRT hits on a track going through the inner

detector in the central region are about 3, 8 and 34, respectively. The calorimeter system

covers the range |η| < 4.9. The electromagnetic calorimeter is a lead/liquid-argon (LAr)

detector in the barrel (|η| < 1.475) and endcap (1.375 < |η| < 3.2) regions. The hadronic

calorimeters are composed of a steel and scintillator barrel (|η| < 1.7), a LAr/copper endcap

(1.5 < |η| < 3.2), and a LAr forward system (3.1 < |η| < 4.9) with copper and tungsten

absorbers. The muon spectrometer consists of three large superconducting toroids, trigger

chambers, and precision tracking chambers which provide muon momentum measurements

up to |η| of 2.7.
2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from

the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used

in the transverse plane, φ being the azimuthal angle around the beam pipe. Pseudorapidity is defined in

terms of the polar angle θ as η = − ln tan(θ/2).

– 2 –
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3 Data and simulated event samples

This search is based on pp collision data at
√
s = 7 TeV recorded by the ATLAS detector in

2011, corresponding to an integrated luminosity of 4.7 fb−1 after the application of beam,

detector, and data quality requirements.

The large cross-section of QCD di-jet events especially at small pT is suppressed at

the trigger level by requiring at least one jet with pT > 55 GeV, Emiss
T > 55 GeV, and

∆φ
jet−Emiss

T
min > 1 rad, where ∆φ

jet−Emiss
T

min indicates the smallest azimuthal separation between

the missing transverse momentum and either of the two highest-pT jets with pT > 30 GeV.

The jet pT and Emiss
T for the trigger are based on calorimeter information and measured

at the electromagnetic scale. For background events Emiss
T is usually aligned with a high-

pT jet (∆φ
jet−Emiss

T
min ≈ 0 rad) since it is due to jet mis-measurements while for the signal

∆φ
jet−Emiss

T
min ≈ π rad as it arises from the outgoing neutralinos.

Simulated Monte Carlo (MC) events are used to assess the experimental sensitivity to

given models. The minimal AMSB model is characterized by four parameters: the gravitino

mass (m3/2), the universal scalar mass (m0), the ratio of Higgs vacuum expectation values

at the electroweak scale (tanβ), and the sign of the higgsino mass term (µ). Isasusy from

Isajet v7.80 [5] is used to calculate the SUSY mass spectrum and the decay tables. The

MC signal samples are produced using Herwig++ [6] with MRST2007 LO* [7] parton

distribution functions (PDFs). All simulated samples used in this paper are produced using

a detector simulation based onGeant4 [8, 9], and include multiple pp interactions per event

(pile-up) to model that observed in data. Signal cross-sections are calculated at next-to-

leading order (NLO) in the strong coupling constant using Prospino2 [10], as shown in

figure 1. The nominal cross-section and its uncertainty are taken from an envelope of cross-

section predictions using different PDF sets and factorisation and renormalisation scales,

as described in ref. [11]. Simulated points with chargino masses ranging from 70-300 GeV

are studied, and in particular two reference points with mχ̃±

1
∼ 100 GeV and 200 GeV are

illustrated in this paper. A large value of 1 TeV is used for m0 in order to prevent the

existence of a tachyonic slepton. However, the production cross-section is determined only

by the wino mass (∝ m3/2), and the results presented in this paper are largely independent

of the other parameters. The mean lifetime τχ̃±

1
is set to 1 ns, the value for which this

analysis has the highest sensitivity. Samples with different mean lifetimes are obtained

by applying event weights to the original sample, such that the distribution of the proper

lifetime follows that for a given mean lifetime value. The branching fraction for the decay
χ̃±

1 → χ̃0
1π± is set to 100%.

4 Event reconstruction and selection

Kinematic selection criteria are applied which ensure high trigger efficiency while reducing

the Standard Model (SM) background arising from unidentified charged leptons that sur-

vive a lepton veto. The vast majority of background events are removed by the TRT-based

selection criteria that are used to identify the decay of the chargino.

