
UCLA
UCLA Electronic Theses and Dissertations

Title
Mathematical tools for dissecting the heterogeneity in and cell cycle contributions of 
cancer therapy

Permalink
https://escholarship.org/uc/item/5jv1w49v

Author
Mohammadi, Farnaz

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5jv1w49v
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Mathematical tools for dissecting the heterogeneity in and cell cycle contributions of cancer

therapy

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Bioengineering

by

Farnaz Mohammadi

2023



© Copyright by

Farnaz Mohammadi

2023



ABSTRACT OF THE DISSERTATION

Mathematical tools for dissecting the heterogeneity in and cell cycle contributions of cancer

therapy

by

Farnaz Mohammadi

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2023

Professor Aaron S. Meyer, Chair

Cancer remains a formidable public health challenge, and identifying effective therapeutic

strategies to prevent tumor cell proliferation is paramount to improving patient outcomes.

Tumor cells exhibit remarkable phenotypic plasticity, enabling them to assume a diverse

range of molecular and phenotypic states, and rapidly develop resistance to therapeutic or

environmental stressors. This plasticity, however, presents unique opportunities to identify

molecular programs that can be targeted for therapeutic purposes. Therefore, gaining a

comprehensive understanding of how clinically relevant anti-cancer agents modulate cell cycle

progression is pivotal to uncovering such strategies.

In this thesis, we present a suite of computational models that shed light on how drugs

modulate the cell cycle, how quantifying drug effects on the cell cycle can inform drug

combination recommendations, and how to analyze the heterogeneous response of single cells

to cancer therapy. Specifically, Chapter 1 introduces a mathematical model that captures

drug-induced dynamical responses, quantified cell cycle phase arrest, and cell death induction

rates in cancer cells upon treatment using live-cell microscopy experiments. Leveraging this

model, we predict drug combination effects and identify combination treatment strategies

that can optimize therapeutic response in cancer, while accounting for specified cell cycle
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effects. In Chapter 2, we expand the application of this modeling strategy by exploiting a

newly introduced simplified experimental assay with fixed cell imaging, thereby broadening

the scope of experimental data used for predicting drug combinations with our approach.

This chapter also highlights the utility of a mathematical tool to discern general biological

patterns within large-scale multi-dimensional data.

Finally, in the last chapter, we provide a computational approach to account for phenotypic

heterogeneity in drug response observed at the single cell level. We develop a tree-based hid-

den Markov model that quantifies various drug-induced phenotypic cell states and transition

rates between these states resulting from drug-induced cell cycle effects. This approach has

potential for uncovering the relationship between molecular states and cellular phenotypes

using end-point spatial transcriptomic profiles of cells under treatment.

In summary, this work presents a compelling case for how computational models can aid

in understanding the effects of anti-cancer agents on the cell cycle and identifying optimal

drug combinations. The models presented in this thesis provide an important foundation for

further investigations into developing effective therapeutic strategies for cancer treatment.
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Chapter 1

Analysis and Modeling of Cancer Drug

Responses Using Cell Cycle

Phase-Specific Rate Effects

Farnaz Mohammadi*, Sean Gross*, Crystal Sanchez-Aguila, Paulina J Zhan, Tiera A Liby,

Mark A Dane, Aaron S. Meyer, Laura M. Heiser
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Abstract

Identifying effective therapeutic treatment strategies is a major challenge to improving

outcomes for patients with breast cancer. To gain a comprehensive understanding of how

clinically relevant anti-cancer agents modulate cell cycle progression, we used genetically

engineered breast cancer cell lines to track drug-induced changes in cell number and cell cycle

phase, which revealed drug-specific cell cycle effects that vary across time. We developed

a linear chain trick (LCT) computational model, where the cell cycle is partitioned into

subphases that can faithfully capture drug-induced dynamic responses. The model correctly

infers drug effects and also localizes them to specific cell cycle phases. We used our LCT

model to predict the effect of unseen drug combinations and experimentally confirmed the

effectiveness of predicted combination treatment strategies. Our integrated experimental and

modeling approach opens avenues to assess drug responses, predict effective drug combina-

tions, and identify optimal drug sequencing strategies.

Introduction

Developing transformative anti-cancer therapies requires drug combinations [1], however

rational identification of effective combination therapy regimens remains challenging [2–5].

Many anti-cancer agents are designed to impact cell proliferation and viability, which suggests

that incorporating information about how individual drugs impact cell cycle behavior can lead

to improved predictions about drug combination effects. The mammalian cell cycle is typically

separated into four linked phases (G1, S, G2, and M) with multiple checkpoints (restriction

point, DNA damage checkpoint, and the spindle assembly checkpoint) [6–9], each relying on

distinct molecular programs and resulting in minimal correlation between cell cycle phase

durations in individual cells [10]. This independence between phases and checkpoints has

implications for cancer treatment because many cancer drugs directly target different aspects

of the cell cycle; for example, CDK4/6 inhibitors block progression out of G1 phase [11], while
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the nucleoside analog gemcitabine activates the DNA damage checkpoint by targeting DNA

synthesis during S-phase [12]. Together, these findings imply that drug-induced changes to

cell numbers can be achieved through distinct cell cycle-dependent molecular mechanisms.

For example, these observations suggest that combing two drugs that each reduce the rate

of G1 progression will lead to deeper reductions in the rate of G1 progression, rather than

an increase in cell death. Further, this framework predicts dose-dependent impacts: at

sub-saturating doses, G1 effects will add together to reduce cell numbers while at higher

saturating doses the cell number will peak at the maximum cytostatic effect. This general

idea of drug combination efficacy was recently explored in a study of the multi-drug CHOP

protocol , which showed that the effectiveness of this drug combination for treatment of

non-Hodgkin Lymphoma could be attributed to the fact that each agent had non-overlapping

cytotoxic effects [13]. The effectiveness of the CHOP protocol also demonstrates the benefit

of drug combinations to improve patient outcomes. Considering both cell cycle and cell death

effects in greater detail, therefore, has the potential to significantly improve drug combination

predictions.

The classic approach to quantifying drug response assumes that cells are undergoing

exponential growth at the time of drug treatment and then calculates the number of cells

72 hours after drug addition [14–18]. Other approaches to quantify drug response include

compartmental models such as pharmacokinetic and pharmacodynamic (PK-PD) models that

consider drug uptake and population dynamics [19]. Recent advances in methodological and

quantitative approaches enable assessment of the impact of therapies on cell growth rates,

rather than static cell counts20, which yields more robust correlations between molecular

features and drug sensitivity [20, 21]. However, while growth rate approaches significantly

improve quantification, they provide limited information about cell cycle effects. A related

approach, fractional proliferation, which models the number of cycling, quiescent, and

dying cells in a drug-treated population, incorporates growth rates and assumes that cells

irreversibly exit the cell cycle into quiescence [22]. Recent studies demonstrate that cells
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may not irreversibly exit the cell cycle and instead may extend the duration of a specific cell

cycle phase before restarting progression through the cell cycle [23]. These prior findings

motivate our interest to deeply assess the influence of drugs on specific cell cycle phases and

progression through the cell cycle.

In this work, we quantify and incorporate cell cycle phase effects in an analysis of drug

responses. We use live-cell imaging of a panel of molecularly diverse breast cancer cells

engineered to express a cell cycle reporter and tracked the dynamics of cell number and

cell cycle phase in response to single drugs and drug combinations. Across single drugs,

we observed distinct cell cycle effects that lead to similar final cell numbers, with phase-

specific responses that are oscillatory over time due to the temporal impacts on the cell

cycle. To describe these responses, we developed a computational model that uses a linear

chain trick (LCT) to account for the delay from cell cycle phase transit time upon drug

treatment. The LCT model correctly infers single drug responses across time as well as the

drug-induced oscillatory cell cycle dynamics. We used this model to predict the effect of

unseen combinations of drugs that impact different aspects of the cell cycle. Experimentally

testing several drug combinations validates that responses were primarily determined by the

specific cell cycle effects of each drug pair. These studies reveal the complexity of cell behavior

underlying drug responses, provide mechanistic insights into how individual drugs modulate

cell numbers, and yield a framework to rationally model and predict drug combinations.

Results

1. Drug treatments induce distinct changes in cell number and cell

cycle phasing

To track drug responses in individual cells, we genetically engineered HER2+ AU565 breast

cancer cells to stably express the HDHB cell cycle reporter [23] and a nuclear-localized

red fluorescent protein (Figure 1A,B). Cells were treated with escalating doses of five
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clinically relevant breast cancer drugs, each targeting different cell cycle phases or apoptotic

mechanisms (Figure 1C). Cells were imaged every 30 minutes for 96H and the number of

cells in each cell cycle phase and total cell numbers were quantified. Each drug effectively

reduced cell numbers in a dose-dependent manner (Figure 1D, S1). As expected, paclitaxel,

gemcitabine, and doxorubicin led to cytotoxic effects indicated by the final cell numbers

dropping below the starting cell numbers (Figure 1D) [24,25]. In contrast, at the highest

doses of palbociclib and lapatinib, final cell numbers were approximately equal to the starting

cell numbers, suggesting cytostatic effects. For each drug, the pattern of cell counts varied

across time; at high doses responses tended to reach a peak and then decline as the duration

of drug exposure increased—an effect most marked for 30 nM gemcitabine where the relative

cell number declined from 1.1 at 48H to 0.5 at 96H (Figure 1D) [21,26]. The fraction of S-G2

cells varied over time and showed both drug- and dose-specific effects (Figure 1E,F). For

example, lapatinib and palbociclib initially reduced the fraction of cells in S −G2 phase in a

dose-dependent manner, whereas gemcitabine and doxorubicin initially increased this fraction.

Of note, intermediate doses of lapatinib (50 nM) and paclitaxel (3 nM) induced oscillating

cell cycle responses, with an initial S −G2 reduction near 30H, followed by a second S −G2

reduction at 84H. In sum, this approach revealed drug-specific cell cycle changes across time,

which confirms that these drugs yield similar final numbers through distinct impacts on the

cell cycle.

2. A dynamical model captures drug-induced changes to cell cycle

behavior

A common approach to model drug effects assumes exponential growth that varies as a

function of drug dose [27]. This approach, although informative, cannot explain the cell cycle

dynamics described above and motivated the development of a dynamical model to capture

the observed behavior. As an initial model, we defined a system of ordinary differential

equations (ODEs) with transitions between G1 and S − G2. The parameters of the ODE
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and red circles respectively. C. Schematic of the five drugs tested and the cell cycle phase
they target. D. Average growth curves of AU565 cells tracked every 30 min for 96H across an
8-point dose response for lapatinib, gemcitabine, paclitaxel, palbociclib, and doxorubicin. The
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model were the cell cycle phase progression and death rates, which were assumed to follow a

Hill function with respect to drug concentration. This model failed to fit the experimental

data of G1 and S-G2 cell numbers (Figure S2); furthermore, dynamical systems theory

dictates that this model is unable to oscillate under any reasonable parameterization [28].

To address these limitations and capture the observed oscillatory temporal dynamics, we

incorporated into the model the observations that phase durations follow a gamma distribution

and are uncorrelated [10] (Figure S3A). Gamma and related distributions model each cell

cycle phase as a series of steps, with the key feature that they can model processes wherein

there is always some measurable duration before a system (e.g., a cell progressing through

the cell cycle) can move to the next state.

The number of steps in each phase were determined by estimating the shape parameter of

the gamma distributions fitted to single cell measurements of G1 and S −G2 phase durations

measured in the untreated control condition [29]. This resulted in partitioning the G1 phase

into 8 and S−G2 phase into 20 steps (Figure 2A). We incorporated a linear chain trick into

our model, which creates similarly-distributed time delays in the cell cycle phase durations

through a mean-field system of ODEs [30]. The model was further simplified by sharing

parameters that were not drug specific, such as the number of cell cycle subphases and

the initial fraction of cells in G1 phase. We then fit all five drug dose responses, varying

the drug-specific and shared parameters, simultaneously. Incorporation of this component

enabled the model to capture the experimentally observed oscillatory cell cycle behavior and

cell cycle phase-specific drug effects. We computed the fitting error of the two modeling

frameworks by calculating the sum of squared error of the difference between the data and

model predictions across all concentrations and observed that the LCT model had lower

error terms (Figure 2B). The fits to lapatinib and palbociclib were particularly improved by

the model refinement. Examples of dose-response curves and model fits for lapatinib and

gemcitabine are shown in Figure 2C-H. Importantly, the model captured the dose-dependent

changes to G1 and S−G2 populations as well as the oscillatory dynamics. Estimating the cell
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cycle phase progression and death rates also enabled calculation of the accumulated amount

of cell death across time using inferred cell counts at each phase (Figure 2E,H). The LCT

model also performed well for each of the other drugs (Figure S4A-F).

The phase durations and cell death probabilities inferred from the LCT model varied

with drug treatment (Figure 2I-L). Comparison of inferred effects at the half maximum

concentration (EC50) revealed that lapatinib and palbociclib treatments lead to longer

average G1 phase durations compared to untreated cells (Figure 2I-J), a 10% higher chance

of cell death in G1 phase for lapatinib treated cells, and a slight chance of cell death in

S−G2 after palbociclib treatment (Figure 2K-L). The model also inferred that gemcitabine

induces an increase in S − G2 durations and greater chance of cell death in S − G2 phase

as compared to untreated cells (Figure 2G-H). Finally, a 10% chance of cell death at the

EC50 concentration (2.4 nM) was inferred in late G2 phase for cells treated with paclitaxel

as compared to untreated controls (Figure 2J and Figure S3J).

3. Analysis of single cell responses confirms model inferences and

reveals drug-specific cell cycle phase effects

We developed model parameters from the average population response at each timepoint,

which facilitates robust model development by leveraging information from a large number

of cells. Importantly, as described above, the LCT model infers aspects of drug responses

that can be quantified at the individual cell level—including cell cycle phase duration and

cell cycle-specific death. We therefore tracked single cells in the image time course data to

quantify cell cycle phase durations and also cell death events associated with specific drug

treatments and concentrations (Figure S3B). Quantification of cell death events also enables

direct assessment of whether drug effects are cytotoxic or cytostatic. The first complete

cell cycle was analyzed to examine early drug effects. We also quantified the relative fate

outcomes for the progeny of cells observed at time 0H (relative to drug addition) that later

underwent division, which provides insights into drug treatment effects observed at later

8
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Figure 2: A computational model of the cell cycle captures the dynamics of drug
response. A. Diagram of the phase transitions in the linear chain trick (LCT) model. α1,...,
α4 are the progression rates through G1 phase; β1,..., β4 are the progression rates through
S − G2 phase. Similarly, γ11,..., γ14 are the death rates within the G1 phase parts, and
γ21,..., γ24 are death rates within S −G2 phase parts. B. The sum of squared errors for the
fits of each of five drugs over all concentrations with (blue) and without (orange) the LCT
modification. C-H. G1 (C, F) and S − G2 (D, G) cell numbers over time, respectively,
for lapatinib and gemcitabine treated cells at 5 concentrations and untreated control (solid
lines), respectively, overlayed with the average of three experimental replicates (dashed lines).
The predicted accumulated dead cells over time for lapatinib (E) and gemcitabine (H). I-J.
The average phase durations in G1 and S − G2 phases for all five drug treatments. K-L.
The overall probability of cell death in G1 and S −G2 phase, respectively, for all five drug
treatments. The arrow shows the shift from the control condition to the drug effect at the
half maximum concentration (EEC50) for G1 and S −G2 phases.
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timepoints (Figure S3C). As expected, in the untreated condition, most cells (93%) present

at 0H underwent cell division. In contrast, at the highest lapatinib and gemcitabine doses,

32% and 61% of the cells present at time 0H failed to divide. Additionally, of the cells that

did divide in these two conditions, only 10% underwent a second division. For both drugs,

lower doses showed more modest changes in the fraction of cells that divided as compared to

untreated. As described below, we compared these experimentally observed drug-induced cell

cycle effects to those inferred by the LCT model.

The model inferred that the predominant lapatinib effect was to extend G1 durations

from 22.3H in the untreated condition to 33.6H and 47.4H for 25 nM and 50 nM lapatinib,

respectively (Figure 3A). Experimentally, G1 durations increased after lapatinib (mean 26.2H

and 32.5H with 25 nM and 50 nM lapatinib, respectively) (Figure 3A,B). We also quantified

an increase in the G1 duration variance showing that cells varied in their responsiveness to

lapatinib (Figure 3B). The model inferred only modest changes to S −G2 durations or cell

death, which was consistent with experimentally observed S −G2 durations and cell death

associated with lapatinib treatment (Figure 3C,D).

The model inferred that oscillations in the percentage of G1 cells after lapatinib treatment

arise from waiting time effects in cell cycle progression (see Figure 2). Waiting times, which

can be modeled through distributions such as the gamma distribution, refer to the delay effect

created by processes that are comprised of many sequential steps. To confirm the mechanism

underlying this behavior at the single cell level, we examined various cell cycle measures and

found a reduction in the fraction of cells undergoing their first division beginning around 24H

(Figure 3E). This observation, together with the lengthening of the subsequent G1 duration

following cell division (Figure 3B), can explain the cell cycle synchronization observed in

the experimental data (see Figure 1) and in the LCT model. At the start of the assay, cells

in G1 are delayed in their time to division, while cells in S −G2 only become delayed at the

onset of G1 following division. In effect, this creates two populations of cells with distinct

timing in the induction of drug effects. We observed a similar effect after treatment with
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palbociclib (Figure S3D).

For gemcitabine, the model inferred a slight acceleration of G1 phases, which was recapitu-

lated experimentally (Figure 3A,F). The model inferred that S−G2 durations were extended

following gemcitabine treatment, which we confirmed experimentally: S −G2 durations were

extended from 22.3H to 34.5H with 5 nM and to 38H with 10 nM gemcitabine (Figure

3G). Lastly, the model inferred an increase in the number of cell death events relative to the

starting cell number, from 0 in control to 0.57 with 5 nM gemcitabine. At 10 nM gemcitabine,

the model predicted 1.0 relative cell death events such that the number of cell death events

across 96H was the same as the initial starting cell number (Figure 3A). The experimentally

observed values showed similar trends, though with more modest changes in cell numbers

(0.14 and 0.41 relative cell numbers for 5 and 10 nM gemcitabine, respectively) (Figure 3H).

Overall, we observed similar trends in each of the parameters for gemcitabine treated cells as

inferred by the model; modest differences were that the model inferred higher cell death and

shorter extensions to S −G2 than we observed experimentally.

We also tested an assumption of the model that G1 and S −G2 phases are independent

variables, which captures the idea that these cell cycle phases are independently regulated

at the molecular level. We analyzed G1 versus S − G2 durations for individual cells in

the untreated, 10 nM gemcitabine, and 50 nM lapatinib conditions, and found a minimal

correlation between G1 and S −G2 durations (Figure 3I). These experimental observations

confirm the implicit assumption of the model that G1 and S −G2 durations are uncorrelated.

Lastly, we evaluated model inferences for paclitaxel treatment. Consistent with our

experimental observations, the model inferred minimal changes to G1 and S −G2 durations

following treatment (Figure 3A,J,K). At 2 nM paclitaxel, the model inferred 0.56 cell

deaths relative to the starting cell numbers, and at 3 nM inferred 0.90 relative cell deaths

(Figure 3A, Methods). Experimentally, our observations were consistent with the values

inferred by the model: we observed 0.54 and 1.00 relative cell deaths for 2 nM and 3 nM

paclitaxel (Figure 3L). To summarize the mechanisms that account for the observed changes
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in cell numbers due to paclitaxel treatment, we compared the number of cell death events

against final cell counts for each of the other drugs. These data show the relative bias of

paclitaxel toward inducing cell death, especially at 2 nM, as compared to 5 nM gemcitabine

and 50 nM lapatinib, which both result in similar final cell numbers (Figure 3M). Overall,

the LCT model captures key observations about the cell cycle effects of each drug, which

were confirmed by in-depth single-cell tracking of the experimental data.

4. Drug-induced changes to cell cycle behavior generalize across a

molecularly diverse panel of breast cancer cell lines

To assess the generalizability of our computational framework and experimental observations,

we generated and tested three additional breast cancer cell lines from diverse molecular

backgrounds [31]: 21MT1 (Basal subtype, HER2+), HCC1143 (Basal subtype, HER2-) and

MDAMB157 (Claudin-low subtype, HER2-) (Figures S5-7). Because these cell lines do

not uniformly overexpress HER2, we additionally tested BEZ235 and trametinib, which

respectively target PI3K and MEK, two growth factor pathways downstream from HER2.

We observed dose-dependent reductions in cell numbers and also modulation of the percent

of G1 cells following drug treatment. Importantly, similar to our findings for AU565 cells,

we observed dynamic responses not captured by terminal endpoint readouts of cell viability

(Figures S5-7, panels A-B). Unique response patterns observed include: a delayed G1

enrichment from trametinib in 21MT1 cells (Figure S6), a lack of G1 enrichment from

palbociclib and BEZ235 in MDAMB157 cells (Figure S7), and a dose-dependent bifurcation

in G1 enrichment for doxorubicin in all three of the cell lines (Figures S5-7).

Next, we tested our LCT model on each of the new cell lines. Comparison of model fits

to experimental observations confirmed that our model could capture the dynamic responses

observed across this panel of molecularly distinct cell lines, indicating the generalizability of

our computational framework (Figures S5-7, panels C-E). We analyzed the output of the

LCT model, which inferred changes to cell cycle phase durations and cell death probabilities
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Figure 3: Analysis of single cell responses confirms model inferences and reveals
drug-specific cell cycle phase effects. A. Quantification of cell cycle parameters as
inferred by the model and observed experimentally (G1 and S-G2 durations and cell death).
B. Distributions of G1 durations for cells that underwent one division in response to 0, 25,
and 50 nM lapatinib. C. Distributions of S-G2 durations. D. Accumulated cell death across
time. E. Time to first division for cells in the untreated condition (red line) compared to
50 nM lapatinib (gray line). F-H. G1 and S-G2 distributions, and cell death accumulation
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for drug-cell line pairs at the EC50 concentration (Figure S8). The model inferred cell-

line-specific changes to both G1 and G2 phases (Figure S8A,B). For instance, 21MT1 were

inferred to preferentially undergo G1 cell death after doxorubicin and paclitaxel treatments,

at probabilities of 60% and 15%, respectively (Figure S8C). The model inferred that

HCC1143 cells arrest and die in S −G2 following paclitaxel or palbociclib treatment (Figure

S8B,D). MDAMB157 cells were inferred to become growth-arrested by drug treatment

and to preferentially die in G1 phase (Figure S8C,D). Overall, we confirmed that our

computational framework generalizes across several drugs and cell lines and can infer a range

of drug treatment response behaviors.

