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Abstract 
 

High Resolution High Field Quantitative Parallel Magnetic Resonance Imaging for 
Osteoporosis and other Clinical Applications 

by 
Suchandrima Banerjee 

 
This thesis developed high signal-to-noise ratio (SNR) yielding magnetic resonance 

imaging (MRI) methods that require relatively short measurement times. The methods 

were primarily aimed at addressing existing technical limitations of low SNR and long 

scan times (~ 20 minutes) in the field of in vivo high resolution (HR) imaging of 

trabecular bone micro-architecture. HR-MRI of trabecular bone provides a non-invasive 

way of monitoring trabecular bone structural integrity for assessment of the disease 

condition, osteoporosis. Osteoporosis is a debilitating skeletal disorder affecting 1 in 3 

women and 1 in 12 men over the age of 50 worldwide and is characterized by loss of 

bone mass and structure leading to atraumatic fractures at the vertebrae, hip, wrists and 

other sites. SNR limitations in trabecular bone MRI were overcome by incorporating a 

high magnetization yielding pulse sequence and translating the imaging protocol to the 

higher field strength of 3 Tesla (T) from the clinical standard of 1.5 T. A simulation 

model was developed to estimate SNR in bone tissue. The feasibility of imaging 

trabecular bone structure in vivo at the proximal femur (hip), until then an SNR impeded 

application, was demonstrated. Next, an autocalibrating parallel imaging (PI) method was 

implemented to accelerate data acquisition. Using an eight channel coil array, scan time 

was reduced 2-4 fold without any significant impact on image resolution or edge 

sharpness; although bone structural measures derived from the accelerated images 

showed overestimation. Consequently, parallel reconstruction and image processing 

algorithms were developed to address the causes of overestimation. With the availability 
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of whole body 7 T magnets and the motivation for further improvement in SNR, the PI 

methods were adapted to the even higher field strength and its performance was found to 

improve relative to 3 T. To summarize, this thesis developed SNR efficient MR methods 

that facilitate quantitative HR-MRI of trabecular bone within 2-10 minutes, thus 

increasing the clinical feasibility of this application. Additionally, the PI methods were 

applied to diverse applications such as cartilage imaging for osteoarthritis; and 

susceptibility weighted imaging of brain vasculature and 3D spectroscopic imaging of 

brain metabolites in brain tumor patients. 
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Chapter 1 

Introduction 

1.1 Motivation 

The broad goal of medical imaging is to be able to a) record images that are indicative of 

the internal structures/functions of the body and b) extract image features that correlate 

with biomarkers of diseases. Ideally, in vivo imaging methods should be minimally 

invasive, and should involve measurement times that do not cause the subjects 

discomfort. Of the different medical imaging modalities such as X-ray computed 

tomography (CT), positron emission tomography (PET) and magnetic resonance imaging 

(MRI), MRI is particularly attractive because it provides excellent contrast between hard 

and soft tissues and does not use non-ionizing radiation.  

Although skeletal imaging was the earliest application of medical imaging, it 

remains a relevant and highly evolving field in the context of the increasing 

socioeconomic impact of skeletal disorders. Osteoporosis is a metabolic skeletal disease 

characterized by low bone mass and structural deterioration of bone tissue. It is a major 

public health threat for 55 percent of the people 50 years of age and older, of which 

eighty percent are women.  Osteoporosis is responsible for more than 1.5 million 

fractures annually including over 300,000 hip fractures; and approximately 700,000 

vertebral fractures; 250,000 wrist fractures; and 300,000 fractures at other sites. Many of 

these lead to morbidity and staggering health expenses (1). Although the skeleton is 

composed of about 80% cortical bone, trabecular bone has a eight times higher turnover 
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rate and is highly responsive to metabolic stimuli (2) thus making it a prime site for 

detecting early bone loss and monitoring response to therapeutic interventions. 

 The most clinically prevalent diagnostic imaging techniques used to measure 

bone properties and assess osteoporotic status are x-ray or ultrasound based. Image 

contrast in x-ray–based techniques arises from differences in tissue density. In ultrasound 

images, the image intensity is a depiction of the attenuation and speed alteration of sound 

waves. Both these methodologies reflect the density of bone mineral, and often it is 

difficult to distinguish the signal contribution from cortical and trabecular bone in the 

image. These methods are incomplete since in most cases they do not provide assessment 

of the three-dimensional (3D) architecture of the bone (3,4). This is a serious drawback in 

view of the fact that bone mass can account for only ~ 60% of the bone strength while an 

understanding of the spatial distribution of the mass, bone matrix composition and bone 

turnover is needed to account for the rest (3,5). Previously the diagnostic method for in 

vivo evaluation of bone structure involved bone biopsies. Magnetic resonance imaging 

provides 3D non-invasive imaging capabilities for evaluating bone structure in vivo and 

monitoring osteoporosis. Recently, cone beam scanning technology has been 

incorporated into dedicated peripheral quantitative computed tomography (PQCT) 

systems designed for in vivo high-resolution imaging of trabecular bone at the distal 

extremities (6). The absence of ionizing radiation and the innately higher contrast 

between bone and marrow gives MR distinct advantages over CT.  

The ability to distinguish between osteoporotic and non-fracture population based 

on MR image derived bone parameters have been reported in literature for a large number 

of studies (7,8). Figure 1.1 shows MR images of the trabecular bone micro-architecture in 
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the distal radius in a healthy and an osteoporotic subject. The dark streaks represent the 

trabecular bone network and the bright regions in between represent the bone marrow. 

The image from the osteoporotic patient shows loss of bone structure and loss of network 

connectivity while that from the healthy subject depicts a dense well-connected bone 

network. While MRI has established itself as an extremely promising monitoring tool for 

osteoporosis, several difficulties in its implementation remain. Magnetic and chemical 

heterogeneity in the tissue composition of trabecular bone presents unique technical 

challenges for MRI. Additionally, the structural elements comprising the trabecular bone 

network have nearly microscopic dimensions (100-200 µm), so very high spatial 

resolution is necessary to depict the bone structure in an MR image (4). 

  

Figure 1. 1 Representative MR image of the trabecular bone structure in the distal radius 
of a: a healthy subject and b: an osteoporotic patient. The bone structural organization 
in b is much sparser and less connected compared to a. These images were Majumdar S, 
et al, Journal of Bone Mineral Research Vol (12), 1997 

 

The three competing factors to be considered in high-resolution (HR) MRI are 

signal-to-noise ratio, spatial resolution and imaging time. Spatial resolution and signal-to-

noise ratio (SNR) are both directly related to imaging time but are inversely related to 

each other. A minimum SNR is required to be able to analyze the images. Acquisition 

times longer than 15-20 minutes cause discomfort in patients and result in motion 

a) b) Bone marrow 

Trabecular 
bone structure 
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induced artifacts. The technique developments in the domains of MR image acquisition, 

reconstruction and analysis to be presented in this work are based on all these 

considerations and are aimed at increasing SNR and accelerating measurement time 

while still ensuring accurate quantification of disease biomarkers from the images. 

Recent developments in MR magnet, gradient and RF hardware technology have also 

influenced our research approach.  In recent years, whole body high field magnets (3 

Tesla, 7 Tesla) have become available for human MRI. With improvements in gradient 

hardware, rapid imaging sequences with high duty cycle have become more feasible. 

Developments of phased array RF transmitters and receivers have ushered an era of rapid 

MR imaging using massively parallel excitation and signal detection strategies (9,10). 

These technological resources have been incorporated in our MR developments.  

Besides osteoporosis, our technique was applied to another debilitating 

musculoskeletal disease, osteoarthritis. Osteoarthritis affects joints such as the knee and 

hip and is characterized by progressive loss of articular cartilage. MRI of articular 

cartilage is emerging as a diagnostic tool for assessing cartilage morphology, 

biochemistry and function (11). Our rapid MR technique was extended to quantitative 

imaging of cartilage morphology at the knee. Additionally it was extended to 

neurological applications such as spectroscopic imaging (SI) of brain metabolites and 

susceptibility weighted imaging (SWI) of brain vasculature for monitoring brain tumors. 

Each of these application areas not only have a different disease focus but also pose 

different technical challenges. Trabecular bone MRI requires accurate quantification of 

image features in the order of pixels where as cartilage MRI requires accurate 

quantification of image features in the macroscopic scale. Spectroscopic imaging 
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involves processing of four dimensional acquisition data and both SI and SWI require 

accurate reconstruction of image phase. By applying our MR method to these diverse 

application areas, we not only increased its utility but were able to test the robustness and 

flexibility as well. 

 

1.2 Chapter Organization 

The thesis consists of eight chapters. The organization of material in Chapters 2-8 is as 

follows: 

Chapter 2 provides background on magnetic resonance imaging principles and the 

assessment of osteoporosis from MR images. 

 Chapter 3 presents optimization of an imaging protocol employing the SNR efficient 

pulse sequence, balanced steady state free precession (bSSFP) for high resolution bone 

imaging at 1.5 Tesla (T) and its translation to the higher field of 3 T. The SNR gained at 

the higher field with the bSSFP protocol was estimated from simulation and experimental 

studies (12). 

Chapter 4 presents the development of a parallel imaging technique for accelerating HR-

MRI of trabecular bone and an in-depth qualitative and quantitative evaluation of images 

obtained by this rapid imaging method (13).  

Chapter 5 presents translation of the parallel imaging method presented in Chapter 4 to 

the higher field strength of 7 Tesla. Potential of parallel imaging at the high field is 

evaluated quantitatively and assessed in the context of electro-magnetic properties of 

skeletal tissues. (14) 
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Chapter 6 proposes regularized parallel image reconstruction and histogram based post-

processing methods to improve the accuracy of measurement of trabecular bone 

structural parameters from images obtained by highly accelerated parallel imaging 

techniques (15). 

Chapter 7 examines the robustness and flexibility of our parallel imaging technique by 

extending it to two neurological applications-spectroscopic imaging of brain metabolites 

and susceptibility weighted imaging of brain vasculature (16,17). This work was done in 

collaboration with the members of Professor Sarah Nelson’s research group. 

Chapter 8 summarizes the work presented in Chapters 3-7 and discusses its advantages, 

limitations and scope of future improvement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7

Chapter 2 

Background 

2.1 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) originated from the nuclear magnetic resonance 

(NMR) method that has been used by physicists and chemists since the 1940s for 

studying molecular structure and diffusion. In 1973 Paul Lauterbur acquired a magnetic 

resonance image for the first time by employing spatial localization of the NMR signal. 

Magnetic resonance is based on the interaction between an atom and the external 

magnetic field. Atoms with odd atomic number i.e. atoms having net nuclear spin angular 

momentums are visible to the MR phenomenon. As the most biologically abundant 

nucleus with odd atomic number, hydrogen (1H) has the greatest sensitivity to MR, and 

so naturally most MR experiments are tuned to the resonant frequency of protons. MRI is 

used to look at other nuclei such as carbon (C13) and phosphorus (P31) as well, but the 

scope of this dissertation is limited to proton MRI only.  

2.1.1 Quantum and classical description MR 
MR imaging involves interaction of atoms with three external magnetic fields: 

1) the main static magnetic field (B0)  2) radiofrequency field (B1) 3) gradient fields G. 

In the presence of the external magnetic field the nucleus can attain discrete energy levels 

that are related to the discreteness of the nuclear angular momentum, also known as spin 

angular momentum or spin. 

ISµ =γ=γ=                                                                                                                 [2.1a] 
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where µ , S, = , I and γ are the magnetic dipole moment, spin angular momentum, 

Planck’s constant, spin operator and gyromagnetic ratio respectively. Gyromagnetic ratio 

is a constant unique for each type of atom. For protons, γ=42.58 MHz/ Tesla. The 

potential energy E of the magnetic moment µ in presence of the magnetic field B is 

µ.B−=E                                                                                                                       [2.1b]                       

For proton, the two possible eigenstates of the spin are 
2
1

± . So difference between the 

two energy states is 

0BE =γ=∆                                                                                                                    [2.1c] 

Ratio between spin population occupying the higher (antiparallel to B0) and lower 

(parallel to B0) energy states is given by the Boltzman distribution 

kT
E

lower

upper e
n
n ∆

−
=                                                                                                                  [2.2a] 

where k is the Boltzman’s constant and T is the absolute temperature.  

In the absence of an external magnetic field, there in equal occupancy of both energy 

levels leading to a degenerate state. In the presence of Bo, the nlower population slightly 

outnumbers the nupper (7 out of a million) resulting in a weak polarization of the imaging 

sample. This is known as the Zeeman effect and it underlies the MR phenomenon. The 

equilibrium nuclear magnetization M0 in the sample is given by 

kT3
B)1I(IN

M 0zz
22

0
+γ

=
=

                                                                                             [2.2b] 

where N is the total number of nuclear spins per unit volume. At equilibrium, net 

exchange of energy between the spin system and the outside world is zero. If the sample 

is then irradiated by an electromagnetic irradiation of frequency f0 such that 
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00 B
2
hhfE
π

γ==∆                                                                                         [2.3a] 

transitions will be induced between energy levels. This is known as the on resonance 

condition. The resonant frequency expressed in radians/sec can be written by the Larmor 

equation as 

0Bγ=ω                                                                                                                        [2.3b] 

where ω is known as the Larmor frequency. This equation (2.3b) lays the foundation of 

spatial localization for MRI by connecting resonant frequency to the magnetic field 

strength. After the RF is turned off, spins return to equilibrium emitting energy that is 

detected as the MR signal. This is in brief, the quantum mechanical description of spin 

interactions with B0 and the radiofrequency field B1.  

Fortunately, most of the MR phenomenon can be explained accurately using 

classical physics. In the classical description, the nuclear angular moments are described 

by magnetization vectors and polarization is represented by a net magnetization vector 

aligned with B0. At equilibrium, the nuclear moments experience precession about the B0 

axis in random fashion such that the transverse component of the magnetization (Mxy) 

cancels to zero and there is a net magnetization vector only along the z axis (Mz), aligned 

with B0. On the application of a radiofrequency (RF) field B1 perpendicular to B0 at the 

resonant frequency, Mz experiences a torque resulting in a non-zero transverse 

component Mxy. The degree of rotation depends on amplitude and duration of the RF 

excitation. After the RF excitation is turned off, the Mxy component experiences free 

induction decay (FID) and the longitudinal component Mz eventually returns to 

equilibrium. By Faraday’s induction law, the varying magnetic field associated with the 
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FID generates a voltage in MR detector coils that are tuned to the resonant frequency 

leading to detection of the MR signal. 

The longitudinal relaxation is described by the Bloch equation 

1

ozz

T
MM

dt
dM −

−=                                                                                           [2.4a] 

where T1 is known as the longitudinal/spin lattice time constant. Physically it involves 

energy exchange between the nucleus and surrounding spin lattice. From the quantum 

point of view, it involves energy transition between nupper and nlower spin populations. 

Since the energy gap between the two populations is proportional to B0, it is obvious that 

T1 lengthens with increase in field strength. The transverse or T2 relaxation behavior can 

be described by the Bloch equation: 

2

xyxy

T
M

dt
dM

−=                                                                                                            [2.4b] 

For 90° excitation, the longitudinal and transverse magnetization components can be 

written as 

2T/t
0xy

1T/t
0z eM)t(M;)e1(M)t(M −− =−=                                                               [2.4c] 

The T2 relaxation, also known as spin-spin relaxation arises from spread of resonant 

frequencies and the subsequent loss of phase coherence of the transverse magnetization. 

It must be noted that T1 and T2 relaxation processes are closely related. Since the 

magnetization M eventually returns to equilibrium Mo, T2 ≤ T1. Unlike T1, T2 is largely 

independent of field strength. T1 and T2 relaxation constants are characteristics of the 

molecular environment of a tissue. In solids, slowly varying field fluctuations create a 

large broadening of the resonant frequencies and very short T2. When magnetic 

heterogeneity in the tissue environment imposes additional spatial magnetic gradients, 
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there is more broadening of resonant frequencies and more rapid loss of phase coherence. 

This is known as T2* decay. However, unlike T2 decay, T2* decay is reversible for some 

imaging sequences as will be described in Section 2.1.3 (18,19). 

 2.1.2 Spatial localization of MR signal 
To acquire an MR image it is essential to spatially localize the source of NMR signal. 

Since the Larmor frequency is proportional to the magnetic field experienced by a spin, 

the underlying principle of spatial localization in MR is to employ spatially varying 

magnetic fields known as gradients so that the Larmor frequency of a spin encodes its 

spatial position. Gradients consist of three orthogonal magnetic fields Gz, Gx and Gy 

which are commonly known as the slice selection, frequency encoding (FE) and phase 

encoding (PE) gradients respectively based on their functionalities. Gz gradient imposes a 

variation in frequency with z so that only a particular z (slice) location is on resonance 

with the RF excitation. The slice thickness can be controlled by the Gz amplitude. The 

remaining two dimensions are spatially encoded with the help of the frequency encode 

and phase encoding gradients. In one dimension the spatial locations of spins can be 

encoded by their frequencies. Encoding in the other dimension is achieved by applying 

phase offsets proportional to the spatial position of the spins. Mathematically, the spatial 

encoding by gradients is equivalent to a Fourier Transformation of the spatial distribution 

of magnetizations in a selected volume in the subject being imaged. The Fourier space is 

known as k-space in the MR formalism. Since only discrete positions in k-space are 

encoded by the gradients, the Fourier space is discretely sampled in this process. The 

image is recovered from the measured MR signal by an inverse Fourier transformation. In 

more sophisticated imaging techniques such as spiral and echoplanar imaging, the 
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gradient waveforms vary in space as well as time and the k-space can be sampled in any 

arbitrary trajectory (20,21). 

MR signal detected at time t can be written as 

rrGrr d).(iexp(e)(m)(Bi)t(S
t

0

ti
vol10

0∫ ∫ τγ−ω= ω−                                                     [2.5a] 
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0 Grrkrr                                   

)(M k∝                                                                                                                    [2.5b] 

where m(r) is the magnetization at spatial position (r), M(k) is the Fourier Transform of 

the spatial distribution of magnetization at spatial frequency (k) and G is the 

superposition of all gradient fields at position r. B1(r) is the magnetic field produced at 

the position r per unit current in the coil and by the principle of reciprocity it is also 

indicative of the receiver coil sensitivity at that position. It can be seen from Eq. [2.5b] 

that measurement of MR signal at any time instant t also corresponds to measurement of  

the spatial frequency component of the magnetization distribution at a frequency k. This 

spatial frequency is equal to the time integral of the gradient at the instant of 

measurement (18). 

2.1.3 Gradient echo and spin echo imaging 
Imaging sequences can be classified based on type and timing of RF excitation and 

gradient waveforms. Spin-echo and gradient echo, the two main classes of MR sequences   

will be described in this section. 

A basic gradient echo sequence consists of 90° excitation applied in conjunction 

with a slice selection gradient. Following the 90° RF excitation, a phase encoding 

gradient and a negative FE gradient that dephases transverse magnetic component, are 
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applied. The direction of the FE gradient is then reversed so that the spins precess in 

opposite direction and regain phase coherence lost due to the dephasing effect of the 

negative FE gradient-this is also known as echo formation. The measurement window is 

so positioned that signal from the center of k-space is measured at the center of the echo. 

In gradient echo sequences the coherence loss due to T2* decay is not recovered during 

the echo. The signal equation for GE imaging is given by  

1

21

T
TR

*T
TE

T
TR

eCos1

Sine)e1(kS
−

−−

α−

α−
ρ=                                                                                      [2.6] 

where ρ and α are the proton density and flip angle respectively, and k is a proportionality 

constant that accounts for gains in the instrumentation system.  The timing diagram of the 

basic gradient echo sequence is shown in Figure 2.1. The interval between the two RF 

exciations is denoted by repetition time (TR) and the time interval between the RF 

excitation and echo formation is denoted by echo time (TE) (18). 

 

 

 

 

 

 

 

 

 

Figure 2.1 shows the timing diagram of a basic gradient echo sequence 
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A basic spin echo (SE) sequence consists of a 90° excitation, applied in conjunction with 

a slice selection gradient and a slice selective 180o pulse applied after a time TE/2. After 

the 90° RF pulse is turned off, spins precessing in the transverse magnetic plane about the 

B0 axis gradually lose coherence due to broadening of the resonant frequency. The 180°  

RF pulse is applied about the transverse axis at a time TE/2 after the 90° excitation to 

refocus the spins in the transverse plane. A period of TE/2 after the 180° excitation, 

the spins rephase producing a strong “spin-echo”. The MR data is acquired at this time.  

Figure 2.2 shows the timing diagram for a spin echo sequence. The echo time (TE), 

which is the time of the echo formation, and the repetition time (TR), which is the time 

between two consecutive 90° pulses, are also shown in Fig. 2.2. The signal equation for 

SE imaging is given by (18) 

21 T
TE

T
TR

ee1kS
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−ρ=                                                                                                      [2.7] 

 

Figure 2.2 shows the timing diagram of basic spin-echo sequence 
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2.1.4 MR Image contrast 
Since relaxation constants such as T1, T2 and T2

* are tissue characteristics, they provide 

image contrast between different tissue types and are also considered to be biomarkers in 

many disease conditions.  Depending on the imaging application, imaging parameters 

such as TR, TE and flip can be adjusted to accentuate a desired contrast or weighting in 

the MR image. From Eq. [2.7], long TR and short TE in a spin-echo sequence will reduce 

T1 and T2 weighting respectively, yielding a primarily proton density weighted image. 

Short TE and short TR will yield a T1 weighted image while long TE will accentuate the 

T2 contrast. For gradient echo imaging, the contrasts can be further manipulated by 

choice of flip angle. From Eq. [2.6], it can be seen that a low flip angle diminishes the T1 

weighting. As the flip angle increases it results in a significant T1 contribution in the 

signal. The T1 weighting can be further adjusted by varying the TR. Employment of a  

long TE emphasizes the T2
* contrast (18).  

