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RESEARCH ARTICLE Open Access

Complete plastome sequences of Equisetum
arvense and Isoetes flaccida: implications for
phylogeny and plastid genome evolution of early
land plant lineages
Kenneth G Karol1*, Kathiravetpillai Arumuganathan2, Jeffrey L Boore3,4, Aaron M Duffy5, Karin DE Everett6,
John D Hall1, S Kellon Hansen5, Jennifer V Kuehl7, Dina F Mandoli6,8, Brent D Mishler9, Richard G Olmstead6,
Karen S Renzaglia10, Paul G Wolf5

Abstract

Background: Despite considerable progress in our understanding of land plant phylogeny, several nodes in the
green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset
of major land plant clades. Here we examine early land plant evolution using complete plastome sequences
including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of
land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide
composition, inversions, and gene order at the boundaries of the inverted repeats.

Results: We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a
heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa
supported monophyly for the following clades: embryophytes (land plants), lycophytes, monilophytes
(leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense), and seed plants. Resolution
among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum
and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of
nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence
gaps resulting from insertions and deletions (indels). We found one new indel and an inversion of a block of genes
that unites the monilophytes.

Conclusions: Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In
the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte
monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with
moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the “true ferns,”
including Marattiaceae.

Background
Patterns and processes of organic evolution are reflected
in the structure and sequences of organisms’ genomes.
Although we are only starting to accumulate sufficient
data to compare nuclear genomes of plants, more data

are available for the smaller plastid genomes (plas-
tomes). Comparative work on plastomes began in the
early 1980’s using restriction site mapping and hybridi-
zation with heterologous probes to generate phylogen-
etically informative data within small clades, generally
below the family level [1,2] as well as using comparative
mapping to examine differences among more distantly
related groups [3-6]. By the 1990’s the emphasis shifted
to nucleotide sequences from targeted regions (genes)
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with the result that studies with broad genomic sam-
pling were few. However, a reduction in sequencing cost
and concomitant development of analytical tools over
the past 10 years has resulted in resurgence of compara-
tive plastid genomics.
The plastome is highly conserved in overall structure

and this provides the basis for comparative studies [4].
However, there is still sufficient variation to identify rare
genomic events that mark critical branches in land plant
evolution, thereby elucidating early evolutionary modifi-
cations to the plastid genome [e.g., [5,7]]. Plastomes of
Marchantia polymorpha [8] and Nicotiana tabacum [9]
were the first to be sequenced and within 19 years there
were 45 complete plastome sequences for green plants
(Viridiplantae) in GenBank [10]. Acceleration of efforts
yielded 146 plastome sequences by the end of 2009,
with many others in progress.
Complete genome sequences offer several advantages

over restriction site maps and nucleotide sequences of
targeted regions. In addition to substantially increasing
the number of gene sequences for comparison, plastome
sequences provide vast structural and evolutionary infor-
mation that includes gene order, genome rearrange-
ments, patterns of base pair composition, codon usage,
mechanisms of gene duplication and gene loss (e.g.,
pseudogenization), patterns of nucleotide insertion and
deletion (indels), and the occurrence of noncoding
regions (such as plastome microsatellites and introns).
We now have sufficient sampling from most major land
plant clades to begin comparative analyses of their plas-
tomes in earnest.
Despite considerable progress over the last 15 years in

our understanding of green plant phylogeny, several
nodes remain poorly resolved. One example is the mon-
ilophytes, which include five major lineages: leptospor-
angiate ferns, horsetails, marattioid ferns, ophioglossoid
ferns and psilophytes. The monilophytes seem to be
well-supported as a group, and are generally accepted as
sister to seed plants [11-14]. But relationships among
the major monilophyte lineages remain unclear. Here
we present the complete plastome for the horsetail
Equisetum arvense L., representing one of the last major
monilophyte lineages to have a representative complete
plastome available. For further resolution of land plant
relationships and plastome evolution we also sequenced
the plastome of Isoetes flaccida Shuttlw. ex A. Braun,
the last of the three major lycophyte lineages to be
sampled. We use data for 49 genes from 43 green plant
taxa to infer phylogenetic relationships of land plants
and compile information on the distribution of gene
translocations, genomic inversions, gene content and
indels to augment the phylogenetic signal from gene
variation. We also examine codon usage and base com-
position. Patterns of plastome architecture are compared

across early land plant lineages that diverged 400 to 500
million years ago.

Results and Discussion
Our analyses included representatives of all major land
plant lineages as well as sampling of charophycean
green algae for appropriate phylogenetic context. We do
not provide detailed comparative plastome analyses for
charophycean algae and seed plants because these are
presented elsewhere: charophycean green algae [15,16],
gymnosperms [17-20] and angiosperms [21-23].

Plastome structures and composition
Gene maps for plastomes of Equisetum arvense and Iso-
etes flaccida are shown in Fig. 1. The complete plastome
of E. arvense is 133,309 base pairs (bp) and includes a
93,542 bp large single-copy (LSC) region, a 19,469 bp
small single-copy (SSC) region and two 10,149 bp
inverted repeats (IRA and IRB). The complete plastome
of I. flaccida is 145,303 bp and includes a 91,862 bp
LSC, a 27,205 bp SSC and two 13,118 bp IRs. The over-
all G/C content is 33.36% for E. arvense and 37.94% for
I. flaccida. Both annotated plastomes have been depos-
ited in GenBank (Table 1).