5. Responses to drug combinations are dependent on drug specific

cell cycle and cell death effects

Durable and effective cancer treatments frequently require administration of multiple drugs;

however, identification of the principles underlying optimal drug combinations have been

challenging [32]. Here, we tested the idea that our LCT model, which incorporates cell cycle

effects, can be used to predict the impact of different drug combinations on cell cycle behavior

and final cell numbers. We compared two strategies in accounting for drug combination

effects. In the first, we combined drug effects on the rates of G1 and S−G2 progression using

Bliss additivity and assumed the rates of cell death additively combined. In the second, we

assumed an additive combination through use of the drug effects on overall cell numbers. To

explore these predictions, we varied the dose of one drug in the two drug combination pair

and analyzed responses to drug combinations that targeted either the same cell cycle phase

(G1 and G1, or S −G2 and S −G2) or different cell cycle phases (G1 and S −G2).

We tested combining the rates for two G1 targeted drugs, in this case lapatinib and

palbociclib. The model predicted that effects on cell number would saturate around the initial

starting cell number, indicating cytostatic effects of this drug combination (Figure 4A). In

contrast, drug combination effects based on cell numbers alone predicted a cytotoxic effect at
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higher drug concentrations, resulting in a reduction in cell numbers relative to the starting

cell numbers. We tested these drug combinations experimentally and found a cytostatic

effect at higher doses, which matches the model prediction based on combining rates of cell

cycle progression (Figure 4A). We also analyzed predictions of gemcitabine combined with

doxorubicin, which both extend S −G2 durations and induce cell death (see Figure 3A).

Combination predictions based on rates and cell counts both predicted a reduction in cell

numbers relative to each drug on its own, which we also observed experimentally (Figure

4B).
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Figure 4: Responses to drug combinations are dependent on drug-specific effects
on the cell cycle and cell death. A-D. Comparison between model predictions (top
rows) and experiments (bottom rows). Comparing model predicted single drug responses
(black), with drug combinations of Bliss additivity using cell numbers (orange) or single
drug rates (cyan). Comparing single drug (black) and drug combinations (purple) from
experiments. A. Single drug responses for increasing doses of palbociclib and in combination
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Finally, we used the LCT model to examine the impact of combining two drugs that target

different cell cycle phases, which mimics lapatinib (G1 effect) combined with gemcitabine (S

phase effect). The cell cycle model predicted an antagonistic effect at higher doses, such that

30 nM gemcitabine combined with 100 nM lapatinib is expected to yield a similar final cell

number as 30 nM gemcitabine on its own (Figure 4C). Experimentally, we observed that

three of the four lapatinib and gemcitabine combination doses show an antagonistic impact

on cell number as compared to gemcitabine alone indicating that combining these two drugs

is counterproductive. These antagonistic effects of the combination held when lapatinib was

replaced by palbociclib, which also impacts G1 durations (Figure 4D). We examined the

model predictions in more detail to gain insights into the underlying biological mechanisms

driving these drug combination responses. The LCT model predicted that the G1 effect of

lapatinib initially dominates over the S-phase effects of gemcitabine, leading to an increased

G1 proportion for the population. We confirmed this prediction experimentally, indicating

that lapatinib co-treatment can mitigate the S −G2 effects of gemcitabine (Figure 4E). In

summary, these data indicate that the cell cycle phase and cell death impacts of each drug

in a pair are critical for determining the influence of single drugs on cell cycle behavior and

that this information can be used for rational identification of drug combinations likely to be

therapeutically beneficial.

Discussion

In this report, we link cell cycle regulatory mechanisms with drug-specific cell cycle effects

to gain insights into cancer cell responses to individual drugs and drug combinations. To

meld these ideas, we developed a combined experimental and modeling approach to measure

cell dynamics and infer cell behavior. This approach revealed that assessment of temporal

dynamics and cell behavior is critical to interpret and model drug-induced effects. Importantly,

assessment of the impacts of single agents on cell cycle behavior could be used to identify

drug combinations likely to yield therapeutic benefits.
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Recently, an in-depth analysis revealed that cell cycle phases in individual cells are

uncorrelated and have durations that can be accurately modeled as an Erlang distribution,

which is a special case of a gamma distribution [33]. This observation indicates that the

cell cycle can be viewed as a series of uncoupled, memoryless phases rather than a single

process [10, 34]. In this work, we found similar uncorrelated patterns in cell cycle phase

responses after treatment with different anti-cancer drugs. This revealed multiple implications

for assessing and modeling drug responses. First, viewing the cell cycle as a single process

implies that cell behavior is immediately impacted upon drug treatment; however, we and

others have reported that drug effects are often not observed until individual cells enter

or approach a specific phase or checkpoint [35, 36]. For instance, we found that cells were

initially distributed across all phases of the cell cycle and that the addition of lapatinib, a

G1-targeting drug, did not initially affect cells in S − G2 phase. This led to a partial cell

cycle synchronization across the population and required the incorporation of a linear chain

trick into our model to account for this dwell time. Additionally, the temporal dynamics of

the therapeutic response were an important consideration for co-treatment with gemcitabine

and lapatinib. If both drugs had immediate effects on cell behavior, we would expect that

the G1 and S −G2 effects of each drug would counteract each other and lead to a constant

ratio of cells in G1 phase. Instead, both experimentally and through model predictions,

we found an initial G1 enrichment. This likely induced a secondary effect of reducing the

relative time that each cell spent in S-phase, which further reduced gemcitabine sensitivity.

This finding could explain the antagonistic effects on cell numbers that we and others have

observed when combining gemcitabine with lapatinib or palbociclib [37,38]. We speculate

that a synergistic effect on cell numbers could also arise by combining two drugs that target

S −G2 phases, where each drug acts to extend the relative duration in which the other is

effective. This general strategy could be used to identify optimal temporal scheduling of

other drug combinations that induce different effects on the cell cycle.

A second implication of multiple independently regulated cell cycle processes relates
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to the concept of effect equivalence in drug combinations. This concept—that two drugs

with independent targets can be used to identify drug synergy or drug antagonism—has

predominantly focused on the cell number effect of each drug [2–5]. Our current work suggests

that equivalence in effect may be better applied to rates of cell cycle phase progression and

cell death. In our work, we found that lapatinib and palbociclib primarily impacted G1 phase

with limited effects on cell death. In contrast, doxorubicin and gemcitabine extended S −G2

durations and induced cell death. These cell cycle and cell death effects were critical for

gaining insights into the effect of drug combinations. For example, two cytostatic drugs,

lapatinib and palbociclib, were additive up to doses that reached the maximum cytostatic

effect, with further dose increases leading to only minor effects on cell numbers. In contrast,

combining the two cytotoxic drugs led to increasingly cytotoxic responses across the full

dose range. These results suggest that considering the cell cycle and cell death impacts

of each drug is necessary to make predictions about the effects of their combinations and

implies that this information could be used for the rational identification of effective drug

combinations [39,40].

Drug response measurements evaluated in the context of a mechanistic cell cycle model

can reveal insights about the nature of drug response and resistance not immediately apparent

from purely data-driven analyses. For instance, a model for the proliferation dynamics of

cancer cells can separate the contribution of dividing, non-dividing, and dying cells [22],

revealing that the rates of cell death and entry into quiescence change with drug treatment.

Previous computational models of cell cycle behavior have explored various ways in which cell

cycle behavior might impact drug response but have struggled to identify experimental data

amenable for model fitting and evaluation. For instance, others have appreciated that drugs

do not affect the cell cycle uniformly and have therefore proposed computational models

that partition the cell cycle into several independent steps, both with [10] and without [34]

cell death effects. Modeling cell lifetimes as being hypo-exponentially distributed helps to

explain the distribution of cell lifetimes within a population but does not connect these
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observations to known cell cycle stages [41]. In this study, we demonstrate that partitioning

known cell cycle phases to account for their dwell time effects—and including experimentally

observed drug effects like cell death—results in a modeling framework that can faithfully and

mechanistically capture experimentally observed anti-cancer drug effects.

We applied our experimental approach and computational framework to examine dynamic

drug-induced responses in a molecularly diverse set of breast cancer cell lines. In all cases,

we observed that therapeutic inhibition induces a wide array of responses, indicating that

the influence of therapies on cell cycle dynamics is a generalizable mechanism operable in a

wide array of molecular backgrounds. Cancer cells treated with therapies may adopt new

molecular programs associated with adaptive and acquired resistance, and indeed previous

studies have demonstrated this principle in both model systems and patient samples [42].

We hypothesize that cells with acquired resistance may show distinct drug-induced cell cycle

programs as compared to naïve cells and that our approach could be used to uncover the

molecular mechanisms associated with adaptive resistance. The approach outlined here is

built around the concept that therapies perturb cell cycle behavior and is agnostic of the

exact type of cellular perturbation. Our study therefore provides a blueprint for studying

responses of diverse cell types—both normal and diseased—to a wide array of perturbations,

including diverse panels of therapeutic inhibitors, growth factors, or genetic manipulation

with CRISPRi/a. The resultant data could be used to adapt our computational framework

to identify mechanisms of cell cycle control in different cellular contexts, microenvironmental

conditions, or disease states.

While our model could explain many of the key observations in our experimental data,

extensions of the model could further improve its generalizability and robustness. We

partitioned the cell cycle into two observed phases, G1 and S − G2, which were further

subdivided to explain the dwell time behavior of each phase. With improved reporter

strategies [43], we may be able to further subdivide these phases into constituent parts, which

could help to localize the effect of a drug to a more specific portion of one cell cycle phase.
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Generalizations of the linear chain trick could be used to account for both subphases of

varying passage rates, as well as heterogeneity in the rates of passage, which would arise

through cell-to-cell heterogeneity [30]. While the subdivisions within each cell cycle phase

are phenomenological, it is tempting to imagine they represent mechanistic steps within each

phase. Identifying how effects connect to actual biological events in the cell cycle would

help identify opportunities for drug combinations. A practical challenge when using the

model for drug combinations has been normalization between experiments. While cell number

measurements are routinely normalized by dividing by a control, experiment-to-experiment

variation in inferred rates requires additional consideration. A wider panel of experiments,

across multiple cell lines, may help to tease apart variations associated with drugs, cell lines,

or experiments. A final potential extension is considering the existence of phenotypically

diverse subpopulations [44]. At the cost of additional complexity, one could employ several

instances of the current model with transition probabilities between these states when the

cells divide to simulate a heterogeneous population of cells.

Methods

Creation of Stable Cell Lines

AU565 (ATCC CRL 2351) and MDAMB157 (ATCC HTB 24) cells were grown in DMEM

supplemented with 10% FBS, HCC1143 (ATCC CRL 2321) cells were grown in RPMI

supplemented with 10% FBS, and 21MT1 (generous gift from Kornelia Polyak) cells were

grown in DMEM/F12 supplemented with 5% horse serum, 20 ng/ml rhEGF, 0.5 µg/ml

hydrocortisone, 100 ng/ml cholera toxin, and 10 µg/ml insulin. The coding fragment for

clover-HDHB was cloned in frame into a transposase expression plasmid modified to also

express a nuclear localized mCherry [45]. The stable cell lines were created as previously

described [45] and selected for 7 days with 0.75 µg/ml puromycin. To mitigate a range of

fluorescent signals from transfection, HCC1143 and 21MT1 cells were sorted at OHSU’s Flow

Cytometry Core and cells with a medium intensity clover-HDHB signal and a high intensity
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NLS-mCherry signal were selected for drug dose response experiments. In all cases, cells were

validated by STR profiling (LabCorp) and tested negative for mycoplasma.

Drug Dose Response Protocol

AU565 cells were plated at a density of 25,000 cells per well into 24-well Falcon plates

(Corning #353047). 24H after plating the media was exchanged with Fluorobrite media

supplemented with 10% FBS, glutamine, and penicillin-streptomycin. Cells were then treated

with dose-escalation: l apatinib (Selleckchem #S1028), gemcitabine (#S1149), paclitaxel

(#S1150), doxorubicin (#S1208), palbociclib (#S1116), BEZ235 (#S1009), and trametinib

(#S2673). After drug addition, plates were imaged every 30 minutes for 96H using phase,

GFP, and RFP imaging channels with an IncuCyte S3. For single drug treatments of AU565

cells only, at 48H the media was replaced in all wells including the control wells, and fresh

media and drug were added. Four equally-spaced image locations per well and three biological

replicates were collected.

MDAMB157, HCC1143, and 21MT1 cell lines were transferred to and maintained in a

base of either Fluorobrite media and 1x GlutaMAX or mixed Fluorobrite/F12 media and

0.5x GlutaMAX along with their corresponding supplements for no less than one week before

performing the drug dose response protocol. MDAMB157 and HCC1143 cells were plated

at a density of 25,000 cells per well, while the larger 21MT1 cells were plated at a density

of 5,000 cells per well into 24-well Falcon plates (Corning #353047). 24H after plating the

media was exchanged with fresh Fluorobrite media as indicated per cell line. Cells were then

treated with dose-escalation: BEZ235, gemcitabine, paclitaxel, doxorubicin, palbociclib, and

trametinib. After drug addition, plates were imaged every 2 hours for 96H using phase, GFP,

and RFP imaging channels with the IncuCyte S3. Four equally-spaced image locations per

well and three biological replicates were collected.

21



Image Analysis

To analyze AU565 image data, phase, GFP, and RFP images were overlaid and collated into

single files using FIJI [46], then segmented into three classes (nuclei, background, debris)

using a manually trained classifier in Ilastik [47]. The segmented nuclear masks from Ilastik

and the IncuCyte GFP images were used to count the number of nuclei in each image with

Cell Profiler [48]. Additionally, using the same images (nuclear masks from Ilastik and GFP

cell cycle reporter images) cell cycle phase was determined by taking the mean fluorescence

in the nucleus compared to the mean fluorescence in a 5-pixel ring surrounding the nucleus,

excluding background pixels. A threshold was then manually set for the ratio of nuclear

fluorescence to cytoplasmic fluorescence and cells with values below the threshold were defined

as being in G1 and cells with values above the threshold were defined as being in S − G2

phase [48].

To manually track AU565 cells and identify drug-induced changes operable in single cells,

GFP image sequences were registered using the FIJI plug-in ‘StackReg‘. Individual cells

present in the first image and their progeny were followed to identify the time of G1 transition,

cell death, and cell division using the plug-in mTrackJ [49]. We excluded cells that were

binucleated, had abnormally large nuclei, or were near the image border where complete

lineages could not be tracked. The G1 transition was defined as the last frame before the

nuclear intensity of the cell cycle reporter was below the level of the cytoplasm. Assessment

of cell death enabled disentangling of cytostatic and cytotoxic drug effects.

We used the following approach for automated analysis of HCC1143, 21MT1 and

MDAMB157 cell lines. Image registration was performed on the red channel nuclear marker

image stack using the python skimage phase_cross_correlation function to correct transla-

tions. Image stacks were cropped to their common areas and individual cells were segmented

with the Cellpose LC2 model trained on phase and nuclear images from the untreated and

highest drug concentration treatments [50]. Nuclei were segmented with the Cellpose cyto2

model on the nuclear channel. To associate nuclei across the image stack, to identify progeny

22



after mitosis, and to identify cell death events we used Loeffler tracking [51] with the default

parameters of delta_t = 3 and roi_size = 2. We created cytoplasm masks by subtracting

the nuclear masks from the cell masks and applied these masks to the green channel cell

cycle reporter images using the python skimage function regionprops_table. To assign cells

to G1 or S −G2 states, we computed the ratios between the cytoplasm and nuclear cell cycle

reporter. k-means clustering of the ratios observed in cells in the untreated condition was

used to establish a per-plate threshold between cell cycle states.

The quantified cell-level data was mean summarized to the population level for each image

and to assess cell counts and G1 cell cycle state proportion. The cell counts were normalized

to the mean of the counts of the first three images. The cell count dose response curves were

normalized to the control by dividing each drug cell count by the control cell count at the

same time slice.

Core Model

To identify the dynamics of the AU565 cancer cell population in response to compounds, we

built a system of ordinary differential equations (ODEs) with two states: G1, and S −G2.

Cells transition from G1 to S −G2 phase, and then vice versa when doubling. Cell death can

occur in either phase with phase-specific death rates. S and G2 phases are combined as our

reporter cannot distinguish them. From single-cell tracking, we identified that G1 and S−G2

phase time-intervals are gamma-distributed. Based on this observation, we employed the

linear chain trick (LCT) [29] to capture these waiting time distributions. We broke down each

phase into a series of sequential sub-phases and derived the system of mean-field ordinary

differentials. Each sub-phase is represented as a single state variable within the differential

equation system. The total number of cells in each phase is the sum of the cell numbers in

each sub-phase. Furthermore, to account for the non-uniform effect of the drugs over each

cell cycle phase, we divided G1 and S −G2 into 4 parts each, such that the effect of a drug

can be distinguishable at the beginning, middle, or the end of the phases.
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The mean-field system of ODEs is:

dG11,1

dt
= 2β4G24,5 − (α1 + γ1,1)G11,1 (1.1)

dG1k,1

dt
= αk−1G1k−1,2 − (αk + γ1,k)G1k,1 (1.2)

dG1k,2

dt
= αkG1k,1 − (αk + γ1,k)G1k,2, 1 ≤ k ≤ 4 (1.3)

dG21,1

dt
= α4G14,2 − (β1 + γ2,1)G21,1 (1.4)

dG2i,j

dt
= βiG2i,j−1 − (βi + γ2,i)G2i,j, 2 ≤ j ≤ 5, 1 ≤ i ≤ 4 (1.5)

The parameters of the model include progression rates through G1 phase, α, and S −G2

phase, β, and death rates in each of the G1 phase, γ1, and S −G2 phase, γ2. Cells at the end

of the S −G2 phase divide and give birth to two cells at G1 phase. Because each phase is

divided into 4 parts, each part of G1 contains 2 sub-phases, and each part of S −G2 contains

5 sub-phases.

The model was implemented in Julia v1.5.3. The differential equations were solved by the

matrix exponential. As the data was measured with equal spacing, we pre-calculated the

transition matrix between timesteps.

Dose Response Relationship

We assumed that the progression and death rates in G1 and S −G2 that form the quantified

drug effects on the population follow a Hill function:

Hill(C) = Emin +
Emax − Emin

(1 + EC50

C
)k

(1.6)

where the EC50 indicates the half-maximal drug effect concentration, Emin the value of the

rate parameter in the absence of drug, Emax the rate parameter at infinite concentration, and
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k the steepness of the dose-response curve. Given these parameters and the drug concentration

C we then calculated the specific rate parameters for that treatment.

Exponential Model

To show the benefit of our LCT model, we employed a commonly used exponential model

to fit to the G1 and S − G2 cell numbers and showed that the exponential model cannot

capture the dynamics of the data. The parameters were the same as the mean-field model.

dG1

dt
= 2βG2 − (α + γ1)G1 (1.7)

dG2

dt
= αG1 − (β + γ1)G2 (1.8)

Model Fitting

The data included the percentage of cells in G1 phase and the total number of cells normalized

to the cell numbers at the initial time point. We assumed 1 starting cell at 0H and calculated

the number of cells in G1 and S −G2 phase over time. The Savitzky-Golay filter was used to

smooth the data. Three replicates of each experiment were averaged, and the average was

used for the purpose of fitting.

The number of G1 and S − G2 subphases, and the parameters in the absence of drug

were shared across all drugs and concentrations. The sum of squared error was used as the

cost function value and was calculated between the cell numbers predicted by the model

and the average cell numbers of three replicates, over all time points, concentrations, and

drugs tested. This cost function was then minimized using the default adaptive differential

evolution optimizer from the BlackBoxOptim.jl Julia package, version 0.5.0.

To characterize the identifiability of our fit parameters we conducted a local sensitivity

analysis. To do so, we calculated the cost function while varying each parameter from 0.1 to

10 times the optimal value, holding all the other parameters at their optimum. All parameters
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were identifiably constrained by this analysis.

Calculating relative number of cell deaths and average phase durations. We evaluated

the number of dead cells at 96H relative to the starting cell number at 0H. This formed the

observed relative cell death numbers reported in Figure 3A. To calculate the corresponding

cell death values inferred from the model, we calculated the predicted number of cells at each

phase part (G11, G12, G13, G14, G21, G22, G23, G24) separately, and multiplied them by their

individual death rates at all time points. This provides the number of dead cells at each

phase part at each time point. The sum of cell numbers died in each phase part provides the

total cell death counts at each time point, n(t). Figure 2C-D show the accumulated dead

cells across time for lapatinib and gemcitabine treatments which was calculated by summing

over the cell death counts, n(t), across time from 0 to each timepoint, T . Calculating for

96H results in the total cell death normalized by the initial cell numbers, 1, this value refers

to the relative predicted cell death number reported in Figure 3A.

n(t) =
2∑

i=1

Gi,j(t)× γi,j (1.9)

N(T ) =
T∑
t=0

n(t) (1.10)

The average phase durations Ḡ1 , ¯S −G2 from the model were calculated using the

progression rates. The G1 phase has 8 subphases which is divided into 4 parts that results

in 2 phases per part. S −G2 phase has 20 subphases divided into 4 parts that results in 5

subphases in each part. Each phase part has a unique parameter for cell death and phase

progression rate. The average phase duration will be given by the following expressions,

derived by recognizing that the time in each part is gamma-distributed with a shape parameter
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equal to the number of subphases.