– 3 –
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Figure 1. The cross-section for direct chargino production at
√
s = 7 TeV as a function of m3/2.

The corresponding mχ̃±

1

values for each m3/2 are also indicated.

4.1 Event reconstruction

The primary vertex [12] is required to have at least five associated tracks; when more

than one such vertex is found, the vertex with the largest total |pT|2 of the associated

tracks is chosen. Jets are reconstructed using the anti-kt algorithm [13] with a distance

parameter of 0.4. The inputs to the jet reconstruction algorithm are topological calorimeter

energy clusters. The measurement of jet transverse momentum at the electromagnetic

scale (pjet,EMT ) underestimates hadronic jets due to the nature of the non-compensating

calorimeters and dead material. Thus, an average correction depending on η and pjet,EMT .

is applied to obtain the correct transverse momentum. The details of the jet calibration

procedure are given in ref. [14]. In the analysis, requirements of pT > 20 GeV and |η| < 2.8

are applied. Electron candidates are selected with “loose” identification requirements, as

described in ref. [15] and required to fulfil the requirements of transverse energy, ET >

10 GeV and |η| < 2.47. Muon candidates are identified by an algorithm which combines

an ID track with either a track reconstructed in the muon spectrometer, or with a track

segment in the innermost muon station [4, 16]. Furthermore, muons are required to have

at least one hit in the innermost layer of the pixel detector (Nb−layer) if crossing an active

module of that layer, more than one pixel hit (Npixel), at least six SCT hits (NSCT),

pT > 10 GeV and |η| < 2.4.

Following the object reconstruction described above, overlaps between jets and leptons

are resolved. First, any jet candidate lying within a distance of ∆R ≡
√

(∆η)2 + (∆φ)2 =

0.2 of an electron is discarded. Then, any lepton candidate within a distance of ∆R = 0.4

of any surviving jet is discarded.

– 4 –
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The calculation of Emiss
T is based on the transverse momenta of jets and lepton candi-

dates described above and all calorimeter energy clusters that are not associated to such

objects [17].

4.2 Kinematic selection criteria

Following the trigger decision, selection requirements to suppress non-collision background

events, given in ref. [14], are applied to jets. Candidate events are then required to have

no electron or muon candidates (lepton veto) to suppress the background events from

W/Z + jets and top-quark pair-production processes. The candidates are required to have

Emiss
T > 90 GeV and at least one jet with pT > 90 GeV. In order to further suppress the

QCD background, ∆φ
jet−Emiss

T
min > 1.5 rad for the two highest pT jets with pT > 50 GeV is

imposed. The trigger selection is 98% efficient for signal events satisfying these selection

requirements.

4.3 Disappearing-track selection criteria

The TRT detector provides substantial discrimination between penetrating and decaying

charged particles: the average number of hits on a track going through the TRT in the barrel

region is about 34 and consecutive hits can be observed along the track with small radial

spacing between adjacent hits, while a smaller number is expected for charged particles that

decay in the TRT volume. If a chargino decays in the TRT volume, the track is still found

with a high efficiency based on hits in the pixel and SCT detectors. Such a chargino track

candidate can therefore be fully reconstructed by the ATLAS standard track reconstruction

algorithm.

The tracks originating from charginos are expected to have high-pT and to be isolated.

Therefore, chargino candidate tracks are required to fulfil the following criteria:

(I) The track must have Npixel ≥ 1, Nb−layer ≥ 1 if crossing an active module of the

innermost pixel layer, NSCT ≥ 6, |d0| < 1.5 mm and |z0 sin θ| < 1.5 mm, where d0
and z0 are the transverse and longitudinal impact parameters with respect to the

primary vertex.