Gene content of Isoetes and Equisetum
Several minor differences in gene content between Equi-
setum arvense and Isoetes flaccida were identified (Table
2). We detected trnS-CGA only in E. arvense, and pseu-
dogenes of rps16, tufA and an extra fragment of ndhB
only in I. flaccida. Because of difference in the IR
boundaries E. arvense has one copy of rps7 whereas I.
flaccida has two copies. The position of the IR boundary
also results in a small fragment of ycf2 in the IR of I.
flaccida. The gene ycf66 is in both taxa, but appears to
be pseudogenized in E. arvense. The genes accD, infA
and rps2 are also in both taxa but appear to be pseudo-
genized in I. flaccida.
clpP introns
In our newly described plastomes, clpP contains only
one intron in Equisetum arvense and two introns in Iso-
etes flaccida. The distribution of introns in clpP is vari-
able across plastomes sampled to date: all bryophytes
have two introns, lycophytes have either two introns
(Huperzia lucidula and I. flaccida) or one intron (Selagi-
nella moellendorffii and S. uncinata), and all monilo-
phytes except E. arvense have two introns. Among
gymnosperms, Cycas taitungensis has two introns and
other gymnosperms have either lost both introns (Pinus
thunbergii, Ephedra equisetina and Welwitschia mir-
abilis) or have lost clpP entirely (Gnetum parvifolium).
Most flowering plant clpP genes have two introns,
except the monocot Agrostis calamus. In the charophy-
cean algae, Chara vulgaris and Chaetosphaeridium
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Figure 1 Gene maps of the Equisetum arvense and Isoetes flaccida plastomes. The inverted repeats (IRA and IRB) which separate the
genome into the large (LSC) and small (SSC) single copy regions are indicated on the inner cycle along with the nucleotide content (G/C dark
grey, A/T light grey). Genes shown on the outside of the outer circle are transcribed clockwise and those on the inside counter clockwise. Gene
boxes are color coded by functional group as shown in the key. An asterisk (*) denotes genes with introns and a psi (ψ) denotes pseudogenes.
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Table 1 List of plastomes analyzed in this study

Taxon GenBank Accession Plastome size (bp), G/C (%), ENc Citation

Angiosperms:

Arabidopsis thaliana NC_000932 154478, 40.3, 47.90 Sato et al. 1999 [68]

Morus indica NC_008359 158484, 40.5, 47.96 Ravi et al. 2007 [69]

Vitis vinifera NC_007957 160928, 41.0, 48.64 Jansen et al. 2006 [70]

Nicotiana tabacum NC_001879 155943, 41.0, 48.79 Shinozaki et al. 1986 [9]

Helianthus annuus NC_007977 151104, 40.8, 48.56 Timme et al. 2007 [71]

Spinacia oleracea NC_002202 150725, 40.7, 48.25 Schmitz-Linneweber et al. 2001 [72]

Ranunculus macranthus NC_008796 155129, 41.4, 49.68 Raubeson et al. 2007 [23]

Agrostis stolonifera NC_008591 136584, 41.2, 49.76 Saski et al. 2007 [73]

Lemna minor NC_010109 165955, 40.1, 46.69 Mardanov et al. 2008 [74]

Phalaenopsis aphrodite NC_007499 148964, 40.4, 47.83 Chang et al. 2006 [75]

Dioscorea elephantipes NC_009601 152609, 40.5, 47.73 Hansen et al. 2007 [21]

Acorus calamus NC_007407 153821, 41.7, 49.76 Goremykin et al. 2005 [43]

Drimys granadensis NC_008456 160604, 41.6, 49.82 Cai et al. 2006 [76]

Liriodendron tulipifera NC_008326 159886, 41.8, 49.67 Cai et al. 2006 [76]

Illicium oligandrum NC_009600 148553, 42.1, 50.37 Hansen et al. 2007 [21]

Chloranthus spicatus NC_009598 157772, 41.6, 49.65 Hansen et al. 2007 [21]

Nymphaea alba NC_006050 159930, 42.2, 50.68 Goremykin et al. 2004 [77]

Amborella trichopoda NC_005086 162686, 41.7, 49.66 Goremykin et al. 2003 [78]

Gymnosperms:

Pinus thunbergii NC_001631 119707, 41.4, 48.98 Wakasugi et al. 1994 [79]

Ephedra equisetina NC_011954 109518, 37.5, 44.35 Wu et al. 2009 [19]

Gnetum parvifolium NC_011942 114914, 40.2, 53.80 Wu et al. 2009 [19]

Welwitschia mirabilis NC_010654 119726, 38.5, 45.79 Wu et al. 2009 [19]

Cycas taitungensis NC_009618 163403, 41.7, 48.58 Wu et al. 2007 [20]

Ginkgo biloba various N. A., 41.8, 48.87 Leebens-Mack et al. 2005 [80]

Monilophytes:

Adiantum capillus-veneris NC_004766 150568, 44.2, 55.12 Wolf et al. 2003 [37]

Alsophila spinulosa NC_012818 156661, 43.6, 52.99 Gao et al. 2009 [38]

Angiopteris evecta NC_008829 153901, 39.2, 44.32 Roper et al. 2007 [27]

Psilotum nudum NC_003386 138829, 39.3, 45.80 GenBank direct submission

Equisetum arvense GU191334 133309, 37.2, 41.94 This study

Lycophytes:

Selaginella uncinata AB197035 144170, 54.3, 58.30 Tsuji et al. 2007 [35]

Selaginella moellendorffii FJ755183 143780, 51.2, 57.73 GenBank direct submission

Isoetes flaccida GU191333 145303, 41.9, 48.84 This study

Huperzia lucidula NC_006861 154373, 40.3, 46.66 Wolf et al. 2005 [39]

Bryophytes:

Anthoceros formosae NC_004543 161162, 38.2, 42.21 Kugita et al. 2003 [30]

Syntrichia ruralis FJ546412 122630, 34.5, 35.46 Oliver et al. (in press) [32]

Physcomitrella patens NC_005087 122890, 35.1, 36.12 Sugiura et al. 2003 [33]

Marchantia polymorpha NC_001319 121024, 34.0, 35.25 Ohyama et al. 1986 [8]

Charophyte Algae:

Staurastrum punctulatum NC_008116 157089, 37.1, 38.28 Turmel et al. 2005 [81]

Zygnema circumcarinatum NC_008117 165372, 39.2, 42.45 Turmel et al. 2005 [81]

Chaetosphaeridium globosum NC_004115 131183, 35.0, 36.95 Turmel et al. 2002 [82]

Chara vulgaris NC_008097 184933, 35.7, 39.57 Turmel et al. 2006 [83]

Chlorokybus atmophyticus NC_008822 152254, 39.1, 43.85 Lemieux et al. 2007 [15]