Ḡ1 =
4∑

j=1

2

α1j

(1.11)

¯S −G2 =
4∑

j=1

5

β2j

(1.12)

Predicting Drug Combinations

Bliss independence was used to calculate the predicted effect of drug combinations. Assuming

Ea and Eb to be the saturable, quantified effects of drugs a and b, the expected combined

effect would be:

Eab = Ea + Eb − Ea.Eb (1.13)

For death effects, we added the effects of each drug to find the death effect of the drug

combination:

Dab = Da +Db (1.14)

The Bliss relationship requires that data first be scaled to be between 0 and 1, and then

scaled back after the interaction calculation:

X̂ =
Xcontrol −X

Xcontrol

(1.15)

This measure is usually used as a baseline to decide whether the combination of two drugs

is synergistic or antagonistic. Here we used Bliss in two ways: (1) on the progression rate

parameters to simulate the model predictions of drug combinations; and (2) on cell numbers

to serve as a baseline approach to calculate drug combination effects, as is commonly used.

In the first case, we use Bliss additivity on the cell cycle progression rates (*) to find the
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set of progression parameters representing the combined treatment and assume that the

death effects are only additive because the cell death process is not saturable (**). The

combination parameters for all the eight concentrations for all pairs of drugs were calculated

and then converted back to their original units. Next, we simulated the cell numbers using

these parameters. In the baseline case, we used the cell numbers in the control condition to

normalize the cell number measurements and then converted the cell numbers back to their

original scale. This was used as a benchmark reference.
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SUPPLEMENTARY MATERIALS

29



0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96
Time (Hr)

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96
0

0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

R
el
at
iv
e
C
el
lN
um

be
r

Time (Hr) Time (Hr)

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

R
el
at
iv
e
C
el
lN
um

be
r

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

Time (Hr) Time (Hr) Time (Hr)

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

R
el
at
iv
e
C
el
lN
um

be
r

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96
0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

S-
G
2
C
el
lC
yc
le
(%
)

Time (Hr) Time (Hr) Time (Hr)

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

R
el
at
iv
e
C
el
lN
um

be
r

Time (Hr) Time (Hr) Time (Hr)

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

R
el
at
iv
e
C
el
lN
um

be
r

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

0
10
20
30
40
50
60
70
80
90
100

0 12 24 36 48 60 72 84 96

0
0.5
1

1.5
2

2.5
3

3.5
4

0 12 24 36 48 60 72 84 96

Time (Hr) Time (Hr) Time (Hr)

Doxorubicin

GemcitabineLapatinib

Paclitaxel Palbociclib

S-
G
2
C
el
lC
yc
le
(%
)

S-
G
2
C
el
lC
yc
le
(%
)

S-
G
2
C
el
lC
yc
le
(%
)

S-
G
2
C
el
lC
yc
le
(%
)

A B

C D

E

Replicate 1 Replicate 2 Replicate 3 Replicate 1 Replicate 2 Replicate 3

Replicate 1 Replicate 2 Replicate 3 Replicate 1 Replicate 2 Replicate 3

Replicate 1 Replicate 2 Replicate 3

Figure S1: Individual replicates for AU565 drug responses show similar temporal
dynamics and drug-induced changes to cell cycle. Panels show relative cell numbers
and S − G2 normalized cell numbers for lapatinib (A), gemcitabine (B), paclitaxel (C),
palbociclib (D), and doxorubicin (E) treatments for three biological replicates. Five drug
concentrations (gray lines) and untreated control (red line) are plotted.
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Figure S2: An exponential cell cycle model without incorporating delay times
fails to capture the dynamics of drug response. A. The transition diagram for a
simple dynamical model with 2 phases (G1 and S −G2) and without the LCT. α and β are
the transition rates from G1 to S −G2 and vice versa, γ1 and γ2 are the death rates in G1

and S −G2, respectively. B-E. Exponential cell cycle model simulations of G1 and S −G2

cell numbers over time for control and 5 concentrations of lapatinib (B-C) and gemcitabine
(D-E) (solid lines), respectively, overlayed with the average of three experimental replicates
(dashed lines).
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Figure S3: Analysis of single cell tracking data reveals drug-specific cell cycle
phase effects in AU565 cells. A. Lineage trees of 25 lineages across 96H for various drug
treatments. Tracks are colored coded based on cell cycle phase: gray indicates G1 and red
indicates S − G2 phase. Track splitting indicates mitosis, and track ending prior to 96H
corresponds to apoptosis. B. Quantification of cell outcomes (division, apoptosis, still present
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D. Lineage trees for 25 lineages across 96H after treatment with Palbociclib.
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Figure S4: A dynamical model of the cell cycle captures the dynamics of drug
response. A-F. G1 and S − G2 cell numbers overtime, respectively, for the control and
treatment at 5 concentrations (solid lines) for doxorubicin (A-B) paclitaxel (C-D), and
palbociclib (E-F) overlayed with the average of three corresponding experimental replicates
(dashed lines). G-L. The average phase durations in G1 and S −G2 phases for selected drug
treatments. The arrow shows the shift from the control condition to the drug effect at the
half maximum concentration (EEC50).

33



0 24 48 72 96
0

1

2

3

4
control
1.0 nM
2.5 nM
5.0 nM
10.0 nM
20.0 nM
30.0 nM
50.0 nM

0 24 48 72 96
0

1

2

3

4
control
0.5 nM
1.0 nM
10.0 nM
25.0 nM
50.0 nM
125.0 nM
250.0 nM

0 24 48 72 96
0

1

2

3

4 control
0.25 nM
0.5 nM
1.0 nM
1.5 nM
2.0 nM
2.5 nM
3.0 nM

0 24 48 72 96
0

1

2

3

4 control
0.5 nM
1.0 nM
1.5 nM
2.0 nM
2.5 nM
3.0 nM
4.0 nM

0 24 48 72 96
0

1

2

3

4 control
50.0 nM
100.0 nM
250.0 nM
500.0 nM
1000.0 nM
2500.0 nM
5000.0 nM

0 24 48 72 96
0

1

2

3

4 control
1.0 nM
5.0 nM
25.0 nM
50.0 nM
100.0 nM
250.0 nM
500.0 nM

0

time [hr]

C
el
lc
ou
nt

time [hr]

C
el
lc
ou
nt

time [hr]

C
el
lc
ou
nt

time [hr]

C
el
lc
ou
nt

time [hr]

C
el
lc
ou
nt

time [hr]

C
el
lc
ou
nt

time [hr]time [hr]time [hr]time [hr]time [hr]time [hr]
24 48 72 960.0

0.2

0.4

0.6

0.8

1.0
control
1.0 nM
2.5 nM
5.0 nM
10.0 nM
20.0 nM
30.0 nM
50.0 nM

0 24 48 72 96
time [hr]

0

1

2

3

G 1
ce
ll
nu
m
be
r

model fits data avg

control
5.0 nM
10.0 nM
20.0 nM
30.0 nM
50.0 nM

0 24 48 72 96
time [hr]

0

1

2

3

S-
G
ce
ll
nu
m
be
r

2

control
5.0 nM
10.0 nM
20.0 nM
30.0 nM
50.0 nM

0 20 40 60 80
time [hr]

0.0

0.5

1.0

1.5

2.0

control
5.0 nM
10.0 nM
20.0 nM
30.0 nM
50.0 nM

model fits

model fits data avg

model fits data avg

0 24 48 72 96
time [hr]

0

1

2

3

G 1
ce
ll
nu
m
be
r control

10.0 nM
25.0 nM
50.0 nM
125.0 nM
250.0 nM

0 24 48 72 96
time [hr]

0

1

2

3

S-
G
ce
ll
nu
m
be
r

2

control
10.0 nM
25.0 nM
50.0 nM
125.0 nM
250.0 nM

0 20 40 60 80
time [hr]

0.0

0.5

1.0

1.5

2.0

control
10.0 nM
25.0 nM
50.0 nM
125.0 nM
250.0 nM

0 24 48 72 96
time [hr]

0

1

2

3

G 1
ce
ll
nu
m
be
r

model fits data avg

control
1.0 nM
1.5 nM
2.0 nM
2.5 nM
3.0 nM

0 24 48 72 96
time [hr]

0

1

2

3

S-
G
ce
ll
nu
m
be
r

2

control
1.0 nM
1.5 nM
2.0 nM
2.5 nM
3.0 nM

0 20 40 60 80
time[hr]

0.0

0.5

1.0

1.5

model fits data avg

control
1.0 nM
1.5 nM
2.0 nM
2.5 nM
3.0 nM

model fits data avg

0 24 48 72 96
time [hr]

0

1

2

3

G 1
ce
ll
nu
m
be
r control

1.5 nM
2.0 nM
2.5 nM
3.0 nM
4.0 nM

0 24 48 72 96
time [hr]

0

1

2

3

S-
G
ce
ll
nu
m
be
r

2

control
1.5 nM
2.0 nM
2.5 nM
3.0 nM
4.0 nM

0 20 40 60 80
time [hr]

0.0

0.5

1.0

1.5

2.0

control
1.5 nM
2.0 nM
2.5 nM
3.0 nM
4.0 nM

0 24 48 72 96
time [hr]

0

1

2

3

G 1
ce
ll
nu
m
be
r

0 24 48 72 96
time [hr]

0

1

2

3

S-
G
ce
ll
nu
m
be
r

2

control
250.0 nM
500.0 nM
1000.0 nM
2500.0 nM
5000.0 nM

0 20 40 60 80
time [hr]

0.0

0.5

1.0

1.5

2.0

model fits data avg

control
250.0 nM
500.0 nM
1000.0 nM
2500.0 nM
5000.0 nM

model fits data avg

0 24 48 72 96
time [hr]

0

1

2

3

G 1
ce
ll
nu
m
be
r

model fits data avg

control
25.0 nM
50.0 nM
100.0 nM
250.0 nM
500.0 nM

0 24 48 72 96
time [hr]

0

1

2

3

S-
G
ce
ll
nu
m
be
r

2

control
25.0 nM
50.0 nM
100.0 nM
250.0 nM
500.0 nM

0 20 40 60 80
time [hr]

0.0

0.5

1.0

1.5

2.0

control
25.0 nM
50.0 nM
100.0 nM
250.0 nM
500.0 nM

0 24 48 72 96
0.0

0.2

0.4

0.6

0.8

1.0
control
0.5 nM
1.0 nM
10.0 nM
25.0 nM
50.0 nM
125.0 nM
250.0 nM

0 24 48 72 96
0.0

0.2

0.4

0.6

0.8

1.0
control
0.25 nM
0.5 nM
1.0 nM
1.5 nM
2.0 nM
2.5 nM
3.0 nM

0 24 48 72 960.0

0.2

0.4

0.6

0.8

1.0
control
0.5 nM
1.0 nM
1.5 nM
2.0 nM
2.5 nM
3.0 nM
4.0 nM

0 24 48 72 96
0.0

0.2

0.4

0.6

0.8

1.0
control
50.0 nM
100.0 nM
250.0 nM
500.0 nM
1000.0 nM
2500.0 nM
5000.0 nM

control
250.0 nM
500.0 nM
1000.0 nM
2500.0 nM
5000.0 nM

0 24 48 72 96
0.0

0.2

0.4

0.6

0.8

1.0
control
1.0 nM
5.0 nM
25.0 nM
50.0 nM
100.0 nM
250.0 nM
500.0 nM

HCC1143 - Paclitaxel HCC1143 - Palbociclib HCC1143 - Trametinib HCC1143 - BEZ235 HCC1143 - Doxorubicin HCC1143 - Gemcitabine

C
el
lc
ou
nt

C
el
lc
ou
nt

C
el
lc
ou
nt

C
el
lc
ou
nt

C
el
lc
ou
nt

C
el
lc
ou
nt

A

C

D

E

B

Ex
pe

rim
en

ta
lo
bs
er
va
tio
ns

D
yn
am

ic
al
m
od

el
fit
s

In
fe
rre

d
ce
ll
de

at
h

data avg model fits data avg model fits data avg

G
1
Pr
op
or
tio
n

G
1
Pr
op
or
tio
n

G
1
Pr
op
or
tio
n

G
1
Pr
op
or
tio
n

G
1
Pr
op
or
tio
n

G
1
Pr
op
or
tio
n

Figure S5: The introduced dynamical model captures the cell cycle dynamics of
drug response in TNBC cell line HCC1143. A,B. Experimentally observed drug-induced
changes to cell numbers (A) and G1 cell cycle phase proportion (B) after dose-escalation
treatment with a panel of inhibitors. C,D. G1 and S − G2 fits overtime, respectively, for
the untreated and treatment at 5 concentrations (solid lines) overlayed with the average of
three corresponding experimental replicates (dashed lines) for 6 drug treatments. E. Inferred
accumulated dead cells over time for 6 drug treatments.
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Figure S6: The introduced dynamical model captures the cell cycle dynamics of
drug response in 21MT1 cell line. A, B. Experimentally observed drug-induced changes
to cell numbers (A) and G1 cell cycle phase proportion (B) after dose-escalation treatment
with a panel of inhibitors. C,D. G1 and S-G2 fits overtime, respectively, for the untreated and
treatment at 5 concentrations (solid lines) overlayed with the average of three corresponding
experimental replicates (dashed lines) for 6 drug treatments. E. Inferred accumulated dead
cells over time for 6 drug treatments. A,B. Experimentally observed drug-induced changes to
cell numbers (A) and G1 cell cycle phase proportion (B) after dose-escalation treatment with
a panel of inhibitors. C,D. G1 and S −G2 fits overtime, respectively, for the untreated and
treatment at 5 concentrations (solid lines) overlayed with the average of three corresponding
experimental replicates (dashed lines) for 6 drug treatments. E. Inferred accumulated dead
cells over time for 6 drug treatments.
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Figure S7: The introduced dynamical model captures the cell cycle dynamics
of drug response in TNBC cell line MDA-MB-157. A,B. Experimentally observed
drug-induced changes to cell numbers (A) and G1 cell cycle phase proportion (B) after
dose-escalation treatment with a panel of inhibitors. C,D. G1 and S − G2 fits overtime,
respectively, for the untreated and treatment at 5 concentrations (solid lines) overlayed
with the average of three corresponding experimental replicates (dashed lines) for 6 drug
treatments. E. Inferred accumulated dead cells over time for 6 drug treatments.
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Figure S8: Summary of inferred cell cycle drug effects at half maximum con-
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Abstract

The effectiveness of cancer therapies is limited by incomplete response to treatment, which

enables propagation of the tumor and selection of resistant cells. One potential approach

to overcoming this limitation is identification of combination therapies that can deepen

therapeutic response. At the core of cancer’s unchecked proliferation is regulation of the cell

cycle; therefore, the mechanism and timing by which therapies modulate progression through

the cell cycle is critical for developing effective therapeutic combinations. Most pharmacologic

responses are measured only by counting viable cells as an endpoint assay, which provides

insufficient information to infer cell cycle effects. However, recent experimental approaches

have provided high-throughput techniques to collect robust and accurate drug response data

while incorporating markers to quantify cell cycle state. We apply a modeling-based and

data-driven approach to use this data in identifying effective therapeutic combinations and

patterns of response resolving effects specific to certain cell cycle phases. Our mechanistic

model was able to identify off-target effects of drugs with respect to cell cycle phases and

predict the combination effects specific to each cell cycle phase. In addition, with our

data-driven approach we found associations between cell cycle progression rates and BRCA

mutation in breast cancer cell lines. In total, this demonstrates the value in quantifying and

directly accounting for therapeutic effects incorporating cell cycle information.

Introduction

Targeted therapies have been developed to modulate various components of the cell cycle to

inhibit cell growth or induce cell death. The targeting molecules are often used in combination

with chemotherapy [1] and immunotherapy [2] for a more effective response. Among common

cell cycle inhibitors are cyclin-dependent kinases (CDKs) inhibitors [3, 4], which are enzymes

that have an essential role in cell cycle regulation and progression. Other targeted molecules

include apoptosis inducers [5] and DNA damage response inhibitors [6]. Cells in different

phases of the cell cycle exhibit varying degrees of sensitivity to different drugs and each small
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molecule inhibitor effects a specific part of the cell cycle; for example, CDK4/6 inhibitors such

as palbociclib inhibit the activity of CDK4/6-cyclin D which then disrupts the phosphorylation

of Rb1 protein, and result in cell cycle arrest primarily in the G1 phase of the cell cycle [7].

On the other hand, chemotherapy drugs also often have a specific target within the cell cycle;

for example, doxorubicin disrupts DNA repair in the S phase and induces cell cycle arrest

and death in the S phase of the cell cycle [8]. Hence, it is crucial to accurately understand

the impact of drugs on the cell cycle for the development of effective cancer treatments, and

also to understand how the combination of drugs work mechanistically. However, not many

studies have focused on investigating the drug response with cell cycle phase resolution.

Cancer cell lines from the same type with varying genotypic features often respond

differently to the same treatment. For example, there has been extensive studies highlighting

heterogeneous response of different triple negative breast cancer cell lines, despite the fact

that they all are from the same nominal subtype [9]. Incorporating information on the cellular

genotype can also provide insights into the drug’s mechanism of action and help to identify

patient subgroups that are most likely to benefit from specific therapies [10]. CDK inhibitors

usually force cells to exit the cell cycle by triggering senescence, quiescence, or apoptosis.

As such, CDK4/6-cyclin D plays a role in preventing cell cycle exit, hence, the inhibition of

CDK4/6 can force cells to exit the cell cycle [11]. It has been shown that amplification of

cyclin D levels which results in increased activity of CDK4/6 confers sensitivity to CDK4/6

inhibitors [12]. Also patients with cancer-associated mutations in proteins involved in cell

cycle exit pathways, such as p16 (CDKN2A mutation), are more likely to benefit from

CDK4/6 inhibitors [13], and those with mutations in pathways driving the cell cycle entry,

such as cyclin E or Rb1, are less likely to benefit from it [14]. It is important to considering

the cellular genotype in cancer therapy studies, as they demonstrate how specific genetic

alterations can impact the efficacy of different drugs and personalizing medicine.

Quantifying drug response is essential to understanding mechanism of action of drugs,

discovery of new targeted molecules, and drug combination screening. A common approach
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for studying drug response is using single snapshot of total cell viability several hours after

drug exposure [15], and employing a sigmoidal function to estimate the parameters such

as concentration at half maximal effect (EC50), asymptotic fractions of viable cells (Emax,

and Emin), and some measure of potency (Hill slope). However, depending on the target

pathway, each anti-cancer agent can arrest cells in a specific cell cycle phase which results

in a non-uniform response in each cell cycle phase. Classical models of drug response that

use total cell viability cannot distinguish the specific part of the cell cycle that is perturbed.

Previously, we have developed a mathematical model that can capture the drug-induced

dynamics of drug response using time series data of breast cancer cells harboring a cell cycle

reporter to identify G1 and S/G2 cell cycle phases [16]. This model improved prediction of

drug combination in various scenarios such as with two drugs arresting cells at the same or

differing phases of the cell cycle, and also shed light in dynamical behavior of cells across time

which showed a pseudo-synchronization effect as a result of various treatments. However,

the data acquisition process, including cell line development that incorporates the nuclear

reporter to distinguish G1 from S/G2 phase, cell segmentation and tracking across time are

technically challenging and difficult to scale.

Advances in high-throughput screening technologies and imaging techniques have enabled

the development of more sophisticated drug response assays that can provide more detailed

insights into the mechanisms of drugs and the cellular responses [17]. Multiplexed approaches

such as the dye drop assay developed by Mills et al. [18], includes sequential density dis-

placement and microscopy which eliminates the mix and wash step. They utilize fluorescent

dyes to label the amount of total and newly synthesized DNA content and based on that,

distinguish cell cycle phases, making it a promising tool for studying drug response with cell

cycle phase resolution in a high throughput manner. This approach also allows for follow-on

assays of fixed cells by the use of immunofluorescence [19].

Dimensionality reduction techniques are popular approaches in studying large scale multi-

modal data, especially where there are measurements can be arranged in several dimensions,
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Figure 1: Cell cycle phase specific data reveals in-depth information about drug
effects compared to total cell counts. A. A schematic of the cell cycle. B. Traditional
drug response data providing the total cell counts across a range of concentrations. C.
Decomposing the total cell counts into cell cycle phases in a high throughput manner using
the dye drop assay. D. The data structure acquired from the dye drop assay and using tensor
decomposition for pattern recognition across cell cycle phases, cell lines, and drugs.

such as, cell lines, drugs, time, and concentration. Tensor decomposition approaches, such

as CP decomposition (also known as PARAFAC) reduce the multi-dimensional data into a

series of 1-dimensional vectors that each correspond to one of the dimensions in the original

dataset [20]. In contrast to matrix decomposition where all of the features are flattened along

one dimension, tensor decomposition techniques reduce the data efficiently while preserving

the structure of the data. Generally, dimensionality reduction techniques are useful in noise
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reduction, data visualization, and data compression [20].

In this study, we explore the effects of various anti-cancer agents on breast cancer cell lines

at different cell cycle phases through two complementary approaches; first, using unsupervised

tensor decomposition technique to reveal patterns throughout the large scale data which

otherwise would be difficult to obtain from the raw data, and second, using an ordinary

differential equation model to quantify cell cycle phase specific rates of transition and cell

death that can be used to predict drug combinations. We hypothesize that a systematic

approach to dissecting dynamical cell cycle phase-specific effects not only uncovers the

mechanism of action of the targeting molecules under exploration individually, but also can

promote well-informed decision-making for screening drug combinations. To this end, we

explore the dataset introduced in Mills et al [18] (the HMS dataset) and extract some of

the patterns within the dataset; and then, we fit a system of ordinary differential equations

(ODEs) to the data and further investigate the quantified drug effects at different cell cycle

phases. Employing this model we demonstrate the advantage of using our model for drug

combination analysis and explore the combination of CDK inhibitors with chemotherapy.