(II) The track must be isolated: there must be no tracks having pT above 0.4 GeV within

a cone of ∆R = 0.1 around the candidate track. There must also be no jets having

pT above 50 GeV within a cone of ∆R = 0.4.

(III) The candidate track must have pT above 10 GeV, and must be the highest-pT isolated

track in the event.

(IV) The relative uncertainty on the momentum measurement must be below 20%.

(V) The candidate track must point to the TRT barrel layers but not the region around

|η| = 0 (0.1 < |η| < 0.63).

(VI) The number of hits in the TRT outer module associated to the track (Nouter
TRT ) must

be less than five.

– 5 –
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Requirement Observed Signal events (efficiency [%])

mχ̃±

1
= 100 GeV mχ̃±

1
= 200 GeV

Quality requirements and trigger 3765627 1983 (3.0) 283.3 (6.7)

Non-collision background rejection 2899498 1958 (3.0) 279.6 (6.6)

Lepton veto 2186581 1906 (2.9) 274.8 (6.5)

Leading jet pT > 90 GeV 2054262 1497 (2.3) 237.7 (5.6)

Emiss
T > 90 GeV 1233864 1420 (2.2) 230.2 (5.5)

∆φ
jet−Emiss

T
min > 1.5 rad 1191298 1402 (2.1) 227.4 (5.4)

High-pT isolated track selection 18493 90.5 (0.14) 9.1 (0.26)

Disappearing-track selection 710 42.9 (0.066) 4.1 (0.12)

Table 1. Summary of selection requirements and data reduction for data and expected signal

events (τχ̃±

1

= 1 ns). The signal selection efficiencies are also shown in parentheses.

Criterion (I) is applied in order to ensure well-reconstructed primary tracks. Criteria (II)

and (III) are employed to select chargino tracks that are isolated and have the highest pT
in most cases. Tracks seeded from an incorrect combination of SCT space-points could

have anomalously high values of pT and worse momentum resolution; criterion (IV) sup-

presses such tracks. Criterion (V) is based on the extrapolated track position and is used

to avoid inactive regions of the TRT and reject muons failing identification due to a small

gap in acceptance around η = 0. For criterion (VI), Nouter
TRT is calculated by counting

TRT hits lying on the extrapolated track. This criterion selects charginos decaying within

the volume between the SCT outer layers and the TRT outer modules. Hereafter, un-

less explicitly stated otherwise, “high-pT isolated track selection” and “disappearing-track

selection” indicate criteria (I)–(V) and (I)–(VI), respectively. Figure 2 shows the Nouter
TRT

distributions with the high-pT isolated track selection requirements for data, simulated

signal MC events, and simulated MC SM background events. Details of the SM back-

ground MC samples are described in ref. [18]. When charginos decay before reaching the

TRT outer module, Nouter
TRT is expected to have a value near zero; conversely, charginos

that reach the calorimeters and SM charged particles traversing the TRT typically have

Nouter
TRT ≃ 15. The purity of chargino tracks in the signal MC events, defined as the fraction

of candidate tracks matched to generated charginos, is almost 100% at this stage; crite-

rion (VI) removes the vast majority of background events. Although it also reduces the

signal efficiency, it strongly enhances the expected signal to background ratio. A summary

of kinematic selection criteria, disappearing-track requirements, and the data reduction are

given in table 1. Signal efficiencies are low at the first stage due to the trigger based on

initial-state radiation. After the application of all selection criteria, 710 candidate events

are selected.

5 Estimate of the pT spectrum of the background contributions

According to MC simulation, the background contribution after the high-pT isolated track

selection comes predominantly from the W (→ τν)+jets production in which τ decay prod-

– 6 –
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TRT distribution for data and signal events (mχ̃±

1

= 100 GeV, τχ̃±

1

= 1 ns)

with the high-pT isolated track selection. The expectation from SM MC events, normalized to the

number of observed events, is also shown.

ucts fulfil the selection criteria. Sub-leading contributions to the background come from

prompt electrons failing to satisfy their identification criteria. A background estimation

based on the MC simulation suffers from large uncertainties due to low numbers of tracks

after all the selection requirements and has difficulty in simulating the properties of these

background tracks. Therefore, an approach using data-driven control samples enriched in

these background categories is employed to estimate the background track pT spectrum. A

simultaneous fit is then performed for signal and background yields using the pT spectrum

of observed tracks.