2.1.5 SNR in an MR image  
Signal in a voxel in the MR image can be written as (22): 

zyxN)z,y,x(M).z,y,x(B.BS samples100 ∆∆∆ω∝                                                                                    

[2.8a] 

where ∆x, ∆y and ∆z are the voxel dimensions, N samples are the total k-space samples 

acquired and M(x,y,z) is the magnetization at (x,y,z). 

The noise power can be written as: 

sampleseff fNkTR4)f(N ∆=                                                                                           [2.8b] 

where k, T, R and ∆f are the Boltzmann’s constant, absolute temperature, effective coil 

resistance and receiver bandwidth respectively. In most cases the effective resistance is 
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dominated by resistance of the imaging sample. The resistance which a coil sees from a 

sample is proportional to the volume of the sample from which the coil receives signal, V 

sensitive. So Reff is proportional to V sensitive. Due to the differentiation related to Faraday’s 

induction law, the noise power is also weighted by the Larmor frequency.  

So, the SNR in a voxel in an MR image can be written as: 

sensitive

samples10

fV

Nzyx)z,y,x(MBB
SNR

∆

∆∆∆
∝                                                                   [2.8c] 

From equation [2.8c] it can be inferred that the SNR in an MR image can be increased by 

increasing the field strength B0, the voxel dimensions, the number of k-space samples and 

by employing pulse sequences that will increase the magnetization. From equation [2.8c], 

it is also obvious that employing coils which have a smaller volume of sensitivity, such as 

surface coils, reduces effective coil resistance and consequently improves the SNR. 

 

2.2 Assessment of trabecular micro-architecture from MR 

images for monitoring osteoporosis 

Osteoporosis is a metabolic skeletal disorder characterized by a loss of bone mineral 

density and characterized by the occurrence of atraumatic vertebral fractures, fall-related 

hip fractures, and Colles fractures of the distal radius. It is now widely accepted that 

“bone quality” depends on several factors pertaining to cortical and trabecular bone such 

as shape and geometry of the bones in the macro-architectural level, cortical shell 

thickness and spacing, connectedness of the 3D trabecular bone network at the micro-
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architectural level, composition of the bone-matrix, mineralization among other things 

(3,4). This has motivated the development of MR imaging techniques for assessment of 

3D trabecular network. It permits not only the depiction but also the quantification of 

trabecular bone structure, and hence its biomechanical properties.  

       The trabecular bone network comprises of a network of interconnected plates and 

struts encased by a thick cortex. Trabecular structural elements in the human skeleton are 

typically 100-150 µm thick. Interstitial spaces in the trabecular network are occupied by 

bone marrow which mainly consists of fat and water. Since bone has low water content 

that is mostly bound to collagen, it has a very short T2 relaxation time. So in an MR 

image, trabecular bone appears dark in stark contrast to the bright marrow. MR can be 

used to assess the properties of trabecular bone in two different ways. The first is an 

indirect measure, often termed relaxometry or quantitative magnetic resonance (QMR). 

Trabecular bone, being composed of heavy elements such as Calcium and Phosphorus is 

substantially more diamagnetic than bone marrow. As a result local field inhomogeneities 

arise, and the T2 and T2* relaxation properties of bone-marrow are impacted. The local 

field gradients depend on the field strength as well as on number of bone-bone marrow 

interfaces, size and orientation of the trabecular structures etc (23). So the basic principle 

of the QMR technique is to indirectly assess the density and structure of trabecular bone 

network from the altered relaxation properties of the bone marrow.  

The second and direct method of MR assessment involves direct visualization of 

the dark, trabecular bone, in contrast to the bright marrow fat from high resolution (HR) 

MR images. A representative HR image of the trabecular bone micro-architecture at the 

ankle (calcanues) is shown in Figure 2.3. The best spatial resolution that can be achieved 
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in vivo even with the most advanced MR techniques is in the order of the average 

trabecular thickness of 100-200 µm. This gives rise to partial volume effects in the image. 

As a result, the imaging method might be less sensitive to detection of very thin 

trabeculae or may represent an average or a projection of a few trabeculae (3). However, 

since the inter-trabecular spacing is typically much larger than that and is increased in 

osteoporosis, it is still possible to derive some structural measures from MR images 

reproducibly. Recognizing the limited spatial resolution regime, a major focus in the field 

of MR derived bone structural analysis has been  to investigate the resolution dependence 

of MR-based measures and to calibrate MR-derived measures against a gold standard 

(24,25) 

 

Figure 2.3 shows a typical HR-MRI image of trabecular bone structure at the ankle. The 
bright streaks represent the bone marrow while the intermediate dark streaks depict 
trabecular bone.  

 

MR image analysis techniques probing several properties of the trabecular structural 

organization such as inter-element spacing, anisotropy, connectivity, texture and 

lacunarity have been developed over the last two decades to identify all aspects of 

structural deterioration in trabecular bone associated with osteoporosis. Many of the 

measures such as trabecular bone volume fraction (BV/TV), trabecular thickness (Tb.Th), 

trabecular spacing (Tb.Sp), and trabecular number (Tb.N) are inspired by thin-section 
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microscopy-based bone histomorphometry techniques (26,27). Others include topological 

measures such as Euler’s number and surface-to-curve ratio, fractal dimension, 

cocurrence, maximum entropy measure etc (28,29). Image intensity variations caused by 

inhomogeneities in receiver sensitivity usually need to be removed before extraction of 

the structural measurements (30). Most structural parameters are derived from a 

processed image that has been binarized into bone and non-bone phases, which is 

typically done by thresholding. The choice of threshold is complicated by partial 

voluming because in an MR image, voxels typically are partly occupied by bone and 

partly by bone marrow. Majumdar et al proposed a dual-threshold technique in which the 

bone reference intensity IB is chosen by sampling regions of the cortical shell from the 

image, and the marrow intensity IM is empirically chosen as the upper value at which the 

histogram has half of the maximum peak height (31).  

The fractional bone area 
N
Nf B= where BN  is the number of trabecular bone pixels and 

N  is the total number of pixels in the region of interest (ROI) can be determined based 

on the two reference intensity levels.  

BM

avgM

II
II

f
−

−
=  

where avgI  is the average intensity in the ROI. After determination of the bone fraction f , 

the threshold for binarizing the image into bone and marrow can be chosen such that the 

resulting bone fraction matches f . Structural measures analogous to histomorphometry 

are generally analyzed by a two-dimensional plate like model using the Mean Intercept 

Length (MIL) method (32). In the MIL method, a set of parallel rays is passed through 

the ROI over different angles. The number of mean intercepts over all the angles gives a 
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measure of the trabecular number whereas the mean intercept length gives a measure of 

the inter-trabecular spacing. Since the MR images are not acquired at true microscopic 

resolutions, Majumdar et al described these measures derived from MR images as 

“apparent” measurements. However, the authors also noted that the apparent structure 

reflected by the limited-resolution MR images is highly correlated to the “true” structure 

(33). To obviate the need for binarization of the MR image, methods such as Distance 

Transform, fuzzy transform, spatial autocorrelation analyses, texture and  wavelet based 

structural analysis have also been proposed in the literature (29,34-36). Among the MR-

derived bone structural measures analogous to histomorphometry, apparent trabecular 

number (App. TbN) and apparent trabecular spacing (App. TbSp) which is a reciprocal of 

App. TbN, have been found to distinguish between non-fracture and osteoporotic 

population (37,38). 
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Chapter 3 

Application of high magnetization yielding pulse 

sequence and higher magnetic field strength (3 Tesla) to 

improve SNR of in vivo trabecular bone MRI- 

simulations and experiments 

3.1 Introduction 

In vivo MRI has evolved over the past two decades as a promising diagnostic tool for 

monitoring the structural organization of bone in response to therapy or with disease 

progression in osteoporosis patients. Since a minimum spatial resolution of 150-200 µm 

is necessary to depict the trabecular architecture and scan time should be no longer than 

15-20 minutes to avoid patient discomfort, this imaging application demand high SNR 

efficiency. Imaging of trabecular bone at non-peripheral anatomic sites is even more SNR 

limited as the sensitivity of surface coils diminishes approximately proportional to cube 

of the depth from the surface (22). So while micro-structural parameters of trabecular 

bone at extremal sites such as the calcaneus (heel bone), distal radius (wrist bone), and 

distal tibia have been quantified from MR images (39) and analyzed for correlation with 

hip fracture risk (40) extensively over the last decade, in vivo MRI of trabecular bone at 

non-peripheral sites such as the vertebrae and the proximal femur (hip) had not been 

conducted. In this work we investigated the use of a SNR efficient pulse sequence and 
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higher static magnetic field strength to facilitate SNR deficient imaging applications such 

as trabecular bone MRI of the proximal femur. 

 

3.2 Background 

3.2.1 Magnetic Susceptibility 
Spins in an imaging subject/ object experience internal magnetic fields in addition to the 

external magnetic fields in the MR magnet. The internal field is dominated by 

neighboring atomic electrons whose individual contributions can be well approximated 

by magnetic dipole fields. All materials have induced dipole moments in the presence of 

time-dependent external magnetic fields. The induced atomic currents produce a weak 

magnetic field opposing the external magnetic field. This omnipresent phenomenon is 

known as diamagnetism. Atoms with unpaired electrons have a non-zero magnetic 

moment with an associated non-zero dipole magnetic field that aligns with the external 

field and reinforces it. These are known as paramagnetic materials.  In cases where the 

electrons pair up to cancel their spin magnetic moments, diamagnetism is more 

predominant than paramgnetism. Materials such as iron, gadolinium have permanent 

domains of electron spin magnetic moments that produce strong self-magnetic fields 

irrespective of external fields. Most biological tissues are diamagnetic. Local 

susceptibility gradients arise when neighboring atoms in an imaging volume have 

different magnetic susceptibilities. Since the precession frequency of a spin is 

proportional to the magnetic field strength, differences in local magnetic fields 

experienced by spins lead to off-resonance, causing dephasing of the MR signal, and T2* 

relaxation for gradient echo sequences (41). 
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3.2.2 MR pulse sequences for imaging trabecular bone micro-architecture 
The tissue composition of trabecular bone provides unique technical challenges to MR 

imaging of its micro-architecture. Firstly, bone is generally invisible in MR due to its 

ultra-short T2 relaxation time. In contrast, bone marrow has high signal intensity, so the 

trabecular network is depicted indirectly in an MR image by depiction of the marrow (4). 

Trabecular bone consists of a network of interconnected plates and columns with bone 

marrow dispersed in the interstitial spaces between the structures (42). Bone being 

composed of elements with high atomic number (Calcium and Phosphorus) is more 

diamagnetic than bone marrow which mainly consists of water and fat. This gives rise to 

magnetic field inhomogeneity in bone-bone marrow interfaces. Consequently, dephasing 

and signal cancellation occurs in voxels at the bone-marrow interfaces (23,42). In spin-

echo sequences the signal decay due to static dephasing over and above T2 decay, also 

known as T2* decay, is recovered at the time of the echo, whereas in gradient echo 

sequences it is not. As a result the T2* effect is manifested by variations in image 

intensity in the bone marrow and a broadening/ blooming of trabecular structures in an 

MR image acquired by GE sequence. Additional signal modulation is also caused by 

different chemical components of the fatty marrow (31). So ideally, 3D spin echo (SE) 

sequences are better suited for imaging of trabecular bone micro-architecture by virtue of 

robustness to static dephasing and off-resonance effects. However, GE sequences can be 

employed with short repetition time (TR) because of their higher SNR efficiency and can 

thus acquire a 3D volume in shorter scan time and avoid patient motion artifacts. As a 

result, 3D GE sequences such as 3D Fast Gradient Recalled Echo (FGRE) sequences are 

widely employed for HR-MRI of trabecular bone (30,31,33). Generally, scan time in SE 

imaging can be reduced by employing multiple RF spin echoes to sample multiple phase-
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encoding lines in one repetition time. But the long echo train length causes T2 blurring 

broadens the point spread function (PSF), and consequently decreases effective image 

resolution (43). This type of sequence is not suitable for HR-MRI of small structures. 

Although a three-dimensional (3D) SE pulse sequence employing only one echo per 

excitation would be optimal long imaging time and low SNR efficiency limit its clinical 

use. To address these problems 3D-SE type pulse sequences with variable flip angle like 

rapid SE excitation (RASEE) (44), large-angle spin-echo imaging (45) and subsequently 

fast 3D large-angle spin-echo imaging (FLASE) were introduced The general idea of all 

these approaches was to apply composite RF pulses (RASEE) or only one large-angle RF 

pulse (FLASE) (46) so that the longitudinal magnetization is partly tipped to the negative 

axis. The subsequent 180° phase reversal pulse, while generating an echo, restores the 

longitudinal magnetization. Even with this scheme, the TR has to be sufficiently long, on 

the order of 80 ms (46), to avoid saturation. 

3.2.3 Steady State Free Precession (SSFP) Sequence 
In recent years, with advances in gradient hardware, fully refocused steady state free-

precession (SSFP) sequences such as three dimensional fast imaging employing steady 

state acquisition (FIESTA), true fast imaging with steady state free precession (trueFISP) 

and balanced fast field echo (bFFE), which employ very short repetition times (TR << 

T2) have become popular because of their high SNR (47). The timing diagram of fully 

refocused SSFP sequence is shown in Figure 3.1. Though these sequences are rapid 

gradient-echo techniques, their spin-echo-like refocusing behavior for a limited range of 

off-resonant frequencies has been shown in the literature (48). However, refocused SSFP 

imaging is limited by its sensitivity to field inhomogeneity. The attenuated response from 
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regions of off-resonance may cause dark bands (“banding artifact”) to appear in an SSFP 

image with a periodicity inversely proportional to the repetition time (47) . To overcome 

this limitation, especially in applications that employ long TRs or image heterogeneous 

tissues, multiple-acquisition SSFP techniques such as the phase-cycled FIESTA 

(FIESTA-c), which acquire data from n independent SSFP acquisitions (49,50), evolved. 

Each of these acquisitions employs a different phase increment between excitation 

radiofrequency (RF) pulses, so that the signal notches in each of their response profiles 

are shifted in position with respect to the others. Combining these datasets yields a flatter 

response profile. Generally, the final image is computed by assigning to each pixel the 

maximum magnitude of the n corresponding reconstructed pixel values (also known as 

the maximum intensity [MI] technique).Other combination techniques, such as sum-of 

squares, complex sum, etc. have also been discussed and evaluated (49). The larger the 

value of n, the better the removal of banding artifacts, but the scan time for an n-

acquisition SSFP is n times longer compared to single-acquisition SSFP and thus, the 

SNR efficiency is poorer. 
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Figure 3.1 shows the timing diagram of b-SSFP sequence 

 

3.3 Methods 

3.3.1 Simulation Studies  
 
Magnetization Response and Optimization 

We developed a simulation (Matlab 6.1; MathWorks Inc., USA) of the steady-state 

transverse magnetization response to fully-refocused SSFP by linear system analysis 

similar to that described by Hargreaves et al (51). From the analysis, Mss, the steady state 

magnetization vector, is a function of T1, T2, TR, TE, and flip (α) and precession (β) 

angles. 

),,TE,TR,2T,1T(fMss βα=             [3.1] 

The shape of the steady-state transverse magnetization response (Mxy) is primarily 

influenced by T1, T2 and α while bandwidth of the “passband” is determined by TR 

(47,52). T1 and T2 values used as inputs to the simulation correspond to that of marrow 
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fat: T1 =288 msec and T2 = 165 msec at 1.5 T and T1 = 371 msec and T2 = 133 msec at 

3 T (53). In refocused SSFP sequences such as FIESTA and trueFISP, the phase of the 

RF pulse is incremented by 180° from one excitation to another (47,54). So a spin on 

resonance effectively undergoes an angle of precession of 180° over one TR. For 

simulation of the composite response to the FIESTA-c sequence, we computed two sets 

of steady state values; one for an SSFP acquisition with no phase increment between 

excitations and one for a standard SSFP acquisition with phase increments of 180° from 

one excitation to another. Number of acquisitions (N) was limited to two, keeping in 

mind practical issues with long scan times. 

),,,TE,TR,2T,1T(fMxy ii φβα=          [3.2a] 

{ } { }2,1i,,0 ∈π∈φ                       [3.2b] 

The resultant response to the FIESTA-c sequence was computed as the maximum 

magnitude across the datasets. In MR images, trabecular bone structures appear as dark 

streaks in a bright region that represents the bone marrow so, essentially, SNR is 

synonymous with contrast-to-noise ratio (CNR). Hence, the imaging parameters were 

optimized with a focus on SNR, SNR efficiency, and sensitivity to off-resonance. 

 

Intravoxel Inhomogeneity 

To estimate the intravoxel inhomogeneity arising from the susceptibility difference 

between bone and marrow, we simulated a simplified bone-model consisting of a uniform 

random distribution of spherical inclusions (to mimic trabecular microstructures) in a 

medium of fatty marrow. The input parameters for this model were the main magnetic 

field strength (B0), pixel dimensions, fractional area occupied by bone (area belonging to 
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bone/total area), diameter and orientation of a trabeculae, and minimum intertrabecular 

spacing. Assuming a susceptibility difference of 0.3 parts per million (ppm) between the 

bone and the marrow (55) we generated a map of the static inhomogeneity within the 

pixel using standard magnetostatics (41,42). Inhomogeneity at a point (xo, yo) was 

calculated as the summation of the contributions from each of the inclusions at (xi, yi): 
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i0 µ−µ=χ∆                       [3.3b] 

where R is the radius and µi is the susceptibility of the microspherical inclusion. ri and θi 

are the magnitude and orientation with respect to the main magnetic axis of the position 

vector of the ith inclusion and µ0 is the susceptibility of the medium. The magnetic 

susceptibilities are in the cgs system of units. 

 Consequently, the off-resonance ∆ω(xo, yo) is given as: 

  B∆γ=ω∆                                              [3.4] 

where γ, the gyromagnetic ratio, is 2.675 x 108 rad/second/T 

 

Signal Estimation 

We binned the off resonances within a voxel into a histogram. For a particular set of 

imaging parameters (TR, TE, and flip angle) and static field strength (B0), M(β), the 

magnetization response to the FIESTA sequence for each binned frequency β, was 

computed using the sequence simulation described above. As shown in Eqs. [3.2a] and 

[3.2b], for estimating the signal response to the FIESTA-c sequence, we computed two 
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sets of values Mxy (β,φ) where { }π∈φ ,0 . The magnitude of the signal from the voxel (S) 

was estimated as the magnitude of the weighted complex sum of the steady state 

transverse magnetization of all the spins in the voxel, for the single SSFP technique, and 

as the maximum of the magnitudes of the weighted complex sum of the steady-state 

transverse magnetization of all the spins in the voxel from each independent SSFP 

acquisition, for the multiple-acquisition SSFP. 

 So, for the FIESTA sequence: 
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For the FIESTA-c sequence with N = 2: 
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where A (β) represents total number of spins in the frequency bin β. 

A total of 25 voxels were sampled from the bone marrow model. Estimate of the mean 

signal was computed as the mean of the signal from the 25 voxels. Assuming a bone 

fraction of 0.2 in the femoral trochanter (37) and 0.35 in the anterior part of the distal 

tibia and the calcaneus (56), we used this model to estimate the relative SNR 

performance of FIESTA and FIESTA-c sequences at the above anatomical sites at 1.5 

and 3 T. 
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3.3.2 MR Experiments 
 
Subjects 

We studied eight normal healthy volunteers (age range 24–45 years, two female, six 

male) with their informed consent in accordance with the regulations of the Committee 

of Human Research at the University of California, San Francisco (UCSF). Three were 

imaged at the site of the proximal femur, two each at the sites of calcaneus and distal 

tibia, and one at both the sites of calcaneus and distal tibia, at field strengths of 1.5 and 

3 T.  

  

 Image Acquisition 

We acquired images on a 1.5-T Signa Scanner (General Electric, Milwaukee, WI, USA) 

using a U.S.A Instruments (Cleveland, Ohio, USA) four-coil surface phased array 

receiver coil and on a 3-T scanner (GE Signa) using a similar coil from Nova Medical 

(Wilmington, MA, USA). At both field strengths, the receiver consisted of two paddles, 

each housing two coil elements. For acquisitions at the sites of calcaneus and tibia, one 

paddle of the receiver was placed laterally and the other medially. For acquisitions at the 

site of the proximal femur, one paddle of the receiver was positioned anteriorly and the 

other laterally to the thigh. The gradient system had maximum amplitude of 40 mT/m and 

maximum slew rate of 150 mT/m/msec. The image acquisition matrix was 512 x 384 in 

all the scans. The calcaneus and tibia images, acquired in the sagittal and axial planes, 

respectively, have an in-plane resolution of 190 µm and a slice thickness of 500 µm. 

Coronal images of hip were acquired with an in-plane resolution of 234 µm.  For FIESTA 

and FIESTA-c acquisitions, our imaging protocol was based on the optimization studies 



 31

presented above. The readout bandwidth (RBW) was adjusted to reduce the TR. 

However, choice of optimal parameters was constrained by gradient-induced heating and 

specific absorption rate (SAR) limits, especially at 3 T. For FGRE acquisitions, we used 

the existing optimized protocol (37). 

 

Image Analysis 

A total of 10 out of 28 slices of each image were used for the analysis. SNR was 

measured as the ratio of the mean signal, measured in the region of interest (ROI) and the 

standard deviation (SD) of the background noise, measured in a region of almost no 

signal. For consistency, ROIs were placed at identical position on each image. Although 

the sensitivity profiles of the surface coils have a spatial variation, we did not process the 

images with coil correction routines before taking SNR measurements so that the SNR 

metrics are not biased by the choice of coil-correction filters. 