Results

1. A tensor-based strategy to analyze cell cycle-dissolved drug re-

sponse measurements

The cell cycle is a tightly regulated series of events in a sequential manner that ultimately

results in cell division (Figure 1A). The cell cycle includes four main stages that are G1, S,

G2, and M. Progression through the cell cycle depends on the interaction of various enzymes

that activate or deactivate signalling pathways at each phase. Small molecules that can

manipulate the activity of essential elements of the cell cycle have been proposed as strategies

for anti-cancer therapy [21]. Among important examples are the inhibitors of cyclin dependent

kinases (CDK inhibitors) [22–24]. To study how various anti-cancer agents modulate the
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cell cycle, we selected a subset of treatments and cell lines from the dataset introduced in

Mills et al [18]. The selected dataset includes response measurements of 54 cell lines treated

with 33 anti-cancer drugs at 9 concentrations. As opposed to traditional viability assays

(Figure 1B), the dye drop assay allows one to dissect the total cell counts into individual

cell cycle phases within each condition robustly and in a high-throughput manner (Figure

1C). In Mills et al [18] authors employed a cell death marker and an M phase marker to

further segregate the cell cycle states into a total of 8 phases and subphases. The cell lines

within this dataset include a variety of clinical subtypes of breast cancer, such as triple

negative, ER positive, HER2 amplified, and HR positive. The panel of drugs includes small

molecule inhibitors that target different pathways such as PI3K/AKT/mTOR, the DNA

damage response pathway, and those inhibiting the cell cycle machinery elements such as

CDKs or disrupting the transcriptional events that regulate the cell cycle.

To explore and visualize the patterns existing within this large dataset, we employed a

tensor decomposition technique, called CP decomposition (or PARAFAC), which captures

a low-rank representation of the original data (Figure 1D). In this way, we reduced the

dataset while preserving the relationship between the dimensions (here cell lines, phases, and

drugs). Tensor decomposition is capable of capturing patterns specific to each dimension and

the associations between dimensions. For example, patterns can be associated with a specific

cell cycle phase and variably represented across the cell lines and drug treatments (Figure

1D).

2. Dataset structure and a comparison between CP decomposition

and PCA

Considering all the dimensions, the HMS dataset is a 54 × 33 × 10 × 8 tensor. To reduce

the amount of missing data we combined the drugs and their associated concentrations

into one dimension which restructured the tensor to a 54 × 324 × 8, where in total we

have close to 12000 data points (Figure 2A). CP decomposition decomposes the tensor
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into a set of 1-dimensional vectors that each correspond to one mode in the original tensor

(Figure 2B). To select the optimum number of components, we examined the accumulated

explained variance and a core consistency measure to ensure no over-fitting by evaluating how

consistently the selected components capture the true structure of the data (Figure 2C, D).

The R2X measure showed that more than 95% of the total variance can be explained by only

6 components (Figure 2D). This tensor decomposition approach preserved the relationship

between different dimensions in this multi-modal dataset whereas, with other dimensionality

reductions techniques such as PCA, we would be forced to flatten the input tensor into a two

dimensional matrix which eliminates the relationship between the dimensions [25]. Moreover,

CP decomposition reduced the data more efficiently than PCA (Figure 2E).
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3. Decomposition of the dataset revealed cell line- and drug-specific

patterns and association with cellular genotype

The CP decomposition analysis revealed that each factorization component corresponds to

one or two cell cycle phases, and the drug dimensions exhibited concentration-dependent
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trends (Figure 3). Component 1 predominantly captured G1 accumulation, and exhibited

strong associations with the majority of the cell lines and drugs (Figure 3A-C). Component

2 was associated with G2 arrest, with CDK1/2, CDK7, CDK12/13, and CDK9 inhibitors

in addition to paclitaxel demonstrating highest associations. Component 3 represented

accumulation in the S phase, that has a decreasing trend across concentrations for a majority

of agents meaning that with higher concentrations, fewer and fewer of the cells are found in

S phase. Component 4 was positive in the beyond G2 phase, highly weighted in SUM185PE,

PDXHCI002, and HCC1187 cell lines which represented multinucleated cells as a result

of failure in cytokinesis [26]. Component 5 and 6 reflected cell death, and exhibited a

concentration-dependent effect in components of transcriptional regulators active mostly in

the M phase, including CDK12 and CDK13 inhibitors, which affect transcriptional regulation

and DNA damage response, as well as CDK9 inhibitors that are crucial for cancer cell survival

through aiding in transcriptional elongation, and CDK14 inhibitors that can result in mitotic

defects and cell death.

CDK4/6 inhibitors displayed similar patterns across components, except for abemaciclib

at its highest concentration, which induced additional effects related to cell death and G2

phase arrest, consistent with off-target effects observed in a previous study by Hafner et

al [27]. Agents that target the PI3K/Akt/mTOR pathway, such as AZD5363, AZD2014,

LY3023414, and everolimus also exhibited a similar pattern across all components.

We sought to investigate whether the factor matrices of the drug response data can

predict cellular subtypes, such as triple negative (TNBC), HER2 receptor positive (HER2+),

Estrogen or Progesterone receptor positive (HR+), or genetic mutations such as PTEN,

PIK3CA, BRCA, or CDKN2A. To do so, we used the 54 by 6 matrix of the cell lines factors

from CP decomposition and implemented logistic regression with L1-norm regularization.

The target outcome was a binary vector which indicated whether each cell line is positive

for the subtype/genetic mutation (1) or not (0). Since most of the target categories were

under-represented, we used SMOTE (synthetic minority oversampling technique) [28,29] to
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Figure 3: The cell cycle-specific drug responses reveal specific patterns across
drugs and cell lines with ability to predict cellular genotypes. A-C. Heatmap of
agents (A), cell lines (B), and cell cycle phases (C) for 6 components. The color bar shows
normalized weight of components between 0 and 1. Drugs in A are ordered by concentration
from untreated to the highest. Cell lines in B are clustered using the average Eucledian
distance and color-coded based on cellular subtype. D. The balanced accuracy of the logistic
regression for each cellular subtype or genotype using factor matrices of the cell cycle fraction
CP decomposition (blue) or from PCA analysis of total cell counts (pink). E. The coefficients
of the logistic regression model corresponding to each component to identify associations
between factor matrices and cellular genotypes (cellular subtypes and genetic mutations).

adjust the imbalance within the dataset. To demonstrate whether there is an advantage in

using cell cycle specific measurements over the total cell counts in predicting the genotypes,

we conducted PCA analysis for the matrix of total cell numbers across drug treatments (a

matrix of 54 by 324). With 6 components the PCA recovered 92% of the total variance. It
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appeared that the cell cycle measurements versus total cell counts had a slight improvement

in dissecting the cellular genotype (Figure 3D). The coefficients of the logistic regression

model revealed associations between the genotypes and each component (Figure 3E) with

TNBC, HR+ and CDKN2A having close to 70% accurate to identify the correct classes

(Figure 3D).

4. A dynamical ODE model quantifies cell cycle phase-specific drug

effects

To quantitatively investigate the cytostatic and cytotoxic effects of drugs on the cell cycle, we

developed an ordinary differential equation (ODE) model that represents transitions through

the cell cycle phases. We simplified the cell cycle to three phases, G1, S, and G2M; the G2

and M phases were combined due to the short duration of the M phase and lack of distinct

markers. Additionally, we assumed that the cell death rate was shared among the phases, as

there was no way to distinguish the number of dead cells arising from each cell cycle phase.

The Markov chain Monte Carlo approach (MCMC) [30] was used to estimate the transition

rates between cell cycle phases and the cell death rate. To improve the interpretability of the

results, we imposed a Hill function on the cell cycle rates, in effect enforcing that the behavior

of the transition and death rates be monotonic with respect to concentration (Figure 4A).

Our ODE model accurately fit the HMS dataset at each cell cycle phase and provided

estimates of the cell cycle transition rates and cell death rate (Figure 4B-D). We confirmed

the convergence of the MCMC by diagnostics such as Gelman-Rubin and the effective sample

size diagnostics(Tables S1, S2). The results of our estimations confirmed our observation

of the subtle differences in the mechanism of action of CDK4/6 inhibitors abemaciclib and

palbociclib, particularly the higher potency of abemaciclib in G1 arrest and additional

off-target effect of this agent on the G2 phase [27], (Figure 4B)

The live/dead markers that are used to identify dead cells in experiments are not completely

reliable because dead cells may detach or wash out even before staining for live/dead markers.
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Figure 4: The modeling approach to estimate cell cycle transition and death
rates. A. Overview of the modeling approach. The Hill parameters specific for each rate
are estimated by a Bayesian inference approach (NUTS). The estimated Hill parameters are
converted to ODE parameters and used for model predictions. B-D. An example of the
fitting results from MDAMB175VII, an HR+ breast cancer cell line treated with palbociclib
and abemaciclib. B. Estimated rates across concentrations for abemaciclib (orange) and
palbociclib (blue) with 95% confidence interval. C-D. Predicted (pink) versus experimental
cell counts (green) at each cell cycle phase for abemaciclib and palbociclib, respectively. E.
The Spearman correlation coefficient of comparing estimations with and without having the
number of dead cells, across 54 cell lines.
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Consequently, the number of dead cells reported from experiments could be an under-estimate

of the true count. Therefore, we sought to investigate how well we can estimate the cell

death rate without having the dead cell counts from the experiments. To do so, we compared

the estimated rates while including and excluding the cell death counts from the model.

The Spearman correlation coefficient was used to compare the estimated rates between the

two configurations (Figure 4E, S1). Overall the average Spearman correlation coefficient

was consistently above 0.7 confirming we can reliably estimate the cell death rates even

without directly having the number of dead cells. In most cases, we found that removing the

number of dead cells from the equation resulted in slightly higher death rates, matching our

expectation of under-estimation for dead cell counts from the experiments.

5. Cell cycle rates provide further details for phase-specific and cell

line-specific drug effects and associate with cellular genotypes

We used our factorization technique on estimated rates from the model to gain further

insights into the drugs’ effects and to examine whether the estimated progression and cell

death rates are better predictors of cell types than the data itself (Figure 5). The core

consistency metric and R2X showed that with 3 components we can retrieve almost 70% of

the total variance without overfitting (Figure S2). Among the cell lines, the majority of

HER2-positive cell lines were associated with component 1 and most of the triple-negative

cell lines were associated with component 2 (Figure 5A). Component 3 represented higher

cell death and it was highly associated with one of the HR+ cell lines (Figure 5B). We

hypothesized that the progression and estimate rates can predict the receptor status or

genotype of the cell lines. To test this, we used the factor matrices of the cell lines resulting

from the factorization, and performed the logistic regression for each cellular genotype. The

balanced accuracy from the 5-fold cross validation showed that the factor matrices from the

rates are better at predicting the BRCA mutation than the cell cycle data itself (Figure 5C).

BRCA1 and BRCA2 genes are tumor suppressor genes that normally repair DNA damage
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and prevent genomic instability. The coefficients of the logistic regression model suggested

that an increase in component 1 results in an increase in the prevalence of cells with BRCA

mutations. Component 1 has a positive association with S to G2M transition rate, which

could mean that those with BRCA mutation miss the DNA repair during the S phase and

bypass the checkpoint, hence, they are rushed out of the S phase (Figure 5B, D-E).

6. Tensor factorization captures subtle differences in drug combina-

tion data

We aimed to explore the combination effects of chemotherapy agents with CDK inhibitors

on different cell lines using the dye drop assay – we will refer to this dataset as the GNE

dataset from now on. Specifically, we conducted an experiment that involved the use of 12

individual and combinations of drugs, including CDK inhibitors (a CDK2 inhibitor (PF-

07104091) [31], a CDK4/6 inhibitor (palbociclib and abemaciclib), and a CDK2/4/6 inhibitor

(PF-06873600) [32]) and chemotherapy agents (dinaciclib, paclitaxel, and doxorubicin), across

six cell lines with various genetic mutations or amplified receptor status as detailed in Table

1.

Cell Line Receptor Status Mutations
MDAMB468 Triple-negative RB1 LOF, PTEN loss

BT-549 Triple-negative RB1 LOF, PTEN loss
MDAMB175VII HR+

HCC1143 Triple-negative CCND1 high
HCC1806 Triple-negative CCNE1 high
OVCAR3 – CCNE1 high, PIK3R loss

Table 1: Cell line genotypes of the GNE dataset. OVCAR3 is an ovarian cancer cell line.

As initial analysis we applied tensor decomposition on this dataset. Two components

explained over 95% of the variance, with about 15 times more data reduction compared

to PCA (Figure S4). The first component identified patterns associated with G1 phase

accumulation, while the second component captured effects associated with the S and G2

phase of the cell cycle. The weights associated with each cell line comes from the cell counts;
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for instance, MDAMB468 and to a lesser extent OVCAR3 cells have higher growth rates

than other cell lines. HCC1806 cell line was distinguished in a sense that the nominal

abundance of cells at the S phase was relatively higher than all other cell lines (Figure

6A-B), which could be associated with its amplification of CCNE1. Notably, CDK2i alone

and in combination with 0.3 µM CDK4/6i (palbociclib) have similar trends, implying that the

palbociclib has no additional effects in the G1 arrest. This is also observed in the combinations

of paclitaxel (taxol) with palbociclib and doxorubicin (dox) with palbociclib (Figure 6C).

In the combinations of doxorubicin and paclitaxel with CDK2i, however, accumulations in

the G1 (component 1) and the S or G2 phase (component 2) have started to drop at lower

concentrations.
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Figure 6: Tensor factorization captures subtle differences in drug combination
responses. A. R2X plot summarizing the cummulative explained variance with increasing
number of components. B. Data reduction plot comparing efficiency of PCA with CP
decomposition. C. Core consistency metric to determine the number of optimal components.
The heatmaps for two components for the cell cycle phases (D), cell lines (E), and agents
(F). The color bar shows normalized component weights.

To examine the drug combinations, we estimated the progression and death rates as a
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result of fitting this dataset to our ODE model. The cell line list includes four triple negative

breast cancers, one HR+ breast cancer, and an ovarian cancer cell line with various genotypes.

As expected, the cell lines responded heterogeneously (Figure S5). BT549 and MDAMB468

with RB loss of function were not responsive to CDK4/6 inhibitors (Figure S5A). Although

these two cell lines both are triple negative and in addition to RB loss of function also

have a PTEN mutation, they differed in their response. One reason for that could be that

MDAMB468 cells have a higher doubling time (2.5 days versus 1.7 days). Also, the PTEN

mutation in BT-549 is heterozygous (one normal copy and one mutated copy of the PTEN

gene) and in MDAMB468 is homozygous (both copies mutated). Homozygous mutation in the

PTEN gene has been associated with more severe phenotypic consequences [33]. MDAMB468

has higher cell death rates compared to BT-549 (Figure S5D) possibly due to having more

cells in S phase at the initial time of drug administration (Figure S6). BT-549 and HCC1143

cell lines both show no arresting effects with paclitaxel alone or in combination at G1, but

they get arrested in G2M phase and undergo cell death. With doxorubicin alone and in

combination, HCC1806 had a significant S phase arrest and cell death (Figure S5B, D), also

possibly due to a higher initial number of cells in S phase (Figure S6). The high G1 arrest

in this cell line could be caused by DNA damaging effect of doxorubicin treatment at G1

which stalls for DNA repair (Figure S5A). Based on our estimation of EC50 for palbociclib

and the CDK2 inhibitor at each cell line, 0.3 µM is less than EC50 of G1 phase in most of

the cell lines (Table S3), hence, we think that is the reason the effects at combinations are

not significantly different from single drug treatments. Overall, we can conclude that the

growth rate, the initial composition of cells across the cell cycle, and cellular genotype can

influence the response to drugs individually or in combination, and we can capture these

details in the mechanisms of drugs with our ODE model.

7. The ODE model can accurately predict drug combination response.

We incorporated the Bliss independence framework into our ODE model to predict the drug

combination responses of CDK inhibitors with chemotherapy. To do so, we applied the
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Figure 7: The ODE model predicts combination outcomes at each cell cycle
phase. A. Comparison between classic drug response predictions by Bliss (Bliss total counts,
green), our proposed approach which is Bliss applied on transition rates (Bliss rates, yellow)
overlayed with the experimental data of the combination (Experiment data, blue) for five
cases including CDK2i + CDK4/6i, paclitaxel + CDK2i, paclitaxel + CDK4/6i, doxorubicin
+ CDK2i, and doxorubicin + CDK4/6i, respectively for HCC1806 cell line. B-C. Drug
combination predictions for each phase of the cell cycle separately for paclitaxel + 0.3 µM
palbociclib at 24 hours (B) and 72 hours (C). Box plots (blue) represent the 4 replicates of
the experimental data, and the yellow solid lines are the average and standard error of model
predictions.

Bliss framework to the single drug rate estimations and, with that, calculated the rates

corresponding to drug combinations. We additionally applied the Bliss framework directly on

the total cell counts of individual drug treatments – the common approach to study drug

combinations. Bliss additivity applied on the cell counts and with the rates both matched

closely with the true total cell counts (Figure 7). Our proposed approach being slightly

more accurate in higher concentrations of chemotherapy with CDK inhibitors (Figure 7B-D)

with exception of CDK2 inhibitor and CDK4/6 inhibitor combination, which could imply

that since CDK2 and CDK4/6 are not completely independent, this framework is not entirely

suitable for the combination of this class of drugs. Another advancement of our approach

compared to the Bliss-on-counts approach is that, with the ODE cell cycle model, we can
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predict the combination effects at each cell cycle phase, separately. As shown in Figure

7B-C the model predictions matched perfectly with the cell cycle phase-specific counts from

the experiments at both 24 hour and 72 hour timepoints. Additionally, we were able to predict

the number of dead cells, without knowing the true dead cell counts from the experiment

(Figure 7B-C).

Discussion

In this study, we sought to investigate the advantage of using cell cycle phase-specific

measurements in contrast to total cell viability (Figure 1) through analyzing drug responses

of a panel of breast cancer cell lines with respect to each cell cycle phase. We explored the

existing patterns within datasets using a data-driven approach (Figure 3) and implemented

a system of ODEs to quantitatively study the drug effects on cell cycle phases (Figure

4). We demonstrated that we can estimate the rate of cell death, even in the absence of

experimental data from cell death counts (Figure 4, S1). In addition, we showed that

with limited accuracy drug response data can predict breast cancer subtypes such as triple

negative and genotypes such as BRCA mutation (Figure 4-5). To further analyze cell

cycle phase-specific insights in drug combinations, we conducted an experiment including the

combination of chemotherapy drugs (paclitaxel and doxorubicin) with CDK4/6 and CDK2

inhibitors (Figure 6). Finally, by incorporating the Bliss framework, we demonstrated the

ability of our model to predict drug combinations specific to each cell cycle phase (Figure

7). Our analysis showed that cell cycle phase-specific measurements improve dissecting the

cytostatic and cytotoxic drug responses and allow drug combination predictions with cell

cycle phase-specific resolution.

Chemotherapy agents usually target the S phase of the cell cycle and disrupt DNA

replication or repair [34], and the combination of chemotherapy drugs with CDK inhibitors

has been the focus of recent studies [35]. It has been shown that the order of treatments

with chemotherapy and CDK4/6 inhibition matters such that chemotherapy should be before
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CDK4/6 inhibition [36,37]. The rationale driving this statement is that DNA damaging drugs

sensitize cancer cells and this way, when CDK4/6 inhibition happens, cells would permanently

exit the cell cycle into a senescent or apoptotic state. In our data of chemotherapy and

CDK4/6i combinations, we observed that in specific cases such as HCC1143 cell line, the

addition of 0.3 µM palbociclib to some extent antagonizes the arresting effects of doxorubicin

in the S phase, and also in the G1 phase (Figure S5A-B). This is possibly due to the

co-administration of the two drugs simultaneously, and the fact that cells existed at various

phases of the cell cycle at the time of treatment (Figure S6). In contrast, the combination of

palbociclib or PF-07104091 with paclitaxel in OVCAR3, an ovarian cancer cell line, showed

a significant synergy in G1, S, and G2 arrest (Figure S6). In other cell lines where the

combination of CDKi with doxorubicin or paclitaxel had no clear additional effect relative

to chemotherapy alone, we believe that the concentration of the CDKi has not been high

enough to cause any effects.

High-throughput drug screening is a resource-intensive and costly process. Computational

models capable of generating reliable predictions hold immense value in reducing the need for

extensive experimentation in drug discovery and combination evaluations. In this study, we

have developed a mechanistic model that facilitates the analysis of large-scale drug response

data and enables exhaustive testing of all potential drug combinations to identify the most

promising candidates. A notable advancement of this model is its ability to provide predictions

specific to different phases of the cell cycle, thereby offering insights into a drug’s mechanism

of action as well as potential off-target effects. Recently, novel experimental techniques such

as the dye drop assay have emerged, providing exciting opportunities to gather extensive

data on drug responses. The dye drop assay enables efficient and robust measurement of

cell cycle progression, allowing for rapid data collection on the response of numerous cells

to a wide array of drugs within a short time frame. Such data can then be utilized to train

and validate mechanistic models, which subsequently aid in the identification of novel drug

combinations. The integration of mechanistic modeling with high-throughput experimental
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approaches holds significant promise in the realm of drug discovery.