5.1 Interacting charged hadrons

High-pT charged hadrons (mostly charged pions) can interact with material in the TRT de-

tector and some tracks can be labelled as disappearing tracks; according to MC simulation,

they are responsible for more than 80% of the background in the signal search sample. The

pT spectrum of interacting hadron tracks is obtained from that of non-interacting hadron

tracks, in a data-driven way using a data sample enriched in this background category as

described in ref. [3]. In the pT range above 10 GeV, where inelastic interactions dominate,

the interaction rate has nearly no pT-dependence [19]. By adopting the same kinematic se-

lection criteria as those for the signal and ensuring a penetration through the TRT detector

by requiring Nouter
TRT > 10, a sample of high-pT non-interacting hadron tracks is obtained.

The contamination from electron tracks and any chargino signal is removed by requiring

the associated calorimeter activity, Econe20
T /ptrackT , to be larger than 0.2, where Econe20

T is

the calorimeter transverse energy deposited in a cone of ∆R = 0.2 around the track, ex-

– 7 –
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Figure 3. The pT distribution of the hadron-track background control sample. The data and the

fitted shape are shown by solid circles and a line, respectively. The significance of the residuals

between the data and the fit model on a bin-by-bin basis is shown at the bottom of the figure.

cluding ET of its corresponding calorimeter cluster, and ptrackT is the track pT. According

to MC simulation, the purity of non-interacting hadron tracks is > 99% after these re-

quirements. These hadron tracks have a steeply falling pT spectrum, as shown in figure 3.

An ansatz functional form (1 + x)a0/xa1+a2 ln(x) is then fitted to the pT spectrum of the

control sample, where x ≡ ptrackT and ai (i = 0, 1, 2) are the fitted parameters. The data

distribution is well described by this functional form; a χ2 per degree of freedom (DOF) of

39/50 is calculated from the difference between the data and the best-fit form.

5.2 Electrons failing to satisfy identification criteria

The charged lepton background is mostly due to large bremsstrahlung where, predomi-

nantly, low-pT electrons contribute to this background. Muons failing to satisfy the identi-

fication criteria could be also classified as disappearing tracks; however, this contribution

is negligibly small since the probability of bremsstrahlung photon emission is proportional

to 1/m2
ℓ , where mℓ is the lepton mass.

In order to estimate the electron background, a control sample is defined by requiring

the same kinematic selection requirements as for the signal search sample, but requiring one

electron that fulfils “medium” identification criteria [15] and the isolated track selection

criteria; the purity of electrons is close to 100% according to MC simulation. The pT
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spectrum of electrons without any identification requirements is obtained by applying the

correction for the medium identification efficiency [15]. This efficiency depends on pT and η,

with an average value around 0.8. The pT distribution of electron background tracks is then

estimated by multiplying the corrected distribution (described above) by the probability of

failing to satisfy the loose identification criteria (hence being retained in the signal search

sample) and passing the disappearing-track selection criteria for electrons (Pdis
e ). For the

measurement of Pdis
e , a “tag-and-probe” method is applied to Z → ee events collected

with unprescaled single-electron triggers. In order to ensure a very pure sample of Z → ee

events, tag-electrons must be well isolated from jets and also required to fulfil “tight”

identification criteria [15] and have ET > 25 GeV. First, the Z → ee sample is selected

by requiring no identified muons, at least one tag-electron and one high-pT isolated track.