SNR efficiency was calculated as:
timeScan

SNR  

 

3.4 Results 

3.4.1 Characteristics of Simulated Magnetization Response 
The shape of the magnetization profile depends mostly on tissue T1, T2, flip angle, and 

negligibly on TR. For T1 and T2 of marrow fat, magnitude of the transverse 

magnetization response is maximum around 60° (Fig. 3.2a and 3.2b) and the profile has a 

nearly flat-topped passband (Fig. 3.3a). The width of the flat top of the passband is 
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approximately 
5

4π  at both 1.5 and 3 T (Fig. 3.3 a, b). For the FIESTA-c sequence, using 

N =2 and the MI combination technique, greatest uniformity of profile was obtained at an 

optimal angle of 60° (Fig.3.3b). The ripple factor ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
)Mxy(avg

)Mxymin()Mxymax(  of the 

FIESTA-c profile is 2.9 %. 

 

Figure 3.2a shows plots of the magnitude of Mxy with flip angle for two repetition times, 
TR=7.5 secs and 14.5 secs. Figure 3.2b show magnitude plots of Mxy normalized by 
square root of TR  for the two above-mentioned TRs. TE = 3.4 ms for both cases and T1, 
T2 correspond to that of marrow fat at 3 T. From Fig. 3.2a, it can be seen that Mxy 
magnitude, which is proportional to SNR, is very similar for the two TRs. It is also seen 
that the maximum SNR yield is at a flip of 60°.  From Fig. 3.2b, it can be seen that the 
magnitude of Mxy per unit square root of TR, which is proportional to SNR efficiency, is 
higher for the shorter TR. 
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Figure 3.3 shows Mxy magnitude profiles over a range of off-resonances for flip angles 
of 45°, 60° and 70°. Figure 3.3a shows simulated Mxy magnitude profiles in response to 
single acquisition SSFP over a ± 2π variation in off-resonance. The profile has most 

uniformity in the passband for a flip angle = 60° with a passband width of
5

4π . Figure 

3.3b shows Mxy magnitude profiles in response to multiple acquisition SSFP (N=2, MI) 
over a ± π variation in off-resonance frequencies. As in Fig a, a flip of 60° provides the 
most uniform profile and the ripple factor is only 2.9%. TR/TE=10.3/4 ms and T1, T2 
correspond to that of marrow fat at 3 T. 

 

3.4.2 Intravoxel Frequency Dispersion 
The range of frequency dispersion within a voxel sampled from the bone-model depends 

on the partial voluming of trabecular bone structures in the voxel and the voxel’s 

proximity to neighboring trabeculae. Larger partial voluming gave rise to higher off-

resonance frequency but smaller frequency dispersion within a voxel. Typical range of 

off-resonances observed in our simulation in a voxel with some partial voluming was 

around 30–35 Hz at 1.5 T and around 60–70 Hz at 3 T. The maximum off-resonance was 

observed to be around 62 Hz/124 Hz (1.5 T/3 T).For a TR =14 msec, a dephasing angle 

of π over TR corresponds to 35 Hz. Representative frequency histograms computed for 
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two voxels sampled from the bone-model at a bone-fractions of 0.37 and B0 = 3 T are 

shown in Fig. 3.4. 

Figure 3.4 shows simulated distribution of off-resonant frequencies in two bone-marrow 
voxels; a: Frequency histogram in a voxel with some partial voluming. b: Frequency 
histogram of a voxel comprising mostly of bone. The distribution shows high off-
resonance frequencies but a small range. These voxels were sampled from a bone model 
having bone fraction of 0.37 and at 3 T. 

  

3.4.3 Optimization 
Since the signal magnitude is almost independent of TR for TR<< T2 (20) as is shown in 

(Fig. 3.2a), theoretically, maximum SNR efficiency can be gained by using the shortest 

possible TR (Fig. 3.2b). However in the imaging experiment, for small FOV (≤10 cm), 

increasing the RBW degraded the sequence efficiency 
TR

TimeadoutRe  and at 3 T, TR 

increased with RBW (RBW > 32 kHz) because of gradient induced heating issues. The 

passband of the magnetization profile at the experimentally achievable minimum TR was 

approximately ± 40 Hz. While this bandwidth was sufficient to accommodate most of the 
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off-resonances at 1.5 T, it was not adequate in the case of the larger frequency dispersion 

at 3 T. At 3 T, optimal TR of the order of 7–8 msec could not be experimentally 

achieved. So multiple-acquisition SSFP (FIESTA-c) with N = 2 was employed to provide 

more uniformity to the response profile. Refocusing of static inhomogeneity induced 

phase dispersion at the time of echo is the basis of spin echo. A spin-echo-like refocusing 

of the transverse magnetization response to refocused SSFP at TE = TR/2 has been 

shown in the literature for dephasing between ±0.8π (13). However, larger range of off-

resonances was observed in our simulation, especially at 3 T. Optimal TE with respect to 

refocusing of off-resonances depends on the distribution of off-resonant frequencies. 

Since this frequency distribution is different for each voxel (Fig. 3.4a and b), optimum 

value of TE is different for each voxel as well, complicating the optimization of TE. So 

TE was decided on the basis of whether it gave an acceptable TR. 

 

 

 

 

 

 

 

 

Figure 3.5 shows a plot of the mean SNR efficiencies obtained with the FIESTA and 
FIESTA-c acquisitions compared to FGRE at the anatomical sites of calcaneus, hip and 
tibia and at field strengths of 1.5 T and 3 T. The SNR efficiency of refocused SSFP 
acquisitions is higher than that of FGRE at both field strengths. 
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3.4.4 SNR and SNR Efficiency 
The simulation predicted an increase in SNR efficiency by 1.4 times from 1.5 to 3 T at 

the site of the femoral trochanter and around 1.6 times at the tibia and calcaneus for the 

FIESTA sequence. At 3 T the SNR efficiency achieved with the FIESTA-c sequence (N 

= 2) was predicted to be around 0.85–0.9 times of that achieved with the FIESTA 

sequence. 

With respect to SNR and SNR efficiency, the refocused SSFP sequences 

(FIESTA and FIESTA-c) outperformed the FGRE sequence in all the MR experiments. 

The mean SNR efficiencies obtained with each imaging sequence (FIESTA, FIESTA-c) 

compared to that obtained with the FGRE sequence at both field strengths are shown in 

Fig. 3.5. At 3 T, FIESTA-c acquisitions had the highest SNR, while their SNR efficiency 

was around 0.85 times that of the FIESTA acquisitions, which agrees with our theoretical 

estimate. As expected, 3 T afforded a boost in SNR from 1.5 T. The SNR efficiency 

improvement at the femoral trochanter with the FIESTA sequence was 1.3 times. The 

experimentally measured values of SNR efficiency improvements in FIESTA 

acquisitions from 1.5 to 3 T match fairly well with the theoretically predictions (Table 

3.1). Representative images of the hip, and tibia and calcaneus acquired with FIESTA, 

FIESTA-c, and FGRE sequences are shown in Figs. 3.6 and 3.7 respectively. Scan times 

for the FIESTA acquisitions were six to eight minutes (two to three signal averages) and 

nine to eleven minutes (two to three signal averages) for the FIESTA-c acquisitions. 

 

3.4.5 Susceptibility Effects, Image Contrast, and Image Quality 
Banding artifact was not apparent on FIESTA images at 1.5 T. However at 3 T, loss of 

signal in the marrow due to susceptibility effects was visible in both FGRE and FIESTA 
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images (Fig. 3.6). Images acquired with the FIESTA-c sequence showed considerably 

reduced susceptibility effects and also had better image quality. Refocused SSFP images 

showed excellent structural detail due to high SNR and hence high contrast. 

 

Figure 3.6 shows representative images of the proximal femur. a: Three-dimensional-  

FIESTA acquisition (1.5 T).  b: Three dimensional- FIESTA acquisition (3 T). 

c: Three-dimensional-FGRE(3 T).d:Three dimensional- FIESTA-c (3 T). FIESTA images 

have a higher signal compared to the FGRE image. Consequently, their image texture 
depicts the trabecular orientations more clearly than the FGRE image. However, b shows 
pronounced loss of signal around the bone structures and deterioration of image quality, 
while these effects are significantly reduced in d. 



 38

 

Figure 3.7 shows representative images of the calcaneus and distal tibia at 1.5 T. 

a,b: FIESTA and FGRE images of the calcaneus from the same subject at 1.5 T. c,d: 
FIESTA and FGRE images of the tibia from the same subject at 1.5 T. These images show 
that even at 1.5 T it was possible to get a good depiction of trabecular micro-architecture 
with SSFP acquisitions. 
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Table 3.1 Theoretical Estimates and Experimental Results of 3T:1.5T SNR 
Efficiency Ratio for FIESTA acquisitions at each Anatomical Site 

Anatomical Site Theoretical SNRE ratio Experimental SNRE ratio  
Hip 1.4 1.35±0.36 

Tibia 1.68 1.62±0.39 
Calcaneus 1.65 1.75±0.05 

 
 

3.5 Discussion 

The magnetostatic model of bone was used solely to get an estimate of the intravoxel 

spread of frequencies and to predict the SNR performance for FIESTA and FIESTA-c 

sequences, and not to characterize magnetic and relaxation properties of trabecular bone 

tissue. Even though the model is not truly representative of the lattice structure of 

trabecular bone and does not consider differences in orientation of trabeculae relative to 

the magnetic field, and even though additional causes of inhomogeneity such as 

heterogeneity in the marrow were not considered, the theoretical predictions correlated 

well with the experimental results. We did not include any noise model in our simulation, 

but all our theoretical estimates are presented as ratios of signal efficiencies of sequence 

pairs, which we have treated equivalent to ratios of SNR efficiencies, the underlying 

simplifying assumption being that machine noise is similar for SSFP and FGRE 

sequences at the same field strength and that machine noise, being dominated by sample 

noise, scales linearly with B0. Similarly, all the comparisons between theoretical and 

experimental results were made for ratios of SNR efficiencies, so SNR correction factor 

for magnitude operation (57) was not introduced. Differences in relative SNR efficiencies 

between the anatomical sites (Fig. 3.5; Table 3.1) can be attributed to several factors such 

as differences in experimental design (e.g., smaller FOV was used in scans of extremities 
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than in scans of the proximal femur) and differences in bone-volume fraction, to name a 

few. Theoretical and experimental results indicate that refocused SSFP techniques have 

great potential in the application area of trabecular micro-imaging. The FIESTA sequence 

performed well at 1.5 T (and hence FIESTA-c acquisitions were not performed in 

addition to these) but at 3 T, the FIESTA-c sequence seemed better-suited to the imaging 

application due to its robustness to susceptibility effects.  

The SNR efficiency of FIESTA-c acquisition can be improved by using a 

customized reconstruction that employs MI technique in regions of banding and assigns 

an average of corresponding N pixel values to pixels in banding-free regions of the 

image. N = 2 seemed sufficient for removal of banding artifacts for our imaging 

application and a higher value of N would only prolong the scan time unnecessarily. 

Future improvements in gradient designs will also aid in employment of more optimal 

SSFP acquisitions. The ultimate goal of HR-MRI of trabecular bone is quantitative 

analysis of stereological measures such as App.TbTh and AppBV/TV for assessment of 

osteoporosis. Image analysis routines will be affected differently by different acquisition 

protocols (different sequences, different magnetic field strengths) due to differences in 

signal and noise characteristics of the images. Preliminary image analysis studies  

suggested higher values of AppBV/TV and App.TbTh for FGRE images compared to 

FIESTA images and higher AppBV/TV and App.TbTh values at 3 T compared to 1.5 T. 

Quantitative measures from FIESTA-c images at 3 T showed closest agreement with that 

obtained at 1.5 T. An exhaustive study on quantitative analysis of stereological measures 

derived from SSFP images at 1.5 and 3 T and their reproducibility is clearly warranted. 

However, this section focuses entirely on evaluating the SNR efficient refocused SSFP 
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methods for HR-MRI of trabecular bone, keeping in mind that low SNR yield impedes 

the imaging of trabecular micro-architecture at nonperipheral sites and necessitates long 

scan times, limiting clinical applicability. The in vivo images of the calcaneus, distal 

tibia, and the proximal femur acquired with fully-refocused SSFP techniques in a 

clinically feasible time had high SNR and SNR efficiency, and showed excellent 

structural detail. Typical scan times for FIESTA acquisitions were around six minutes. 

The scan times for FIESTA-c acquisitions, though twice that of FIESTA acquisitions, 

were still shorter compared to previously published values (37,58).  

 

3.6 Conclusion 

To conclude, this work analyzed two approaches for improving the SNR yield of in vivo 

high resolution MRI of trabecular bone MRI-employment of SNR efficient balanced 

SSFP pulse sequence and translation to a higher static magnetic field strength. The 

magnetic environment in bone marrow simulated based on a simplified model was used 

to estimate the signal behavior in response to SSFP and the higher field strength. 

Simulation results agreed closely with experimental results. To the best of our knowledge 

this is the first time that in vivo HR-MR images of the trabecular micro-architecture at the 

proximal femur has been presented. Hence, this work has also shown the feasibility of a 

technique for in vivo assessment of hip fracture risk. We believe that fully-refocused 

SSFP sequences can play a significant role in furthering the contribution of HR-MRI to 

the evaluation of trabecular bone structural organization. Furthermore, with the SNR 

leverage at 3 T, we are in a position to aim for further improving spatial resolution or 

reducing the scan time by employing parallel acquisition techniques. 
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Chapter 4 

Parallel imaging techniques for high resolution imaging 

of trabecular bone micro-architecture 

 
 

4.1 Motivation 

The currently achievable spatial resolution for in vivo trabecular bone imaging is around 

130-200 µm in-plane and around 500 µm through-plane. To facilitate registration of 

image volumes across patients or between exams for the same patient in a longitudinal 

study a sufficiently large volume comprising of 48-64 slices needs to be acquired. As a 

result, scan time is as long as 15-20 minutes causing patient discomfort and motion 

artifacts. The additional SNR gained from the higher field strength of 3 Tesla and the 

high magnetization yielding pulse sequence (Chapter 3) can be partly traded for 

acquisition speed. Previously, specialized k-space sampling trajectories such as spiral 

(59) and echo-planar-imaging (EPI) (20) were devised to accelerate MR acquisition by 

covering more k-space area per excitation. Compared to these, a more generalized 

technique for scan time reduction, partially parallel imaging (PPI) has recently evolved, 

which does not interfere with the spin magnetization itself and hence can be adapted with 

any MR sequence (60). Since trabecular bone MRI involves long acquisition times, PPI 

has great potential in this application area. In this chapter, we will implement PPI 

technique for HR imaging of trabecular bone micro-architecture and investigate whether 

certain image quality characteristics are different in PPI compared to conventional 
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imaging and whether these differences might lead to dissimilar trabecular depiction 

between the two. Additionally, the potential of PPI to improve the signal-to-noise ratio 

(SNR) efficiency of multiple acquisition fully refocused/ balanced SSFP (b-SSFP)  (49) 

imaging protocols will also be explored. 

 

4.2 Background 

4.2.1. Parallel Imaging Techniques 
Over recent years the field of partially parallel imaging (PPI) has seen rapid progress in 

terms of phased array coil design, novel image reconstruction techniques and new 

applications (10,61,62). In conventional phased array applications, an array of coil 

elements is used to receive the MR signal, instead of a single coil with the same coverage 

as the array, because of signal-to-noise ratio (SNR) advantages. The final MR image is 

obtained by calculating the square root of the weighted sum-of-squares or optimal pixel-

by-pixel combination of the MR images obtained from each array element (63). PPI 

exploits the over-determinedness of such a system to accelerate MR acquisition. It 

reduces imaging time by undersampling the signal space such that the maximum 

sampling extent is unchanged, in the phase-encoding/partition-encoding direction (64-

66). To describe PPI in further details, sampling in MR context must first be reviewed. 

In MRI, signal is acquired in the Fourier domain. Sampling/ discretization in the 

Fourier domain results in periodic repetition in the image (conjugate) domain (Fig. 4.1). 

If the imaging object is space-limited i.e. if it has a finite extent, the minimum sampling 

rate (Nyquist rate) for which unambiguous image reconstruction is possible is equal to the 
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total extent (width) of the imaging object. As can be seen from Figure 4.1, when the 

Nyquist rate of sampling is met, unambiguous image reconstruction is possible by 

recovering one period of the image. 

 

 

Figure 4.1 shows a schematic diagram of sampling of MR signal in the Fourier domain 
and the consequent periodic repetition in the image domain. 

 
Undersampling the phase/partition-encoding axis by a factor of R reduces the 

field-of-view (FOV) of the image in that direction by the same factor, which gives rise to 

overlapping of the periodic repetitions or aliasing, as seen in Fig. 4.2. In PPI, the images 

are subsequently unaliased to their full FOV by using the spatial information in the 

elements of the receiver array. This “unaliasing” or “parallel reconstruction” can be 

performed either in the Fourier or the spatial domain.  

 

Figure 4.2 shows that undersampling in the ky direction results in reduction in field-of-
view and aliasing artifact in the image and that unaliasing is performed by parallel 
reconstruction. 
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MRI signal measured by surface coils is modulated by coil sensitivity (63) 

∫ ρ= rrrk r,kr
de)()(c)(S  

[ ] rr,kr ,k krrrr
rr

d*ede )( )c()(m ∫ ∫ ρ=                                                                 [4.1] 

where r represents 3D spatial coordinate, k represents 3D co-ordinate in k-space, c(r) 

represents coil sensitivity in position (r), ρ(r) is the magnetization in spatial position (r),  

S(k) is the signal measured at location k in k-space and m(r) is the measured image, after 

inverse Fourier transformation. The aliased pixel in a reduced FOV image obtained from 

a coil will have superposition of intensities of multiple pixels weighted by the coil 

sensitivity in those pixel positions (64). So the sensitivity weighting will be different in 

images obtained from different coils. The distinctness in measurements from different 

coil elements of a phased array arises from this, and allows unaliasing by “parallel 

reconstruction” (Figure 4.2).  

Existing parallel reconstruction strategies can be broadly classified into direct 

inversion and indirect reconstruction techniques (67). The first class of methods employ 

direct estimation of the localized sensitivity of each coil element to unalias the reduced 

FOV image to full FOV (61,64,66,68,69). Sensitivity encoding (SENSE), the first and 

most widely practiced direct PPI technique (64) performs the unfolding in the image 

domain while techniques such as SPACE-RIP  (61) perform the unaliasing in the 

frequency domain. 

The intensity in a single aliased pixel in the reduced FOV image measured from 

different coils can be written as,  

nCvm +=                                                                                                [4.2a] 
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  where m: observation vector, C: coil sensitivity matrix, v: true image vector and n: 

Gaussian measurement noise vector 

For an acceleration factor of R and K number of coils, dimensions of m, C and v are Kx1, 

KxR and Rx1 respectively. 
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From 4.2, 

Umv =                                                                                                                     [4.3a] 

( ) H111H CψCψCU −−−=                                                                                             [4.3b] 

U is known as the unfolding matrix, [ψ] is the noise covariance matrix between the K 

channels and H denotes the Hermitian transpose operator (64). 

The accuracy of direct parallel reconstruction depends on the accuracy of coil 

sensitivity estimation. In general, the sensitivity is estimated experimentally from a 

calibration scan. A calibration scan consists of a low resolution proton density-weighted 

scan. Individual coil profiles are computed by demodulating low resolution images from 

individual coils of intensity variations due to the object (64). Since coil sensitivity 

functions are spatially slowly varying, the rapidly varying intensities in the image are 

assumed to be due to the object. So the demodulation is accomplished by a combination 

of normalization and/or low pass and homomorphic filtering operations (64,70,71). 

However, estimation errors might arise from motion between calibration and actual scans 

and in regions of low signal such as air in the lungs (71). 
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Belonging to the second category, Autocalibrating-Simultaneous Acquisition of 

Spatial Harmonics (AUTO-SMASH) (72), Variable Density AUTO-SMASH (VD-

AUTO-SMASH) (73) and Generalized Autocalibrating Partially Parallel Acquisitions 

(GRAPPA) (74) are methods that acquire a small set of additional phase-encoding lines 

at the Nyquist sampling frequency. These act as training lines for the estimation of the 

interpolation weights that are then used to synthesize the skipped phase-encoding lines 

from the acquired lines. Since the coil calibration is built into the actual acquisition in 

these methods, they are also known as autocalibrating (AC) techniques. GRAPPA has 

proved to be a particularly robust method since it reconstructs the full-FOV image of 

each individual coil element allowing a subsequent sum-of-squares or adaptive array 

combination (74). The sampling scheme for Cartesian autocalibrating acquisition is 

shown in Figure 4.3. GRAPPA employs a block-wise reconstruction in which 1 block 

consists of 1 acquired line and R-1 skipped lines for an acceleration factor of R. The 

interpolation weights for an individual coil j are obtained by least square fitting of the 

acquired lines from all the coils to the AC lines of the jth coil: 
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where Sj(ky-m∆ky) is the signal in the jth coil at m∆ky offset from the ky
th PE position 

in k-space,  Nb is the number of blocks used for the reconstruction, K is the number of 

coil elements and n(j,b,l,m) is the weighting of Sl(ky-bR∆ky) for synthesis of Sj (ky-

m∆ky) (74). The data-fitting for GRAPPA is schematically shown in Figure 4.4. By the 

assumption of spatial invariance of k-space data, the unacquired k-space data can be 

synthesized as a combination of acquired data weighted by the interpolation weights. 
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Figure 4.3 shows Cartesian variable density sampling for autocalibrating parallel 
acquisition with an acceleration factor, R=2 and 2 AC lines. Black, green and blue 
dotted lines indicate acquired PE lines, skipped PE lines and AC lines respectively. 
Several variations of the data fitting described above have been presented in the 
literature, such as performing the fitting piecewise for segments along the unaccelerated 
direction. 

    The disadvantage of parallel imaging is that the reduction in scan time comes at the 

price of SNR. The SNR in an image obtained by the PPI technique is at least 
R
1  lower 

than that obtained with conventional fully gradient encoded acquisition (64,75). 

R
SNR

SNR conv
PPI ∝                                                                                                       [4.5a]     

SNR loss by a factor of R  in an image obtained with parallel MRI (pMRI) is due to the 

fewer number of k-space samples acquired in the pMRI acquisition compared to fully 

sampled acquisition. In the process of synthesis of unaqcuired data samples from the 

acquired samples, additional noise correlations are introduced between them which 

amplifies noise variance by R and consequently degrades SNR by R . 