Methods

GNE data collection

The dye drop assay, developed by Mills et al [18], was used to collect responses of 6 cell lines

across a range of CDK inhibitors and chemotherapy drugs. The cell lines were seeded in

384-well black CellCarrier Ultra plates (Perkin Elmer #6057300) using a MultiDrop combi

liquid dispenser (Thermo), at 50µl per well. The seeding density of each cell line is reported in

Table 2. All cells were cultured in RPMI+ 10%FBS +2mM L-glutamine with the exception

of MDA-MB-175 VII, which was cultured in DMEM + 10%FBS + 2mM L-glutamine. Four

replicate plates were seeded per cell line, in addition to 20 "Day 0" control wells per cell line

which were seeded on a separate plate. EdU staining was performed using the Click-iT EdU

Alexa Fluor 488 HCS assay kit (Thermo #C10351), and included the LIVE/DEAD Fixable

Far Red Dead Cell Stain (Thermo #L34974). Briefly, EdU (10µM final) and LIVE/DEAD

stain (1:2000 final) were diluted in warm culture media and added to each well. The plates

were placed in a humidified incubator at 370C / 5% CO2 for 30min. Paraformaldehyde

(catalog) was then added to a final concentration of 4%, and plates were incubated for 15min

at RT. Wells were then washed with PBS using a ELx405 plate washer (Bio-tek). Cells were

then permeabilized with Triton-X 100 in PBS (0.2% final) at RT for 15min. Wells were

then washed 2X with PBS, followed by addition of 30µl Click reaction mix, prepared as

per manufacturer’s protocol (Thermo #C10351). Wells were again washed 2X with PBS,

followed by addition of 50µl NuclearMask Blue stain (Thermo #H10325) in PBS at 1:2000

final. Plates were sealed with foil and incubated at 4C overnight. Plates were then washed

2X with PBS, followed by a final addition of 50µl PBS. Plates were sealed with foil tape and

held at 4C until imaging. Staining was then performed either 24hr or 72hr post-dosing (2

replicate plates per timepoint). The day 0 control plate was stained at time of test plate

dosing. The compounds used and their concentrations is reported in Table 3.

65



Cell line Seeding density per well
HCC1806 500
BT-549 1500

MDA-MB-468 2000
HCC1143 2500

MDA-MB-175 VII 2500
OVCAR3 3500

Table 2: Seeding density of the cell lines.

drug 1 drug 1 dose range drug 2 drug 2 dose
PF-07104091 (CDK2i) 0.0015 - 10 µM
palbociclib (CDK4/6i) 0.0015 - 10 µM
abemaciclib (CDK4/6i) 0.0015 - 10 µM

PF-06873600 (CDK2/4/6i) 0.0015 - 10 µM
dinaciclib (pan-CDKi) 0.0015 - 10 µM
PF-07104091 (CDK2i) 0.0015 - 10 µM palbociclib (CDK4/6i) 0.3 µM

paclitaxel 0.00015 - 1 µM
paclitaxel 0.00015 - 1 µM PF-07104091 0.3 µM
paclitaxel 0.00015 - 1 µM palbociclib 0.3 µM

doxorubicin 0.0015 - 10 µM
doxorubicin 0.0015 - 10 µM PF-07104091 0.3 µM
doxorubicin 0.0015 - 10 µM palbociclib 0.3 µM

Table 3: Compounds and their concentrations used in the GNE experiment for each cell
line.

Image processing and cell segmentation

Images were acquired with a Phenix Opera imaging system (Perkin Elmer) using a 20x high-

NA water immersion objective in non-confocal mode. Flatfield correction, image segmentation

using the Hoechst 33342 channel, and per-object quantitation of fluorescence intensity for each

channel were carried out with Signals Image Artist (Perkin Elemer). Values for individual

objects were exported as .csv files for further processing.

Cell gating for cell cycle phase quantification

In order to perform cell cycle gating and quantify the number of cells in different cell cycle

phases for the data collected at Genentech, a dynamical gating approach was adopted.

Briefly, we used a combination of total DNA intensity (Hoechst) and EdU incorporation to
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discriminate cells in different phases of the cell cycle. The LDR and EdU intensities were

log-transformed and smoothed using a kernel density function. To classify cells into live or

dead (from the LDR), and positive or negative for the S phase, a peack finding algorithm

was used to find the minima of the intensity distributions. The total DNA content is used to

differentiate cells in the G1 and the G2 phase. Cells with negative EdU and intermediate

DNA content were classified as "S dropout". Those cells with the DNA content lower than

G1 were classified as "sub G1", and those with higher than G2 DNA content were classified

as "beyond G2". Figure S3 shows the detailed gating of cells based on the EdU intensity

and DNA content. The results of cell gating were manually verified for quality assurance.

The live/dead marker was not reliable to identify dead cells but allowed for proper filtering

live cells.

The model

To model the cell cycle dynamics while quantifying the transition rates, we implemented a

system of ordinary differential equations. The equations represent the G1 phase (G1), the S

phase (S), the G2 is combined with the M phase (G2M), and the total number of dead cells

(D). The constant coefficients (kG1−S, kS−G2M , and kM−G1) refer to the transition rates from

each phase to the next, and (d) refers to the cell death rate which is shared among all phases.

dG1

dt
= 2kM−G1 ×G2M − (kG1−S + d)G1 (2.1)

dS

dt
= kG1−S ×G1− (kS−G2M + d)S (2.2)

dG2M

dt
= kS−G2 × S − (kM−G1 + d)G2M (2.3)

dD

dt
= d× (G1 + S +G2M) (2.4)

We used matrix exponentials using Jax package in Python (version 3.11) to solve for the

ODE system with the following Jacobian matrix:
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Jac =



−(kG1−S + d) 0 0 2kM−G1

kG1−S −(kS−G2M + d) 0 0

0 kS−G2 −(kM−G1 + d) 0

d d d 0


(2.5)

For each of the phases we can solve:

Y (t) = eJac×tY (0)

The rate parameters are assumed to follow a Hill function across the range of concentrations,

C, with the following equation:

Hill(C) = Emin +
Emax − Emin

1 + (EC50

C
)k

where the parameters of the model, Emin, Emax, EC50, and ck are constant coefficients

defined as the effect at untreated, maximum effect, the concentration at half maximal effect,

and the Hill slope, respectively. We assumed each drug can have a different effect on each cell

cycle phase, hence, each phase transition rates is defined by a separate set of Hill parameters.

Employing a Bayesian statistical approach, we estimate the Hill parameters for each of the

cell cycle transition rates by optimizing the distance between the cell counts at each cell cycle

phase and the ODE model predictions. For optimization, the Numpyro package (Python

3.11) was used where we defined a prior distribution for each Hill parameter, and fed the

data, the prior distributions, and the ODE model to the optimizer which is based on the

No-U-Turn Sampler (NUTS). We enforced the transition rates at each concentration to be

lower or equal to the transition rates at untreated to avoid unexpected behavior as a result of

drug treatment, which implies that the drug can only have an arresting effect on transitions

between the cell cycle phases. This was imposed by defining a Beta distribution between
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[0, 1] to serve as a fractional coefficient; with that, the prior distribution of the maximum

effect (Emax) was constructed as a product of this coefficient and the corresponding effect at

untreated (Emin). On the other hand, we assumed the relative cell death rate at untreated

condition to be zero, such that the maximum cell death effect would represent a shift from

untreated. The prior distributions used for Emin , EC50, and ck were LogNormal distributions

to ensure positive values. The parameters used for prior distributions are summarized in

Table 3. The accepted confidence interval for the parameters was determined based on the

within-replicate variations per cell line. To ensure consistency, the median of the standard

deviation of replicates for all conditions of a cell line was utilized. We used 3500 warm up

and another 3500 samples for the fitting, with target acceptance probability 0.95%.

Parameter estimation

To estimate the posterior distribution of the transition and death rate parameters in our cell

cycle model, we employed the No-U-Turn (NUTS) algorithm implemented in Numpyro [30].

The accepted confidence interval for the parameters was determined based on the within-

replicate variations per cell line. To ensure consistency, the median of the standard deviation

of replicates for all conditions of a cell line was utilized. The Hill parameters, representing

each rate in the ODE model, were assigned a LogNormal prior distribution with initial mean

and variance values presented in Table 4. The LogNormal distribution takes two parameters,

which are the mean and variance. The Uniform distribution takes two parameters, which are

the minimum and the maximum of the range of random variables. We discarded the first

3000 samples as burn-in and used an additional 3000 samples to ensure convergence.

Simultaneous fitting of all drug conditions

Since we did not have access to the dead cell numbers, we removed the last equation in the

ODE model corresponding to cell death counts, and estimated the cell death rate from fitting

other cell cycle phase counts present in the model. The minimum relative cell death was still
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G1 −→ S S −→ G2M G2M −→ G1 Cell death
EC50 LogNormal(0, 1) LogNormal(0, 1) LogNormal(0, 1) LogNormal(0, 1)
ck LogNormal(0, 0.4) LogNormal(0, 0.4) LogNormal(0, 0.4) LogNormal(0, 0.4)

Emin LogNormal(-1, 2) LogNormal(-1, 2) LogNormal(-1, 2) 0
Emax Uniform(0, 1) Emin Uniform(0, 1.2) Emin Uniform(0, 1) Emin LogNormal(-1, 2)

Table 4: Parameters for the prior LogNormal distribution used in MCMC with Hill assump-
tion.

considered zero at untreated, and each cell cycle transition rate was assumed decreasing with

concentration. Additionally, we shared the parameters of the untreated condition across all

drug treatments for each cell line. Meaning, we define a set of prior distributions for EC50, Ck,

and Emax per drug, but only one Emin that is shared among all 12 conditions. This way, at

each run, we estimate 148 parameters corresponding to the 12 conditions we are fitting at the

same time, as opposed to 16 parameters for the time that we fit each drug condition separately.

Drug combination

1. Directly fitting combination conditions to the model

Among the 12 conditions that we fitted to the model with the assumptions explained in the

“GNE data” above, are the combinations. We compared the estimated parameters from fitting

the combinations directly to the ODE model with single treatments; for instance, we compared

paclitaxel alone, paclitaxel + 300 nM CDK4/6i (palbociclib), and paclitaxel + 300 nM CDK2i.

2. Predicting drug combination rates by Bliss Independence framework and

single drug parameters

Using the estimated rates from single drug treatments among the 12 conditions we fitted

at once, and employing the Bliss independence framework, we predicted the effects of drug

combination. For each cell cycle transition rate, we first normalized it to the estimated shared

untreated rate, and then for each pair of drugs, performed the Bliss independence operation,

70



and scaled the result back by multiplying to the untreated rate. The outcome is the expected

transition rate for the combination of the drugs. Since the cell death rate is not inhibitory,

and also we assumed no relative cell death at untreated, the expected combination effect

from cell death rate is simply the sum of the two rates. Assume pa to be one of the transition

rates estimated for drug A, and pb to be the same transition rate estimated for drug B, at a

certain concentration. p̂a and p̂b are normalized to their corresponding untreated, p0.

p̂a =
pa
p0
,

p̂b =
pb
p0

Bliss = (1− (1− p̂a) + (1− p̂b)− p̂a × p̂b)× p0 = p̂a × p̂b × p0

3. Predicting drug combination by the classic adaptation of the Bliss Independence

framework.

To compare our drug combination results with a baseline model, we used the Bliss indepen-

dence applied directly on total cell counts, similar to what is usually used in the literature. To

this end, we used the 4 replicates of single drug treatment data, and calculated the total cell

counts for each condition. Then, the cell counts across the concentration for each condition

were normalized to their corresponding untreated condition. The normalized values were

then used to calculate the Bliss combination, and then scaled back to their original unit by

multiplying by the untreated count. In the following, N̂a and N̂b are the cell counts that are

normalized to the untreated cell counts, N0. This operation was performed for each of the

replicates and this way we calculated a confidence of interval shown in Figure 7.

N̂a =
Na

N0

,

N̂b =
Nb

N0
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Bliss = (1− (1− N̂a) + (1− N̂b)− N̂a × N̂b)×N0 = N̂a × N̂b ×N0

CP decomposition

Canonical polyadic decomposition (CP decomposition), also known as PARAFAC, was

employed to analyze the multidimensional datasets. We utilized the CP decomposition

developed in [20]. Briefly, the algorithm involves decomposing the data into a series of

rank-one tensors, such that:

X ≈
R∑

r=1

cr ◦ dr ◦ pr, (2.6)

where X is the original three-dimensional tensor, R is the number of components (positive

integer), r = 1, 2, ..., R (see Figure 2B), and ◦ represents the outer product between the

vectors. The combination of the rank-one components form the factor matrices such that, for

example, C = [c1, c2, ..., cR] that we plotted as heatmaps for easier interpretation.

To find the optimum decomposition, alternating least squares (ALS) was used while initializing

the decomposition by singular value decomposition of the flattened data along each dimension.

X(1) ≈ C(P ⊙ D)T (2.7)

X(2) ≈ D(P ⊙ C)T (2.8)

X(3) ≈ P(D ⊙ C)T (2.9)

in which X(1), X(2), and X(3) are the flattened tensor along each axis, and ⊙ is the Khatri-Rao

product. The missing values within the data were imputed by a one-component PCA. In each

ALS iteration, linear least square solving was performed on each dimension separately, such

that we fix two of the dimensions and solve for the third; for example, if D and P are fixed:
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min
C

∥X(1) − C(P ⊙ D)T∥ (2.10)

This is done similarly for the other two dimensions. 2000 iterations are performed.

Optimum number of components

To identify the optimal number of components for CP decomposition, we employed the core

consistency diagnostic and the R2X metric. We utilized the TensorLy-viz library [38] to

calculate the core consistency for a range of component numbers and selected the number of

components at which the core consistency begins to decrease. Additionally, we used R2X as a

measure of the model’s explained variance. R2X is defined as the ratio of the sum of squares

of the residual tensor to the sum of squares of the original tensor. The two matrices ensure

the number of components selected does not overfit the data and also explain reasonable

amount of variance within the data.

Genotype - phenotype associations

The input and output data

We used three types of input data to investigate the genotype - drug response associations:

(1) The input data used in Figure 3 from CP decomposition of cell cycle phase-specific

measurements was a tensor of 54 (cell lines) × 324 (drug conditions) × 8 (phases), which

was then factorized with 6 components. The cell line factor matrix was used in the logistic

regression model. (2) The input data used in Figure 3D for PCA analysis, was the total

counts of cells, which was a matrix of form 54 × 324. The matrix was normalized with

respect to each cell line. The result of PCA analysis with 6 components was a matrix of 54

× 6 which was used in the logistic regression. (3) The input data used in Figure 5 was a

tensor of estimated rates with 54 × 324 × 4 (cell cycle rates), which was factorized using CP

decomposition into 3 components. The cell line factor matrix 54 × 3 was used for logistic
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regression.

At each case, the output data was a binary vector for each of the 7 cases. TNBC: triple

negative breast cancer, HER2+: human epidermal growth factor receptor positive, HR+:

hormone receptor positive, PTEN: phosphotase and TENsin homolog deleted on chromosome

10, PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha mutation,

BRCA: breast cancer gene, and CDKN2A: cyclin dependent kinase inhibitor 2A (mutation

in the p16 gene). We used Cellosaurus [39] portal to determine whether a cell lines has a

specific mutation or not, and Dai et al [40] to determine breast cancer receptor status.

Logistic regression

For all three aforementioned cases, we performed data normalization by min max scaling

using sklearn from Python 3.11. Since the prevalence of cell lines with positive receptor status

or each mutation was less common, the data was imbalanced. We used SMOTE (synthetic

minority oversampling technique) to balance the dataset by oversampling the rare class. In

each case we used a 5-fold stratified cross validation and reported the mean of balanced

accuracy for the test sets.

Data Availability Statement

The data is available upon request. For cell cycle gating, a dynamical gating approach

implemented in https://github.com/datarail/DrugResponse was used.

Code Availability Statement

https://github.com/Genentech/cell_cycle_rate_model
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Figure S1: Spearman correlation between estimated parameters with and without
using the number of dead cells from the experiment. The Spearman correlation of
the G1 to S transition rate, S to G2 transition rate, G2M to G1 transition rate, and the
death rate between the two aforementioned situations for MDAMB468 (A.), BT-549 (B.),
and HCC1806 (C.), respectively. The three cell lines were selected at random from the panel
of cell lines to serve as a showcase.
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Figure S2: Decomposition of the HMS tensor of rates after fitting. A. R2X measure
for up to 10 components showing cumulative explained variance. B. The reductions plot
showing the power of data reduction of CP decomposition versus PCA. C. Core consistency
metric to prevent overfitting.
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Figure S3: Cell cycle gating of the GNE dataset. Cell cycle gating with DNA concent
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DNA), S (high EdU), G2 (low EdU, high DNA), S dropout (low EdU, medium DNA), beyond
G2 (low EdU, very high DNA).
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Figure S4: Decomposition of the GNE dataset. A. R2X measure for up to 6 components
showing cumulative explained variance. B. The reductions plot showing the power of data
reduction of CP decomposition versus PCA. C. Core consistency metric to prevent overfitting.
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Figure S5: Comparison of estimated rates in fitting the individual and combina-
tions to the ODE model. A-C. The estimated progression rates from G1 to S (A), S
to G2M (B), and G2M to G1 (C) normalized to their corresponding untreated rate across
all the cell lines and drug conditions. D. The estimated cell death rate across cell lines and
conditions. Each condition is ordered with respect to concentration from untreated to the
highest. 0.3 µM of palbociclib and CDK2i have been highlighted with an orange square.
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Figure S6: Comparison between the distribution of cell cycle phases at the time
of drug administration for each cell line in the GNE dataset. The fraction of cells at
each cell cycle phase G1 (red), S (orange), G2 (yellow), S dropout (chartruse green), sub-G1
(light green), and beyond G2 (dark green).
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mean SD median neff rhat

EC50 G1 0.04 0.00 0.04 1592.57 1.0
EC50 S 0.53 0.05 0.52 2443.82 1.0
EC50 G2M 0.05 0.00 0.05 1897.38 1.0
EC50 D 9.53 6.59 8.04 1409.51 1.0
CInf coef G1 0.00 0.00 0.00 3366.56 1.0
CInf coef S 0.77 0.02 0.77 1561.36 1.0
CInf coef G2M 0.20 0.01 0.2 2020.60 1.0
CInf coef D 0.0 0.04 0.0 1769.45 1.0
Ck G1 2.49 0.1 2.48 1770.88 1.0
Ck S 7.81 1.32 7.64 2374.30 1.0
Ck G2M 2.25 0.32 2.23 2030.71 1.0
Ck D 2.07 1.14 1.79 1952.19 1.0
C0 G1 0.01 0.00 0.01 1827.18 1.0
C0 S 0.06 0.00 0.06 1576.12 1.0
C0 G2M 0.04 0.00 0.04 1700.31 1.0

Table S1: Parameters estimates of MDAMB175VII treated with abemaciclib in the HMS
dataset.

mean SD median neff rhat

EC50 G1 0.01 0.0 0.01 1975.56 1.0
EC50 S 5.01 0.65 4.98 1639.94 1.0
EC50 G2M 0.01 0.0 0.11 1924.98 1.0
EC50 D 14.55 5.60 14.37 950.36 1.0
CInf coef G1 0.02 0.00 0.02 1480.81 1.0
CInf coef S 1.19 0.01 1.20 1431.72 1.0
CInf coef G2M 0.12 0.01 0.12 1118.39 1.0
CInf coef D 0.01 0.03 0.01 1645.67 1.0
Ck G1 4.01 0.84 3.89 1413.21 1.0
Ck S 4.45 1.19 4.32 1377.96 1.0
Ck G2M 1.20 0.20 1.18 2007.56 1.0
Ck D 3.62 0.75 3.51 1872.48 1.0
C0 G1 0.01 0.00 0.01 1827.18 1.0
C0 S 0.06 0.00 0.06 1576.12 1.0
C0 G2M 0.04 0.00 0.04 1700.31 1.0

Table S2: Parameters estimates of MDAMB175VII treated with palbociclib in the HMS
dataset.
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Cell lines

HCC1806 BT-549 MDAMB468 HCC1143 MDAMB175 OVCAR3

EC50 G1 1.76 0.89 1.0 3.51 2.46 0.21
EC50 S 0.87 0.91 0.06 0.001 0.04 11.63
EC50 G2M 1.06 0.32 0.31 0.17 0.28 0.23

C
D

K
2i

EC50 D 2.76 3.19 1.78 1.20 2.29 3.6

EC50 G1 2.98 1.34 3.09 0.2 0.06 3.33
EC50 S 2.91 3.68 0.07 0.88 0.15 0.74
EC50 G2M 1.06 0.32 0.31 0.17 0.28 0.23

pa
lb

oc
ic

lib

EC50 D 1.52 0.02 4.83 0.06 2.1 4.06

Table S3: EC50s estimated for cell cycle rates of cell lines across drug treatments from the
GNE dataset.
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ARTICLE

A lineage tree-based hidden Markov model
quantifies cellular heterogeneity and plasticity
Farnaz Mohammadi 1, Shakthi Visagan 1, Sean M. Gross2, Luka Karginov3, J. C. Lagarde1,

Laura M. Heiser 2 & Aaron S. Meyer 1,4,5,6✉

Individual cells can assume a variety of molecular and phenotypic states and recent studies

indicate that cells can rapidly adapt in response to therapeutic stress. Such phenotypic

plasticity may confer resistance, but also presents opportunities to identify molecular pro-

grams that could be targeted for therapeutic benefit. Approaches to quantify tumor-drug

responses typically focus on snapshot, population-level measurements. While informative,

these methods lack lineage and temporal information, which are particularly critical for

understanding dynamic processes such as cell state switching. As new technologies have

become available to measure lineage relationships, modeling approaches will be needed to

identify the forms of cell-to-cell heterogeneity present in these data. Here we apply a lineage

tree-based adaptation of a hidden Markov model that employs single cell lineages as input to

learn the characteristic patterns of phenotypic heterogeneity and state transitions. In

benchmarking studies, we demonstrated that the model successfully classifies cells within

experimentally-tractable dataset sizes. As an application, we analyzed experimental mea-

surements in cancer and non-cancer cell populations under various treatments. We

find evidence of multiple phenotypically distinct states, with considerable heterogeneity and

unique drug responses. In total, this framework allows for the flexible modeling of single cell

heterogeneity across lineages to quantify, understand, and control cell state switching.
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Chemotherapy and targeted therapies selectively eliminate
fast-proliferating or oncogene-addicted cells and are
among the primary treatments for cancer. However, long-

term therapeutic efficacy is inevitably limited by widespread
intratumoral heterogeneity1,2. Cell-to-cell variability in drug
response can originate from cell-intrinsic factors—such as
genomic alterations, epigenetic mechanisms like changes in
chromatin state3, and variable protein levels4,5—or cell-extrinsic
factors such as spatial variability in the surrounding vasculature
and environmental stressors6–8. Moreover, cell plasticity, where
cells adopt new characteristics such as those of other cell types, is
observed in cancer cells, and can affect their sensitivity to
therapy9.