Mesostigma viride NC_002186 118360, 34.9, 34.83 Lemieux et al. 2000 [84]

GenBank accession numbers, plastome sizes in base pairs (bp), percent G/C content, effective number of codons (ENc) and original citations are shown.
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globosum each have one clpP intron, whereas other
charophycean green algae have no introns in clpP. It
appears that the second clpP intron is unique to land
plants, although there have been several lineage-specific
losses (e.g., Selaginella spp., E. arvense, most gymnos-
perms, and at least one lineage of monocots).
tufA in land plant plastomes
The functional tufA gene is encoded in the plastid gen-
ome of most green algae but has been transferred to the

nuclear genome in land plants and certain charophycean
green algae [24-26]. A tufA-like fragment was identified
in Anthoceros formosae, cycads and Gingko biloba plas-
tomes situated between psbE and petL [20]. We found a
1,364-bp region between psbE and petL in Isoetes flaccida
that shares 41% nucleotide similarity with the plastid
encoded tufA gene found in Chara vulgaris. The I. flac-
cida tufA homologue lacks the expected start and stop
codons and contains 29 internal stop codons within the

Table 2 List of plastid genes and pseudogenes annotated for Equisetum arvense and Isoetes flaccida

Gene class

Ribosomal RNAs rrn4.5 x2 rrn5 x2 rrn16 x2 rrn23 x2

Transfer RNAs trnA-UGC* x2 trnC-GCA trnD-GUC trnE-UUC

trnF-GAA trnG-GCC trnG-UCC* trnH-GUG

trnI-CAU trnI-GAU* x2 trnK-UUU* trnL-CAA

trnL-UAA* trnL-UAG trnM-CAU trnfM-CAU

trnN-GUU x2 trnP-GGG trnP-UGG trnQ-UUG

trnR-ACG x2 trnR-CCG c trnR-UCU trnS-CGA in Ea

trnS-GCU trnS-GGA trnS-UGA trnT-GGU

trnT-UGU trnV-GAC x2 trnV-UAC* trnW-CCA

trnY-GUA

Photosystem I psaA psaB b psaC psaI b

psaJ psaM

Photosystem II psbA psbB psbC psbD

psbE psbF psbH b psbI

psbJ psbK psbL b psbM

psbN psbT b psbZ

Cytochrome petA petB* b, e petD* b, e petG b

petL petN b

ATP synthase atpA atpB atpE atpF*

atpH atpI b

Rubisco rbcL b

Chlorophyll biosynthesis chlB chlL b chlN

NADH dehydrogenase ndhA* b ndhB* ndhC ndhD b, i

ndhE ndhF i ndhG ndhH b

ndhI ndhJ i, e ndhK

Ribosomal proteins rpl2* rpl14 b, i, e rpl16* rpl20 b

rpl21 i rpl22 rpl23 rpl32

rpl33 rpl36 rps2 ψ (If ) rps3

rps4 b rps7 x2 in If rps8 b rps11 b, s

rps12 x2 tr rps14 rps15 rps16 ψ in If

rps18 rps19

RNA polymerase rpoA i rpoB i rpoC1* i rpoC2 i

Miscellaneous proteins infA ψ (If ) ccsA b matK clpP*

accD ψ (If ), ss cemA i tufA ψ in If

Hypothetical proteins ycf1 b ycf2 i ycf3* ycf4 b

ycf12 ycf66* ψ (Ea)

Duplicate gene fragments ndhB ψ in If ycf2 IR in If ndhF IR in Ea

* = intron-containing gene; tr = trans-spliced. In If = gene in I. flaccida but not E. arvense; in Ea = gene in E. arvense but not I. flaccida. Hypothesized RNA editing
in I. flaccida: b = start edited; i = internal stop codon; e = stop codon edited; c = anticodon of tRNA edited. In E. arvense: s = start edited; ss = start and stop
edited. ψ (If) = pseudogene in I. flaccida and gene present in E. arvense but not as pseudogene. ψ in If = pseudogene in I. flaccida but gene absent in E. arvense.
ψ (Ea) = pseudogene in E. arvense and gene present in I. flaccida but not as pseudogene. Note that rps7 is in the IR in I. flaccida so has two copies (x2) but only
one copy in E. arvense. Genes in bold were those used for phylogenetic analyses.
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reading frame. Furthermore, when this region was
aligned with the C. vulgaris homologue, 38 indels were
identified (Additional File 1). Taken together, the I. flac-
cida tufA-like region is most likely a pseudogene. These
relictual fragments of a once functional plastid gene now
identified in four distantly related land plant lineages (i.e.,
hornworts, lycophytes and two gymnosperms) offer an
interesting opportunity to study patterns of plastome
gene loss as well as the process of gene decay.
Putative RNA editing
Reliable inferences on RNA editing require comparisons
of genomic sequence to that of mature mRNA or
cDNA. However, a fraction of editing sites are in start
or stop codons, or result in premature stop codons, thus
providing a hint of RNA editing from genomic
sequences. We found such evidence in two genes in
Equisetum arvense and 28 genes in Isoetes flaccida
(Table 2). The former had an undetermined start codon
for rps11 and undetermined start and stop codons for
accD. In I. flaccida we found 21 loci with undetermined
start codons, two with undetermined stop codons, and
seven internal stop codons. Based on the sequence of
trnR-CCG, we also infer that the second position of the
anticodon is RNA edited (U- >C).
ycf1
The region between chlN and rps15 in plastomes pre-
sents an interesting challenge. In certain taxa this region
contains two putative protein-coding genes, both read
from the same DNA strand, but in different reading
frames. Other taxa, including Equisetum arvense and Iso-
etes flaccida, contain a single large open reading frame
(orf) commonly annotated as ycf1. Recent interpretation
of the interruption of ycf1 has been either to recognize
the entire region as a ycf1 pseudogene [e.g., [27]], or to
recognize the larger of the two orfs as ycf1 while leaving
the smaller unannotated [e.g., [28]]. The function of
these orfs (or orf) is unknown and there are at least two
processes that explain the differences in putative orfs in
this region of the plastome. One possibility is that the
large orf could yield two separate protein products
through a post-transcription edit that adds a stop codon.
Another possibility is that the two-orf pattern is a result
of a frame shift that can be read through during transla-
tion, yielding a single protein product [e.g., [29]]. How-
ever, transcripts of this region have been determined for
Anthoceros formosae with two-orfs and Adiantum capil-
lus-veneris with a single large orf [30,31]. These tran-
script data were consistent with the original DNA
annotation. That is, the reading frame was not ‘corrected’
in Anthoceros formosae and an internal stop codon was
not detected in the larger orf in Adiantum capillus-
veneris. Therefore at both the DNA and the RNA tran-
script levels there appears to be two alternative patterns.