Probe-electrons are selected without any identification requirements but with exactly the

same high-pT isolated track selection criteria used for chargino candidate tracks. Then, the

reconstructed invariant mass is required to be within the range from 85-95 GeV; its value is

calculated using the calorimeter energy for the tag and the track momentum for the probe.

The track momentum is used for the probe electron, since in the absence of any electron

identification the precise calorimeter energy is not well defined. The probability Pdis
e is

finally given by the fraction of events in which the probe-electron passes the disappearing-

track selection criteria; it ranges from 10−2 to 10−4 for 10 < pT < 50 GeV. Due to too few

data events, the nominal values of Pdis
e are derived using MC events; no visible dependence

on pT is found, and the average Pdis
e values for data and MC events agree within 13%,

which is taken as a systematic uncertainty.

Figure 4 shows the resulting pT spectrum of electron background tracks; the systematic

uncertainties on the identification efficiency are included. The pT-dependent identification

efficiency and Pdis
e produce a complicated spectrum; therefore, the electron background

shape is determined by a fit to an extended functional form (x+ b0)
b1/(x+ b2)

b3+b4 ln(x)

where x ≡ ptrackT and bi (i = 0, 1, 2, 3, 4) are the fitted parameters. The χ2 per DOF is

calculated to be 45/29. Using this function the number of electron background tracks in

the signal search sample is estimated to be 115 ± 15. Statistical errors and uncertainties

on the identification efficiency and Pdis
e are considered in deriving the results.

6 Estimate of systematic uncertainties

The sources of systematic uncertainty on the signal expectation which have been consid-

ered are the: theoretical cross-section, parton radiation model, jet energy scale (JES) and

resolution (JER), trigger efficiency, pile-up modelling, track reconstruction efficiency, and

the integrated luminosity.

Theoretical uncertainties on the signal cross-section, already described in section 3,

range from 6-8% depending on mχ̃±

1
. High-pT jets originating from initial- and final-state

radiation alter the signal acceptance. The uncertainties on these processes are estimated

by varying generator tunes in the simulation as well as by generator-level studies with an

additional jet in the matrix-element method using MadGraph5 [20]+Pythia6 [21], after

applying the kinematic selection criteria. By adopting PDF tunes that provide less and
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Figure 4. The estimated pT distribution of electron background tracks. The data and the fitted
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residuals between the data and the fit model on a bin-by-bin basis is shown at the bottom of the

figure.

more radiation and taking the maximum deviation from the nominal one, the uncertainty

due to jet radiation is evaluated. The uncertainty arising from the matching of matrix

elements with parton showers is found by doubling and halving the default value of the

matching parameter [22]. The resulting changes are combined in quadrature and yield an

uncertainty of 10-15% depending on mχ̃±

1
. The uncertainties on the JES and JER result in

a variation of the signal selection efficiency; the variation of the signal selection efficiency

arising from these uncertainties is assessed according to ref. [14], and an uncertainty of

5-10% is assigned. An uncertainty of 3% on the trigger efficiency is assigned by taking the

difference between data and MC W → µν samples. The uncertainty originating from the

pile-up modelling in the simulation is evaluated by weighting simulated samples so that the

average number of pile-up interactions is increased or decreased by 10%; an uncertainty

of 0.5% is assigned. The ID material affects the track reconstruction efficiency and the

uncertainty due to the material description in the MC simulation is assessed as described

in ref. [23]. By comparing the track reconstruction efficiency to that obtained with the

MC samples with an extra 10% of material in the tracking system, an uncertainty of 2%,

in particular for tracks in the region of |η| < 0.63, is assigned. The absolute luminosity
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Source mχ̃±

1
= 100 GeV [%] mχ̃±

1
= 200 GeV [%]

(Theoretical uncertainty)

Cross section 7 7

(Uncertainty on the acceptance)

Modeling of initial/final-state radiation 10 13

JES/JER 10 6

Trigger efficiency 3 3

Pile-up modelling 0.5 0.5

Track reconstruction efficiency 2 2

Luminosity 3.9 3.9

Sub-total 15 15

Table 2. Summary of systematic uncertainties [%] on the expectation of signal events.

of pp collisions is determined with an uncertainty of 3.9% [24, 25]. The contributions of

each systematic uncertainty in the signal expectation are summarized in table 2 for the

two reference signal samples.