Large-scale profiling studies can find molecular features that
associate with drug response using population-level samples10,11.
These associations, while valuable, can miss the contribution of
cell-to-cell heterogeneity, and especially stochastic changes in
individual cell states that compound to effects on overall tumor
drug response3,12,13. The most common methods for quantifying
drug response are metrics of tumor cell population expansion or
contraction14–17. Recent research has made efforts to track phe-
notypic measurements of fitness at the single-cell level18,19,
however, even single-cell measurements are typically performed
with snapshots that subsequently miss the role of individual cells
in the overall population response20. Though population het-
erogeneity is usually defined through molecular measurements,
studies that have explicitly linked molecular and phenotypic
variation have been able to identify mechanisms that underly cell-
to-cell variation that would otherwise remain hidden21, and
studies starting with phenotypic analysis have generally found
that phenotypic variability arises from a small number of mole-
cular factors leading to the phenotypic variation4,22,23.

Measurements accompanied by lineage relationships are
uniquely valuable for studying inherited phenotypes within
families of individuals. This value is evident in linkage studies
wherein relatives are used to identify or refine the genetic
determinants of disease24–26. Notably, linkage studies can identify
genetic determinants with greater power than even large asso-
ciation studies because relatives essentially serve as internal
controls27. Linkage studies also start with the phenotype of
individuals, rather than grouping based on molecular differences,
ensuring discoveries are phenotypically consequential. While the
inherited factors are different between cells (e.g., proteins, RNA)
and people (DNA), such approaches are likely to be similarly
useful with populations of cells. Recently, constructing phylogenic
trees of cancer cells using lineage tracing and single-cell
sequencing has helped to characterize the directionality of
metastatic seeding, though these methods are limited to tracking
slow processes such as mutational differences28. Lineage-resolved
data has also demonstrated value in uncovering cell-to-cell het-
erogeneity due to transient differences outside of cancer22,23.
Therefore, tools to analyze and explore these data will be cri-
tical to uncovering new forms and sources of cell-to-cell variation.

Hidden Markov models (HMMs) provide an efficient strategy
to infer discrete states from measurements when a series of co-
dependent observations are made. An example of this is their
widespread use in time series analysis, where each measurement
is dependent on those that came before29,30. Recognizing this
co-dependence allows HMMs to make accurate inferences even
in the presence of extremely noisy measurements since each
neighboring measurement provides accumulating evidence31.
These models derive their relative simplicity by assuming a
Markov process, meaning that the current behavior of a system
can be assumed to be independent of its earlier history should
its current state be known. This assumption naturally applies in
many contexts. In the case of cells, this assumption aptly

captures cell inheritance because daughter cells inherit both
molecular signals and their environment from their pre-
decessor. Indeed, several recent examples of cell-to-cell inheri-
tance mechanisms can be represented as a Markov process
through linear chains or cycles of states12,22,23. HMMs have
been adapted to lineage trees (tHMMs) so that each measure-
ment across the tree can similarly provide accumulating evi-
dence for a prediction. Just like with time-series data, these
models can provide very accurate predictions despite noisy
measurements and limited information by recognizing the co-
dependence between related measurements32,33. tHMMs have
been used in a multitude of applications, from image classifi-
cation to comparative genomics34,35. These models have been fit
to lineages collected from stem cells and bacteria colonies, but
have always required custom implementations36,37. Improve-
ments in cell tracking and high-throughput imaging promise to
make tHMM models valuable techniques for studying the
plasticity of heterogeneous cell populations. However, wide-
spread use of these models still depends on more easily usable
implementations, examples of successful tHMM-based dis-
coveries, and standards for experimental application.

Here, we develop an extensible implementation of tHMMs
with a defined interface for integrating diverse types of mea-
surements on cell lineage trees. This model allows us to quantify
the dynamics and phenotypic features of drug response hetero-
geneity. We leveraged information about the relationships
between cells to analyze the cell cycle responses of populations of
breast cancer cells to a panel of therapies, and how normal breast
cells respond to growth factor treatment. Single-cell measure-
ments of the cell cycle revealed extensive variation not captured
by population-level measurement. Using the tHMM model, we
inferred the number of phenotypically distinct subpopulations,
the characteristics of those subpopulations, the transition prob-
abilities from one state to another, and each cell’s expected state.
We also confirmed that the tHMM model could use patterns of
inheritance to predict cell behavior. This work, therefore, pro-
vides a flexible phenotype-driven route to discovering cell-to-cell
variation in drug response, demonstrates an overall strategy for
quantifying the dynamics of cell heterogeneity, and implements a
very general software tool for the widespread use of tHMM
models.

Results
Lineage information provides unique information about the
source and structure of cell-to-cell heterogeneity. Single cells
grow and then divide into two daughter cells, eventually forming
a binary genealogical tree, also known as a lineage tree. We col-
lected single-cell measurements in the form of lineage trees to
track these relationships. The life cycle of each cell before division
includes G1, S, G2, and M phases that must pass one after
another. To illustrate the unique value of lineage measurements
in analyzing intra-tumoral and drug response heterogeneity, we
collected cell fates (whether cells ultimately divide or die)
alongside either cell lifetimes (MCF10A) or individual cycle phase
durations (AU565). Two random subsets of the tracked lineages
of the breast cancer cell line AU565 are plotted in Fig. 1a. The
single cell lineages reveal striking variation in cell cycle phase
durations and cell division dynamics despite coming from the
same sample. Population-level measurements would be unable to
identify this difference as the starting and ending cell numbers are
the same. Measurements that record or reflect the history of cells
(e.g., CFSE staining, Luria-Delbruck experiment) can help to
identify these variations within cell populations but must make
assumptions about the dynamics of heterogeneity13,23. Lineage
measurements, by contrast, provide sufficiently rich temporal
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information to quantify the specific structure of the phenotypic
heterogeneity.

As further exploration of the cell tracking data, we randomly
sampled lineages from gemcitabine-treated AU565 cells (Fig. 1b).
Gemcitabine is a chemotherapy agent that disrupts DNA
replication and results in the extension of and apoptosis in S
phase38. We found that the S/G2 phase lengths in treated cells
were noticeably extended compared to untreated cells, slowing
population growth. There was generally striking variation
between lineages of a single condition, including anywhere from
zero to three cell divisions, but tightly shared behavior among
cells and their relatives in each lineage. These observations
demonstrate some of the unique advantages of collecting lineage-
based measurements.

A lineage tree-based hidden Markov model infers the state of
cells given measurements on lineage trees. Given the unique
insights that single-cell measurements on lineage trees can

provide, we implemented a strategy for classifying cells based on
their phenotype and lineage relationships. We used a tree-based
hidden Markov model (tHMM) to fit a set of measurements made
across a lineage tree (Fig. 2a). Like a typical hidden Markov
model, a tHMM can infer the hidden discrete “states” of cells
given a series of measurements where a state is defined by specific
phenotype distributions. The inference of these states takes place
using an iterative strategy wherein the states of each cell are
predicted by the phenotype of both the cell and its relatives in a
lineage (expectation step), and then each distribution of pheno-
types is fit to match the cells within that state (maximization step)
(Fig. 2b). This expectation-maximization (EM) process repeats
until convergence.

After fitting, the model can provide a variety of information
(Fig. 2c). First, it infers the starting and transition probabilities of
each state. Second, the distribution of cells’ phenotypes in each state
are estimated and can be compared to distinguish how cells of each
state behave. For instance, if we use the growth rates of cells as their
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phenotype, we may observe a subpopulation of cells with shorter
times to division, and another with longer times. Moreover, the
state of each individual cell can be predicted from the fit data or
newmeasurements. Finally, the model provides a likelihood of each
cell’s observations and therefore the data overall. This last quantity
can be used, for example, to estimate the number of distinguishable
cell states. When implementing these processes, we ensured that a
cell’s measurements were defined through a modular interface,
allowing many other forms of data to be easily integrated, such as
cell morphology or molecular measurements.

Experiments of finite time necessitate corrections for experi-
mental censorship. Modeling the duration of each cell’s lifetime
is complicated by the influence of experimental parameters.
Specifically, cells measured at the beginning or end of an
experiment persist beyond the experiment’s duration and so,
while we observe these cells, we do not know their exact lifetimes.
Data censorship occurs when a measurement is systematically
affected by an undesired influence. For instance, in our case,
phase durations are censored because the experiment started after
cells had already begun their initial cell cycle phase or the
experiment ended before they had completed their last phase.
Previously, this has been addressed by removing incompletely
observed cells22. However, doing so results in a systematic bias,
where longer-lived cells are preferentially eliminated. On the
other hand, ignoring the truncation of these values also creates
bias by creating an upper bound on the cells’ lifetimes (Fig. 3b, c).

To correct for this effect in our model, we marked cells that
encountered the start or end bounds of the experiment. When
estimating the properties of these cells’ lifetime we instead used a
censored estimator or the survival function of the distribution39.
Because the labels are interchangeable in our classification, we
used the adjusted rand index40, a similarity measure that can
serve as an accuracy measure for clustering results. Using
synthetic data, we verified that this correction resulted in accurate
phenotype estimations (Fig. 3d, Supplementary Figs. 3, 10). Thus,
accounting for cells that outlive the bounds of the experiment

through a censored estimator removes the contribution of this
experimental confounder.

Synthetic lineage benchmarks show a tHMM can accurately
infer population behavior. To evaluate how accurately a tHMM
model could infer the behavior of multi-state cell populations, we
used synthetic populations of cells in a wide variety of config-
urations, such as various populations sizes, numbers of states, and
abundance of the states. In each case, we determined that the
tHMM model could accurately infer the hidden states and
parameters of a population given at least 100 cells. This synthetic
data included uncensored (Supplementary Figs. 1, 2, 8, 9; Sup-
plementary Tables 1, 2) or censored (Supplementary Figs. 4, 10, 3,
15; Supplementary Tables 1–3) situations. Synthetic data were
created by lengthening the simulated experiment time, in effect
creating deeper lineages, or by increasing the number of initial
cells to have a greater number of lineages, increasing the
experiment’s breadth. In addition to varying the number of cells
in a population, we benchmarked populations with varied cell
state percentages (Supplementary Figs. 4, 5) and varied the degree
of phenotypic differences between states (Supplementary Figs. 6,
7; Fig. 5). This benchmarking consistently showed that the
tHMM model would provide accurate results across a range of
circumstances, and generally provided accurate results with
datasets consisting of at least 10 lineages, 100 cells overall, and 10
cells from each state.

More specifically, one of the benchmarking studies we
performed was with data matching our measurements of
AU565, where G1 and S/G2 phase durations were represented
by a gamma distribution, and their corresponding cell fate
represented by a Bernoulli distribution (Fig. 4). The choice of the
gamma distribution for cell cycle phase was inspired by a
previous study41 and verified by evaluating a variety of
distributions; the gamma distribution fit the cell lifetime data
best. Although the tHMM model was fit with no information
about the true underlying parameters of the simulated cells, it
distinguished the pre-assigned two underlying cell states’
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phenotypes (Fig. 4b–d) and member cells with >95% accuracy
(Fig. 4e). The Wasserstein distance metric was used to quantify
the difference between the true and estimated cell cycle phase
duration distributions to show the accuracy of parameter
estimation (Fig. 4d). On the population level, the difference
between the true and estimated transition probabilities, as
calculated by the sum of squared difference, was less than 0.1
for 100 cells or more. Starting probabilities were compared to
their corresponding true values using the Euclidean distance and
showed less than a 0.2 error for populations with 10 lineages or
more (Fig. 4f, g). Thus, we are confident that with similar
experimental data, we should derive accurate results.

Lineage information improves cell state identification with
heritable phenotypes. Cells of even very distinct molecular states
can have partly overlapping phenotypes due to non-heritable var-
iation. Therefore, we sought to evaluate how different two states
need to be for us to accurately identify them as distinct (Fig. 5a).
We varied the G1 phase duration of two states from identical to
very distinct (Fig. 5b) and quantified the state assignment accuracy
of our model (Fig. 5c). While the phenotypic observation of a given
state had to be different for our model to accurately assign cells,

even moderately overlapping phenotypes (Wasserstein distance of
~20) could be distinguished by using the lineage relationships of
cells. As a baseline comparison, we analytically identified the
optimal classifier in the absence of lineage information (see
Methods). The tHMM consistently outperformed this approach
(Fig. 5c). The model performance in censored and uncensored
populations was similar (Supplementary Figs. 6, 7). This shows that
lineage relationships can be used to identify cell states with partially
overlapping phenotypes more accurately.

Likelihood-based model selection can effectively identify the
number of distinct states. One does not usually know the number
of distinct cell states within a population. Further, the number of
distinct states may vary depending upon the environmental context
of the cells, particularly for phenotypic measurements42,43. To test
whether we could infer the number of phenotypically distinct
states, we performed model selection using the Bayesian informa-
tion criterion (BIC) while varying the number of states in synthetic
data (Fig. 6). We normalized the BIC values such that zero corre-
sponds to the state with the highest likelihood. The synthetic
populations included approximately 250 to 650 cells with known
cell phase fate and phase lengths (Supplementary Table 3). The

Fig. 4 Model performance on censored lineages of two states with increasing breadth and depth. a Synthetic two-state populations of increasing
breadth (increasing number of initial cells and therefore lineages) and of increasing depth (increasing experiment time and therefore more cells in each
lineage) are analyzed. The states are shown as green and blue colors. Red indicates cell death. b, c The accuracy of estimating the Bernoulli parameters for
G1 and S/G2 phase, respectively. Each point in the scatter plots represents the inferred value for a model evaluation trial with the number of cells shown in
the x-axis. The dark solid lines are the Lowess trendline across the individual trials. The light green and light blue lines show the true value of the
parameters. d The distance between the true and estimated gamma distributions associated with phase lengths for the two states. e The state assignment
accuracy. f The errors in the estimated and transition rate matrices. g The initial probability vector. Note that the Wasserstein distance between the true
and estimated distributions for each state is much lower than the distance between two distributions that are quite similar (Fig. 5b). 100 simulation trials
are plotted.
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inferred number of cell states was consistently correct for both
uncensored (Fig. 6a–d) and censored lineages (Fig. 6e–h). This
indicated that model selection can help to identify the appropriate
number of cell states for a set of measurements.

tHMM infers several distinct subpopulations in experimental
drug response data. As an application of our model, we used
phenotypic measurements from two cell lines. With the first,
AU565, we measured of the G1 and S/G2 phase durations and
terminal cell fates of cells in a control condition and when treated
with 3 concentrations of gemcitabine or lapatinib. For the second,
MCF10A, we measured the overall cell lifetimes and terminal

fates of cells treated with PBS or single concentrations of the
growth factors EGF, HGF, or OSM. Cells were imaged every
30 minutes and then tracked over time to assemble lineage rela-
tionships. The lapatinib and gemcitabine-treated AU565 popu-
lations (including control) contained a total of 5290 and 4537
cells, respectively. The MCF10A population contained 1306 cells.
Lineages included 1–5 generations of cells. The model was fit to
each experiment’s data across all conditions, enforcing that the
initial and transition probabilities are shared across concentra-
tions but allowing the phenotype distributions to vary. We
enforced a unidirectional phenotypic shift with drug concentra-
tion in AU565 cells, reflecting the expectation of a dose-response
effect on cell phenotype within each state. The cell fate

a State difference

0 50 100 150 200 250
G1 Lifetime

Same
0-24.0

Similar
24.0-48.0

Different
48.0-72.0

Distinct
>72.0

Distribution similarityb

State 2
State 1

0 20 40 60 80
Wasserstein Distance

20

40

60

80

100

A
dj

us
te

d 
R

an
d 

In
de

x 
[%

]

c State assignment accuracy

tHMM
Optimal Classifier

State 1

State 2

State 1

State 2

State 1

State 2

State 1

State 2

Fig. 5 Model performance versus the difference between states. a Cartoon of how two states can vary in their phenotypic similarity, in a synthetic
population of two states. On the top, cells might be virtually indistinguishable (here based on shape). On the bottom, they might be so different that looking
at one cell is sufficient to identify its state. b The distribution of G1 duration is varied in state 1 (blue) while the other state is kept constant. c State
assignment accuracy versus the Wasserstein distance between state phenotypes. Each point represents the accuracy of state assignment for a lineage
created by a set of parameters that yield the shown Wasserstein distance between the two-state distributions. 100 simulation trials are plotted. Either the
tHMMmodel (blue) or an optimal classifier without lineage information (orange) was used. The solid lines show a Lowess trendline of the model accuracy.

1 2 3 4 5
Number of States Predicted

0

394

788

1181

1575

N
or

m
al

iz
ed

 B
IC

a 1 True State

1 2 3 4 5
Number of States Predicted

0

394

788

1181

1575

N
or

m
al

iz
ed

 B
IC

b 2 True States

1 2 3 4 5
Number of States Predicted

0

394

788

1181

1575

N
or

m
al

iz
ed

 B
IC

c 3 True States

1 2 3 4 5
Number of States Predicted

0

394

788

1181

1575

N
or

m
al

iz
ed

 B
IC

d 4 True States

1 2 3 4 5
Number of States Predicted

0

356

712

1069

1425

N
or

m
al

iz
ed

 B
IC

e Censored 1 True State

1 2 3 4 5
Number of States Predicted

0

356

712

1069

1425

N
or

m
al

iz
ed

 B
IC

f Censored 2 True States

1 2 3 4 5
Number of States Predicted

0

356

712

1069

1425

N
or

m
al

iz
ed

 B
IC

g Censored 3 True States

1 2 3 4 5
Number of States Predicted

0

356

712

1069

1425

N
or

m
al

iz
ed

 B
IC

h Censored 4 True States

Fig. 6 Model selection effectively identifies the number of distinct states in synthetic data. a–d Model BIC for synthetic uncensored lineages with
1–4 true states. e–h Model BIC for synthetic censored lineages with 1–4 true states. BIC values are normalized such that the optimum is equal to 0.
The minimum BIC value corresponds to the predicted number of states in each repetition. 10 trials plotted.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04208-9

6 COMMUNICATIONS BIOLOGY |          (2022) 5:1258 | https://doi.org/10.1038/s42003-022-04208-9 | www.nature.com/commsbio

95



parameters were estimated without constraints. We assumed the
number of states is shared across drug concentrations in AU565
cells and across growth factor treatments in MCF10A cells. To
determine the number of cell states, we compared models of
1–7 states using the BIC, where the lowest BIC value across
numbers of states indicates the most optimal model correcting for
complexity (Fig. 7a–c). The data for each compound indicated the
presence of multiple inherited states.

To verify the model’s predictive ability, we additionally
implemented a cross-validation scheme for the lineage data.
Briefly, roughly 20% of the cells were chosen at random and then
masked from the fitting process. The model parameters were
estimated using only the unmasked cells, though all cells received
state assignments through use of their relatives. At the end, the log-
likelihood of the masked cells’ observations were evaluated using
the fit model. We tested this cross-validation approach by creating
synthetic cell populations of 2–5 true states with conditions
matching the experimental data. For each scenario, we were able to
identify the correct number of states based on which gave the
highest log-likelihood (Supplementary Fig. 16a–c, f, g, Supplemen-
tary Table 3). Cross-validating the experimental data again
confirmed the 4 and 5 phenotypic states within the lapatinib and
gemcitabine data, respectively (Supplementary Fig. 16d, e). It also
directly demonstrated that the inclusion of multiple states enables
the tHMMmodel to predict unseen data, and that this prediction is
dependent on inheritance; a no-inheritance model, in which all
transitions were equally likely, performed relatively poorly (Supple-
mentary Fig. 16d, e).

Lapatinib response is defined by both stable and inter-
converting states. We fit the lapatinib-treated data to the model
with 4 states based on our BIC-based model selection, confirmed
by cross-validation (Fig. 7a, Supplementary Fig. 16f). Fitting
revealed states of widely varying persistence over generations,
from less than a 0.01 probability of remaining in state 2 to a 0.94
probability of remaining in states 1 and 3 (Fig. 8a). Interestingly,
states 2 and 4 formed a cycle wherein the most probable transi-
tion was between the two (Fig. 8a, Supplementary Fig. 11).

Examining the phenotypes of each state revealed distinct drug
responses. Lapatinib is an EGFR/HER2 inhibitor that induces cell
cycle arrest in G1 phase44. Every state displayed a dose-dependent
increase in G1 phase lifetime with lapatinib treatment, and G1
effects were more pronounced as compared to those involving S/G2
(Fig. 8b–i, Supplementary Fig. 11). While the probability of survival
at the end of the cell cycle phase decreased at higher concentrations,
very few cell death events were observed (Fig. 8h, i, Supplementary
Fig. 11). Consequently, the chances of cell death likely have high

uncertainty at higher concentrations of lapatinib. States 2 and 4
were highly arrested in both G1 and S/G2 phase; in contrast, states 1
and 3 experienced little arrest in G1 and no arrest in S/G2 phase
(Fig. 8f, g). Thus, cell states seemed to be primarily distinguished
based on the degree of lapatinib response. The cycle between states
2 and 4 seems to reflect the observation that cells more highly
arrested in G1 than G2/S give rise to cells that spend longer in G2/S
than G1, and vice versa (Fig. 8, Supplementary Fig. 11).

Gemcitabine-treated populations are clustered into phase-
specific responses. Gemcitabine is a chemotherapy agent that
induces cell cycle arrest and apoptosis in S phase by disrupting
DNA repair. The AU565 cells were treated with 5, 10, and 30 nM of
gemcitabine; model selection, confirmed by cross-validation,
inferred 5 states in the population (Fig. 7b, Supplementary Fig. 16a/
g). Examining the 5-state fit revealed relatively stable states 1, 3, and
4 (Fig. 9a–e, Supplementary Fig. 12). States 2 and 5 formed a cycle
with high rates of interconversion.