Gene order
Comparative plastome maps for representative early
diverging land plant lineages are shown in Fig. 2. The
liverwort Marchantia polymorpha was not included in
this figure because it shares similar gene order with the
moss Syntrichia ruralis and the hornwort Anthoceros
formosae.
Bryophytes
Previous reports of plastomes representing exemplar
bryophytes (liverwort Marchantia polymorpha, mosses
Physcomitrella patens and Syntrichia ruralis, hornwort
Anthoceros formosae) have shown that plastome content
and gene order are highly conserved [8,30,32,33]. This is
true even in Aneura mirabilis, the only non-photosyn-
thetic bryophyte [28]. One exception was reported in P.
patens, involving a large inversion (~71 kb) encompass-
ing nearly the entire LSC relative to a sample of four
other mosses [33]. Goffinet et al.[34] surveyed the phy-
logenetic extent of the P. patens inversion and found it
was restricted to the moss order Funariales. Oliver et al.
[32] found that the moss S. ruralis does not have this
large inversion but instead has the ancestral land plant
plastome gene order.
Lycophytes
The plastomes of Isoetes flaccida and Huperzia lucidula
(lycophytes) share similar gene order with bryophytes.
However, we identified two unique structural changes in
I. flaccida (Fig. 2). First, ycf2 in I. flaccida, which nor-
mally resides in the LSC in most land plant plastomes,
has been translocated to the SSC with the 5’ end now
incorporated into the IR. Second, the chlL/chlN gene
cluster has been inverted in I. flaccida and now resides
adjacent to ycf2 rather than ycf1 as in H. lucidula.
Neither the ycf2 translocation nor the chlL/chlN inver-
sion occurs in either of the Selaginella plastomes.
Both Selaginella plastomes are considerably different

in gene order from typical land plant plastomes (Fig. 2)
[[35], Banks et al. personal communications]. A large
region (~14-kb) has been translocated from the LSC to
the IR/SSC in both plastomes, although the genes
included in this translocation differ slightly. In both
Selaginella plastomes, rps4 marks one endpoint of this
translocated segment and this gene now resides in the
IR. The other endpoint resides in the SSC and is marked
by psbD in S. moellendorffii and by three additional
genes (trnE-UUC, trnY-GUA and trnD-GUC) in S. unci-
nata. These tRNA genes remain in the LSC adjacent to
ycf2 in S. moellendorffii, as is the case in most land
plant plastomes. Several unique features were identified
in the plastome of S. uncinata including a ~20-kb LSC
inversion (psbI to rpoB-trnC-GAC), duplication of psbK
and trnQ-UUG, and translocation of petN from the LSC
to the SSC [35].
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Euphyllophytes
Raubeson and Jansen [5] identified a ~30-kb LSC inver-
sion marking the euphyllophytes as a monophyletic
group to the exclusion of the lycophytes. This inversion
is confirmed in all monilophyte (including Equisetum
arvense, Fig. 2) and seed plant plastomes sequenced and
does not occur thus far in bryophyte or lycophyte plas-
tomes (including Isoetes flaccida, Fig. 2).
Monilophytes
Taking into account lineage specific gene losses and dif-
ferences in IR gene content, Angiopteris evecta, Equise-
tum arvense and Psilotum nudum share identical gene
order. Two large inversions associated with the IR and
two smaller inversions in the LSC characterize the plas-
tome of Adiantum capillus-veneris [36,37]. The tree fern
Alsophila spinulosa shares these inversions [38], indicat-
ing that they probably occurred in the ancestor to a
clade that includes most extant leptosporangiate ferns.
Comparative gene-order analyses identified one of the
LSC inversions (involving trnG-GCC to trnT-GGU) in
Psilotum nudum, Angiopteris evecta and leptosporangi-
ate ferns [27,38,39]. Here we identified the same

inversion in Equisetum arvense, further supporting the
hypothesis that this inversion is shared by all extant
monilophyte taxa and can serve as a reliable molecular
marker for the monophyly of this lineage (Fig. 3).
Neither of the two IR inversions nor the remaining LSC
inversion found in Adiantum capillus-veneris and Also-
phila spinulosa was identified in other monilophyte
plastomes.
The inverted repeat boundaries
Most plastome IRs have similar gene content that pri-
marily includes rRNA and tRNA genes [16,22,40]. This
is the case even in the ferns that have a reorganized IR
[37,38]. Variation from the typical IR gene content has
been explained by movement (“ebb and flow”) of the IR
boundaries into, and out of, the LSC and SSC regions
[41]. In our broad sample of land plant plastomes we
found several taxa with unique IR boundaries that differ
from the basic theme (Fig. 4). In some cases, distantly
related taxa have very similar IR boundaries. The liver-
wort and the two mosses are identical in gene content
at both ends of the IR. The two distantly related ferns
are also identical to each other. Similarities at only one

Figure 2 Comparison of plastome maps of early diverging land plant lineages showing major structural changes. Two mosses (Pp =
Physcomitrella patens and Sr = Syntrichia ruralis), a hornwort (Af = Anthoceros formosae), four lycophytes (Hl = Huperzia lucidula, If = Isoetes
flaccida, Sm = Selaginella moellendorffii and Su = Selaginella uncinata) and a monilophyte (Ea = Equisetum arvense) are compared. The liverwort
Marchantia polymorpha shares a similar gene order with Sr, Af and Hl (not shown). Inverted repeat regions are depicted with grey boxes.
Inversions and translocations are shown with arrows and solid or dashed lines respectively. The monilophyte-specific inversion shown for Ea is
detailed in Fig. 3. Gene colors follow the key in Fig. 1.
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end of the IR are seen in a wider range of taxa. One end
of the LSC is bounded by trnI-CAU in all seed-free land
plants in our study, except Selaginella spp. (because
they have lost many or their tRNA genes including trnI-
CAU) and Angiopteris evecta. The SSC is bounded by
ndhF at one end and chlL at the other, in most taxa.
This suggests that whereas the ends of the IR clearly
ebb and flow in some lineages, in other lineages they
appear to be rather stable.