The relative noise enhancement factor over and above the R  factor was introduced in 

the SENSE method as the geometry factor (g-factor). 
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Rg
SNR

SNR conv
PPI =                                                                                                       [4.5b] 

The geometry factor is so named because of its strong dependence on the coil geometry 

(10,64). The g-factor measure is different for every pixel in the image. For SENSE 

method (64), the g-factor in a pixel i can be computed as 

( ) ( )[ ]ii
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11H

ii CCCCg −−− ψψ=                                                                                   [4.6] 

Analytical expression of geometry factor for GRAPPA method is less tractable. It is also 

not solely dependent on coil-geometry; there is some data dependence as well. From Eq. 

[4.4], GRAPPA reconstruction in k-space can be described as a convolution operation. 

Applying an inverse Fourier Transform on both sides of Eq. [4.4], we have: 
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From Eq [4.4] and Eq [4.7], the relative noise enhancement factor in a pixel i in the 

GRAPPA reconstructed image from coil j can be written as (76): 

∑∑
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and the composite g-factor for the coil combined image can be computed by a weighted 

sum-of-squares or any other type of array combination. 
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Figure 4.4 shows the data fitting in basic GRAPPA algorithm (Eq [4]) schematically. In 
GRAPPA several lines acquired in each coil of the array are fit to the autocalibration 
scan (ACS) line acquired in a single coil of the array.  

 

While the initial applications of PPI were in the areas of cardiac and dynamic 

imaging (65,77-80), it is being adopted to newer MR fields every day due to the 

advantages of reduced patient discomfort, reduced motion artifacts, reduced distortion 

(81) and increased throughput provided by the accelerated acquisition. The relatively less 

explored application areas of PPI are those that involve very small FOV high resolution 

(HR) imaging. Griswold et al showed that unlike direct techniques, indirect 

reconstruction techniques such as GRAPPA can handle situations where the full-FOV is 

slightly smaller than the size of the object without any modification of the reconstruction 

code (67). This is also a common situation in small FOV trabecular bone imaging. 

However the effect of PPI on other aspects of small FOV HR-MRI such as visualization 

of small structures and their quantitative analysis, which is the focus of this work, has not 

been investigated. Because of the above mentioned advantages of GRAPPA 

reconstruction, our implementations of parallel imaging will be based on this method. 
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4.3 Methods 

4.3.1 GRAPPA based reconstruction 
To date, several variants of the GRAPPA reconstruction in terms of calibration strategy 

and reconstruction kernel been presented in the literature (82,83). Several modifications 

in the data fitting have been proposed , such as  performing the data fit segment-wise in 

the kx or  frequency encode direction and excluding the central lines in the ky or phase 

encode (PE) direction to avoid the dominance of high amplitude low frequency 

components in the calibration of coil weights (84). A cosine basis for spatial modeling of 

coil weights has also been presented (83). Wang et al proposed a floating node fitting 

(FNF) which allows any data point to be considered either as a source or a target node 

during the calibration as long as neighboring points are available for the data fitting (85). 

For a fixed number of AC lines, FNF provides more data fits compared to conventional 

GRAPPA and is particularly advantageous at higher reduction factors for getting 

sufficient number of fits without having to acquire a larger number of AC lines. The 

authors also proposed a multi-column multi-line interpolation (MCMLI) that uses the 

nearest neighboring points in the PE as well as the FE direction for reconstruction of 

missing lines (85). The synthesis of the missing lines in the MCMLI technique can be 

expressed as: 
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where xb  is the block index and 1HH 21 ++  is the total number of blocks in the FE 

direction.  Since the optimal GRAPPA reconstruction depends on the type of application 

and the coil configuration, multiple variations of the GRAPPA reconstruction (MCMLI, 
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FNF, segmented FE and different combinations of these) were programmed in MATLAB 

(Math Works, U.S.A) and tested on a simulated Shepp Logan phantom as well as 

acquired fully encoded data that were decimated to simulate several reduction factors, to 

determine an optimal GRAPPA based reconstruction for our experimental setup. In the 

phantom simulations, a B1 map of the receiver array was numerically computed by Biot 

Savart’s Law (63). A multi column multi line interpolation with floating node fitting 

segment-wise along the FE axis was chosen as the optimal reconstruction based on 

minimum artifact power (AP). 
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where PPI
jI  represents the jth pixel intensity in the accelerated image and fRe

jI  represents 

the jth pixel intensity in the corresponding R=1 image. The chosen reconstruction 

algorithm consisted of a block-wise reconstruction using four blocks in the PE direction 

such that the source data from the blocks were placed symmetrically around the missing 

line, and two nearest neighboring columns in the FE direction.  

  

Point spread function analysis 

In a full FOV acquisition noise is assumed to be independent between different Fourier 

data points, since it is not spatially encoded. However in parallel reconstruction, since the 

missing data is acquired as a linear combination of the acquired data, noise correlations 

are introduced between Fourier data points, giving rise to spatially varying noise 

distribution in the reconstructed image. Because of this spatially varying characteristic of 
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the noise, SNR measured as the ratio of the average intensity in a region of interest (ROI) 

and the standard deviation of the background noise in parallel images have produced 

anomalous results, as reported in the literature (52) and customized measurement 

methods are warranted. As is obvious from Eq [4.7] and Eq [4.9] the noise correlations 

introduced will be different for each parallel reconstruction scheme, and hence the spatial 

noise variation in the image will also be different.  

Generally, the effect of a filtering operation or reconstruction technique on the 

spatial resolution of an image is assessed by the point spread function (PSF). Here we 

will derive the PSF for the conventional GRAPPA reconstruction for the simplest case of 

R=2, number of blocks=1 and no sliding block operation and compare it to that of the 

standard reconstruction. A one dimensional image function will be assumed for the 

convenience of notation, and anti-Gibbs filtering will be neglected. The image intensity at 

a pixel j from the uth coil in full FOV acquisition can be written as: 
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where kuS is the kth Fourier sample received by the uth coil, N is the total number of 

samples and jkW is the standard Fourier coefficient. 
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=                                                                                                 Eq [4.11b] 

To derive the PSF, the true image function jρ  is set to a delta function. Keeping in mind 

that the signal received by each coil is modulated by the coil sensitivity and denoting the 

coil sensitivity function of the thu coil at the thj pixel position by juC , kuS can be 

expanded as: 
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Separating even and odd lines, Eq [4.11a] can be rewritten as: 
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Combining Eq [4.11c] and Eq [4.11d], 
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Similarly, the image intensity at a pixel j in the GRAPPA reconstructed image from a coil 

u can be written as: 
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For both the full FOV and GRAPPA reconstruction, the final image is obtained by sum of 

squares combination of individual coil images. However, as can be seen from Eq [4.11e] 

and Eq [4.11f], the PSF of the conventional fully encoded reconstruction does not contain 

any data dependent terms, while the PSF of the GRAPPA based reconstruction carries 

data dependent terms, n . For   the special case of 1
0jC

0jCn

ju

L

1l
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≈
=
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= , the expressions in Eq 
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[4.11e] and Eq [4.11f] are nearly identical. Because of this data dependence, a fixed 

relation between the PSF of the conventional reconstruction and the GRAPPA based 

reconstruction cannot be established- therefore empirical assessments need to be 

employed to asses the effects of GRAPPA reconstruction on the effective image 

resolution. 

 

4.3.2 Simulation study of SNR efficiency increase in multiple b-SSFP with 
PPI 
. When imaging magnetically heterogeneous tissue environments such as the trabecular 

bone-marrow with a b-SSFP sequence at relatively higher fields, multiple acquisition b-

SSFP (m-bSSFP), which employs multiple phase-cycled acquisitions, is used to reduce 

the sensitivity of the sequence to off-resonance artifacts at the cost of scan time and SNR 

efficiency (50). The data from the N independent phase-cycled acquisitions can be 

combined by maximum intensity projection (MIP), sum-of squares (SOS) or complex 

sum (CS) (49). A simulation of the steady state transverse magnetization response to b-

SSFP, based on linear systems analysis (51), was used to compute the multiple SSFP 

magnetization response for different values of N and different combination techniques. 

The ripple factor of the response is generally defined as the ratio of the difference 

between the maximum and minimum values of the response and the mean value of the 

response. For relaxation parameters corresponding to fatty bone marrow at 3 T and an 

optimal flip angle of 60°, the ripple factor for the SOS technique (29 %) is much poorer 

compared to MIP (4%) at N=2 (Fig 4.5), so in spite of the SNR advantages provided by 

the former, the latter technique is preferable for bone marrow imaging at N=2 because of 

better artifact reduction. However, if larger values of N (N>2) can be accommodated 



 56

within the same or shorter scan time, the SOS combination can be used for the SNR 

advantage without compromising much on artifact reduction. This can be seen from the 

plot of the magnetization profile from SOS and MIP combination for N=3 (Fig 5). A 

distribution of off-resonances was simulated by a simplified bone-marrow magnetostatic 

model (12) to estimate the SNR yield from an N=3 protocol with SOS combination 

method acquired with PPI (R=2) and from an N=2 protocol with MIP combination 

method acquired with conventional full gradient encoding. SNR efficiency was measured 

as the SNR divided by the square root of acquisition time. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Plots of the simulated transverse magnetization response to multiple 
acquisition b-SSFP sequence for MIP and SOS combination methods in the cases of 2 
and 3 phase- cycled acquisitions are shown. T1 /T2 values (365/133 milliseconds) 
corresponding to that of fatty marrow at 3T were used in the simulation.  Flip angle was 
60°. The plots show that the SOS combination yields higher signal than the MIP 
combination for both N=2 and 3, but at N=2, the magnetization profile for SOS has poor 
uniformity.  
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4.3.3 MR Materials and Methods 
A 3D b-SSFP product sequence with multiple phase-cycling capabilities, 3D Cycled Fast 

Imaging Employing Steady State Acquisition (FIESTA-C) (13) was modified in 

Environment for Pulse Programming In C (EPIC) to incorporate autocalibrating Cartesian 

VD acquisition. MR experiments were conducted on eight healthy human subjects in 

accordance with the regulations of the Committee of Human Research (CHR). Two 

volunteers were imaged at the site of the ankle (calcaneus) with an eight channel phased 

array head coil (MRI Devices, WI, USA) and three volunteers each were imaged at the 

knee (distal femur) and at the hip (proximal femur) with a custom built eight channel dual 

phased array receiver (86) for reduction factors of R=1-4. For all parallel acquisitions a 

total of 12 AC lines were acquired. In each case the modified 3D FIESTA-C sequence 

was employed with 2 phase cycles, 60° flip angle and a partial echo sampling 0.61 

fraction of the frequency encode axis. The acquisition matrix was 512x384. A 32 slice 

dataset of the ankle was acquired in the sagittal plane with an in-plane resolution of 190 

µm and slice thickness of 500 µm with TR/TE/BW of 11.4/2.8/32 milliseconds 

(ms)/ms/KHz. The scan time for the fully gradient encoded acquisition (R=1) was around 

9 minutes and 19 seconds. Scan times for R=2,3 and 4 were 4 minutes 48 seconds, 3 

minutes and 10 seconds and 2 minutes and 20 seconds respectively. For the knee and the 

hip, we acquired two sets of short scans and one set of longer scan. The rationale behind 

this was to examine the importance of the baseline SNR (SNR of the R=1 acquisition) on 

the quality of the parallel imaging reconstruction. For the shorter (longer) acquisition at 

the knee, a 16 (42) slice dataset was acquired with the dual phased array coil in the axial 

plane with an in-plane resolution of 190 µm and slice thickness of 500 µm, TR/TE/BW 

of 10/2.7/32 ms/ms/KHz, for a fully gradient encoded acquisition time of 4 minutes (10 
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minutes 45 seconds). Scan times for R=2, 3 and 4 were 2 minutes and 4 seconds ( 5 

minutes 33 seconds), 1 minute 28 seconds (3 minutes 46 seconds), and 1 minute (2 

minutes 52 seconds) respectively. For the shorter (longer) acquisition at the hip, a 32 (48) 

slice dataset was acquired with the dual phased array coil in the coronal plane with an in-

plane resolution of 234 µm and slice thickness of 1000 µm, with TR/TE/BW of 

8.2/2.3/42 ms/ms/KHz, for a fully gradient encoded acquisition time of 7 minutes 26 

seconds (11 minutes 10 seconds). Scan times for R=2, 3 and 4 were 3 minutes 46 seconds 

(5 minutes 47 seconds), 2 minutes 30 seconds (3 minutes 55 seconds) and 1 minute 53 

seconds (2 minutes 59 seconds) respectively.  

For the SNR efficiency improvement experiments with m-bSSFP protocol, an 

additional scan with N = 3 phase cycles and R=2 was conducted on two of the volunteers 

at the hip, one with the shorter acquisition and one with the longer acquisition. In the first 

case the scan time was 5 minutes 17 seconds and in the second case it was 8 minutes 40 

seconds. As the full FOV was smaller than the size of the object in several cases, 

especially at the hip and the ankle, the No Phase Wrap (NPW) imaging option, which 

employs twice oversampling in the phase direction, was chosen in all the high resolution 

scans. Only one signal average was employed in all the high resolution scans. Also, a low 

resolution image was acquired with a 2D gradient echo sequence and 64x64 acquisition 

matrix for one volunteer at each anatomical site for experimental estimation of the 

maximum feasible acceleration factor in the encoding direction of the coils. 
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4.3.4 Image Reconstruction 
 The raw data from the acquisitions was moved to a Sun Workstation (Solaris, U.S.A.). 

All the images were reconstructed offline using reconstruction routines programmed in 

MATLAB. As the size of the imaging object was in some cases too small for the eight 

channel receiver array in the ankle setup, an automatic coil selection routine was 

employed to discard data from coils that mainly contributed noise. The algorithm decided 

whether to select a coil, based on the ratio of the normalized signal and noise energies in 

the dataset received by the coil. A threshold value for this ratio was chosen empirically. 

In the case when number of coils chosen was fewer than five, the threshold was adjusted 

iteratively till the criterion for minimum number of selected coils was met. Based on the 

assumption that peripheral k-space is dominated by noise, signal energy was estimated 

from the normalized energy of the central k-space with radius = 0.8 of the maximum 

length in the x and y dimensions, and the noise energy was estimated from the 

normalized energy in the peripheral k-space. The coil selection routine was also used 

with the PPI datasets. For the parallel acquisitions, the above mentioned GRAPPA 

reconstruction with MCMLI-FNF segmented in the FE direction was applied. Since all 

the high resolution images were acquired with a partial echo, a homodyne reconstruction 

was applied in the FE direction. The reconstructed full-FOV images from all the N phase-

cycled acquisitions from each individual coil were combined by the MIP method for N=2 

and by the SOS method for N=3 phase-cycles.  For both the conventional (R=1) and 

accelerated images the final image was computed by the weighted sum of squares 

combination of the individual coil images.  

GRAPPA-based reconstruction of large image volumes from data acquired from 8 

or more channels is computationally intensive, taking several hours on a single desktop 
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Sun (Solaris, USA) workstation. To expedite reconstruction, a parallel computational 

strategy was devised to distribute the reconstruction of individual image slices to separate 

CPUs on a Linux cluster. This has been described in more detail in Appendix A. 

 

4.3.4 Image Analysis 
 
Evaluation of encoding capability of array coil 

Since coil sensitivity modulations have a low spatial frequency, coil sensitivity functions 

are usually assessed from low resolution images of the object. The acquired low 

resolution images were used to estimate the maximum feasible acceleration factor 

allowed by a receiver array in the PE direction for each of our experimental setup. 

Individual coil images were projected onto the PE axis and principal component analysis 

(PCA) was performed on the covariance matrix of the projected images (87). Principal 

Component Analysis is performed by Karhunen–Loeve transform to reduce data 

dimension (88). Given a complex vector x of dimension nx1, the KL Transform of x can 

be described by a square matrix TKL of maximum rank m (≤n) that minimizes  

}Txx{E)T(J 2
KL −=                                                                           Eq [4.12a] 

where E denotes the expectation and || || denotes the Frobenius norm. The matrix T is a 

projection matrix onto principal subspace of rank m of the covariance matrix  

}xx{ER H
x =                                                                                                  Eq [4.12b] 

If the eigen decomposition of Rx is given by 
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where ei, the eigen vectors are also called principal components. In our case, each column 

in the covariance matrix corresponded to observation from an individual coil element. So, 

the data projected onto the principal component corresponding to the largest eigenvalue 

would explain largest percentage of the variance in the observation datasets. So, if for an 

K coil dataset, K-C principal components contributed negligibly to the variability in the 

observations, we could infer that the approximate rank of the observation dataset was C, 

and the encoding capability of the coil array might be exceeded for acceleration factors 

R>C.  

 

Histogram and periodogram analysis 

GRAPPA based reconstruction introduces correlations between data points in k-space. 

This can affect the pixel intensity distribution, correlation between pixels intensities and 

consequently the spatial resolution. To investigate this, the pixel intensity distribution and 

autocorrelation were analyzed in the high resolution images. The pixel intensity 

distribution of images was examined from their histogram plots. Peak height and peak 

position of the histograms were compared between R=1 and accelerated images. Power 

spectrum of the images was estimated to examine the pixel intensity autocorrelations 

(PIA) of conventional and accelerated images. Through the Wiener Khintchine theorem, 

the power spectrum of a well behaved stationary random process is equal to the Fourier 

Transform of its autocorrelation sequence (89).  
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Here Px(ejω) and rx  represent the power spectrum and autocorrelation of x and E is the 

expectation operator. Power spectrum of the image was estimated from periodogram 
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which was computed by Barlett’s method of periodogram averaging (90). This involves 

computing periodogram Pper(ejω) for K partitions of length L of the image and computing 

the power spectrum estimate )~e(P j
x

ω  as the mean of these periodograms (90). 
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Here for convenience of notation, the image has been represented by a 1D sequence. The 

periodogram was used to assess if the PIA was similar between R=1 and accelerated 

image. More energy in the inner Fourier space of the periodogram for accelerated 

datasets would imply more slower decaying PIA components. This might also indicate a 

broadening of the PSF.  On the other hand, more high spatial frequency components in 

the autocorrelation might arise from reconstruction noise and manifest as higher energy 

in outer Fourier space in the periodogram. 

 

SNR Measurements 

Experimentally, SNR is often measured as the ratio of the average intensity in a region of 

interest (ROI) and the standard deviation of the background noise. But due to the 

spatially varying distribution of image noise, this measurement technique has produced 

anomalous results in PPI and preferably more rigorous measurement from repeated 

acquisitions should be used (52).  In this work we used two successive acquisitions for 

the SNR measurements. A region of interest (ROI) was placed in the identical location on 

each of the two images and the average SNR in the ROI was determined as the ratio of 
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average signal in the ROI in the mean image and the standard deviation of the signal in 

the difference image (52) . 

))2,r(I)1,r(I(stdev
)2/))2,r(I)1,r(I((mean2SNR

−
+

=                                                                      Eq [4.15a] 

SNR Efficiency was calculated as: 

TimeScan
SNRSNREff =                                                                                       Eq [4.15b] 

 

Measurement of trabecular bone structural parameters 

Since structural parameters of trabecular bone micro-architecture are morphology 

metrics, ideally, all acquisitions obtained from the same subject should yield identical 

measurements of these parameters, irrespective of the imaging technique. However the 

quantitative analysis is sensitive to imaging parameters. Consequently measurement 

values can differ from one acquisition to another. For this reason, we derived structural 

measures from the images and investigated the deviations in the measurement values 

between PPI and R=1 datasets. Five slices were used from each image-set for the 

quantitative analysis. A low-pass filter (LPF)-based coil sensitivity correction was first 

applied to the images so that structural measurements would not be biased by spatial 

variations in the coil sensitivity. ROIs were manually placed in the identical location on 

all corresponding images in an acquisition dataset. In the calcaneus images, the ROI was 

placed in the trabecular bone of the posterior calcaneus. In hip images ROIs were placed 

in the femoral trochanter and in the knee images ROIs were placed in the anterior part of 

the distal femur. Image analysis software (32) developed in our lab was used to quantify 

the structural parameter, apparent trabecular number (App. TbN on the binarized images 
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by previously described techniques (30,32). In this work we computed only one structural 

measure; App. TbN.  

 

.4.4 Results 

4.4.1 Simulations 
 
GRAPPA based reconstruction 

In simulation studies the GRAPPA based reconstruction seemed to preserve the 

visualization of small structures in the image. Line profiles, derived from a full dataset of 

the knee from which PE lines were selectively removed to simulate various reduction 

factors, show an excellent matching of edges and comparable edge sharpness between 

R=1 and the accelerated images (Fig 4.6). However the line profile from R=4 shows 

slight smoothing of edges and some exaggerated edges because of enhanced noise (Fig 

4.6). 

Using the magnetostatic bone model and the simulation of the SSFP 

magnetization response, the SNR efficiency with N=3 phase-cycles, SOS combination 

acquired with PPI, R=2 was estimated to improve by 20 % from that obtained with full 

FOV acquisition, N=2 phase- cycles and MIP combination. 
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Figure 4.6: Line profiles from a full FOV knee image and from simulated PPI images for 
R=2, 3 and 4 that were reconstructed by the GRAPPA based algorithm are shown. The 
plots show good coincidence of edges between the line profiles from the full FOV and the 
simulated PPI images. But at R=4, some exaggeration of edges due to enhanced noise 
and slight edge smoothing is observed. 