Systematic uncertainties on the background are determined from the statistical uncer-

tainties on the fit parameters and the full correlation matrix. In addition, the 13% uncer-

tainty on the disappearing-track probability for electrons is considered (see section 5.2).

Alternative fit functions for the pT shapes of the electron and interacting hadron tracks

are also checked, showing that these agree with each other and with the original form

within the fit uncertainties. The effect on the sensitivity to the signals due to the choice

of functional forms is thus found to be negligible.

7 Statistical analysis

In order to evaluate how well the observed data agree with a given signal model, a statistical

test is performed based on maximizing a likelihood. The likelihood function for the track

pT in a sample of observed events (nobs) is defined as

nobs
∏ nsFs(pT) + nhFh(pT) + neFe(pT)

ns + nh + ne
× Lsys, (7.1)

where ns, nh and ne are the number of signal events for a given value of the chargino mass

and lifetime, the number of interacting hadron track events, and the number of electron

track events, respectively. The probability density function of the signal (Fs) is defined for a

given value of the chargino mass and lifetime, and that of the interacting hadron (electron)

tracks, Fh (Fe), is shown in figure 3 (4). In the fit, ne is constrained to be its estimated

value (see section 5.2). The effects of systematic uncertainties on the normalizations and

the shape parameters describing the two pT distributions of the background tracks are

incorporated via the constraining terms, Lsys, representing the product of normal and

multivariate-normal distributions in which the variances are set to their uncertainties.

Figure 5 shows the pT distribution for the selected data events compared to the back-

ground model obtained by the “background-only” fit in the pT range above 10 GeV. The
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Figure 5. The pT distribution of candidate tracks. The solid circles show data and lines show

background shapes obtained using the “background-only” fit. The contributions of two background

components and the signal expectations are also shown.

best-fit values of nh and ne are 610± 30 and 105± 13, respectively. The probability of the

fit to describe the data is 0.54. The numbers of expected background and observed tracks

in the region pT > 50 (100) GeV are 14.8 ± 0.3 and 19 (2.20 ± 0.05 and 1), respectively,

exhibiting no significant excess in the data. The selected examples for the signal are also

shown in figure 5. The values of ns for them, derived from the “signal + background” fit,

are found to be consistent with zero.

8 Results

In the absence of a signal, constraints on mχ̃±

1
and τχ̃±

1
are set. The upper limit on the

production cross-section for a given mχ̃±

1
and τχ̃±

1
at 95% confidence level (CL) is set

by a point where the CL of the “signal+background” hypothesis, based on the profile

likelihood ratio [26] and the CLs prescription [27], falls below 5% when scanning the CL

along various values of signal strength. The constraint on the τχ̃±

1
-mχ̃±

1
parameter space

is shown in figure 6. The expected limit is set by the median of the distribution of 95%

CL limits calculated by pseudo-experiments with the expected background and no signal.

The expected number of background events is derived from the background-only fit in the

region 10 < pT < 50 GeV, where the systematic parameters are varied according to their

systematic uncertainties when generating the ensemble of pseudo-experiments.