Phylogenetic Analyses
We analysed four datasets that included 49 protein-
coding genes and each was subjected to Maximum Like-
lihood (ML) and Bayesian Inference (BI). The datasets
differed by the number of taxa included: one data set
included all taxa listed in Table 1, another excluded
both Selaginella species, another excluded all three gne-
tophyte taxa (Ephedra equisetina, Gnetum parvifolium
and Welwitschia mirabilis) and the final excluded both

Selaginella spp. and all gnetophyte taxa. Selaginella spp.
and the gnetophytes were selectively included or
excluded because of their unusual evolutionary patterns
(e.g., plastomes with relatively high G/C content in
Selaginella spp. and accelerated divergence rates in gne-
tophytes; [[18,19,35], Banks et al. personal communica-
tions], which can be problematic for phylogenetic
reconstruction). Nearly identical topologies were recov-
ered using nucleotide data regardless of analytical
method (ML and BI) or taxon set (exclusion of Selagi-
nella spp. and/or gnetophytes) with two exceptions dis-
cussed below. A summary including alternate topologies
and support values is shown in Fig. 5A-C. Phylogenetic
results for angiosperms are shown in Additional file 2.
Phylogenetic relationships among the major bryophyte

lineages have been controversial with nearly every possi-
ble topology being reported, often with strong support.
However, recent convergence in results supports horn-
worts as sister to vascular plants (as seen here) and

Figure 3 Monilophyte-specific inversion. Detailed view of an inversion found only in monilophyte taxa (solid black lines and grey shadow)
and a second inversion found only in Adiantum capillus-veneris and Alsophila spinulosa (dashed black lines), which together represent a large
clade comprising about 90% of extant fern species diversity. Additional gene loss and movements are shown with arrows (SSC = gene
translocated to small single copy). The lycophyte gene order and orientation in this region is similar to that of bryophytes and seed plants (not
shown). Note that the ~5 kb region between trnE and trnY unique to Equisetum arvense contains no significant open reading frames when
subjected to ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Gene colors follow the key in Fig. 1.
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liverworts sister to all other land plants [[7,42] and
references therein]. Monophyly of the bryophytes has
also been proposed using plastome gene data. However
this relationship was only found when inferred amino

acid sequences or protein plus DNA sequences cor-
rected for A-T bias were analyzed [[15,43,44], Additional
file 3]. A sister relationship between mosses and liver-
worts was proposed previously based on morphological

Figure 4 Genes found in the inverted repeat of seed-free land plants. A liverwort (Mp = Marchantia polymorpha), two mosses (Pp =
Physcomitrella patens and Sr = Syntrichia ruralis), a hornwort (Af = Anthoceros formosae), four lycophytes (Hl = Huperzia lucidula, If = Isoetes flaccida,
Sm = Selaginella moellendorffii and Su = Selaginella uncinata) and five monilophytes (Ac = Adiantum capillus-veneris, Ae = Angiopteris evecta, As =
Alsophila spinulosa, Ea = Equisetum arvense, Pn = Psilotum nudum) are compared for inverted repeat (IR) gene content, including new plastomes
reported here. The figure is organized so that IRA, the small single copy (SSC) and IRB are presented top to bottom. Grey boxes denote genes
found in the IR and white boxes denote genes found in the large single copy or SSC. Genes in square brackets are those partially encoded in the
IR. Genes in bold emphasize that gene order within the leptosporangiate ferns have been reorganized relative to other plants [37,38].
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Figure 5 Phylogenetic results using nucleotide data. A) Cladogram based on ML analysis (-ln = 473022.24372) of 49 gene sequences from all
43 plastomes sampled (Table 1). Mapped non-homoplastic indels are shown in yellow circles. Numbers in grey circles are indels identified with a
more restrictive taxon sampling that were difficult to score across all charophycean green algae and land plants. B) Phylogram based on ML
analysis (-ln = 442145.83514) of gene sequences, excluding the two Selaginella species. C) Phylogram based on ML analysis (-ln = 436696.62372)
of gene sequences, excluding the three gnetophyte taxa (Ephedra equisetina, Gnetum parvifolium and Welwitschia mirabilis). ML phylogenetic
results (-ln = 405904.24872) that excluded Selaginella spp. and gnetophytes were similar in topology to b (not shown). Numbers above the
branches are ML bootstrap proportions and numbers below are Bayesian posterior probabilities in this order: all taxa included/Selaginella spp.
excluded/gnetophytes excluded/Selaginella spp. and gnetophytes excluded. The asterisk (*) in c indicates the ML bootstrap proportion for
Marchantia polymorpha sister to the remaining land plants found in bootstrap analyses that included all taxa, though the best ML tree recovered
a sister relationship of M. polymorpha with the mosses Physcomitrella patens and Syntrichia ruralis. Boxes and dashed lines indicate the relative
position of monilophytes (light grey) and lycophytes (dark grey).
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and molecular data. Renzaglia and Garbary [45] con-
cluded that characters related to sperm cell development
were compelling evidence for the monophyly of mosses
plus liverworts, a clade they referred to as Setaphytes. In
a recent analysis that included seven genes from all
three DNA compartments (plastid, mitochondria and
nuclear) for 192 land plant and green algal taxa, the
liverworts were found with strong support as sister to
all remaining land plants [12].
In the nucleotide analyses presented here, regardless