 

4.4.2 Experiments 
 
Evaluation of encoding capabilities of coils 

The eigenvalues (normalized to 1) obtained by PCA of the coil sensitivity covariance 

matrix of the head array and the dual phased array for the three experimental setups used 

in our work are plotted in Fig 4.7. For the calcaneus imaging setup, the eigenvalues 

decrease linearly between the first and third principal coil component and the eigenvalues 

corresponding to the fifth principal component onwards are much lower in value. So only 

3-4 of the eight principal coil components contribute significantly to the spatial encoding 

capabilities of the system. This implies that even though theoretically we can achieve 

acceleration equal to the number of coils used, the maximum feasible acceleration for this 

setup is around 3-4. Employment of higher reduction factors will result in poor 
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reconstruction associated with large noise amplification. Although both the knee and the 

hip setup employed phase–encoding in the left-right direction, the former, which was 

acquired in an axial plane has a higher maximum feasible acceleration compared to the 

latter which was acquired in the coronal plane. The maximum allowable 

reduction/acceleration with the knee setup is around 5-6 

 

 

 

 

 

 

 

 

 

Figure 4.7:  Plot of the eigenvalues obtained by PCA of the covariance matrix formed 
from the projection of coil sensitivities along the phase encoding direction for the ankle, 
hip and knee imaging setup are shown. The maximum allowable acceleration, indicated 
by the number of principal components with non-negligible eigenvalues, is 3-4 for the 
calcaneus and hip experimental setups and 5-6 for the knee experimental setup, in the 
employed phase-encoding direction. 

 
 

Assessment of image quality 

At the calcaneus, the image quality was preserved in terms of trabecular depiction till 

R=3 but was degraded at R= 4, which is expected from the PCA plot (Fig 4.8). As can be 

seen from Fig. 4.8, the visualization of trabecular micro-structure in Fig. 4.8a (FIESTA-C 
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image with N=2, R=1) is very similar to that in Fig. 4.8b (FIESTA-C image with N=2, 

R=2) and Fig. 4.8c (FIESTA-C image with N=2, R=3). 

At the knee, good reconstruction was obtained till R=3 (Fig 4.9b), but deteriorated 

at R=4 because of low SNR in the shorter acquisition. The R=3 image (Fig 4.9b), 

acquired in scan time of merely ninety seconds, shows very good depiction of trabecular 

micro-structure. For the longer acquisition, a high quality reconstruction was achieved 

even at R=4 (Fig 9d), as expected from the results of the PCA analysis. It is to be 

remembered that the SNR loss in images acquired with PPI compared to the R=1 case is 

mostly due to enhancement in noise. Signal intensities are very similar between the 

images. This fact might explain why visually, Fig 4.9b and 4.9d are very similar to Fig. 

4.9a and 4.9b respectively. At the hip, images retained their visual quality till R=3 (Fig 

4.10b) for the shorter acquisitions. In the longer scan the image quality was preserved to 

some extent at R=4. (Fig. 4.10d).  
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Figure 4.8 shows the trabecular bone structure at the calcaneus acquired with the 
FIESTA-C (N=2) with A: no acceleration B: two fold acceleration C: three fold 
acceleration. A magnified view of the trabecular micro-structure in each image has been 
provided in zoomed inset. Scan time for the conventional, R=2 and R=3 FIESTA-C 
acquisitions was 9 minutes 19 seconds, 4 minutes 48 seconds and 3 minutes 10 seconds 
respectively. 
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.

 
 

Fig. 4.9a and b show representative conventional (R=1) and R=3 images of the knee for 
the shorter acquisition. Acquisition times were 4 minutes and 1 minute 28 seconds 
respectively. Fig 4.9 c and d show R=1 and R=4 images of the knee from the longer 
acquisition. Acquisition times were 10 minutes 45 seconds and 2 minutes 45 seconds 
respectively. The visualization of structures has been very well preserved in both the 
accelerated images (Fig 4.9 b and d), as can be observed from the magnified views of 
trabecular micro-structure provided with the images. 
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Fig. 4.10 a and b show representative R=1 and R=3 images of the hip for the shorter 
acquisition. Acquisition times were 7 minutes 26 seconds and 2 minutes 30 seconds 
respectively. Fig. 4.10 c and d show the R=1 and R=4 images of the hip for the longer 
acquisition. Acquisition times were 11 minutes 10 seconds and 2 minutes 52 seconds 
respectively. In both the accelerated images, trabecular depiction is better preserved in 
the trochanter, which is a high SNR region in the conventional image, than in the femoral 
head which is a low SNR region. A magnified view of the trabecular micro-structure in 
the femoral trochanter has been shown for each image. 
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Histogram plot of the pixel intensity distributions showed a decrease in peak height and 

broadening of the histogram with higher reduction factors that can be attributed to 

increased noise (Fig 4.11a). In some cases a leftward shift of the peak position was also 

noticed. The periodograms, projected along the PE axis showed very similar patterns for 

the regular and accelerated images. But at higher reductions, an increased energy was 

marked at higher frequencies, probably due to increased noise and at R=4 a slightly 

slower decay envelope was observed indicating a slight increase in the pixel intensity 

autocorrelation (Fig 4.11b). The plots in Figure 4.11 correspond to the same hip 

acquisition dataset as Figure 4.10c and 4.10d. 

 

Fig. 4.11 a and b show the plot of the pixel intensity distribution and the 1D periodogram 
along the phase encoding direction respectively, of the R=1, R=2 and R=4 images from 
the longer acquisition at the hip. Reduction in peak height and broadening of the 
histogram with reduction factor is observed from Fig. 4.11 a. The periodogram plot 
shows similar patterns across reduction factors, but considerably increased energy at 
higher frequencies and slightly slower decay envelope is observed from the R=4 plot. 

 

SNR Measurement 

SNR measurements, using the two-repetition method for the two long acquisitions 

showed a 1.1-1.2 times decrease in SNR at R=2, 1.6-1.75 times SNR loss at R=3 and 2.1-

2.4 times SNR loss at R=4 compared to R=1. In the SNR efficiency improvement 

experiment, SNR efficiency with R=2, N=3 and SOS combination increased by 21 %, 
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compared to N=2 R=1 acquisition for the shorter scan, and by 18% for the longer scan. 

This is in close agreement with the SNR efficiency improvement estimated on the basis 

of simulations. 

 

Measurement of Trabecular Bone structural parameters 

Measurements of the morphological metric showed an increasing trend in apparent 

trabecular number and bone fraction with reduction factor in the images acquired with 

PPI compared to the regular image. The apparent trabecular number measured from all 

the conventional and PPI acquisitions obtained with the FIESTA-C sequence is plotted in 

Figure 4.8. The least percentage change in the measure of App. TbN with increasing 

acceleration was found at the calcaneus. The mean increase was 052 .± % at R=2, 

15 ± % at R=3 and 48 ± % at R=4. At the knee the shorter scans had a larger increase in 

App. TbN measures with reduction factor ( 0004137 .. ± % at R=2, 72114 .. ± % at R=3 

and 41119 .. ± % at R=4) compared to the longer acquisition (1.75% at R=2, 5% at R=3 

and 14% at R=4). The largest change in App. TbN measurements with reduction factor 

was marked at the site of the hip. The variation in the structural measurement with R at 

the longer acquisition (6% at R=2, 9 % at R=3 and 34 % at R=4) was less than that at the 

shorter acquisitions ( 7167 .. ± % at R=2, 31814 .. ± % at R=3 and 1141± % at R=4). So, 

while for the knee, the consistency of structural measurement with R improved 

considerably from the shorter to the longer acquisition, the improvement was smaller in 

the case of the hip. These initial studies indicate that the variation of structural 

measurement with R decreases with increasing image SNR, but a stronger statement 

regarding their relationship will need collection of more data points.  
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4.5 Discussion 

This work applied PPI to HR-MRI of trabecular bone micro-architecture at 3 T. Initial 

results showed that depiction of the micro-structures was preserved till a reduction factor 

of 3 at the ankle and hip and at least till R=4 at the knee. PCA of the covariance matrix of 

the coil sensitivities indicate that 3-4 of the coil elements mostly contributed to the spatial 

encoding capability of the receiver system for the ankle and the hip experimental setups. 

The availability of receiver arrays more optimally customized to our imaging applications 

and the optimization of the experimental setup will increase the number of uncorrelated 

components, further improving the quality of the reconstructed images at higher 

acceleration. Employment of acceleration in both the phase-encoding and partition-

encoding direction will allow higher net acceleration with less image degradation. Since 

HR-MRI of trabecular bone requires depiction of a network of micro-structures with 

dimension on the order of 100 microns, the application is very sensitive to differences in 

the PSFs of different reconstruction techniques. Qualitative comparison of the spatial 

resolution between conventional and accelerated images was performed in terms of edge 

sharpness and pixel intensity autocorrelation. From plots of the line profile and the 

periodogram, the spatial resolution seemed to have been closely preserved in these 

respects in the accelerated images, with only a slight smoothing of edges and slower 

decaying envelope at R=4. The line profile and periodogram plots also showed 

exaggerated edges and increased energy at higher frequency respectively, at higher R 

values, due to elevated noise. Measurement of the trabecular structural parameter, App. 

TbN showed an increasing trend with the reduction factor. This may be due to multiple 

reasons. As suggested from the longer and shorter acquisitions at the knee and the hip, 
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the variation in structural measurement might have a dependence on image SNR. 

However, it has been shown (4) that the structural measurements have a marked 

dependence on the SNR only when the image SNR is below a certain lower limit. The 

other factor to take note of is that the binarizing threshold level is chosen based on the 

reference intensity levels of the bone and the marrow. Increased bone reference intensity 

BI  due to local increase in noise will elevate the bone fraction and affect the binarization 

and the consequent structural measurements. So an image processing technique that is 

less sensitive to the background intensity (91) might be more appropriate in case of 

accelerated images. Additionally, because of the presence of data dependent coil 

weighting factors n in the PSF of the GRAPPA reconstruction, the effective image 

resolution will also be sensitive to object placement within the coil, relative angulations 

of the imaging plane etc. So for consistency in structural measurements, standardization 

of the imaging arrangement is crucial. The higher degree of variability in the structural 

measurements at the hip might again be due to a combination of factors. The femoral 

trochanter has the highest degree of trabecular structural anisotropy and heterogeneity 

among the three skeletal sites, which makes it more sensitive to noise variations in the 

image. Also, the plots of normalized eigenvalues obtained by PCA of the covariance 

matrix of coil sensitivities (Fig. 4.7) showed the lowest eignevalues between R=1 and 3 

for the case of the hip which implies inferior encoding capability of the receiver setup at 

the hip at lower reduction factors compared to the ankle and knee setups. More in-depth 

investigation into accurate quantification of trabecular structural measurements from 

accelerated images will be conducted in the future for larger sample size and each of the 

probable causes of the variation in measurement with R will be examined separately. 
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 Previously Weiger et al demonstrated the use of SENSE for enhancing the 

SNR efficiency of SS-GRE sequences (92). This work demonstrated how the PPI 

technique can be used to improve the SNR efficiency of multiple acquisition b-SSFP 

protocols. Employing PPI with R=2, we were able to accommodate 3 phase-cycled 

acquisitions in shorter scan time than a full FOV N=2 acquisition. Also, with N>2, we 

were able to avail of the SNR advantage of the SOS combination.  

The anomaly in SNR measurements due to spatially varying noise distribution in 

images obtained from PPI have been discussed in the literature (52). The two repetition 

method employed for SNR computations in this work is not only time consuming but also 

error-prone in case of high resolution images. ROI misalignment arising from patient 

motion even in the order of a pixel in between the two acquisitions can cause gross 

overestimation of the noise variance. An alternative is to compute the SNR in a PPI 

image on a pixel-by-pixel basis using a g-factor map. 

 

4.6 Conclusion 

This study showed the feasibility of employing PPI to in vivo HR-MRI of trabecular bone 

at 3 T using several evaluation techniques. PPI images showed good structural detail, 

although strategies for accurate measurement of the trabecular bone structural parameters 

will have to be further investigated. Currently in vivo HR-MRI acquisition of trabecular 

bone takes around 15-20 minutes. The long acquisition time causes patient discomfort 

and motion-induced artifacts. By accelerating acquisition, PPI can enhance the clinical 

feasibility of HR-MRI for monitoring changes in the trabecular micro-architecture in 

vivo. For a given scan time, PPI also allows more flexibility in protocol design. This work 
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showed one such possibility by designing a more SNR-efficient multiple acquisition b-

SSFP protocol. The scan time saved by PPI can also be used to improve through-plane 

coverage, or if SNR permits, to acquire at isotropic voxel resolution while maintaining 

through-plane coverage. The synergy between high field and PPI can substantially benefit 

research applications of trabecular bone MRI. With enough SNR to spare at higher field 

strengths (> 3 T), it might be possible to employ PPI to image at true microscopic 

resolution in a reasonable time.  
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Chapter 5 

Adaptation of Parallel imaging for musculoskeletal 

applications at 7 Tesla 

 

5.1 Introduction 

Translation of MRI applications to higher magnetic field strength is primarily motivated 

by the need to improve signalSNR. We previously observed a significant SNR gain for 

trabecular bone imaging at 3 T compared to 1.5 T (12). Over the past five years, several 

musculoskeletal studies ventured to the higher field strength of 3 T from the clinical 

standard  field strength (1.5 T) (93-95). The improved correlation of MR derived 

structural parameters with micro-CT, a standard of reference was reported for trabecular 

bone applications at 3 T (91). Higher SNR and CNR allowed imaging at higher spatial 

resolution and improved lesion detetctibility in cartilage imaging at 3 T compared to 1.5 

T (96,97).  Imaging at an even higher field can allow improved in-plane resolution, 

isotropic voxel resolution in 3D imaging, and in vivo musculoskeletal MR imaging 

techniques that have till now been SNR-limited. Ultra high field MRI for humans has 

gained prevalence in recent years and a whole body 7 Tesla (T) magnet has become 

available to our research group. Initial research experience in trabecular bone and 

cartilage imaging has shown potential for MRI of osteoporosis and osteoarthritis at 7 T 

(14,98,99). However a serious disadvantage of ultra-high field imaging of humans is high 

radiofrequency (RF) power deposition in the subject.  So employment of parallel imaging 
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at 7 T is crucial not only for reducing scan time but also for reducing total RF power 

deposition during a scan (100).   

 The purpose of this work is to implement Generalized Autocalibrating Partially 

Parallel Acquisition (GRAPPA) (74) pMRI for in vivo high resolution (HR) imaging of 

cartilage and trabecular bone micro-architecture at 7 T and to ascertain whether the 

parallel imaging (PI) method can be adapted to the high field without any modifications 

in the calibration or reconstruction strategy. To this end, the performance of the PI 

technique at 7 T was evaluated by several approaches such as comparison of MR derived 

bone and cartilage morphology metrics that are considered as biomarkers in osteoporosis 

and osteoarthritis, between accelerated and R=1 images; and comparison of geometry 

factor measures between 3 T and 7 T. Trabecular bone micro-architecture at the ankle 

was imaged employing R=1-6 and 4x2 with an eight channel head array. Due to very 

limited commercial availability of array coils for musculoskeletal applications at 7 T, we 

attempted pMRI of cartilage and bone structure at the knee with a two-channel 

quadrature coil. Hence this paper also evaluates the feasibility of conducting PI with a 

quadrature coil based on comparison of image quality and morphology measurements 

between accelerated and R=1 image obtained using this coil. Knee cartilage was imaged 

with fat saturated spoiled gradient recalled echo (fs-SPGR) and multiple phase-cycled 

fully balanced steady state free precession (m-bSSFP) (49) sequence, bone was imaged 

with the latter sequence as well. SSFP sequences are highly SNR efficient and can 

provide additional contrast between cartilage and muscle, compared to SPGR. However, 

in this work the m-bSSFP sequence was employed in cartilage imaging primarily to 

investigate if the incorporation of multiple phase cycled observations of m-bSSFP from 
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each receiver as additional reconstruction bases (101) improved image reconstruction in 

case of PI with the quadrature coil.  

 

5.2 Complementary nature of high field and parallel imaging 

High-field and parallel MRI have been the two main foci of MR development in recent 

years. Although these are two independent developments, the two applications are 

mutually benefiting to each other. Translation to higher magnetic field strength is 

motivated by increased spin polarization but is also fraught with technical challenges 

such as higher radiofrequency (RF) power deposition in the subject and larger 

susceptibility effects, to mention a few. RF energy deposition in tissue is approximately 

proportional to square of the Larmor frequency, or equivalently, the square of B0 [Ref]. 

This raises serious safety concerns at high field. Consequently, safety guidelines for 

specific absorption rate (SAR), which measures RF energy induced heating in the subject, 

can impose severe restrictions on MR sequence design at field strengths such as 7 T. 

Susceptibility differences between magnetically heterogeneous environments scale 

linearly with the field strength. (41). This results in greater static dephasing induced 

signal loss and shorter T2* decay for gradient echo imaging, larger distortions in EPI and 

spiral scans and banding artifacts in bSSFP acquisitions at higher field unless very 

effective higher order shimming routines are employed to minimize B0 inhomogeneity. 

So high field offers higher intrinsic SNR but suffers from limitations such as higher RF 

power deposition and B0 inhomogeneity. In contrast, partially parallel imaging can 

reduce SAR and B0 inhomogeneity (incase of EPI sequences) at the expense of SNR. So 

the strengths and weaknesses of high field and PPI are complementary. But the synergy 
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between high field and PPI that has been widely discussed in literature arises from more 

intrinsic changes in RF electrodynamics at higher field.  

RF wavelength and skin depth in the object gets shorter with increasing field 

strength, generating a more spatially complex B1 field. Although the larger B1 

inhomogeneity poses problems with uniformity of transmit profile and sensitivity 

calibration, it also results in more distinct coil sensitivities, enhancing the spatial 

encoding capability of the coil array (100,102).  Till date, parallel imaging performance 

as a function of field strength has been evaluated based on theoretical electrodynamics 

and experimental studies mainly for brain imaging applications (103,104). But the 

performance is specific to tissue type and object dimensions. In this work we will 

evaluate parallel imaging performance at 7 T by comparison with 3 T for small field-of-

view trabecular bone and cartilage imaging applications. 

 

 

 

 

 

 

 

 

 

 



 81

5.3 Materials and Methods 

5.3.1 MR Experiments 
MR experiments were conducted on seven healthy human subjects on a 7 T General 

Electric (GE) MR scanner (EXCITE, WI, USA) in accordance with the regulations of the 

Committee of Human Research (CHR) at our institution. Three volunteers were imaged 

at the knee (distal femur) with the above-mentioned transmit/receive quadrature coil 

(Nova Medical, MA, USA) with two elements. Since the two elements are connected to 

two separate receiver chains, parallel imaging could be performed with this coil. Image 

datasets of knee cartilage comprising of 32 slices were acquired in the sagittal plane with 

in-plane/through-plane resolution of 0.237 (mm)/1.5 mm. A modified three dimensional 

(3D) fat suppressed Spoiled Gradient Recalled (fs-SPGR) sequence was employed with 

TR(ms)/ TE(ms)/ BW(KHz)/ flip(°) = 17.1/ 3.7/ 64 / 18 over a scan time of  6 minutes 45 

seconds in the absence of acceleration and 3 minutes 35 seconds with R=2. The knee 

cartilage in two volunteers was imaged with the m-bSSFP sequence (13,15), 3D cycled 

Fast Imaging Employing Steady State Acquisition (FIESTA-c) employing two phase 

cycles, TR(ms)/ TE(ms)/ BW(KHz)/ flip(°) = 7.3/ 2.1/ 42/ 15 and identical imaging 

resolution as above. Duration of the fully gradient encoded and R=2 acquisitions were 3 

minutes 55 seconds and 2 minutes 8 seconds respectively. Phase-encoding lines acquired 

in different phase-cycles were also offset with respect to each other.  

Trabecular bone micro-architecture at the knee (distal femur) was imaged in the axial 

plane with the m-bSSFP sequence with two phase cycles, partial echo, TR(ms)/ TE(ms)/ 

BW(KHz) of  13.9/ 2.9/ 32 and a flip angle of 40°. In-plane/ through plane resolution was 
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0.156/ 0.5 mm. Scan time for R=2 acquisition was 8 minutes 22 seconds for a 52 slice 

dataset. In the interest of time, the corresponding unaccelerated scan was not performed. 

Trabecular bone structure at the ankle (calcaneus) was imaged in the sagittal plane in four 

normal, healthy subjects with an eight channel head array coil (Nova Medical, MA, USA) 

with a similar m-bSSFP protocol of TR(ms)/ TE(ms)/ BW(KHz)/ flip(°) = 10.7/ 2.6/ 32/  

40. In-plane /through plane resolution was 0.195/ 0.5 mm and duration of the 

unaccelerated scan was 9:19 minutes for a 32 slice dataset. Scan time for R=2, 3, 4, 5, 6 

acquisitions was 4 minutes 51 seconds, 3 minutes 20 seconds, 2 minutes 35 seconds, 2 

minutes 4 seconds and 1 minute 52 seconds respectively. A 2D accelerated acquisition of 

R=4 (phase encode) x 2(partition encode) was also employed. Ankle scans of three 

normal, healthy subjects acquired for a previous study (16) at 3 T with identical 

resolution, comparable m-bSSFP protocol (TR(ms)/ TE(ms)/ BW(KHz)/ flip(°) =  10.7/ 

2.6/ 32/ 60) and an eight channel head array were also considered for some of the image 

analyses to be described later. All accelerated acquisitions with SPGR and FIESTA-c 

sequences were employed with Cartesian variable density acquisition and 12-24 

autocalibration (AC) lines. In the 2D accelerated acquisition, 4 AC lines were collected in 

the partition encode direction. 

 

5.3.2 Image Reconstruction 
Datasets from the accelerated acquisitions were reconstructed offline on a Sun 

Workstation with a customized GRAPPA-based parallel reconstruction algorithm 

developed in our laboratory (13) in MATLAB (The Mathworks, Inc. Natick, MA, USA). 