Gemcitabine modulated both G1 and S/G2 cell cycle phases
and these effects were variable across the five identified states
(Fig. 9f–i). State 5 showed S/G2-specific arrest and always resulted
in cell death at the highest concentration (Fig. 9g, i, Supplemen-
tary Fig. 12). Meanwhile, cells in state 4 grew almost normally,
with some cell death in G1 at the highest concentration (Fig. 9f–i).
At the highest concentration, state 3 represents the cells arrested
at S/G2 that have not divided even once, and state 5 is the
representative of almost all cells undergoing cell death at S/G2
(Fig. 8i, Supplementary Fig. 12).

Lastly, we wished to explore whether the phenotypic hetero-
geneity we observed was limited to cancer cells or cytotoxic drug
treatment. To determine this, we tracked non-tumorigenic
MCF10A breast cells. These cells are normally grown in the
presence of epidermal growth factor (EGF); we compared this
condition to growth factor withdrawal (PBS) or rescue with
hepatocyte growth factor (HGF) or oncostatin M (OSM)45. Each
growth factor consistently promoted proliferation on a popula-
tion level compared to the PBS control, though with considerable
inter- and intra-lineage variation (Supplementary Fig. 13). BIC-
based model selection inferred the presence of 3 distinct states
(Fig. 7c). Inspecting the model revealed generally more dynamic
transitions between states as compared to the AU565 experiments
(Supplementary Fig. 14). Due to the lack of growth factors, most
cells arrested in the PBS condition; few observations of
either division or death events is the reason for the division
probability being 0.5 (Supplementary Fig. 14g). State 1 was
distinct in being relatively less responsive to HGF and OSM
treatments (Supplementary Fig. 14a/f), while state 1 displayed

Fig. 7 BIC-based model selection infers the number of phenotypically distinct states. Normalized BIC values for (a) AU565 cells in control and treated
with 5 nM, 25 nM, and 250 nM of lapatinib; (b) AU565 cells in control and treated with 5 nM, 10 nM, and 30 nM of gemcitabine; and (c) MCF10A cells
treated with PBS, 10 ng/ml EGF, 40 ng/ml HGF, and 10 ng/ml OSM. The BIC values for all conditions were normalized such that the minimum value was
zero. The arrows in (a–c) point to the optimal number of states.
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higher rates of cell death overall (Supplementary Fig. 14a/g). In
total, the tHMM model was effective in identifying subsets of cells
with divergent phenotypic responses to drug treatment alongside
the relationships between cells in the population.

Discussion
Heterogeneity and plasticity in cancer cells enables them to adapt
in response to therapy. Even in the absence of genetic mutations,

other heritable variation serves as a substrate for selection46,47. In
this paper, we introduced a tree-based hidden Markov model that
clusters single cells from heterogeneous populations based solely
on their phenotypic traits and relationships. Model benchmark-
ing showed that it can provide accurate results using feasible
experimental designs. Of particular importance, the tHMM could
recognize subpopulations even at lower frequencies (Supple-
mentary Figs. 6, 7). Comparing the model to more standard
clustering, the tHMM showed that lineage information helps to

Fig. 8 Lapatinib response is defined by phenotypically-distinct stable and interconverting states. a State transition graph showing the probability of
state transitions among the predicted states. Transitions with less than a 0.03 probability have been removed. b–e A sample of lineage trees after fitting
the model and state assignment (control, 25 nM, 50 nM, and 250 nM). f–g The log10 of fit mean time of G1 and S/G2 phase durations for different
concentrations. h, i The Bernoulli parameter, indicating the probability of G1-to-S phase transition versus cell death (h), and the probability of division
versus cell death (i) for each concentration.
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Fig. 9 State-specific inferences of the gemcitabine-treated data. a State transition graph showing the probability of state transitions among the predicted
states. The transitions with less than a 0.03 probability have been removed. b–e A sample of lineage trees after fitting the model and state assignment
(control, 5 nM, 10 nM, and 30 nM). f, g The log10 fit mean time of G1 and S/G2 phase durations for different concentrations. h, i The Bernoulli parameter,
indicating the probability of G1-to-S phase transition versus cell death (h), and the probability of division versus cell death (i) for each concentration.
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identify cell states more accurately (Fig. 5). Using cross-valida-
tion, we were able to show that accounting for cell inheritance
allowed the model to accurately predict unseen observations
(Supplementary Fig. 16). Several critical advancements in the
current work are a modular interface for using tHMM models
with various phenotypes (Fig. 2), proper censorship handling
(Fig. 3), strategies for model evaluation (Fig. 7, Supplementary
Fig. 16), and demonstrating that such a model can be applied to
study cancer heterogeneity at baseline and in response to
perturbation.

We used single-cell lineage tracking data of AU565 cancer cells
treated with lapatinib and gemcitabine as a demonstration of the
model. G1 and S/G2 cell cycle phase durations and cell fate
measurements were used as relevant cell phenotypes to quantify
the anti-cancer effects of these drugs. We were able to identify 4
and 5 distinct subpopulations within the lapatinib and
gemcitabine-treated data, respectively (Fig. 7). The phenotypic
features of each state were quantified in parallel (Figs. 8, 9).
Lapatinib is known to inhibit cell proliferation by inhibiting Akt/
mTOR pathway activity, which is a key regulator of G1 phase
progression48. Similarly, our analysis in the lapatinib-treated
population indicated that cells, regardless of their state, experi-
enced a prolonged G1 phase, but individual states varied in their
susceptibility. In gemcitabine-treated cells, we observed that most
states were highly heritable, with more varied phenotypic effects.
This included cells that became arrested in S/G2 and underwent
apoptosis (state 5), cells that were selectively arrested in G1 (state
1), and cells that hardly responded to drug treatment at all (state
4; Fig. 9). While gemcitabine canonically works by inducing cell
arrest in G2/S, previous work has characterized its effects on G1
phase by separating the effects on both cell cycle phases49. They
similarly identified that G1 arrest was associated with cell death,
which is also evident in cells of state 3 where G1 arrest is seen
alongside cell death in both phases (Fig. 9f–i). Our results would
further suggest that those cells with G1 effects are molecularly
and heritably distinct from those that are arrested in S/G2.
MCF10A cells with growth factor-induced proliferation showed a
very distinct pattern of variation, suggesting that the phenotypic
cell states identified by the model reflect a confluence of cell
features and treatment conditions (Supplementary Figs. 13, 14).

We present several lines of evidence supporting the accuracy of
the model and the existence of heritable cell states. First, across a
diverse array of benchmarking experiments, we show that the
model can derive accurate conclusions from synthetic data with
properties like those we observed in the experimental measure-
ments (e.g., Fig. 4). Through an informatic model selection
scheme, we find statistical evidence for the existence of multiple
states (Figs. 6, 7). Examining these cell states, we find patterns
consistent with the biological mechanisms of the compounds we
used to alter cell proliferation (Figs. 8, 9). Reassuringly, we were
able to confirm that the abundance of cell states was consistent
across experimental replicates, ruling out the possibility that state
differences arose from day-to-day variation between experiments.
Finally, we showed that the model could more effectively predict
the behavior of unseen cells with the inclusion of multiple cell
states, and that this prediction is dependent on allowing inheri-
tance between cell generations (Supplementary Fig. 16). While we
have considered the use of experimental control conditions, it is
important to keep in mind that the variation observed here arises
both through external perturbation and natural variation within
the population. Consequently, we have not been able to identify a
context in which one might expect to not observe multiple states,
supporting the general usefulness of our approach. While
experiments in which distinct cell lines are mixed can help to
validate methods in which cell relationships are inferred, such as
pseudotime methods50, the cell relationships are not modeled

here because they are explicitly known through the measured
lineage relationships. Ultimately, experiments uncovering mole-
cular markers and mechanisms of these cell states will provide the
best independent validation for their biological significance.

Modeling advancements will further improve on our approach.
Cells may express a continuum of, rather than discrete, pheno-
typic states22. If this is the case, a continuous latent variable
model would lead to a refined view of the population-level het-
erogeneity. A discrete model like the one used here should,
however, still provide an accurate estimate by breaking up the
continuous state-space into discrete steps. Continuous latent
variable models also have additional challenges in implementa-
tion and interpretation51,52. Careful handling of each states’
phenotypic distributions might also improve the model’s accuracy
and power to identify distinct states. For example, the eventual
fate of cells and their cell cycle durations are likely correlated
which could be handled through a multivariate distribution
accounting for this covariance53. This becomes even more
important with the incorporation of other phenotypic informa-
tion such as migration, cell shape, or other features, all of which
are likely to be correlated to some extent.

Experimental advancements will improve the utility and
accuracy of single-cell analysis using lineage information. Cur-
rently our experimental data is limited to 96 hours, covering up to
five generations of cells. However, traits such as resistance may
develop over more generations and longer timescales13,54,55.
Longer data collection becomes challenging due to factors such as
phototoxicity and cell stress56. Improved imaging modalities and
experimental platforms might allow for longer tracking experi-
ments, with reduced phototoxicity, in more physiologically
representative environments such as engineered 3D extracellular
matrix57,58. Currently, the model is agnostic as to whether the
heterogeneity it identifies is pre-existing or induced by drug
treatment. Collecting data in which cells are tracked before and
after drug treatment, and after a wash-out, would help to link pre-
and post-exposure cell phenotypes59.

While we have identified states that represent phenotypically
distinct subpopulations of cells, we currently cannot comment on
the molecular factors leading to these phenotypes. Molecular
barcoding has been a popular approach for identifying sub-
populations of cells with genetic predispositions toward unique
phenotypes, but we do not expect it would identify the same
subpopulations as we do here55. Unlike in barcoding experiments,
we do not see a bottleneck in the clonality of cells that survive
treatment, and rapid interconversion between states should cor-
rupt the relationship between ancestor phenotype and descendent
molecular state3,12. However, we expect that single-cell molecular
analyses, such as single-cell tracking tied with transcriptional
profiling of the same cells at the end of the experiment, should
allow us to align molecular and phenotypic states in the same
populations of cells60. Such experiments would also provide a
common baseline by which to link lineage-based phenotypic
analysis and various snapshot measurements of the same cell
population. In this way it should be able to pinpoint the under-
lying molecular mechanisms driving distinct phenotypic
responses.

In total, the pipeline developed here provides a unique approach
for understanding the structure of dynamic, heterogeneous tumor
populations. By capturing the dynamics of state transitions, it links
single-cell phenotypes to overall population behavior. Incorporat-
ing molecular measurements, and a broader set of drug interven-
tions, will then also help to identify means of modulating state and
overall population behavior. Ultimately, we expect this integrative
view will help to identify treatments alone and in combination that
allow for population-level control by affecting the growth of and
transitions between individual cell subpopulations.
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Methods
Experimental cell lineage data. Stable cell line creation, drug treatments, and
tracking of AU565 and MCF10A cells were performed as described in Gross et al.61

and Gross et al.45, respectively. Briefly, AU565 cells were co-transfected with a
transposase plasmid (Addgene #34879) and a donor plasmid that drove expression
of a nuclear-localized mCherry, puromycin resistance, and a fragment of HDHB
fused to the clover fluorescent protein, which was used to track progression
through the cell cycle62. Cells stably expressing the nuclear and cell cycle reporter
were selected for 7 days with 0.75 µg/ml puromycin. The phase of the cells is
determined based on whether the amount of fluorescence is greater within nucleus
or the cytoplasm62. As a result, the reporter signal is invariant to changes in
exposure and background. To track drug responses AU565 reporter cells were
plated into 24-well plates with fluorobrite media containing 10% FBS, glutamine,
and penicillin-streptomycin. 24 hours later fresh media containing escalating
doses of lapatinib and gemcitabine was added. MCF10A cells were cultured in
growth media (DMEM/F12, 5% horse serum, 20 ng/ml cholera toxin, 10 μg/ml
insulin, and 1% Pen/Strep), grown to 50–80% confluency, and detached with
0.05% trypsin-EDTA. 7 hours after seeding 75000 cells, they were washed with PBS
and the experiment media (DMEM/F12, 5% horse serum, 0.5 μg/ml hydro-
cortisone, 100 ng/ml cholera toxin, and 1% Pen/Strep) was added to the 8 well-
plates which was followed by 18 hours of incubation. Afterward, cells were treated
with growth factors 10 ng/ml EGF, 40 ng/ml HGF, and 10 ng/ml OSM in fresh
experiment media. After drug addition, plates were placed in the IncuCyte S3 and
four image locations per treatment were imaged every 30 minutes. AU565 were
imaged for 96 hours and MCF10A cells for 48 hours. After half the experiment
times, fresh media and drugs/growth factors were added. Cell lineages from the
IncuCyte images were manually tracked in FIJI63 to record cell division, death, and
the transition from G1 to S/G2 phase (in AU565). AU565 cells are non-motile and
fewer than 4% of cells were within one cell length of the image boundary, ensuring
minimal sampling bias from the microscopy field of view. Three biological repli-
cates were collected and combined in the final data set. To verify that results did
not reflect batch effects, we checked that state assignments were not enriched or
depleted within a replicate.

Lineage tree-based hidden Markov model. The core assumption of a Markov
chain is that the next state and current observations are only dependent on the
current state. Proof of the expressions below involving cell state assignment
(expectation step), including the upward recursion, downward recursion, and
Viterbi algorithms, can be found in Durand33. All other model elements, including
the emissions distribution fitting, model evaluation strategies, and censorship
corrections were developed in this study.

Basic model structure. The initial probabilities of a cell being in state k are repre-
sented by the vector π that sums to 1:

πk ¼ P z1 ¼ k
� �

; k 2 1; ¼ ;Kf g ð1Þ
where z indicates the state and K is the total number of states. The probability of
state i transitioning to state j is represented by the K × K matrix, T, in which each
row sums to 1:

Ti;j ¼ T
�
zi ! zj

� ¼ P
�
zjjzi

�
; i; j 2 1; ¼ ;Kf g ð2Þ

The emission likelihood matrix, EL, is based on the cell observations. It is
defined as the probability of an observation conditioned on the cell being in a
specific state:

EL n; kð Þ ¼ P xn ¼ xjzn ¼ k
� � ð3Þ

where xn is the observation for cell number n, with a total of N cells in a lineage.
Separate observations were assumed to be independent; for instance, cell fate is
assumed to be independent from the duration of each cell phase. This facilitates
calculating the likelihood of observations, because we can multiply the likelihood of
all observations together for the overall likelihood.

Assigning cell states (expectation step)
Upward recursion: An upward-downward algorithm for calculating the prob-
abilities in hidden Markov chains was proposed by Erphaim and Merhav64 which
suffered from underflow. This problem was originally solved by Levinson65, where
they adopted a heuristic-based scaling, and then was improved by Devijver66 where
they introduced smooth probabilities. Durand33, however, revised this approach for
hidden Markov trees to avoid underflow when calculating P(Z|X) probability
matrices. To explain we need the following definitions:

p(n) is the parent cell of cell n, and c(n) is the children of cell n.
�X is the observation of the whole tree and �Xa is a subtree of �X which is rooted at

cell a.
�Z is the complete hidden state tree.
�Xa=b is the subtree rooted at a except for the subtree rooted at cell b, if �Xb is a

subtree of �Xa .
For the state prediction we start by calculating the marginal state distribution

(MSD) matrix. MSD is an N × K matrix that for each cell is marginalizing the

transition probability over all possible current states by traversing from root to leaf
cells:

MSD n; kð Þ ¼ P zn ¼ k
� � ¼ ∑

i
P zn ¼ kjzn�1 ¼ i
� �

´P zn�1 ¼ i
� �

ð4Þ
During upward recursion, the flow of upward probabilities is calculated from

leaf cells to the root cells generation by generation. First, for leaf cells, the
probabilities (β) are calculated by:

βn kð Þ ¼ P zn ¼ kjXn ¼ xn
� � ¼ EL n; kð Þ ´MSD n; kð Þ

NFl nð Þ ð5Þ

in which Xn is the leaf cell’s observation, and NF (Normalizing Factor) is an N × 1
matrix that is the marginal observation distribution. Since∑kβnðkÞ ¼ 1, we find the
NF for leaf cells using:

NFlðnÞ ¼ ∑
k
ELðn; kÞ ´MSDðn; kÞ ¼ PðXn ¼ xnÞ ð6Þ

For non-leaf cells the values are given by:

βnðkÞ ¼ Pðzn ¼ kj�Xn ¼ �xnÞ ¼
ELðn; kÞ ´MSDðn; kÞ ´Qv2cðnÞβn;vðkÞ

NFnlðnÞ
ð7Þ

where we calculate the non-leaf NF using:

NFnlðnÞ ¼ ∑
k

ELðn; kÞ ´MSDðn; kÞ
Y
v2cðnÞ

βn;vðkÞ
" #

ð8Þ

and linking β between parent-daughter cells is given by:

βpðnÞ;nðkÞ ¼ Pð�Xn ¼ �xnjzpðnÞ ¼ kÞ ¼ ∑
j

βnðjÞ ´Tk;j

MSDðn; jÞ ð9Þ

By recursing from leaf to root cells, the β and NF matrices are calculated as
upward recursion. The NF matrix gives a convenient expression for the observation
log-likelihoods. For each root cell we have:

Pð�X ¼ �xÞ ¼ Q
n

Pð�Xn¼�xnÞQ
v2cðnÞPð�Xv¼�xv Þ

¼ ∑
n
NFðnÞ n 2 f1; ¼ ;Ng ð10Þ

The overall model log-likelihood is given by the sum over root cells:

logPð�X ¼ �xÞ ¼ ∑
n
logNFðnÞ ð11Þ

Downward recursion: For computing downward recursion, we need the following
definition for each root cells:

γ1ðkÞ ¼ Pðz1 ¼ kj�X1 ¼ �x1Þ ¼ β1ðkÞ ð12Þ
The other cells follow in an N × K matrix by writing the conditional

probabilities as the summation over the joint probabilities of parent-daughter cell:

γnðkÞ ¼ Pðzn ¼ kj�X1 ¼ �x1Þ ¼
βnðkÞ

MSDðn; kÞ∑i
Ti;kγpðnÞðiÞ
βpðnÞ;nðiÞ

ð13Þ

Viterbi algorithm: Given a sequence of observations in a hidden Markov chain, the
Viterbi algorithm is commonly used to find the most likely sequence of states.
Equivalently, here it returns the most likely sequence of states of the cells in a
lineage tree using upward and downward recursion33.

The algorithm follows an upward recursion from leaf to root cells. We define δ,
an N × K matrix:

δn kð Þ ¼ max
z
�
c nð Þ

�
P
�
�Xn ¼ �xn; �Zc nð Þ ¼ �zc nð Þjzn ¼ k

��
ð14Þ

and the links between parent-daughter cells as:

δp nð Þ;n kð Þ ¼ max
z
�
n

�
P
�
�Xn ¼ �xn; �Zn ¼ �znjzp nð Þ ¼ k

�� ¼ max
k

�
δn kð ÞTk;k

�
ð15Þ

We initialize from the leaf cells as:

δn kð Þ ¼ P Xn ¼ xnjzn ¼ k
� � ¼ EL n; kð Þ ð16Þ

and for non-leaf cells use:

δnðkÞ ¼
Y
v2cðnÞ

δn;vðkÞ
" #

´ ELðn; kÞ ð17Þ

The probability of the optimal state tree corresponding to the observations tree,
assuming root cell is noted as cell 1, is then given by:

Z� ¼ max
k

δ1 kð Þπk
� �

ð18Þ

which arises from maximization over the conditional emission likelihood (EL)
probabilities by factoring out the root cells as the outer maximizing step over all
possible states.
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Fitting the cell phenotypes (maximization step). In the maximization step, we find
the maximum likelihood of the hidden Markov model distribution parameters. We
estimate the initial probabilities, the transition probability matrix, and the para-
meters of the observation distributions. The maximum likelihood estimation of the
initial probabilities can be found from each state’s representation among the root
cells:

π�k ¼ γ1 kð Þ ð19Þ
Similarly, the transition probability matrix is estimated by calculating the

prevalence of each transition across the lineage trees:

T�
i;j ¼

∑N�1
n¼1 ξnði; jÞ
∑N�1

n¼1 γnðiÞ
ð20Þ

where

ξnði; jÞ ¼
γpðnÞðiÞ

βnðiÞ
MSDðn;iÞTði; jÞ

0
@

1
A

T

´
βnðjÞ

MSDðn; jÞ ð21Þ

Estimating emissions distribution parameters. In the current study, we used two
emissions distributions; first, a Bernoulli distribution for the probability of each cell
fate, either at the end of each cell cycle phase or at the end of cell’s lifetime; second,
a gamma distribution for the durations of each cell cycle phase or overall cell
lifetime. To estimate the distribution parameters after finding the cell state
assignments, we calculated their maximum likelihood estimation weighted by their
proportional assignment to that state. The initial and transition probabilities were
shared across drug concentrations.

For estimating the Bernoulli distribution parameter for cell fate, we simply
found the state assignment-weighted sample mean of the observations. To estimate
the gamma distribution parameters, we fit all concentrations of each drug
simultaneously and assumed that increasing drug concentration had a
unidirectional effect on the observed phenotype within each state. This was
implemented, using sequential least-squares programming (SLSQP)67, through a
linear constraint on the scaling parameter of the gamma distributions between
concentrations so that higher concentrations had equal or greater average
durations. The gamma distribution likelihood fitting is a convex optimization
problem, indicating that local optimization can arrive at the globally optimal
solution. Linear constraints do not change this property, and we confirmed fitting
with different starting points arrived at the same solution. We used censored
estimators to handle the effect of time censorship (explained below) in the duration
distribution fitting. This was done by fitting uncensored and censored observations
to the complete and survival distributions, respectively, and using the accumulated
log-likelihood to estimate the distribution parameters.

Baum-Welch. Since both the hidden states and model parameters are unknown, we
applied expectation-maximization (EM), known as the Baum-Welch algorithm in
the case of HMMs, to find both the model parameters and cell states.