of taxon set or analytical method, monophyly of land
plants was confirmed, as was the sister relationship
between the hornwort Anthoceros formosae and tracheo-
phytes (e.g., lycophytes, monilophytes, gymnosperms
and angiosperms; Fig. 5). More problematic is the posi-
tion of liverworts among bryophytes as our results show
two taxon-dependent placements of the liverwort
Marchantia polymorpha. In ML and BI analyses that
included all taxa or excluded Selaginella spp., with or
without gnetophytes, M. polymorpha was sister to the
mosses Physcomitrella patens and Syntrichia ruralis
(Fig. 5A, 5B). The alternative topology with liverworts
sister to the remaining land plants was supported in the
present study only when the gnetophytes were excluded
(Fig. 5C). ML bootstrap proportions were generally
weak for this part of the tree regardless of taxon exclu-
sion and BI posterior probabilities were low with the
analysis that included all taxa and the analysis that only
excluded the gnetophytes. Increased taxon sampling is
critical in resolving the pattern of these ancient
divergences.
The lycophytes (Huperzia lucidula, Isoetes flaccida, with

or without Selaginella spp.) and monilophytes (Adiantum
capillus-veneris, Alsophila spinulosa, Angiopteris evecta,
Equisetum arvense and Psilotum nudum) were each
strongly supported monophyletic groups (Fig. 5). However,
the relationships of these two clades to each other and to
seed plants varied across our analyses. The monilophytes
were sister to the seed plants only when Selaginella spp.
were excluded, with or without gnetophytes (Fig. 5B).
Alternatively, the lycophytes were supported (weakly in
most analyses) as sister to seed plants when Selaginella
spp. were included (Fig. 5A, 5C). Strong support was
recovered for the monilophyte + seed plant relationship by
Qiu et al.[12] and this relationship is further supported by
the large plastid LSC inversion identified in monilophytes
and seed plants and not found in lycophytes (Fig. 2 dis-
cussed above) [5,39]. Within the lycophyte clade, the
homosporous H. lucidula was consistently sister to the
heterosporous taxa I. flaccida and Selaginella spp. (or sis-
ter to just I. flaccida in analyses where Selaginella spp.
were excluded).
Strongly supported resolution among the major moni-

lophyte lineages has been elusive, and it was not clear if

lack of support was a function of insufficient phyloge-
netic signal, rapid radiation that is indistinguishable
from a true polytomy, or ancient extinctions resulting in
long-branch taxa that make phylogenetic reconstruction
challenging. Our analyses that used 43,491 nucleotide
characters (and several subpartitions of these) revealed a
moderately supported sister relationship between Psilo-
tum nudum and Equisetum arvense. Although these
groups are usually not found as sister lineages, this
topology is reasonable given the lack of sampling of sis-
ter taxa to both genera. More typically, P. nudum is
found in a lineage that is sister to ophioglossoid ferns
[12,13,46], a lineage not sampled in this study, and these
two lineages are found sister to the remaining monilo-
phytes (marattioid ferns, horsetails and leptosporangiate
ferns). However, a sister relationship between Psilota-
ceae and Equisetaceae was recently reported in a phylo-
genetic analysis of morphological characters across
vascular plants where five unambiguous character state
changes for the two groups were identified [47]. These
were primarily characters associated with leaves and
organization of the shoot system. Schneider et al. [47]
did not find the same relationship from an analysis of
the same taxa using nucleotide sequences, and they cau-
tioned that the morphological evidence for this sister
relationship could well be a function of homoplasy and
structural simplification reverting to a pleisiomorphic
state, thus causing “concern for a possible misleading
bias.” Failure of so many studies to resolve relationships
among the main lineages of monilophytes is consistent
with a rapid radiation (i.e., very short internal branches)
rather than lack of phylogenetic signal. Additional data
from Tmesipteris (a close relative of Psilotum), ophio-
glossoid ferns, and additional Equisetum species may
help to resolve these nodes.
Some of the deep branching events in the land plant

tree are still poorly resolved even with full plastome
sequence data now available from most of the major
clades. It is likely this is because the intervals of shared
history among these major clades were relatively short
as compared to their subsequent separate histories, giv-
ing rise to extreme asymmetry in branch lengths which
causes known problems with inferring the correct tree -
particularly using data with a small number of character
states such as nucleic acid sequence data [48]. Rare gen-
ome structural changes such as gene-order rearrange-
ments have the potential for resolving such short
internal branches [49]. Indeed a phylogenetic analysis of
plastome gene-order data found liverworts sister to all
other land plants and monilophytes sister to the seed
plants [50]. However, in that study the lycophytes were
not resolved as a monophyletic group as they are here.
This topological convergence suggests that a future
combined analysis with nucleotide, structural and
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morphological data may be able to resolve some of the
short internal branches.
Indels
Many genes contained three base-pair indels with appar-
ent phylogenetic signal. We examined all aligned gene
sequences for potential indels across the entire taxon
sample, scoring characters as 1 for presence or 0 for
absence of a sequence stretch. We scored 152 indels
(see Additional files 4 and 5); 40 support the phyloge-
netic tree (synapomorphic), 99 are unique to a terminal
taxon (autapomorphic) and 13 contradict the tree
(homoplastic). The synapomorphic and autapomorphic
indels are presented in Fig. 5A; the 13 homoplastic
indels are not mapped. Indels alone, analyzed by MP,
did not provide a well-resolved tree (not shown). How-
ever, several nodes were supported by uncontradicted
indels; land plants (2 indels), lycophytes (2 indels), Sela-
ginella spp. + Isoetes flaccida (1 indel), Selaginella spp.
(12 indels), Angiopteris evecta + Adiantum capillus-
veneris + Alsophila spinulosa (1 indel), seed plants (1
indel), gnetophytes (11 indels) and angiosperms (1
indel). Angiosperm-specific indels are shown in Addi-
tional file 2. Interpretation of indels is dependent on
taxon sampling. When subsets of the data were exam-
ined more closely we could score additional indels that
were difficult to interpret at the broader level. Several
such indels were identified; focusing on the monilo-
phytes we found two indels (in atpA and rps4) uniting
the monilophytes; the rps4 indel has been reported pre-
viously [11]. Five indels in psbT, petG, atpA, rpl16 and
rpoB uniting Adiantum capillus-veneris + Alsophila spi-
nulosa, and one in rpl16 uniting Equisetum arvense and
Psilotum nudum were also identified (Fig. 5A).
Nucleotide composition and codon usage
Codon usage bias is often correlated with genomic
nucleotide composition bias but may also be correlated
with gene expression, selection and drift [51,52]. The
overall G/C content of the genes used in our phyloge-
netic analyses ranged from 34% in Marchantia polymor-
pha to 54% in Selaginella uncinata. Both S. uncinata
and S. moellendorffii were remarkable for their high
(greater than 50%) G/C content. Among land plants
included in this study, only M. polymorpha and the
mosses contain less than 35% G/C. The nucleotide com-
position bias found in many plastomes may result in
codon usage biases as well.
The effective number of codons (ENc) is often used as