At 3 T, the optimal GRAPPA reconstruction kernel was previously found to be 4x3 
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(13,85). A kernel size of 4x3 implies that 4 neighboring data points along the axis of 

acceleration and 3 neighboring data points along the other axis are used to synthesize 

each missing data point. Since we expect larger inhomogeneity of the B1 field at 7 T 

compared to 3 T, a smaller kernel might be sufficient for the GRAPPA reconstruction at 

7 T, leading to better conditioned matrix inversion and faster reconstruction speed. 

Therefore we compared reconstruction quality obtained with a 2x3 GRAPPA kernel to 

the 4x3 kernel in the 4 ankle acquisition datasets for R=2 and 4, on the basis of artifact 

power. Artifact power for an image was calculated as  
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where I(j) represents intensity in pixel j of image p and IREF represents the intensity in the 

corresponding R=1 image. In case of the 2D accelerated ankle acquisitions, two 

successive 1D GRAPPA-based reconstructions were performed along the phase-encoding 

and partition encoding axes. A homodyne reconstruction was applied along the 

frequency-encode direction to all partial echo acquisition datasets. 

Previously, extending the superresolution principle to the super-FOV (sFOV) 

method, full FOV images have been reconstructed from undersampled m-bSSFP 

acquisition, using data from each phase-cycled acquisition as a reconstruction basis. 

(101). To examine if combining sFOV with GRAPPA method yielded better image 

reconstruction than GRAPPA alone, sFOV-GRAPPA methods were additionally 

employed for the cartilage m-bSSFP experiments. Phase-encoding steps were offset 

between phase-cycles during acquisition and undersampled datasets from different 
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receivers as well as from different phase-cycled acquisitions were used as reconstruction 

bases.  

 

5.3.3 Image Analysis 
 

Measurement of g-factor  

The relative noise enhancement factor, g-factor, in a pixel of an individual coil image was 

computed as the square root of the sum of the magnitudes of the Fourier transform of the 

GRAPPA reconstruction weights for that pixel (76). The composite g-factor was 

computed by the same weighted sum-of-squares combination used for combining the 

array images. The net g factor for 2D acceleration can be derived by expressing the 2D 

GRAPPA reconstruction as 2 successive convolution operations:  
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where 
lyn   and 

'lzn   are the GRAPPA filters for the 2 1D reconstructions along ky and kz 

axes respectively and l,l’ are coil indices. 

On applying Fourier Transform to both sides of the equation, 
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 jFULLI  and jREDI represent the full-field-of-view (FOV) and aliased images from the jth 

coil.  Nyl and Nzl’  are the Fourier Transforms of the GRAPPA reconstruction filters nyl 

and  nzl’ respectively. From [5.3], the composite g-factor in a pixel in case of 2D 
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accelerated acquisition can be computed as the product of the g-factors resulting from the 

two 1D accelerations. 

The mean g-factor map for a dataset was computed by averaging the g-factor values for 

each pixel over five centrally located slices. Mean g-values computed from ankle datasets 

at 7 T were compared to those at 3 T and their differences were tested for statistical 

significance by Mann Whitney Ranksum test. 

Since cartilage thickness and trabecular bone structural parameters are 

morphology metrics, ideally, all acquisitions obtained from the same subject should yield 

identical measurements of these parameters, irrespective of the imaging technique. 

However the quantitative analysis is quite sensitive to the imaging method. For this 

reason, we derived some of these metrics from the images and investigated the deviations 

in the measurement values between PI and R=1 datasets. The measurement differences 

were also tested for statistical significance by Mann Whitney Ranksum test. 

 

Cartilage Analysis 

The analysis of knee cartilage from SPGR and FIESTA-c images consisted of a semi-

automatic segmentation technique based on Bezier splines and edge detection and a 

distance field based shape interpolation as previously described in (105). Each point on 

the articular surface was assigned a thickness value equal to its distance from the closest 

point on the bone-cartilage interface. Mean 3D cartilage thickness and cartilage volume 

measures from each subject were compared between R=1 and R=2 datasets.  
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Trabecular Bone structural analysis 

Trabecular bone structural measures were derived from the ankle acquisitions. Five slices 

were considered from each image-set for the quantitative analysis, after demodulating 

images of coil sensitivity variations (30). Regions of interest (ROIs) were manually 

placed in the trabecular bone of the posterior calcaneus in an identical location on all 

corresponding images and binarized into bone and marrow phases by a dual threshold 

method (32). As in the previous chapter, so we chose to compare the structural measure 

App. TbN between unaccelerated and PI datasets. 

 

5.4 Results 

5.4.1 Image Reconstruction kernel 
The 4x3 reconstruction kernel provided better image quality and yielded 217.50 % and 

170.47 % lower artifact power for R=2 and R=4 respectively than the 2x3 reconstruction 

kernel. Therefore we used the 4x3 kernel for reconstruction of all undersampled data. 

. 

5.4.2 Image quality and morphology measurements 
 

Knee Imaging  

Parallel imaging with R=2 could be successfully employed with the quadrature coil. Low 

resolution, low pass filtered sagittal images of the knee obtained from the two individual 

channels of the quadrature coil are shown in Figures 5.1a and b. High image intensities 

indicate regions of high coil sensitivity. Images from m-bSSFP acquisitions at the knee 

are shown in Figure 5.2. Figure 5.2a shows good visualization of trabecular bone micro-
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architecture. m-bSSFP images of the knee cartilage for R=1 (Fig. 5.2b), R=2 GRAPPA 

(Fig. 5.2c) and R=2 sFOV-GRAPPA (Fig. 5.2d) had comparable tissue contrast and 

similar edge sharpness. However normalized difference image (NDI) between R=2 

sFOV-GRAPPA and R=1 (Fig. 5.2f) appears sparser than the NDI between R=2 

GRAPPA and R=1 (Fig. 5.2e).  

 

 

 

 

 
 

Figure 5.1 Figure 5.1a and b show low resolution images of the knee in the sagittal plane  

obtained from the two individual channels of the quadrature knee coil. High image 

 intensities indicate regions of high coil sensitivity and it can be seen from Figure 5.1 that  

sensitivity profiles of the two coil elements have some spatial overlap. 

 
Mean cartilage thickness/volume measures from R=2 sFOV-GRAPPA images 

also had lower differences (3.98 %/ 8 %) compared to R=2 GRAPPA (10.25 %/ 17 %) 

from the unaccelerated images. Two fold acceleration with the SPGR sequence (Fig. 

5.3b) yielded excellent image quality and comparable femoral and tibial cartilage 

delineation to the R=1 acquisition (Fig. 5.3a). The 3D thickness maps computed from the 

R=1 and R=2 datasets had similar patterns (Fig. 5.3c and 5.3d). Mean 3D thickness and 

volume measures also matched closely between the two groups (Table 5.1) and were not 

statistically significantly different (p < .05).  
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Figure 5.2 shows images from m-bSSFP acquisitions at the knee obtained with the 
quadrature coil. Fig. a is a two-fold accelerated image of trabecular bone at the knee 
with in-plane/ through-plane resolution of 156/ 500 µm. Fig. 5.2b,c and d are 
representative unaccelerated, R=2 GRAPPA, R=2 sFOV-GRAPPA images of the knee 
cartilage respectively. Normalized difference between R=2 GRAPPA (Fig. c) and R=1  
(Fig. 2b) is shown in Fig. e and that between R=2 sFOV-GRAPPA (Fig. d) and R=1 is 
shown in Fig. f. Visually Fig b-d have similar image contrast and edge sharpness but the 
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difference image of R=2 sFOV-GRAPPA appears more uniform than that of R=2 
GRAPPA. 

 

 

Figure 5.3a and 5.3b are representative SPGR images of the knee cartilage acquired 

 with no acceleration (R=1) and 2 fold acceleration (R=2) respectively. Figures c and d 

 are the 3D thickness maps of these R=1 and R=2 datasets. The R=2 image has excellent 

image quality and cartilage delineation, comparable to R=1. The thickness maps are also 

very similar, although there are some local differences. 
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Table 5.1.  Mean 3D cartilage thickness and volume measured from R=1 and R=2 
SPGR images of the knee 

 
Mean Thickness (mm) Volume (mm3)  R=1 R=2 R=1 R=2 

S1 2.01±.60 2.04±.64 6.08 5.65

S2 1.96±.54 1.95±.54 6.25 6.24

S3 2.11±.72 2.14±.71 5.75 6.09

 
Table 1 shows mean ± 1 SD of 3D cartilage thickness and total cartilage volume 
measures obtained from R=1 and R=2 SPGR datasets. The measurements did not have a 
statistically significant difference (p < .05) between the two groups and agreed closely. 
S: Subject 
 

Ankle Imaging 

HR-MRI of trabecular bone at the calcaneus could be accelerated up to 6 fold, with slight 

image degradation at R=6. Figure 5.4a shows a representative unaccelerated image of 

trabecular bone at the calcaneus. As expected, the 2D 4x2 acceleration (Fig. 5.4d) yielded 

better image quality than the 1D R=6 acceleration (Fig. 5.4c) , although measurement 

time was nearly equal for the two acquisitions. Image quality and visualization of 

trabecular bone structure is comparable in the R=4 (Fig. 5.4b) and R=4x2 (Fig. 5.4d) 

acquisitions although the scan time is much shorter for the latter (1 minute 52 seconds) 

than the former (2 minutes 35 seconds). App. TbN values showed an increasing trend 

with R in accelerated images compared to R=1 which is consistent with our observations 

in a previous study at 3 T (16).  The overestimation is probably due to spatially varying 

noise amplification and changes in histogram characteristics (23). The mean increase in 

App. TbN value at R=3, 4 and 4x2 compared to the unaccelerated acquisition was 4.48 ± 

2.12 %, 6.79 ± 4.6% and 6.98 ± 2.89% respectively. The consistency of measurement at a 
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high acceleration of R=4x2 again demonstrates the benefits of 2D acceleration. The App. 

TbN values were not statistically significantly different between accelerated and 

conventional images for any acceleration factor (p<.05). 

 

5.4.3 Measurement of   g-factor 

Mean g-factors measured from the ankle scans for R=2-6 and 4x2 are shown in Fig. 5.5a. 

We also measured g-factors from similar MR scans of trabecular bone at the ankle 

previously acquired at 3 T. The g values measures were similar between the 2 field 

strengths at R=3, but lower at 7 T for higher accelerations (Fig. 5.5b), although the 

differences were not statistically significant (p < .05). 

 

 



 92

 

Figures 5.4a, b, c and d are representative R=1, R=4, R=6 and R=4x2 images of the  

trabecular bone micro-architecture at the ankle acquired with the m-bSSFP sequence 

 and the eight channel head array. Figures 4e, f and g are images of the normalized 

difference of R=4, R=6 and R=4x2 respectively from R=1. As expected, the 2D 4x2 
acceleration (Fig. 4d) yielded better image quality than the 1D R=6 acceleration (Fig. 
4c), although they had nearly equal scan times.  
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Figure 5.5 shows plots of g-factor measures. Mean g-factors measured from the ankle 

scans for R=2-6 and 4x2 at 7 T are shown in Fig. a. The standard deviation of the 

 measurement is seen to increase with the acceleration factor. Fig. b is a comparative 

 plot of the g-factor values measured from 3 T and 7 T. The g values are similar at R=3, 

but considerably lower at 7 T for R>=4. However the measures were not statistically 

significantly different between the two field strengths. 

 
 

5.5 Discussion  

Differences in the performance of pMRI between two field strengths arise mainly due to 

variations in RF homogeneity within the imaging volume. Based on its conductivity and 

permitivitty properties, spatial inhomogeneity of the B1 field in the bone marrow is 

expected to increase by a small extent from 3 T to 7 T (3,24). This is in conformance with 

our observations of  the unsuitability of a smaller reconstruction kernel; and lower (but 

not statistically significantly different) geometry factors, a higher feasible acceleration 

factor of R=6 and slightly smaller differences in the trabecular bone structural measure, 

App. TbN between accelerated and R=1 images, at 7 T compared to 3 T (16). However, it 

should be noted that the head array at 7 T had a smaller diameter compared to 3 T, 

rendering it less suitable for ankle imaging. Spatial complexity of the B1 field can be 
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expected to increase considerably within the imaging FOV at 7 T for the cartilage 

application (3,24). However, in the absence of a comparable dual channel quadrature coil 

setup at 3 T, comparisons could not be drawn between the two field strengths for this 

application. 

The imaging protocols used in this work are based on optimization studies for 7 T 

previously conducted in our lab (10,11). Since this work is primarily a feasibility study, 

imaging a larger cohort of healthy subjects or patient population was considered to be 

beyond its scope. The m-bSSFP sequence was employed for cartilage imaging primarily 

to investigate the benefits of the sFOV-GRAPPA method. Comparison of SPGR and m-

bSSFP sequences for morphology measurement and lesion detectibility is the focus of a 

separate study being conducted in our research group. 

 

5.6 Conclusion 

To conclude, we implemented and evaluated PI for in vivo HR-MRI of trabecular bone 

and cartilage at 7 T. To the best of our knowledge, this was the first time in vivo 

measurement of g-factors was presented for musculoskeletal tissues at 7 T. The 

advantage of 2D over 1D acceleration and the feasibility of conducting PI with a dual 

channel quadrature coil were also demonstrated.  The clinical feasibility of in vivo HR 

musculoskeletal MRI at 7 T can increase considerably with employment of parallel 

imaging, because of reduced RF power deposition and the potential flexibility in protocol 

design. 
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Chapter 6 

Robust quantification of bone structural measurements 

from GRAPPA reconstructed images 

                                                                                                                                                    

6.1 Motivation 

The end goal of quantitative high resolution MRI of trabecular bone is to be able to 

evaluate osteoporotic condition by quantifying structural parameters of trabecular bone 

network. In Chapter 4, it was seen that the bone fraction (App. BV/TV) and bone 

structural parameters such as App. TbN are overestimated from pMRI images and there is 

an increasing trend in the measurement with acceleration factor R (13). In this work we 

will investigate the possible causes of this overestimation and propose image 

reconstruction and image processing techniques that will improve the accuracy of the 

bone morphology metrics measurement from images obtained by GRAPPA based 

parallel imaging methods. 

The image processing technique employed to measure trabecular bone structural 

parameters from MR images involves a dual threshold method. The bone intensity 

reference or lower threshold IB is determined by sampling the cortical bone shell in 

different locations in the image and IM, the marrow reference intensity level or higher 

threshold is set to the higher value of the full-width-at half-maximum (FWHM) of the 

intensity histogram of the region of interest (ROI). Structural analysis is subsequently 
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performed on binarized bone images by edge based mean intercept length method (32). 

This has been described in detail in Section 2.2.  So the App. TbN measure would 

increase if more edges are encountered in the MIL method and/ or if the binarized image 

generated by the dual-threshold has an increased bone fraction (BF). 

 A factor of R  SNR loss in a pMRI image compared to fully gradient encoded 

image is due to fewer number of k-space samples acquired in the pMRI acquisition. 

There is an additional spatially varying SNR degradation factor g in the accelerated 

image, related to the geometry factor (64,76). So if the accuracy of structural 

measurements is SNR dependent, it would deteriorate in case of pMRI image-sets. 

However, it has been seen that for image SNR ~> 10, measurement accuracy is only 

weakly SNR dependent (4). In this work we hypothesize that elevation of App. TbN 

measures in accelerated images is caused primarily by the spatially varying amplification 

of noise in the reconstructed image. There are two main sources of this noise 

amplification. As already mentioned, the first is related to the geometry factor (64,76). 

Noise from this source can be minimized by using optimal coil array for signal detection 

and by optimizing the relative positioning of the imaging volume within the coil array. 

The g-factor value has also been observed to decrease with increasing static magnetic 

field strength (Section 5.2) (102-104). The second source is the inverse computation 

associated with solving for reconstruction filter coefficients.  Spatially varying noise 

amplification caused by the second source can be mitigated to some extent by 

regularizing the inversion of the signal matrix in the GRAPPA reconstruction (106-108). 

We also hypothesize that in view of the altered histogram characteristics of a highly 

accelerated image compared to the conventional R=1 image (Chapter 4) (13), the 
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empirically set upper threshold might not be appropriate and might yield elevated bone 

fraction (BF) measures. Since all structural analysis is performed on binarized bone 

images, the elevation of BF would affect all the structural measurements. The second 

probable cause of variation in structural measurements might be addressed by a 

histogram transformation strategy.  

 

6.2 Regularization of Inverse Problems 

The basic equation for computation of GRAPPA reconstruction weights, previously 

presented in Chapter 4 (Equation 4.4) can be written as  

[ ]
K1mj, srcsrcsrctgtmj,src SSSSnS .......;. ==                                                           [6.1] 

where j is the coil index, m is the number of ∆ky offsets between source and training 

lines and K is the number of coils. If Nb blocks are used for the reconstruction and Nx is 

the dimension in kx, then Ssrci has a matrix size of (Nx x Nb). For convenience of notation 

this equation can be written as  

bAx =                                                                                                                 [6.2a] 

and can be solved for x by computing the pseudoinverse of A. A useful numerical tool for 

analysis of the ill-posedness of inverse problems is the singular value decomposition 

(107) 

If mxnA ℜ∈ be a rectangular matrix with m ≥ n (as in our case), its SVD can be written as 

∑
=

σ==
n
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T
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T vuV UΣA                                                                                      [6.2b] 
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such that U and V are matrices with orthonormal columns and Σ=diag(σ1,…. σn) has non 

negative diagonal elements appearing in decreasing order. 

As σi decreases, singular vectors ui and vi tend to have more sign changes i.e. they 

become more oscillatory. From equations [6.2a] and [6.2b], we can write  

( )bUVΣx T-1=                                                                                                            [6.2c] 

With increasing order i, σi decreases and 
i

1
σ

 increases, amplifying the high frequency 

oscillations in b. This is the basis of the ill-posedness of inverse problems (107,108) . 

In our specific case, the ill-posedness would lead to higher frequency oscillations 

in the k-space data synthesized by filter coefficients n from the acquired data, and more 

edges in the reconstructed image. 

 One obvious way of to alleviate the problem is the truncated SVD which discards 

the nearly singular eigenvalues of the SVD. 

∑
=

σ=
p

1i

T
iii np;vuA ≺                                                                                   [6.2d] 

However the most common and well known form of regularization is the Tikhonov 

regularization. The idea behind it is to define the regularized solution λx  as the 

minimizer of the weighted combination of the residual norm and a constraint (106-108) 

{ }2
22

2
2 )(minarg ∗−λ+−= xxLbAxx λ                                                               [6.3] 

The regularization parameter λ controls the weight given to minimization of the 

constraint relative to the minimization of the residual norm. L is usually the identity 

matrix or a derivative operator, x* is an initial estimate of x that may be included in the 

constraint. One graphical tool for choice of the regularization parameter is the L-curve 
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method. It is a plot of the norm 
2

Lx  versus the residual norm 
2

bAx −  in the log-log 

scale. Discrete ill posed problems usually have a characteristic L shaped appearance in 

such a plot-hence the name of the curve. The vertical part of the curve represents the 

under-regularized regime in which 
2regLx  is very sensitive to changes in the 

regularization parameter and the horizontal part represents the over-regularized regime in 

which the residual norm is more sensitive to changes in λ (106-108) (Fig 6.1). The 

optimal trade-off is given by the point of maximum curvature or the “corner” of the L 

curve. The Tikhonov regularization is said to be optimal because it produces the least 

residual and semi norm compared to other SVD methods (108). 

 

Figure 6.1 shows the characteristic L shape of the plot of side-norm against residual 
norm 

 

However, Tikhonov and other quadratic L2 norm based regularization methods introduce 

smoothing to the data reconstruction. So while the computational advantage of such 

methods is that they are linear problems, they might not be optimal regularization 

methods for certain applications. Total variation (TV) regularization is a non-quadratic 

regularization method in which the non quadratic side-constraint is the L1 norm of the 

differential of the data (106). 
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{ }DxbAxxλ
2

2
2minarg λ+−=  

D is an approximation of the gradient operator. Unlike Tikhonov regularization, TV can 

contain localized steep gradients and preserve edges in reconstruction, and is hence often 

known as the right regularizer for signal/image reconstruction (106). But the TV 

regularization is difficult to formulate as it is a non-linear convex optimization problem. 

 

6.3 Histogram transformation 

Since there is lot of variability in the intensity scale of MR images obtained with the 

same protocol due to experiment variables such as positioning of the coil, amplifier 

transmit gain etc, Nyul et al (109,110) proposed a strategy for transforming image 

histograms to a standard template. This would ensure that MR images obtained at the 

same anatomical site using the same protocol would have same implications for a 

particular intensity level. The algorithm consists of two stages. In the first or training 

stage, a training dataset consisting of N image volumes acquired with the same protocol 

are collected. Inputs to the training algorithm are the training dataset, s1 and s2-the 

minimum and maximum intensities of a chosen standard scale and a landmark feature 

vector [p1 p2 µ]. Among the features, p1 and p2 is the chosen lowest and highest percentile 

of the histogram that will be mapped to s1 and s2 respectively and µ is the mode of the 

foreground object in case of a bimodal histogram, or the point of a curvature of -1 in 

unimodal histogram and so forth, depending on the application. Let an image volume be 

denoted by }{ g,vV =  where v is the 3D array of voxels in the image volume V and g is 
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the image intensity function that assigns an intensity value to each v. The formula for 

mapping g(v)=x in a training dataset entry Vi  to x’ is (109,110) 

)ss(
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−

−
+=                                                                                            [6.4a] 

 

Consequent to the mapping, the landmark µi’ is recalculated. The output of the training 

phase is a rounded mean 
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1                                                                                                              [6.4b] 

Once a standard histogram template is obtained from the training phase, histogram 

transformation can be applied to any image volume obtained with the same protocol. 