The expectation-maximization algorithm consists of two steps: expectation and
maximization. During expectation, the probabilities of all cells being in specific
states are calculated, such that for every cell and every state we have P zn ¼ kjXn

� �
and P zn ¼ k; znþ1 ¼ ljXn

� �
. The expectation step is calculated by the upward and

downward recursion algorithms described above. In the maximization step,
described above, the distribution parameters of each state, the initial (π)
probabilities, and the transition probability (T) matrices are estimated, given the
state assignments of each cell.

The expectation-maximization algorithm is initialized by randomly assigning
the cells to states using a Dirichlet distribution. During fitting we iteratively switch
between the expectation and maximization steps and then calculate the likelihood.
If the likelihood improves less than a set threshold, we take that to indicate
convergence.

Model evaluation. To find the most likely number of states corresponding to the
observations, the Bayesian Information Criterion (BIC) was used68. The BIC
requires the number of degrees of freedom, which we calculate using the number of
independent parameters. Our model estimates a k element initial probability vec-
tor, a k × k transition matrix, and a k × m matrix of state-wise parameters where k
is the number of states and m is the number of parameters associated with
observation distributions. For the phase-specific observation distributions we have
a total of 6 parameters, including 2 Bernoulli parameters and 2 pairs of shape and
scale parameters for the gamma distribution. Since the row-sums for transition and
initial probability matrices must be 1, these values are not entirely independent.
From distribution analysis of the phase lengths, we realized the shape parameter of
the gamma distribution remains constant over different conditions, while the scale
parameter changes. Therefore, the shape parameter was shared between the
populations treated with 4 different concentrations of the same compound. Each
condition, therefore, introduced 2 free parameters (1 Bernoulli parameter and
1 scale parameter). For the MCF10A experiments, terminal fates and cell cycle
durations were also assumed to be Bernoulli- and gamma-distributed, respectively.

The shape of cell lifetime was similarly shared among the four conditions (PBS,
EGF, HGF, and OSM).

The Wasserstein or Kantorovich–Rubinstein metric is a measure of distance
between two distributions. This metric was used to determine the difference
between state emissions69. An analytical solution, the absolute value of the
difference in distribution means, was used for the gamma distribution.

Model benchmarking. We used emission distributions to represent the phenotypic
characteristics of the cells within the lineages. To create our synthetic data, we
considered two possible options as our set of observations throughout an experi-
ment. In one case, we modeled the overall cell fate and cell lifetime; in the second,
we modeled the phase-specific fate and duration. In both, we used a Bernoulli
distribution for the fate outcomes and a gamma distribution for durations. The
state assignment accuracy was calculated using the Rand Index40. The difference
between true and estimated probability matrices was assessed using the Frobenius
norm, or the sum of each element squared.

Synthetic lineage data generation. We generated synthetic lineage trees with K
discrete states and N total number of cells for benchmarking. Lineages were
composed of two primary data structures: the state and emissions trees. The state
tree was randomly seeded with a root cell determined by the starting probabilities,
then expanded by randomly sampling transitions based on the transition prob-
ability matrix. The lineages were extended by either increasing the number of initial
cells, resulting in a greater number of lineages (breadth), or by lengthening the
experiment time resulting in each lineage containing more cells (depth). After
creating the tree of states with the desired number of cells, the emission tree is built
upon it. Emissions were randomly sampled from the distributions for each cell’s
state. Finally, the effects of the emissions were applied to the tree when necessary. If
any cells died, their progeny were marked as unobserved by making their emissions
equal to NaN (Not a Number). If applicable, the effects of finite-duration experi-
ments were also applied. Cells existing outside of the experiment duration were
marked as unobserved, and those crossing the bounds of an experiment were
marked as censored with duration clipped by the experiment.

Time censorship. Our phenotypic measurements include the cell fate (progression
or cell death) and duration. These measurements are made for each cell cycle phase
(G1 or S/G2) in the case of AU565 cells and for the entire lifetime for MCF10A
cells. These measurements can contain incomplete information due to the bounds
of an experiment. For instance, it is unknown when initial cells present at the start
of the experiment began their cell cycle. The same is true of the cells present at the
end of the experiment because we do not observe their end. Hence, a cell’s lifetime
and/or fate may be partially observed. To ensure our synthetic data is a close
reflection of experimental data, we incorporated this effect in our synthetic data.
Cells with lifetimes that extend beyond the end of the experiment were marked as
censored for the lifetime estimation.

Cell overall lifetime observations. The parameters are reflective of the cell pheno-
types we observed with 5 nM lapatinib treatment. Supplementary Figs. 1–5 are
based on these parameters. Each figure includes 100 trials.

Transition probability matrix: T ¼ 0:9 0:1
0:1 0:9

� �

The initial probability vector is then calculated as the stationary distribution of
states from transition probability matrix, satisfying π ¼ π � T .

In this case, we have: π ¼ 0:5
0:5

� �

The same T and π were used for phase-specific emissions.
In Supplementary Table 1, “Bern p” refers to the Bernoulli parameter, the cell

division probability at the end of its lifetime which is equal to 1—the probability of
cell death at the end of its lifetime. “Shape” and “Scale” refer to the gamma
distribution parameters. The cells’ lifetimes were fit to gamma distributions.

Cell cycle phase-specific observations. The synthetic data used in Figs. 3, 4, Sup-
plementary Figs. 8–10 were created based on the following parameters. These
parameters are based on estimations from AU565 cells treated with 5 nM lapatinib.
Each figure includes 100 trials.

In Supplementary Table 2, “G1 bern” and “S/G2 bern” are the cell division
probabilities at the end of G1 and S/G2 phase, respectively. The “G1 shape” and
“G1 scale” are the gamma distribution parameters of G1 phase lengths. “S/
G2 shape” and “S/G2 scale” are the gamma distribution parameters of S/G2 phase
lengths.

To benchmark the model with 5 states, we simulated 25–500 lineages, each with
up to 31 cells, to create a population with 5 states. Like with the experimental data,
we assumed the experiment ends after 96 hours and censored the cells’
observations accordingly. The model parameters, including the transition
probabilities and initial probabilities are listed below. The analysis results are
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shown in Supplementary Fig. 14.

T ¼

0:6 0:1 0:1 0:1 0:1

0:05 0:8 0:05 0:05 0:05

0:01 0:1 0:7 0:09 0:1

0:1 0:1 0:05 0:7 0:05

0:1 0:1 0:05 0:05 0:7

2
6666664

3
7777775

ð22Þ

π ¼

0:13

0:33

0:16

0:18

0:18

2
6666664

3
7777775

ð23Þ

Figure 6 uses the first 4 states of Supplementary Table 3 as the parameter set for
the emissions matrix to simulate varying state numbers in the BIC calculation.

Varying emission differences. To create synthetic data with subpopulations of
varying dissimilarity (Fig. 5), we use the phase-specific parameters, with the values
for the G1 phase gamma scale parameter for state 1 varying over [4, 20]. This
results in an increase in the Wasserstein distance between the two cell states,
allowing us to measure state assignment accuracy for different dissimilarity
amounts between the two states. Likewise, for Supplementary Figs. 6, 7, we
simulated the overall cell lifetime and varied the gamma distribution scale para-
meter from 1 to 8 for state 1.

Optimal baseline classifier. To compare the tHMM with a classifier that ignores
heritability, we manually calculated the optimal classification boundary between
the gamma distributions for state 1 and state 2. The best choice of classification
boundary between two gamma distributions is the point at which the likelihood of
the random variable, x, is equal between the two distributions:

p x
��G k1; θ1

� �� � ¼ p x
��G k2; θ2

� �� � ð24Þ
where k1, θ1, k2, and θ2 are the shape and scale parameters of the gamma dis-
tribution corresponding to state 1 and 2, respectively. The shape parameter was
shared between the two distributions. Consequently, this can be simplified to:

x ¼
k ln θ2

θ1
1
θ1
� 1

θ2

ð25Þ

We assigned the classification labels to the observations using this classification
boundary, which formed the baseline accuracy shown in Fig. 5c. As states 1 and 2
are identical at the very first point, we used the distribution mean (k × θ) as the
threshold.

Cross-validation. To split the lineage data into train and test sets, we randomly
selected 20% of cells from each condition and masked their observations such that
they would not contribute to the fitting process. This was performed by setting the
log-likelihood of the masked cells’ observations to be uniformly zero for all the
states. During the Baum-Welch fitting, the algorithm estimates the parameters
using only the training cells. However, during the expectation step, the state of
masked cells is still inferred via information about their relatives. After the fitting
converges, we calculate the log-likelihood of the test cells’ observations given their
state assignments. This is accumulated into an overall likelihood of the held-out
observations given the tHMM state assignments and fit.

To test this cross-validation scheme’s ability to determine the optimum number
of states for a cell population, we created synthetic populations with 2–5 true states.
States 1–n were used, where n is the number of true states, to generate data that is
like the experimental data. The state observation distributions shown in
Supplementary Table 2. The transition probabilities were generated by adding 0.1
elementwise to the identity matrix and then normalizing it. The initial probabilities
for all states were equal. Fitting was performed with models including 1–7 states.
The optimum number of states was taken to be the smallest number of states at
which the log-likelihood plateaus.

Lowess trendline. Locally Weighted Scatterplot Smoothing (Lowess) was used to
provide the trendlines in the figures with repeated model runs.

Statistics and reproducibility. The experiments were repeated in three inde-
pendent biological replicates and yielded similar results.

Data availability
The experimental lineage data for AU565 and MCF10A cell lines can be found at https://
github.com/meyer-lab/tHMM and https://doi.org/10.5281/zenodo.7195355 The synthetic
data from which we plotted Figs. 3c, d, 4b–g, 5c–7 uses the code in the file named after
the corresponding figure number. Data used in Figs. 7a, b, 8, 9 uses the AU565 cell line

experimental lineage data, and Fig. 7c and 10 use the MCF10A lineage data. The cell lines
used in this study (AU565, MCF10A) can be made available upon request.

Code availability
All analysis were implemented in Python v3.9 and can be found at https://github.com/
meyer-lab/tHMM. The repository can also be found at Zenodo70.
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Supplementary Figures 
 

 
Supplementary Figure 1: Performance on synthetic uncensored single lineages of 
increasing size with two states. (a) Visual representation of increasing the lineage size with 
two states. (b) The Bernoulli parameter for states 1 and 2 as the number of cells increase. (c) 
The shape parameter, k, and (d) scale parameter, θ, of the Gamma distribution corresponding 
to the cell lifetime for states 1 and 2 as the number of cells increase. (e) The state assignment 
accuracy as the number of cells increases. (f) The error in the estimate of the transition 
probability matrix, T as the number of cells increase. In (b-d) the light green and blue solid 
lines show the true value of the parameters, and the dark green and blue solid lines show the 
Lowess trend of estimations. 
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Supplementary Figure 2: Performance on synthetic uncensored lineages of increasing 
number with two states. (a) Visualization of increasing the number of fully observed lineages. 
(b) The Bernoulli parameter for states 1 and 2 as the number of cells increase. (c) The shape 
parameter, k, and (d) scale parameter, θ, of the Gamma distribution corresponding to the cell 
lifetime for states 1 and 2 as the number of cells increase. (e) The state assignment accuracy 
as the number of cells increases. (f) The error in the estimate of the transition probability 
matrix, T, as the number of cells increase. (g) The errors in the estimate of the initial probability 
matrix, π, as the number of lineages increase. In (b-d) the light green and blue solid lines show 
the true value of the parameters, and the dark green and blue solid lines show the Lowess 
trend of estimations. 
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Supplementary Figure 3: Performance on synthetic censored lineages of increasing 
number with two states. (a) Visualization of the number of censored lineages increasing. (b) 
The Bernoulli parameter for states 1 and 2 as the number of cells increase. (c) The shape 
parameter, k, and (d) scale parameter, θ, of the Gamma distribution corresponding to the cell 
lifetime for states 1 and 2 as the number of cells increase. (e) State assignment accuracy as 
the number of cells increase. (f) The error in the estimate of the transition probability matrix, T, 
as the number of cells increase. (g) The errors in the estimate of the initial probability matrix, 
π, as the number of lineages increase. In (b-d) the light green and blue solid lines show the 
true value of the parameters, and the dark green and blue solid lines show the Lowess trend of 
estimations. 
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Supplementary Figure 4: Model performance relative to the presence of each state for 
an uncensored lineage in a synthetic two-state dataset. (a) Visualization of the distribution 
of cells in the lineage transitioning between state 1 and state 2. (b) The Bernoulli parameter for 
states 1 and 2 as the proportion of cells in state 1 increase. (c) The shape parameter, k, and 
(d) scale parameter, θ, of the Gamma distribution corresponding to the cell lifetime for states 1 
and 2 as the proportion of cells in state 1 increase. (e) The state assignment accuracy as the 
proportion of cells in state 1 increase. (f) The errors in the estimate of the transition probability 
matrix, T, as proportion of cells in state 1 increase. In (b-d) the light green and blue solid lines 
show the true value of the parameters, and the dark green and blue solid lines show the 
Lowess trend of estimations. 
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Supplementary Figure 5: Change in model performance when varying the presence of a 
state for a censored lineage in a synthetic two-state dataset. (a) Visualization of the 
proportion of cells in a censored lineage transitioning between state 1 and 2. (b) The Bernoulli 
parameter for states 1 and 2 as the proportion of cells in state 1 increase. (c-d) The shape 
parameter, k, and scale parameter, θ, of the Gamma distribution corresponding to the cell 
lifetime for states 1 and 2 as the proportion of cells in state 1 increase. (e) The state 
assignment accuracy as the proportion of cells in state 1 increase. (f) The error in the estimate 
of the transition probability matrix, T, as the proportion of cells in state 1 increase. In (b-d) the 
light green and blue solid lines show the true value of the parameters, and the dark green and 
blue solid lines show the Lowess trend of estimations. 
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Supplementary Figure 6: Change in model performance when varying state distribution 
similarity for an uncensored population of lineages in a synthetic two-state dataset. (a) 
Visualization of the Wasserstein divergence increasing as the state distribution in the lineage 
varies. (b) The cell fate Bernoulli parameter compared to the true value. (c) The shape 
parameter, k, (d) the scale parameter, θ, of the Gamma distribution corresponding to the cell 
lifetime compared to the true values. (e) The state assignment accuracy as the Wasserstein 
divergence increases. (f) The errors in the estimate of the transition probability matrix, T, as 
the Wasserstein divergence increases. In (b-d) the light green and blue solid lines show the 
true value of the parameters, and the dark green and blue solid lines show the Lowess trend of 
estimations. 
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Supplementary Figure 7: Change in model performance when varying state distribution 
similarity for a censored population of lineages in a synthetic two-state dataset. (a) 
Visualization of the Wasserstein divergence increasing as the state distribution in the censored 
lineage varies. (b) The Bernoulli, (c) Gamma shape, and (d) Gamma scale parameters for 
states 1 and 2 as the Wasserstein divergence increases. (e) The state assignment accuracy 
as the Wasserstein divergence increases. (f) The error in the estimate of the transition 
probability matrix, T, as the Wasserstein divergence increases. In (b-d) the light green and 
blue solid lines show the true value of the parameters, and the dark green and blue solid lines 
show the Lowess trend of estimations. 
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Supplementary Figure 8: Performance of increasing cell numbers in an uncensored 
single lineage in a synthetic two-state dataset. (a) Visualization of a single lineage with 
increasing cell number. (b) The G1 phase Bernoulli, (c) Gamma shape, and (d) Gamma scale 
parameters for states 1 and 2 as the number of cells increase. (e) The S/G2 phase Bernoulli, 
(f) Gamma shape, and (g) Gamma scale parameter for states 1 and 2 as the number of cells 
increase. (h) The state assignment accuracy as the number of cells increases. (i) The errors in 
the estimate of the transition probability matrix, T, as the number of cells increase. In (b-g) the 
light green and blue solid lines show the true value of the parameters, and the dark green and 
blue solid lines show the Lowess trend of estimations. 
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Supplementary Figure 9: Performance of increasing lineage numbers in an uncensored 
population in a synthetic two-state dataset. (a) Visualization of the number of uncensored 
lineages within a population increasing. (b) The G1 phase Bernoulli, (c) Gamma shape, and 
(d) Gamma scale parameters for states 1 and 2 as the number of cells increase. (e) The S/G2 
phase Bernoulli, (f) Gamma shape, and (g) Gamma scale parameters for states 1 and 2 as the 
number of cells increase. (h) The state assignment accuracy as the number of cells increases. 
(i) The error in the estimate of the transition probability matrix, T, as the number of cells 
increase. (j) The errors in the estimate of the initial probability matrix, π, as the number of 
lineages increase. In (b-g) the light green and blue solid lines show the true value of the 
parameters, and the dark green and blue solid lines show the Lowess trend of estimations. 
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Supplementary Figure 10: Performance of increasing lineage numbers in a censored 
population in a synthetic two-state dataset. (a) Visualization of the number of censored 
lineages within a population increasing. (b) The G1 phase Bernoulli, (c) Gamma shape, and 
(d) Gamma scale parameters for states 1 and 2 as the number of cells increase. (e) The S/G2 
phase Bernoulli, (f) Gamma shape, and (g) Gamma scale parameter for states 1 and 2 as the 
number of cells increase. (h) The state assignment accuracy as the number of cells increases. 
(i) The error in the estimate of the transition probability matrix, T, as the number of cells 
increase. (j) The error in the estimate of the initial probability matrix, π, as the number of 
lineages increase. In (b-g) the light green and blue solid lines show the true value of the 
parameters, and the dark green and blue solid lines show the Lowess trend of estimations. 
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Supplementary Figure 11: The single cell data after fitting and state assignment for 
lapatinib-treated lineages. (a) Control, (b) 25 nM, (c) 50 nM, and (d) 250 nM lapatinib 
treatment. Each line represents a cell, and the length of the line represents the cell’s lifetime. 
G1 and S/G2 phase durations are depicted by thick and thin lines, respectively. Termination 
and branching indicate cell death and division, respectively. Different colors show the state of 
each cell. Blue: state 1, orange: state 2, green: state 3, red: state 4, purple: state 5, and olive: 
state 6. 
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Supplementary Figure 12: The single cell data after fitting and state assignment for 
gemcitabine-treated lineages. (a) Control, (b) 5 nM, (c) 10 nM, and (d) 30 nM gemcitabine 
treatment. Each line is a cell, and the length of the line represents the cell’s lifetime. G1 and 
S/G2 phase durations are depicted by thick and thin lines, respectively. Termination and 
branching indicate cell death and division, respectively. Different colors show the state of each 
cell. Blue: state 1, orange: state 2, green: state 3, red: state 4, and purple: state 5. 
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Supplementary Figure 13: The single cell data after fitting and state assignment for 
growth factor treated MCF10A lineages. (a) PBS, (b) EGF, (c) HGF, and (d) OSM 
treatments. Each line represents a cell, and the length of the line represents the cell’s lifetime. 
Termination and branching indicate cell death and division, respectively. Different colors show 
the state of each cell. Blue: state 1, orange: state 2, and green: state 3. 

 

 

 

 

 

 

 

 

 

Supplementary Figure 14: State-specific emissions of the growth factor treated MCF10A 
population. (a) State transition graph showing the probability of state transitions among the 
states. Transitions with less than 0.03 probability have been removed. (b-e) A sample of 
lineage trees after fitting the model and state assignment (PBS, EGF, HGF, and OSM). (f-g) 
The inferred log10 mean time of cell cycle durations for different conditions at different states. 
(h-i) The Bernoulli parameter, which is the probability of dividing versus dying for different 
conditions and states. 
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Supplementary Figure S15: Performance of increasing lineage numbers in a censored 
population in a synthetic five-state dataset. (a) Visualization of the number of censored 
lineages within a population increasing. (b) The G1 phase Bernoulli, (c) Gamma shape, and 
(d) Gamma scale parameters for each state as the number of cells increase. (e) The S/G2 
phase Bernoulli, (f) Gamma shape, and (g) Gamma scale parameter for each state as the 
number of cells increase. (h) The state assignment accuracy as the number of cells increases. 
(i) The error in the estimate of the transition probability matrix, T, as the number of cells 
increase. (j) The error in the estimate of the initial probability matrix, π, as the number of 
lineages increase. In (b-g) the light green and blue solid lines show the true value of the 
parameters, and the dark green and blue solid lines show the Lowess trend of estimations. 
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Supplementary Figure S16: Performance of increasing lineage numbers in a censored 
population in a synthetic five-state dataset. (a) Visualization of the cross-validation process. 
80% of cells are randomly selected as the training set, and the remaining cells serve as the 
test set. The log likelihood of the observations of the test given the trained model will 
determine the optimum number of states. (b–d) The log likelihood from the cross-validation 
approach for lapatinib and gemcitabine-treated AU565 cells. “Equal T” refers to the scenario 
where all transitions to and from each state are equal, simulating the absence of inheritance, 
“Shared T” refers to the scenario where we estimate a transition matrix that is shared between 
all concentrations, and “Separate T” simulates the scenario where each concentration has a 
separate transition matrix. (f–g) The log likelihood plot for a 2, 3, 4, and 5 state synthetic model 
using the cross-validation scheme. The arrows in (b-g) point to the optimal number of states. 
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Supplementary Table 1. State distribution parameters for cell cycle phase non-specific 
observation for a two-state population. 

State Bern p Shape Scale 
State 1 0.99 8 6 
State 2 0.75 8 1 

 
 
Supplementary Table 2. State distribution parameters for cell cycle phase-specific observation 
for a two-state population. 

State G1 bern S/G2 bern G1 shape G1 scale S/G2 shape S/G2 scale 
State 1 0.99 0.95 8 7 4 2 
State 2 0.95 0.9 6 4 3 5 

 
 
Supplementary Table 3. State distribution parameters for cell cycle phase non-specific 
observation for a five-state population. 

State G1 bern S/G2 bern G1 shape G1 scale S/G2 shape S/G2 scale 
State 1 0.7 0.99 250 0.2 50 0.1 
State 2 0.95 0.9 200 0.2 100 0.1 
State 3 0.9 0.85 150 0.2 150 0.1 
State 4 0.99 0.75 100 0.2 200 0.1 
State 5 0.99 0.75 50 0.2 250 0.1 
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