a measure of the amount of codon bias within a gene or
genome [53] with values ranging from 20 (very biased)
to 61 (very unbiased). Most vascular plants in our study
had a value between 46 and 50 (Table 1). Less bias was
detected in Adiantum capillus-veneris (ENc = 55.12),
Alsophila spinulosa (52.99), Selaginella uncinata (58.30)
and S. moellendorffii (57.73). More bias was found in

bryophytes and charophycean algae, notably Marchantia
polymorpha (35.25), Physcomitrella patens (36.12) and
Syntrichia ruralis (35.46). These differences may have
ramifications for the estimation of phylogenetic relation-
ships among these groups.

Conclusions
This study illustrates the advantage of whole plastome
sequences for studies of plastome architecture and land
plant evolution. Nucleotide sequence data from targeted
regions have contributed greatly to our understanding of
plant phylogeny. However short sequence data can have
limitations because they can miss important aspects of
genome structure, and nucleotide substitution rates are
not always applicable to solving specific evolutionary
questions. Restriction site mapping also is limiting
because it usually requires a series of cross comparisons
every time a taxon is added. Complete plastome
sequences provide data that can be used for nucleotide-
based analyses, but also can add to a growing database
of structural genomic data, including inversions, gene
content, and indels. New taxa can be added relatively
easily without additional experimental comparisons.
Also, changes that might first appear to characterize a
large clade might turn out to be more restricted once
additional taxa are sampled. For example, some of the
unique structural attributes first identified in Selaginella
uncinata plastome [35] appear to be unique (so far),
whereas others are shared with a second plastome
sequence of S. moellendorffii (Banks et al. personal com-
munications). Another important aspect of this type of
data is that changes that first appear autapomorphic in
small datasets might later emerge as key synapomor-
phies as additional taxa are sampled. This is illustrated
by the series of large inversions in the IR first identified
in Adiantum capillus-veneris [36,37] but later shown to
be shared with the distantly related tree fern Alsophila
spinulosa [38], and by inference shared among more
than 90% of leptosporangiate fern species.
Most of the currently available plastome sequences are

from seed plants, with very few available from the pre-
sumed sister clade, the monilophytes. Here we have
added an additional monilophyte plastome sequence as
well as a lycophyte plastome sequence that represent
two critical lineages that were not previously sampled
(i.e., Equisetaceae and Isoetaceae). We examine multiple
aspects of these plastomes to reveal patterns of evolu-
tion across land plants. We demonstrate that compara-
tive plastome analysis can provide valuable information
about evolutionary processes at the nucleotide, gene and
genome scale in early land plants. These data are phylo-
genetically informative at many levels. Gene rearrange-
ment and indels are informative at deep nodes.
Plastome sequences also provide valuable nucleotide
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data that can be used in studies of ancient and more
recent divergences.
Now that plastome sequence data are available for

most major lineages of early land plants additional sam-
pling can focus on resolution of poorly supported nodes
by increased taxon sampling within these lineages.
Although we have one or two representatives of each
major group, these often represent lineages containing
hundreds or thousands of species. Additional sampling
within species-rich lineages may resolve some areas of
phylogenetic conflict. As DNA sequencing costs con-
tinue to decrease it will become possible to improve
sampling and gain further insight into early land plant
evolution as well as the patterns and processes that
shape the evolution of plastomes.

Methods
Taxa
We compared and analyzed complete plastid genomes
of 43 taxa, including 37 land plants and six charophy-
cean algae (Table 1). Two of the land plant plastomes
are new to this study (herbarium vouchers at WTU):
Equisetum arvense and Isoetes flaccida. For E. arvense
and I. flaccida, tissue preparation, plastid isolation, DNA
extraction, cloning, sequencing, and assembly followed
Wolf et al.[39]. Annotation was carried out with
DOGMA [54] and tRNAscan [55].

Plastome analyses
Gene maps for representative plastomes were drawn
with OGDraw and compared for gene content, gene
order and IR boundaries [56]. Codon usage and nucleo-
tide frequencies were determined using CodonW [57].

DNA alignment
Nucleotide sequences for the 49 protein-coding genes
found in all study taxa were extracted from DOGMA-
annotated plastomes or from those found in GenBank
(Table 1). The hornwort Anthoceros formosae and the
fern Adiantum capillus-veneris both have extensive
RNA editing [30,36,37]. Therefore, we used the cDNA
sequences rather than genomic sequences for phyloge-
netic analysis. Each gene was aligned with MacClade v4
[58] and the resulting individual gene alignments were
assembled into a single data matrix. A Nexus block was
written that identified all unalignable DNA regions,
overlapping gene regions, and inferred RNA edited stop
codons for exclusion in subsequent phylogenetic ana-
lyses. Indels were scored in a separate data matrix as
binary characters.
The resulting 49-gene alignment including all codon

positions (see Additional file 5) was partitioned into
four data sets, 1) one that included all 43 taxa and
30,018 characters, 2) one that excluded both Selaginella

species (41 taxa and 29,961 characters), 3) one that
excluded the gnetophytes Ephedra equisetina, Gnetum
parvifolium and Welwitschia mirabilis (40 taxa and
29,871 characters), and 4) one that excluded both Sela-
ginella species and all gnetophytes (38 taxa and 29,814
characters). Altering the taxon set changes the number
of characters because of lineage specific indels. Nucleo-
tide alignments were translated into amino acids using
MacClade assuming the universal code [58]. Ambiguous
amino acids resulting from polymorphic nucleotides
were treated as missing.