Inputs to the transformation phase are an image volume Vi, the histogram feature vector 

description [p1 p2 µ] and the standardized feature value of µs. The histogram 

transformation is performed as follows (109,110):   
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                                                   [6.4c]                

                    To address the issue of altered histogram characteristics in accelerated 

images, we followed this strategy. In our case, the training dataset comprised of 

conventional fully gradient encoded (R=1) images specific to an anatomic site and 

imaging protocol. Histograms of accelerated images were transformed to the standard 

template using the standardized feature values obtained in the training phase. The feature 

vector was chosen to be [p1 p2 µi] where p1, p2 and µi are the 0.5th, 98th and 50th percentiles 

respectively. 
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6.4 Methods 

6.4.1 MR Dataset 
The modified image reconstruction and image processing techniques were applied to MR 

raw k-space data previously acquired in parallel imaging experiments conducted at 3 T 

(Chapter 4). Three acquisitions at the knee and three acquisitions at the hip conducted at 

3 T were used in this work for investigation into accuracy of bone parameter 

quantification from accelerated images. For the shorter (longer) acquisition at the knee, a 

16 (42) slice dataset had been acquired with the custom built dual phased array coil (111) 

in the axial plane with an in-plane resolution of 190 µm and slice thickness of 500 µm, 

TR/TE/BW of 10/2.7/32 ms/ms/KHz using a multiple balanced steady state free 

precession (m-bSSFP) sequence, for a fully gradient encoded acquisition time of 4 

minutes (10 minutes 45 seconds). For the shorter (longer) acquisition at the hip, a 32 (48) 

slice dataset had been acquired with the same dual phased array coil in the coronal plane 

with an in-plane resolution of 234 µm and slice thickness of 1000 µm, with TR/TE/BW 

of 8.2/2.3/42 ms/ms/KHz also using a m-bSSFP sequence, for a fully gradient encoded 

acquisition time of 7 minutes 26 seconds (11 minutes 10 seconds). Previously it was 

observed that image quality was preserved till an acceleration factor R=3 for short 

acquisitions and till R=4 for longer acquisitions at the knee and the hip at 3 T (Chapter 4) 

(13). So we investigated bone morphology measurements for R=3 and for R=3-4 for the 

shorter and longer acquisitions respectively.  
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6.4.2 Image Reconstruction  
To eliminate sources of variation in structural measurements other than that caused by the 

parallel reconstruction, such as motion between scans, accelerated acquisitions (R=3,4) 

were simulated from the R=1 datasets. The complex full k-space data was decimated to 

simulate accelerated acquisition and the undersampled datasets were reconstructed once 

by regularized and once by unregularized GRAPPA based reconstruction. Regularized 

GRAPPA (rGRAPPA) based reconstruction involved Tikhonov regularized signal matrix 

inversion for computation of GRAPPA reconstruction weights. 

[ ]2
2

2
2

minarg nS.nSn tgtsrcλ +−= λ                                                                       [6.5] 

The regularization was incorporated in our MATLAB reconstruction routine (Chapter 4) 

using MATLAB’s regularization toolbox (108).  

For cases where Tikhonov regularization might not achieve desired result, an 

alternative regularized reconstruction technique based on total variation (TVGRAPPA) 

was devised. Another point of difference with the rGRAPPA method was that it applied 

the regularization in the image domain subsequent to the GRAPPA based reconstruction 

of k-space data. Let the initial estimate of the desired image, x_rec be the image 

corresponding to the GRAPPA-reconstructed full k-space data. Let x_losamp be the low 

resolution image corresponding to the calibration/training region of the k-space image 

(Fig. 4.3). Let R be the resampling matrix that downsamples x_rec to match the 

resolution of x_losamp. Let D be an approximation of the gradient operator and TV be 

the desired total variation in the image. If x_rec is resampled to the same resolution as 

x_losamp, we would want to minimize the residual norm between resampled x_rec and 

x_losamp. As a side constraint, we would also like the sum of all edge intensities in the 
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desired image to be < TV. TV was estimated from a set of images obtained with the same 

protocol but with full gradient encoding. The pseudo-code for the TV regularization can 

be written as: 

minimize 2
2losamp_Irec_x*R −  

subject to 

TVrec_x*D ≤                                                                                           [6.6] 

The non-linear convex optimization was incorporated in our MATLAB reconstruction 

routine using the convex programming toolbox (112). 

 

6.4.3 Image post-processing and analysis 
All reconstructed images were demodulated of intensity variations arising from variations 

in coil sensitivity and binarized by the dual threshold method (30,32). They were then 

analyzed for measurement of trabecular bone micro-structural parameters. Of the bone 

structural measures analogous to histomorphometry (Section 2.2), the two independent 

measures are trabecular number density (App. TbN) and trabecular thickness (App. 

TbTh). Of these, trabecular thickness measurement has compromised accuracy and 

limited sensitivity due to the limited spatial resolution regime in MRI. In contrast, App. 

TbN has been found to be an important indicator of osteoporotic condition (37,38). 

Moreover, in our previous study, measurement of App. TbTh did not show a trend of 

variation while App. TbN showed a clear trend of overestimation with acceleration 

factor. So we chose to investigate the accuracy in measurement of App. TbN as well as 

BF between unaccelerated and PI datasets.  
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In the training phase of the histogram transformation (HT), two training datasets 

were built – one from the R=1 acquisitions at the knee and the other from R=1 

acquisitions at the hip. The range of the chosen standard scale was 5000 and the lowest 

(p1) and highest percentiles (p2) were chosen to be the 0.5th and 98th. Once the histograms 

of the training imagesets were mapped to the standard template [Eq. 6.4a], the 

standardized value of the 50th percentile (µ), was calculated. In cases where the BF 

measured from the rGRAPPA images showed more than 5% difference from the 

corresponding R=1 measure, the rGRAPPA images were subjected to histogram 

transformation according to Eq [6.4c]. 

 

6.5 Results  

Representative images of the trabecular bone structure at the proximal femur (hip) for 

R=1, R=3 GRAPPA and R=3 rGRAPPA are shown in Fig. 6.2. It can be seen that the 

rGRAPPA image is slightly less noisy than the GRAPPA image. 

 
 

Figure 6.2 shows representative a: R=1 and three fold accelerated images of the bone 
structure at the hip reconstructed by b: GRAPPA and c: rGRAPPA methods. The 
rGRAPPA image is slightly less noisy and smoother than the GRAPPA image. 
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The difference in App. TbN measure between R=1 and accelerated images was 

considerably reduced in most cases when Tikhonov regularization was incorporated in 

the GRAPPA reconstruction. In cases where the BF measure differed >= 5% between the 

R=1 and the rGRAPPA image, a histogram transformation (HT) was applied to the 

rGRAPPA image and the image intensities were mapped to the standardized histogram. 

This further lowered the difference in BF and App. TbN measurements from R=1. 

Percentage difference in BF and App. TbN measures between R=1 and accelerated 

datasets for the knee and the hip are shown along with the SNR of the corresponding 

GRAPPA images in Table 6.1 and 6.2 respectively. Image intensity histogram of an 

accelerated image before and after the HT operation is shown in Figure 6.3.  

 

Table 6.1 Percentage differences in BF and App. TbN measures between R=1 and 
R=3 images of the knee for different reconstruction methods  

R=3 GRAPPA R=3 rGRAPPA  SNR of 
R=3 
GRAPPA BF App. TbN BF App. TbN 

Sub1 12.12 0.6 7 2 5.6 
Sub2 9.42 8.68 14 0.5 8.5 
Sub3*  17.65 2.69 3.27 3 0.93 
 

Table 6.2 Percentage differences in BF and App. TbN measures between R=1 and 
R=3 images of the hip for different reconstruction and post-processing methods  

R=3 GRAPPA R=3 rGRAPPA R=3 
rGRAPPA+HT  

SNR of 
R=3 

GRAPPA BF App. 
TbN BF App. 

TbN BF App. 
TbN 

Sub1 14.53 15.12 13.7 9.5 5.18 -0.47 -0.91 
Sub2 10.8 16.01 16.45 11.5 10.54 4.14 7.19 
Sub3* 15.22 8.302 4.35 6.98 3.98 4.43 -0.36 

* Long acquisition  
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In the long acquisition at the knee, difference in App. TbN and BF measure between R=1 

and R=4 rGRAPPA knee images was 3.6% and 2.7% respectively. SNR of the 

corresponding R=4 GRAPPA image was 13.24. In the long acquisition at the hip, 

difference in App. TbN and BF measure between R=1 and R=4 rGRAPPA+HT images 

was 8 % and 4.3% respectively. SNR of the corresponding R=4 GRAPPA image was 8.6. 

 Since the App. TbN measurement difference was relatively high for both the 2nd 

knee (8.5%) and hip (7.19 %) acquisitions with the rGRAPPA method, the datasets were 

re-reconstructed using the TVGRAPPA method. Using this reconstruction and the HT 

post processing operation, the measurement differences in BF and App. TbN between 

R=1 and R=3 for the second hip acquisition were reduced to 0.4% and 4.22% 

respectively while the measurements remained unchanged for the other case. However, 

image blurring was avoided in both cases. 

 

 

 

  

 

 

Figure 6.3 shows the representative image intensity histogram of an R=3 rGRAPPA 
image before and after HT operation. 
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6.6 Discussion and Conclusion 

Measurement differences between R=1 and accelerated datasets was high when the SNR 

in the image was <~ 10. SNR can decrease steeply from one acceleration to the next, 

when the spatial encoding capability of the coil array is exceeded as was the case for the 

long hip acquisition at R=4 (Fig. 4.7). In most other cases, measurement accuracy was 

improved using Tikhonov regularization with the reconstruction and the histogram-based 

post-processing.  

Regularization offers a trade-off between reconstruction error and noise 

smoothing, so aliasing artifacts increase in regularized parallel reconstruction. 

Additionally, choice of regularization parameter λ by the L curve method might not be 

appropriate when the plot of residual norm against side norm (Figure 6.1) does not lend 

itself to the characteristic L shape. One such example (for the 2nd hip acquisition) is 

shown in Figure 6.4.  

Other disadvantages of the rGRAPPA method proposed here is that the quadratic 

regularization has a smoothing effect which might manifest as slight image blurring. To 

avoid image smoothing and the aliasing artifacts, the TVGRAPPA method was also 

proposed in which the side constraint involves L1 norm of image gradients and the 

regularization is performed in the image domain. Using this method for the two cases 

where measurement differences from R=1 were considerable even when images were 

reconstructed by the rGRAPPA method, quantification accuracy improved in one but was 

unchanged in the other. The major disadvantage of the TVGRAPPA method is its 

computational complexity. 
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Figure 6.4 shows the plot between the residual and L2 side-norm for a three-fold 
accelerated dataset at the knee. This is an example case where the plot does not have a 
characteristic L shape. 

 

The training dataset used in this work for the histogram transformation consisted 

of only 4 datasets. Robustness of this image processing technique can be improved by 

inclusion of more training data. Efficacy of this method using standardizing features 

other than the median of the histogram should also be investigated. 

 As seen from the results, pMRI images cannot be analyzed for bone structure if 

the image SNR is below a certain limit. So a sufficiently high baseline SNR is crucial for 

this application. Adverse effects of g-factor induced noise amplification on the image 

analysis can be minimized by using coil arrays and experimental set-ups optimized for 

this pMRI application and by not exceeding the encoding capability of the array. Values 

of the g-factor have also been seen to decrease with increasing field strength. This is 

probably why the accuracy of bone structural measurements from accelerated images 

improved from 3 T to 7 T (Chapter 5). Analyses of images acquired at the calcaneus of 3 
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healthy subjects at 7 T showed as low as 4.4% and 6.79% mean difference in App. TbN 

measure for R=3 and R=4 respectively from R=1.  

 In conclusion, this work has proposed image regularization and histogram based 

processing methods that can facilitate robust quantification of morphology metrics from 

accelerated HR-MR images of trabecular bone micro-architecture, provided there is 

sufficient image SNR and the MR detector array is optimized for the pMRI application. 
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Chapter 7 

Parallel imaging applications beyond osteoporosis 

7.1 Motivation 

The implementation of a GRAPPA based parallel imaging technique and its optimization 

for high resolution imaging of trabecular bone micro-architecture was previously 

described in Chapters 4, 5 and 6. In this section the robustness and flexibility of the 

technique will be tested for two neurological applications- MR spectroscopic imaging of 

brain metabolites and susceptibility weighted imaging (SWI) of brain vasculature. 

Spectroscopic methods provide biochemical information by mapping the metabolite 

concentrations in localized voxels. In clinical settings, the combination of magnetic 

resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) is a powerful tool 

for detecting anatomical and biochemical changes in disease conditions such as brain 

tumors and other neurological diseases, stroke, prostatic tumors to name a few. The 

disadvantage of spectroscopic imaging is that it typically requires long acquisition times 

in the order of 20-40 minutes (113). Susceptibility weighted imaging (SWI) in an 

emergent technique for high resolution, distortion-free imaging of brain vasculature that 

has recently been shown to improve the diagnosis of brain neoplasms, neurological 

trauma, and vascular malformations, in addition to a variety of cerebrovascular and 

neurodegenerative diseases (114).  The susceptibility weighting relies on changes in 

phase that result from signal loss due to partial volume effects near venous vessels, 

typically requiring long echo times to obtain sufficient weighting (115). This prolongs the 
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acquisition times. So the above two imaging methods are good candidates for 

acceleration. Since both these methods are phase-sensitive, they are also a good test for 

the robustness of our reconstruction technique. Moreover spectroscopic acquisition yields 

4 dimensional data compared to the 3 dimensional data generally obtained from MRI. So 

our GRAPPA based reconstruction technique had to be extended to be able to process the 

4D data. This also tested the flexibility of our reconstruction method. 

 

A 7.2 Magnetic Resonance Spectroscopic imaging of brain 

metabolites 

MR spectroscopy (MRS), like MRI is based on the principle of nuclear magnetic 

resonance. In MRS however, the signal coming from protons is further resolved into a 

resonant frequency spectrum. The phenomenon due to which protons have different 

resonant frequency in different molecular configuration is chemical shift. 

 

Chemical Shift 

In the presence of an external magnetic field, the electrons surrounding an atom generate 

a magnetic field opposing the external field. This has a shielding effect on the nucleus, 

the effect of shielding depending on the local electron density and the atoms the nucleus 

is bonded to. So the net magnetic field (Bi) experienced by a nucleus also depends on the 

molecular structure, and can be written as 

)1(BB i0i σ−=                                                                                                         [7.1a] 
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where σi is the shielding for nucleus i. The Larmor frequency of the nucleus is also 

modified as: 

)1(B iii σ−γ=ω                                                                                                      [7.1b] 

The chemical shift of a spectral component is defined as the normalized difference of the 

resonant frequency from a reference frequency and is displayed on a scale of parts per 

million (ppm). 

6

ref

refi
i 10x

ω
ω−ω

=δ                                                                                                    [7.1c] 

The normalization removes the B0 dependence of the chemical shift. 

So in contrast to MRI which mainly provides anatomical information, MRS is a method 

for imaging the biochemical composition of tissues. Chemical compounds/metabolites 

are identified by their chemical shift in the spectrum and their concentration is assessed 

from the height and area under the peak (19). 

 At a long echo time of 144 ms, the peaks of five metabolic compounds can be 

identified in brain tissue: choline (Cho), creatine (Cre), N-acetyl aspartate (NAA), lactate 

(Lac), and lipid (Lip). In normal brain, levels of Cho and Cre are similar and the NAA 

peak is 1.5-2 times larger.  MR spectra from brain tumors can be distinguished by 

elevated Cho, reduced NAA, and in some cases elevated lipid levels. Increase in Cho is 

thought to be due to increased cell density and membrane turnover.   The reduction of 

NAA in growing gliomas is attributed to displacement and damage of surrounding 

neurons. Elevated lipid levels denote the cellular membrane breakdown associated with 

cell death and are often observed in spectra from necrotic tissue, where all other 

metabolic activity is suppressed (113). Brain cancer is a debilitating disease with median 

survival of about 1 year for the highest grade lesions (116). Ninety percent of primary 
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brain tumors in adults older than 45 are gliomas, which originate from the glial cells that 

are the support cells for neurons. Accurate localization and spatial characterization of 

gliomas is crucial for planning effective treatments including surgical resection, radiation 

therapy and chemotherapy. Although pre and post contrast T1 weighted imaging and T2 

weighted inversion recovery methods are sensitive to tumor detection, demarcation, 

spatial characterization and staging of tumors can be made more accurately by combining 

the diagnostic capabilities of MRI and MRS. 

 Early MRS acquisitions were mainly single voxel spectroscopy (SVS). Since 

then, 2 dimensional (D) and 3D MR spectroscopic imaging (MRSI) methods have 

evolved. Magnetic resonance spectroscopic imaging (MRSI) combines the features of 

both imaging and spectroscopy, by collecting spectral data from multiple voxels that have 

been spatially encoded by phase-encoding gradients, after the image volume has been 

localized. Point resolved Spectroscopy (PRESS) is a volume localization method which 

applies 90°-180°-180° RF pulses (117). Each RF pulse selects an orthogonal plane so that 

the localized volume is defined as their intersection. In 3D MRSI, phase encoding 

gradients are applied similar to MRI, in x, y and z directions subsequent to localization 

(19). 

The obvious advantages of MRSI over single voxel spectroscopy are finer spatial 

resolution and the provision of overlaying spectral maps on anatomical images. However, 

MRSI involves long acquisition times, in the order of 20-40 minutes which can cause 

patient discomfort and motion induced artifacts. Several pulse sequences such as spiral 

and echo-planar methods were developed to accelerate MRSI by collecting more data 

points per excitation (118). In elliptical MRSI scan time is reduced by acquiring signal 
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from the central ellipsoidal portion of k-space (119). Employment of parallel imaging 

techniques allows a more generalized approach to scan time reduction since they can be 

combined with any MR sequence. Using the SENSE algorithm, Dydak et al presented a 

sensitivity encoded 2D spectroscopic imaging technique, with undersampling in 2 phase-

encoding directions resulting in net four folds reduction of scan time (120). Ozturk-Isik et 

al applied the SENSE-MRSI to imaging of gliomas at 3 T (16). However, SENSE 

reconstruction has certain limitations when there is slight aliasing in the FOV even in the 

fully encoded acquisition (67). Furthermore, at high fields > 3 T, estimation of coil 

sensitivity can be technically challenging. In this work we present a fast MRSI method 

using a GRAPPA based autocalibrating parallel technique and apply it to 3D MRSI with 

Cartesian as well as elliptical sampling trajectories at 3 Tesla (T) with two-fold 

acceleration in two phase-encoding directions, kx and ky.  

 

PRESS Localization                                                     Spatial Encoding for SI 

Figure 7.1 shows schematic representation of PRESS localization and spatial encoding 
by phase encoding gradients in 3D MRSI 
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A 7.3 Methods  

A 7.3.1 Data Acquisition 
The sampling scheme for 3D PRESS MRSI sequence was modified for autocalibrating 

parallel acquisition. The sampling scheme in cases of elliptical, Cartesian GRAPPA and 

elliptical GRAPPA acquisition for a 16x16x8 spectral array is shown in Fig 7.2. For the 

GRAPPA acquisitions, an acceleration factor of 2 and 2 AC lines were used in each of kx 

and ky directions.  

 

Fig 7.2 shows the sampling schemes in kx-ky plane for 16x16 Elliptical, Cartesian 
GRAPPA and Elliptical GRAPPA methods 

 

MR exams were conducted on a 3 T clinical MR scanner (GE Healthcare, Milwaukee, 

WI) using an eight channel RF coil (MRI Devices Inc, Gainesville, FL). 3D Cartesian 

GRAPPA spectroscopic data with two fold acceleration and 2 AC lines in kx and ky 

directions of a 12x12x8 spectral array (time:10:06 min) were acquired from 2 volunteers 

and 3 patients. Full 12x12x8 spectral datasets (time: 21:12 min) were acquired from 

volunteers and elliptical 12x12x8 spectral datasets (time: 9:28 min) were acquired from 

patients because of time constraints, for comparison with the partially parallel datasets. 

16x16x8 3D elliptical GRAPPA spectroscopic data was acquired from 3 volunteers and 6 

glioma patients with R=2x2 and 2 AC lines in a scan time of 9:25 minutes. For 
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comparison, full elliptical 16x16x8 spectral array (time: 17:32 min) was acquired from 

the volunteers and elliptical 12x12x8 spectral array (time: 9:28 min) was acquired from 

patients because of scan time limitations. All the spectroscopic acquisitions were 

conducted with PRESS localization in conjunction with CHESS (121) water and VSS 

outer volume suppression (122) (TR/TE=1.1s/144 ms). The imaging protocol also 

acquired T1-weighted SPGR (TR=26 ms, TE=3 ms, 3 mm slice thickness, 256x256 

matrix, FOV=240x240 mm, flip angle = 40°), T2-weighted FLAIR (TR=10002 ms, 

TE=127 ms, TI=2200 ms, 3 mm slice thickness, 256x256 matrix, FOV=240x240 mm, 

flip angle=90°) and proton-density weighted fast gradient echo coil sensitivity images 

(TR=150 ms, TE=2.1 ms, 3 mm slice thickness, 64x64 matrix, FOV=300x300 mm, flip 

angle=20°). 

 

A 7.3.2 Spectral Data Reconstruction 
Undersampled spectral data was reconstructed by a GRAPPA based algorithm developed 

in MATLAB (The Mathworks Inc., Natick, MA) on a Sun workstation. The data from 3D 

MRSI acquisition has 3 spatial frequency dimensions – kx, ky, kz and a time dimension 

for the free induction decay. After an inverse Fourier Transform in the z direction the 

spectral data was processed by two-dimensional GRAPPA reconstruction slice by slice. 

Griswold et al showed that multi-dimensional GRAPPA reconstruction can be split into 

multiple one-dimensional GRAPPA reconstructions (123). In our case, we split the 2D 

GRAPPA reconstruction into two consecutive 1D GRAPPA reconstructions Gky and Gkx 

along kx and ky respectively. The basic GRAPPA equation (Eq. 4.4) for spectroscopic 

imaging can be written in matrix format as, 
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For the GRAPPA reconstruction along ky direction, S has a matrix size of LNb x (Nkx x 

Nspectra), where Nkx and Nspectra are the sizes of the kx and the spectral dimensions 

respectively, Nb is the block-size and L is the number of coils. The vector k of length 

(Nkx x Nspectra) specifies the two-dimensional position in (kx, t) space, ni
(m) is the vector of 

interpolation weights of length Nb for coil i. Floating node fitting (FNF) was used for 

computation of GRAPPA reconstruction weights and multi-column-multi-line 

interpolation (MCMLI) was used for synthesis of missing data .  