Figure 7 shows the constraint on the ∆mχ̃1-mχ̃±

1
parameter space of the minimal AMSB

model. The limits on τχ̃±

1
are converted into limits on ∆mχ̃1 following ref. [28]. The region

excluded by the LEP2 searches [29–32] is also indicated. For ∆mχ̃1 = 160 (170) MeV
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Figure 6. The constraint on the τχ̃±

1

-mχ̃±

1

space for tanβ = 5 and µ > 0. The black dashed

line shows the expected limits at 95% CL, with the surrounding shaded bands indicating the 1σ

exclusions due to experimental uncertainties. Observed limits are indicated by the solid bold contour

representing the nominal limit and the dotted lines on either side are obtained by varying the cross-

section by the theoretical scale and PDF uncertainties. The previous result from ref. [3] and the

combined LEP2 exclusion at 95% CL are also shown on the left by the dotted line and the shaded

region, respectively.

(τχ̃±

1
∼ 0.3 ns), the value most probable in the model, a new limit ofmχ̃±

1
> 103 (85) GeV at

95% CL is obtained. For ∆mχ̃1 ∼140 MeV, a more stringent limit of mχ̃±

1
>260 GeV is set.

The analysis is not performed for signals having τχ̃1 > 10 ns (corresponding ∆mχ̃1 be-

ing below the charged pion mass) because a significant fraction of charginos would traverse

the ID before decaying, thereby reducing the event selection efficiency. These scenarios are

considered as ‘stable’.

9 Conclusions

The results of a search for the direct production of long-lived charginos in pp collisions

with the ATLAS detector using 4.7 fb−1 of data have been presented in the context of

AMSB scenarios. The search is based on the signature of a high-pT isolated track with few

associated hits in the outer part of the ATLAS tracking system, arising from a chargino

decay into a neutralino and a low-pT pion. The pT spectrum of observed candidate tracks is
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Figure 7. The constraint on the ∆mχ̃1
-mχ̃±

1

space of the AMSB model for tanβ = 5 and µ > 0,

where τχ̃±

1

is varying as described in figure 6. The dashed line shows the expected limits at 95% CL,

with the surrounding shaded bands indicating the 1σ exclusions due to experimental uncertainties.

Observed limits are indicated by the solid bold contour representing the nominal limit and the

dotted lines on either side are obtained by varying the cross-section by the theoretical scale and

PDF uncertainties. The combined LEP2 exclusion at 95% CL is also shown on the left by the

shaded region. Charginos in the lower shaded region could have significantly longer lifetime values

for which this analysis has no sensitivity.

found to be consistent with the expectation from SM background processes. Constraints on

the chargino mass and the mass splitting between the lightest chargino and neutralino are

set. A chargino having a mass below 103 (85) GeV with a mass splitting of 160 (170) MeV,

the most favoured scenario in the AMSB model, is excluded at 95% CL. This analysis

provides a result complementary to the previous search based on signal production via the

strong interaction [3] and improves the sensitivity. It also provides a largely AMSB-model-

independent constraint on the chargino properties. From the viewpoint of self-annihilating

dark matter, a wino-like lightest SUSY particle with a mass of O(100) GeV as obtained in

certain AMSB scenarios, which simultaneously explains the observations by PAMELA [33]

and Fermi LAT [34] as well as the WMAP relic density data [35], is of particular interest;

it could be addressed with an increased LHC energy, more integrated luminosity and an

extension of the analysis using shorter tracks.
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F. Koetsveld104, P. Koevesarki21, T. Koffas29, E. Koffeman105, L.A. Kogan118, S. Kohlmann175,

F. Kohn54, Z. Kohout127, T. Kohriki65, T. Koi143, G.M. Kolachev107,∗, H. Kolanoski16,

V. Kolesnikov64, I. Koletsou89a, J. Koll88, A.A. Komar94, Y. Komori155, T. Kondo65, T. Kono42,r,

A.I. Kononov48, R. Konoplich108,s, N. Konstantinidis77, R. Kopeliansky152, S. Koperny38,

K. Korcyl39, K. Kordas154, A. Korn118, A. Korol107, I. Korolkov12, E.V. Korolkova139,

V.A. Korotkov128, O. Kortner99, S. Kortner99, V.V. Kostyukhin21, S. Kotov99, V.M. Kotov64,