Phylogenetic Analyses
Maximum Likelihood (ML) and Bayesian Inference (BI)
analyses were performed on each of the four nucleotide
data sets using PAUP* v4.0b10 [59] and MrBayes v3.1.2
[60-62], respectively. MrModeltest v2 [63] was used to
determine the best fitting model of DNA substitution.
With the best fitting model (GTR+I+Γ with four rate
catagories) an iterative procedure described in Swofford
et al.[64] was used to converge on the best fitting model
parameters. The resulting model parameters were then
fixed for ML analyses and a heuristic search was per-
formed with random taxon addition using TBR branch
swapping. Two hundred bootstrap replicates [65] were
performed for each data set, each replicate with a single
random taxon addition and NNI branch swapping. For
BI analyses (also using GTR+I+Γ) two runs each with
four markov chains running five million generations
were performed. The heated markov chain was sampled
every 100th generation. The -ln likelihood scores were
plotted against generation number and all samples col-
lected prior to the markov chain reaching stationarity
were discarded as burn-in. The remaining samples were
summarized using the sumt command in MrBayes. The
insertion/deletion matrix was analyzed using the maxi-
mum parsimony (MP) criterion in PAUP* as unordered
characters with 10 random taxon additions and 200
bootstrap replicates. BI analyses of amino acid data sets
were executed in a fashion similar to the nucleotide ana-
lyses. We used a fixed model, cpREV+I+Γ, estimated
specifically for phylogenetic estimation of plastid-
encoded proteins [66]. ML bootstrap analyses of amino
acid data were performed in RAxML also using cpREV
+I+Γ [67].

Additional material

Additional file 1: Plastid tufA pseudogene in Isoetes flaccida. The
tufA-like nucleotide sequence identified in the Isoetes flaccida plastome
was aligned with the plastid encoded tufA sequence of Chara vulgaris
using ClustalW [85]. An asterisk (*) indicates identical nucleotides and a
dash (-) indicates insertion/deletion event (indel). A total 41% nucleotide
similarity and 38 indels were identified.
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Additional file 2: Angiosperm phylogenetic results using nucleotide
data. The identical angiosperm topology was recovered using nucleotide
data regardless of taxon set or analytical method. Nodes with bootstrap
proportions (BP) = 100 or posterior probabilities (PP) = 1.0 are not shown
(most nodes). Support was generally strong within the angiosperms with
a few exceptions (shown). Nymphaea alba was always sister to remaining
angiosperms, not Amborella trichopoda. Support for this was variable (BS
= 78-90% depending on taxon set) and this has been addressed better
elsewhere (Leebens-Mack et al.[80]). Mapped non-homoplastic indels are
shown in yellow circles) and homoplastic indels are not shown.

Additional file 3: Phylogenetic results using inferred amino acid
data. A) Cladogram based on ML analysis using RAxML of 49 inferred
amino acid sequences from all 43 plastomes sampled (-ln =
181034.78356; Table 1). RAxML and BI analyses including all taxa as well
as those excluding both Selaginella spp. and gnetophytes (-ln =
149105.09124) also converged on this topology. Numbers above the
branches are ML bootstrap proportions and numbers below are Bayesian
posterior probabilities in this order: all taxa included/Selaginella spp.
excluded/gnetophytes excluded/Selaginella spp. and gnetophytes
excluded. Support within the angiosperms was generally low in RAxML
analyses. Nymphaea alba was always sister to remaining angiosperms,
not Amborella trichopoda (not shown). B) and C) Phylograms based on
RAxML analysis excluding either Selaginella spp. (-ln = 163523.52584) or
gnetophytes (-ln = 166579.56793), respectively. In all phylogenetic
analyses of inferred amino acid sequences angiosperms, gymnosperms,
lycophytes, monilophytes and bryophytes (in the broad sense) were each
monophyletic. However, two different best topologies were discovered
depending on taxon set and analytical method. In all BI analyses
regardless of taxon set as well as RAxML analyses including all taxa and
excluding both Selaginella spp. and gnetophytes, the lycophytes were
sister to seed plants and monilophytes were sister to all other land
plants (including bryophytes) (Additional file 3A). This relationship is
inconsistent with most published phylogenies including our nucleotide
sequence analyses. Branching order within the monilophytes differed
from the topology found using nucleotide data in that Angiopteris evecta,
Equisetum arvense and Psilotum nudum formed a paraphyletic grade with
respect to Adiantum capillus-veneris and Alsophila spinulosa; E. arvense
was sister to the leptosporangiate ferns and Angiopteris evecta was sister
to the clade containing all other monilophytes. The position of
Angiopteris evecta is inconsistent with previously published phylogenies
[e.g., Pryer et al.[46]]. A different topology was found in RAxML analyses
that excluded either Selaginella spp. or the gnetophytes (but not both).
In these analyses, monilophytes were found sister to seed plants and
bryophytes were sister to all other land plants (Additional file 3B, 3C).
Although Angiopteris evecta, Equisetum arvense and Psilotum nudum still
formed a paraphyletic grade, the relative positions of A. evecta and P.
nudum were switched. Placement of A. evecta, E. arvense and P. nudum
had high posterior probabilities (1.0 throughout), but bootstrap support
for these clades was low. All nodes within the monilophyte clade had
less than 65% support in RAxML bootstrap analyses except for the sister
relationship between Adiantum capillus-veneris and Alsophila spinulosa.

Additional file 4: Insertion/deletion (indel) matrix Insertion/deletion
events (indels) scored across the 49 aligned protein-coding genes used
in this study. Characters were scored as 1 for presence or 0 for absence
of a sequence stretch. Character state labels (CHARSTATELABELS) indicate
in which gene the indel was identified and the position within that gene
using the nucleotide alignment in Additional file 5.

Additional file 5: Nucleotide alignment Alignment of 49 genes from
43 plastomes used for phylogenetic analysis described in the text. Data
are interleaved by gene and exclusion blocks are provided at the end of
the file.
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