 In elliptical sampling, signal is not acquired from the outer k-space positions. This 

might bias the GRAPPA based filtering operation for synthesis of missing data in case of 

undersampled elliptical datasets. So a linear extrapolation operation was employed to 

extrapolate the elliptical undersampled data onto a Cartesian grid (Figure 7.3).  

 

 

 

 

 

Figure 7.3 is a schematic diagram of the linear extrapolation operation 
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This was followed by synthesis of the full k-space data by GRAPPA reconstruction and 

subsequent multiplication by an elliptical mask. The flow diagram of the reconstruction is 

shown below in Figure 7.4. 

 

 

Figure 7.4 is a flow diagram of the linear extrapolation and GRAPPA reconstruction of 
full elliptical data from undersampled elliptical dataset. 

 

A 7.3.4 Data Processing  
The GRAPPA reconstructed data of each individual coil element was subsequently 

processed identically as the full dataset, on a Linux cluster. Regions of hyper-intensity on 

T2-FLAIR images were segmented using an in-house region growing algorithm to 

differentiate tumor areas (55). Voxels in the PRESS box outside of the T2 hyper-intensity 

were assumed to represent normal brain. Individual proton density images from coils 

were normalized and processed for estimation of individual coil sensitivities. The spectral 

data from each coil was apodized by a 4 Hz Lorentzian filter, and Fourier transformed 

from (kx, ky, kz, t) to the (x, y, z, f) domain. After this pre-processing, each voxel was 

analyzed separately, and the spectra were phased, frequency shifted to match a template 
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peak file, and water baseline was removed using in-house developed software (113). The 

spectra from all the coils were then combined as a weighted sum using the smoothed coil 

sensitivity maps (124). 

 

A 7.3.5 Data Analysis 
Choline, Creatine, and NAA peak heights were estimated in the frequency domain from 

the real spectra (113). Lipid peaks might have a different phase due to aliasing. So NAA 

and lipid heights were also separately estimated from the absolute spectra, and voxels 

within the normal regions for the volunteer and patient data were classified as lipid 

contaminated if the absolute peak height of Lipid was higher than NAA. The SNR of 

Cho, Cr and NAA, were estimated by normalizing their heights with the standard 

deviation of the spectral noise calculated from the right end of the spectrum. SNR 

efficiency was calculated by normalizing SNR by square root of the scan time. Median 

Cho/NAA ratios were measured in the normal and tumor regions. Spearman rank 

correlation coefficients (r) were computed to assess how well the Cho/NAA ratio in all 

the voxels in normal and tumor regions correlated between the full and corresponding 

GRAPPA spectra. A Mann-Whitney rank sum test was conducted on all spectral 

acquisitions from patients to determine if a statistically significant difference was 

detected in the Cho/NAA ratio measure between tumor and normal regions. 

A 7. 4 Results 

Although a 2x2 acceleration factor (Rx=2, Ry=2) was employed, scan time reduction was 

only 2.12 folds with Cartesian GRAPPA compared to full Cartesian spectral acquisition, 
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and 1.87 folds in case of elliptical GRAPPA compared to full elliptical spectral 

acquisition. This is because the number of autocalibrating lines (=2) is a considerable 

percentage of the spectral dimension. Median SNR decrease in GRAPPA datasets was 

1.91±0.9 for the Cartesian case and 1.27±0.9 in the elliptical case. The SNR efficiency 

decrease was 1.3 folds for Cartesian and 0.93 folds for elliptical sampling between full 

and GRAPPA datasets. So, there was a slight increase in SNR efficiency for the elliptical 

case. Median Cho/NAA measured from the whole PRESS region for the full and 

Cartesian GRAPPA sampling are shown in Table 7.1 and those for the elliptical and 

elliptical GRAPPA case are shown in Table 7.2. Cho/NAA ratio measures were 

significantly (p<0.001) correlated between GRAPPA and unaccelerated acquisition for all 

the subjects for both Cartesian and elliptical sampling. An increase in lipid contamination 

was observed in the GRAPPA method compared to the conventional method (Table 7.3 

and 7.4). 

 The Cho/NAA ratio was not significantly different (p>0.05) between the tumor 

and normal regions for either the full or the GRAPPA method in the first patient while 

only the full method was able to detect a significantly (p<0.05) higher Cho/NAA ratio in 

the tumor region for the second patient in the Cartesian sampling case. For the elliptical 

case, the tumor region was distinguished from the normal region by both methods in 3 

patients (p<0.05) and undetected by both methods in 1 patient (p>0.05). Figure 7.5 shows 

representative spectral data from a volunteer for fully sampled elliptical and elliptical 

GRAPPA acquisition. Figure 7.6 shows a representative glioblastoma multiforme case, 

where the abnormal characteristics can be observed in the tumor region from both 

elliptical and elliptical GRAPPA spectra. 
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Table 7.1: Median Cho/NAA values for full and Cartesian GRAPPA acquisitions  

 Full GRAPPA Correlation 
coefficient (r) 

Volt1 .46 .49 0.69 
Volt2 .49 .52 0.78 
Pat1 .51 .63 0.69 
Pat2 .64 .63 0.43 

 

Median Cho/NAA values computed from the whole PRESS box for the fully sampled and 
Cartesian GRAPPA acquisitions and the Spearman’s rank correlation coefficient (r) 
between the acquisition pairs is shown in Table 7.1. The correlations were significant for 
all the cases. 
 

Table 7.2: Median Cho/ NAA values for full and Elliptical GRAPPA acquisitions  

 Full GRAPPA Correlation 
coefficient (r) 

Volt1 0.46 0.47 0.78 
Volt2 0.53 0.55 0.77 
Volt3 0.45 0.45 0.71 
Pat1 0.55 0.58 0.37 
Pat2 0.68 0.69 0.65 
Pat3 0.68 0.68 0.43 
Pat4 0.87 0.88 0.65 
Pat5 0.79 0.83 0.62 
Pat6 0.8 0.76 0.47 

 

Median Cho/NAA values computed from the whole PRESS box for the fully sampled and 
Elliptical GRAPPA acquisitions and the Spearman’s rank correlation coefficient (r) 
between the acquisition pairs is shown in Table 7.2. The correlations were significant for 
all the cases. 
 

Table 7.3   Lipid contaminated voxels (NAA>Lipid) in full and Cartesian  

GRAPPA acquisitions 

 Volt1 Volt2 Pat1 Pat2 

Full 0 0 2 0 
GRAPPA 0 5 4 24 
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Table 7.4   Lipid contaminated voxels (NAA>Lipid) in full and Elliptical  

GRAPPA acquisitions 

 Volt1 Volt2 Volt3 Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 
Full 0 0 0 1 26 1 1 13 24 

GRAPPA 0 0 0 3 17 1 13 3 32 
 

 In GRAPPA based reconstruction of spectral data from volunteers, an additional 

variation in image intensity compared to conventional acquisition was observed towards 

the edges of the PRESS box (Fig. 7.5). On the other hand, in GRAPPA based 

reconstruction of spectral data from patients, a poor cavity definition was observed. This 

was also apparent from smaller variance of NAA, Cho and Cr peak heights across the 

whole PRESS box for the GRAPPA reconstructed data compared to full data. Smoothing 

and edge effects in the data might occur due to comparable dimensions of the kernel and 

the spectral data in kx and ky directions. So a smaller kernel size (2x2) might be more 

appropriate for GRAPPA based reconstruction of spectral data. The time efficiency of 

this parallel imaging technique might be improved by using a low resolution external 

calibration scan or by collecting fewer autocalibration lines (1 in ky, 1 in kx).  
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Figure 7.5 shows spectral data from a volunteer acquired a) with fully sampled Elliptical 
acquisition and b) Elliptical GRAPPA acquisition. The location of the PRESS box is also 
shown on an anatomical brain image in the figure. As it can be seen the spectral patterns 
are similar for the two cases though there is slightly more variation in spectral intensity 
across the PRESS box in the GRAPPA dataset. 

 

 



 125

 

Figure 7.6 shows spectral data from glioma patient acquired a) with 12x12x8 fully 
sampled Elliptical acquisition and b) 16x16x8 Elliptical GRAPPA acquisition from the 
tumor region of the PRESS box.  

 

B 7.2 Susceptibility weighted imaging   

The traditional technique for measuring relative cerebral blood volume in brain tumors is 

dynamic susceptibility-contrast perfusion MRI using an echo-planar sequence (125). 

With the availability of high field magnets, traditional methods becomes a challenge due 

to increased B0 inhomogeneity and magnetic susceptibility differences at air-tissue 

interfaces that lead to signal drop out and large geometric distortions in echo planar 

imaging.  Fortunately, the higher susceptibility differences at high field can also be 

beneficial. The heightened susceptibility-contrast inherent with increased field strength 

can be exploited using the phase information contained in conventional gradient-echo 

sequences to create high resolution susceptibility-weighted venograms (115). 

  In order to achieve sufficient susceptibility contrast from vessels, while 

simultaneously minimizing contrast among gray matter, white matter, and ventricles, 

long echo and repetition times are required.  The possibility of using PPI techniques for 
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accelerating SWI acquisitions at 1.5 T has been proposed previously in the literature.  

Sedlacik et al. simulated elliptical and GRAPPA k-space undersampling and 

reconstruction regimes with factor of two reductions for SWI and found reduced contrast 

of small vessels compared the fully sampled case (126). Although the echo time needed 

to visualize the large phase changes in venous vessels due to the magnetic susceptibility 

differences between oxygenated and deoxygenated blood is reduced with increasing field 

strength, long repetition times are still compulsory to avoid T1-weighting.  As a result, 

the total acquisition time for SWI remains long at higher field strengths (>10 minutes for 

only a 2 cm slab of tissue at 7 T), which can result in patient discomfort and low scanner 

throughput.  Thus, the need for faster acquisition times and efficient ways of combining 

multi-channel coil data without losing the phase information as a result of the 

reconstruction becomes apparent. 

 

B 7.3.1 Data Acquisition 
High resolution T2*-weighted brain MR imaging was performed on 6 healthy volunteers 

using a 7 T whole body MR scanner (GE Healthcare Technologies, Milwaukee, WI) with 

a volume transmitter and an eight channel phased-array head coil as receiver(Nova 

Medical, Wilmington, MA).  The susceptibility weighted imaging employed a 3D flow 

compensated, SPGR sequence with TE/TR=16/80ms, flip angle=20°, BW=62.5 kHz, and 

24x24x2.8 cm3 FOV.  For GRAPPA acquisitions, variable density acquisition for 

autocalibration was incorporated in the pulse sequence. The full FOV volunteer scans 

utilized a 512x256x28 image matrix, while the GRAPPA-based acquisitions employed 

either a 512x144x28 image matrix (for R=2) or 512x102x28 image matrix (for R=3), 
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including 16 autocalibrating lines. The imaging protocol also included the acquisition of 

a low resolution, proton-density weighted, fast gradient echo sequence (TE/TR=2.1/150 

ms, flip angle=20°, a 30 x 30 cm2 FOV, 64 x 64 image matrix, and 3 mm slice thickness) 

for coil sensitivity estimation. 

 

B 7.3.2 Image reconstruction and post processing 
The raw complex k-space data from all coils was transferred off-line to a SunBlade 2000 

Workstation (Sun Microsystems, Santa Clara, CA). The previously developed GRAPPA-

based reconstruction algorithm (Chapter 4) (13) was used to reconstruct full-FOV images 

from the undersampled data.  SWI post-processing was performed on both GRAPPA-

reconstructed and R=1 images on a coil-by-coil basis using in house routines developed 

with Matlab 6.5 software. SWI utilizes phase contrast to attenuate the signal intensity 

from venous vessels in the magnitude images.  Phase masks were constructed from the 

full complex image data of each individual coil element through complex division by a 

low-pass filtered image and scaling the resulting negative phase values between zero and 

one (115).  The phase masks were then multiplied into the magnitude image from each 

coil 4 times and the resulting susceptibility-weighted images from each individual coil 

were combined by square root of weighted sum of squares method, the weighting being 

inversely proportional to the noise variation in each coil (17). 

 

B 7.3.3. Data Analysis 
Minimum intensity projections (mIPs) of the susceptibility weighted images were 

analyzed to determine four main regions from which to calculate vessel contrast, as 
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demonstrated in Figure 7.7. The mIP images were thresholded to generate brain 

parenchyma and large vessel masks, while small vessel and adjacent white matter regions 

were manually identified. Contrast ratios were defined as the mean signal intensity within 

the background tissue region divided by that within the vessel.  The brain parenchyma 

region was used as the background tissue for the contrast ratio calculation of large 

vessels, while the sensitivity of detecting small vessels was evaluated using adjacent 

white matter as the background tissue.  The performance of the GRAPPA based 

reconstructions were evaluated by comparison of contrast ratios to that of R=1 

acquisitions.  Statistical significance of differences was determined through the use of a 

Wilcoxon signed rank test. 

 

 

Figure 7.7 shows large vessel mask used to measure the contrast between large blood 
vessels and the brain parenchyma [Courtesy Lupo, JM et al submitted to Magnetic 
Resonance in Medicine] 

 

B 7.4 Results 

SWI images comparing two and three fold accelerations to the full FOV dataset for a 

representative volunteer are shown in Figure 7.8. Visual inspection of these images 
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demonstrates the similar vessel contrast between the full FOV and R=2 acquisitions.  For 

the R=3 acquisition, there was no visible disparity in large vessel contrast compared to 

the full FOV and R=2 scans, however the visibility of small vessels was slightly 

hindered.  However, small vessel contrast ratios for the R=3 acquired datasets were 

similar to those from the R=2 scans.  Keeping in mind the spatially varying noise 

amplification associated with parallel reconstruction,  SNR measurement was performed 

by two-repetition method as described by Dietrich O et al. (22), where the average SNR 

in a given ROI is determined as the ratio of average signal in the ROI of the mean image 

and the standard deviation of the signal in the difference image.  SNR measurements 

revealed a 37.6% decrease in SNR for the R=2 acquisition, with a 43.1% reduction in 

total scan time.  The R=3 scan showed a 49.3% decline in SNR, but allowed the scan 

time to be accelerated by 60%. Therefore SNR efficiency of the scan improved with PPI 

technique. 
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Figure 7.8 shows representative SWI images for R=1, 2 and 3 acquisitions and the 
magnified view of the small vessels are shown in Figures 7.8a, 7.8b and 7.8c 
respectively. [Courtesy Lupo JM et al, submitted to Magnetic Resonance in Medicine] 

 

7.5 Discussion 

In this work, we tested the robustness of the GRAPPA based technique previously 

implemented for high resolution imaging of trabecular bone micro-architecture for two 

different neurological applications- MRSI of brain metabolites and SWI of brain 

vasculature. The superior quality of image reconstruction and preservation of vessel 

contrast for R=2 and R=3 compared to R=1 in the SWI application indicates that image 

phase is accurately reconstructed by GRAPPA based reconstruction. The image 

reconstruction method was also flexible enough to be extended to process 4 dimensional 
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spectroscopic data and to be combined with Cartesian as well as elliptical sampling 

schemes. Cho/NAA measures derived from GRAPPA reconstructed spectral data 

correlated significantly with the R=1 acquisition and showed significant difference 

between tumor and normal regions in glioma patients. 16x16x8 elliptical GRAPPA based 

MRSI can potentially allow for larger spatial coverage compared to regular elliptical 

12x12x8 acquisition within the same scan time. The autocalibrating parallel imaging 

technique might be more time efficient in larger spectral array acquisitions. Alternatively 

the GRAPPA reconstruction weights might be computed from an external calibration 

scan.  
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Chapter 8 

Conclusion 

8.1 Summary 

This thesis developed SNR efficient, fast MR methods primarily to address existing 

technical limitations in in vivo high resolution imaging of trabecular bone micro-

architecture for assessment of osteoporosis. High field strength, phased array coils and 

high magnetization yielding pulse sequence were employed to improve image SNR. 

Computer simulations were programmed to estimate effects of different protocols and 

static field strength on image SNR. Using these approaches, previously existing SNR 

deficiency in imaging trabecular bone micro-structure at the proximal femur (hip) was 

overcome. This was of considerable clinical significance, since the proximal femur and 

vertebrae are the two major sites of osteoporotic fractures in the axial skeleton. Next, 

parallel imaging methods were developed to reduce long scan times (16-20 minutes) 

associated with HR-MRI of trabecular bone. This allowed up to 2-4 folds reduction in 

scan time and also added more flexibility to the protocol design. Additionally, image 

analysis methods were proposed for rigorous characterization of images (resolution, 

autocorrelation etc) obtained by the pMRI technique and strategies were devised to 

ensure accuracy of bone structural measurements derived from the accelerated images. 

The parallel imaging methods were extended to several other imaging applications, 

namely morphological cartilage imaging for detecting osteoarthritis, spectroscopic 

imaging and susceptibility weighted imaging for detecting brain tumor.  
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The major contributions of this thesis can be summarized as follows: 

• A framework for estimating signal response in trabecular bone marrow to various 

pulse sequences was developed by programming a computer simulation of the 

magnetostatic environment in the bone marrow and of the magnetization response 

to pulse sequences such as fast gradient echo and balanced steady state free 

precession using steady state analysis. Using this simulation model: 

o  An optimized protocol employing SNR efficient bSSFP pulse sequence 

was developed for imaging trabecular bone.  

o Increase in signal-to-noise ratio from 1.5 T to 3 T was estimated.  

• With the SNR leverage from the bSSFP imaging sequence, the higher field 

strength of 3 Tesla and phased array coils, it was possible to analyze trabecular 

bone structure from in vivo MR images at the proximal femur for the first time.  

• A parallel imaging technique (k-space sampling and reconstruction algorithm) 

based on GRAPPA was implemented at 3 T to reduce acquisition time of HR-

MRI of trabecular bone. Using this technique and an eight channel array for MR 

signal detection scan time could be reduced up to four folds for trabecular bone 

MRI. Image resolution and edge sharpness was seen to be preserved to a large 

extent but structural measurements such as App. TbN were overestimated in 

accelerated images compared to R=1.   

• Using acceleration factor and number of phase-cycles as imaging variables, the 

additional flexibility in protocol design and potential for SNR improvement was 

demonstrated for an m-bSSFP protocol. 



 134

• Potential and pitfalls of imaging at high field was assessed and the previously 

developed pMRI  technique was adapted to 7 T. Expected improvement in 

parallel imaging performance from 3 T to 7 T was experimentally verified by 

comparison of geometry factor and bone structural measurements derived from 

accelerated trabecular bone images between  3 T and 7 T. 

• Using pMRI to reduce scan time and RF power deposition per scan, feasibility of 

in vivo trabecular bone MRI for monitoring osteoporosis and  in vivo cartilage 

morphology imaging for monitoring osteoarthritis was established at 7 T. 

• The causes of differences in bone structural measures between R=1 and 

unaccelerated images were analyzed. Regularized reconstruction algorithms and 

histogram based post-processing techniques were developed to improve the 

accuracy of bone quantification from accelerated images. 

• The pMRI technique was extended to susceptibility weighted imaging of brain 

vasculature. 

• A GRAPPA based pMRI technique was developed to accelerate 3D spectroscopic 

imaging for 2 k-space sampling cases- Cartesian and elliptical. The parallel 

imaging method was then used to image brain metabolites in glioma patients. 

 

8.2 Future Directions 

8.2.1 Extension of the bone simulation model 
The bone model assumed in our computer simulations consisted of spherical trabecular 

elements immersed in fatty marrow. The bone model could be improved by a more 
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realistic assumption of interconnected plate and rod like structures and the chemical 

heterogeneity of the marrow could also be accounted for. Combining the simulations of 

the magnetostatic environment and response to pulse sequences with that of imaging 

gradients would allow estimation of the impact of other imaging factors such as spatial 

resolution, gradient linearity on images as well. 

8.2.2 Extension of parallel imaging reconstruction algorithms 
Since most of our MR acquisitions involve partial Fourier imaging in the frequency 

direction, the partial Fourier and parallel imaging reconstruction algorithm could be 

combined as a projection onto Convex sets (POCS) problem and image constraints 

specific to the application such as smoothness or steepness of local gradients could be 

additionally incorporated. 

8.2.3 In vivo HR-MRI of trabecular bone structure at the vertebral bodies 
While our MR developments have made in vivo imaging and analysis of trabecular bone 

structure at the proximal femur feasible, imaging of the vertebral bodies is still 

technology limited. The caveats include the small dimensions of the vertebral bodies, 

their non-peripheral location as well as heterogeneity in the vertebral bone marrow. 

Using the additional SNR at 7 Tesla, specialized spatial localization pulses and coil 

arrays, MR methods for imaging the vertebral bodies could be developed. This would 

have tremendous clinical significance given the high incidence of vertebral fractures and 

its debilitating impact in osteoporotic patients. 
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Appendix A 

GRAPPA-based reconstruction of large image volumes from data measured from 8 or 

more channels is computationally intensive, taking several hours on a single desktop Sun 

(Solaris, USA) workstation. To expedite reconstruction, a parallel computational strategy 

was devised to distribute the reconstruction of individual image slices to separate CPUs 

on a Linux cluster.  The components of the parallel implementation of the reconstruction 

software were written in MATLAB and compiled to run on a computational cluster.  

Reconstructed image slices are output as DICOM format files.  As reconstruction of 

individual slices are independent tasks, distributing each slice to a separate CPU results in 

nearly a 1/(number of slices) reduction in processing time which makes it sufficiently fast 

to potentially provide reconstructed images for viewing during an MR exam.  A 

schematic diagram of the parallel processing is shown in Figure A.1. 

 

 

 

Figure A.1 shows a schematic flow diagram of the GRAPPA based reconstruction of an 
image volume on a computational cluster 
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