A. Kotwal45, C. Kourkoumelis9, V. Kouskoura154, A. Koutsman159a, R. Kowalewski169,

– 22 –



J
H
E
P
0
1
(
2
0
1
3
)
1
3
1

T.Z. Kowalski38, W. Kozanecki136, A.S. Kozhin128, V. Kral127, V.A. Kramarenko97,

G. Kramberger74, M.W. Krasny78, A. Krasznahorkay108, J.K. Kraus21, S. Kreiss108, F. Krejci127,

J. Kretzschmar73, N. Krieger54, P. Krieger158, K. Kroeninger54, H. Kroha99, J. Kroll120,

J. Kroseberg21, J. Krstic13a, U. Kruchonak64, H. Krüger21, T. Kruker17, N. Krumnack63,
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A. Manabe65, L. Mandelli89a, I. Mandić74, R. Mandrysch16, J. Maneira124a, A. Manfredini99,

P.S. Mangeard88, L. Manhaes de Andrade Filho24b, J.A. Manjarres Ramos136, A. Mann54,

P.M. Manning137, A. Manousakis-Katsikakis9, B. Mansoulie136, A. Mapelli30, L. Mapelli30,

L. March167, J.F. Marchand29, F. Marchese133a,133b, G. Marchiori78, M. Marcisovsky125,

C.P. Marino169, F. Marroquim24a, Z. Marshall30, F.K. Martens158, L.F. Marti17,

S. Marti-Garcia167, B. Martin30, B. Martin88, J.P. Martin93, T.A. Martin18, V.J. Martin46,

B. Martin dit Latour49, S. Martin-Haugh149, M. Martinez12, V. Martinez Outschoorn57,

A.C. Martyniuk169, M. Marx82, F. Marzano132a, A. Marzin111, L. Masetti81, T. Mashimo155,

– 23 –



J
H
E
P
0
1
(
2
0
1
3
)
1
3
1

R. Mashinistov94, J. Masik82, A.L. Maslennikov107, I. Massa20a,20b, G. Massaro105, N. Massol5,

P. Mastrandrea148, A. Mastroberardino37a,37b, T. Masubuchi155, P. Matricon115, H. Matsunaga155,

T. Matsushita66, C. Mattravers118,c, J. Maurer83, S.J. Maxfield73, A. Mayne139, R. Mazini151,

M. Mazur21, L. Mazzaferro133a,133b, M. Mazzanti89a, J. Mc Donald85, S.P. Mc Kee87,

A. McCarn165, R.L. McCarthy148, T.G. McCarthy29, N.A. McCubbin129, K.W. McFarlane56,∗,

J.A. Mcfayden139, G. Mchedlidze51b, T. Mclaughlan18, S.J. McMahon129, R.A. McPherson169,k,

A. Meade84, J. Mechnich105, M. Mechtel175, M. Medinnis42, R. Meera-Lebbai111, T. Meguro116,

S. Mehlhase36, A. Mehta73, K. Meier58a, B. Meirose79, C. Melachrinos31, B.R. Mellado Garcia173,

F. Meloni89a,89b, L. Mendoza Navas162, Z. Meng151,w, A. Mengarelli20a,20b, S. Menke99,

E. Meoni161, K.M. Mercurio57, P. Mermod49, L. Merola102a,102b, C. Meroni89a, F.S. Merritt31,

H. Merritt109, A. Messina30,x, J. Metcalfe25, A.S. Mete163, C. Meyer81, C. Meyer31, J-P. Meyer136,

J. Meyer174, J. Meyer54, T.C. Meyer30, S. Michal30, L. Micu26a, R.P. Middleton129, S. Migas73,
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(IN2P3), Villeurbanne, France
a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Novosibirsk State University, Novosibirsk, Russia
g Also at Fermilab, Batavia IL, United States of America
h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
i Also at Department of Physics, UASLP, San Luis Potosi, Mexico
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