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Recent research has shown that wavefunction evolution in real- and imaginary-time can generate
quantum subspaces with significant utility for obtaining accurate ground state energies. Inspired by
these methods, we propose combining quantum subspace techniques with the variational quantum
eigensolver (VQE). In our approach, the parameterized quantum circuit is divided into a series of
smaller subcircuits. The sequential application of these subcircuits to an initial state generates
a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate
energies. We call this technique the circuit subspace variational quantum eigensolver (CSVQE)
algorithm. By benchmarking CSVQE on a range of quantum chemistry problems, we show that it
can achieve significant error reduction in the best case compared to conventional VQE, particularly
for poorly optimized circuits, greatly improving convergence rates. Furthermore, we demonstrate
that when applied to circuits trapped at a local minima, CSVQE can produce energies close to the
global minimum of the energy landscape, making it a potentially powerful tool for diagnosing local
minima.

I. INTRODUCTION

A main goal of quantum algorithms for Hamiltonian
simulation is generating high fidelity groundstates for
problems that are difficult to simulate classically. Two
important classes of promising algorithms for achieving
quantum advantage in Hamiltonian simulation are varia-
tional quantum algorithms [1–54] and quantum subspace
methods [55–78]. Variational quantum algorithms are
widely studied, especially the variational quantum eigen-
solver (VQE), but quantum subspace methods are only
recently beginning to grow in popularity. Quantum sub-
space methods have the potential to provide significant
convergence improvements, but challenges remain in the
efficient generation of these subspaces on quantum hard-
ware.

In this work, we consider the use of VQE circuits as a
mean for generating subspaces with accelerated conver-
gence for groundstate energies of Hamiltonians. We draw
inspiration for our approach from recent work studying
subspaces generated using real- and imaginary-time evo-
lution [67, 79–81]. We forgo the use of a Hamiltonian
to guide the time evolution, and instead treat the VQE
circuit itself as an evolution operator, in which the ap-
plication of each gate in the circuit acts like a discrete
evolution of the state, although not a proper real- or
imaginary-time evolution. The initial state fed into the
VQE circuit traces out a path through the Hilbert space
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as it is “evolved” by the VQE circuit, and it is from this
path that we sample states to generate a subspace. By
projecting the Hamiltonian for which the VQE circuit is
optimized into this circuit-generated subspace, we form a
generalized eigenvalue problem for the Hamiltonian. We
call this method the circuit subspace variational quantum
eigensolver (CSVQE). In principle, the subspace contains
more information than the final state output by the VQE
circuit, and the goal of this work is to quantify how much
advantage can be extracted from this additional informa-
tion.

II. CIRCUIT SUBSPACE VQE

The inputs to the CSVQE algorithm are a VQE cir-
cuit and the Hamiltonian for which the VQE circuit is
optimized. The VQE circuit consists of an ordered series
of N parameterized quantum gates acting on an initial
wavefunction,

|ΨN ⟩ = UNUN−1 · · ·U2U1 |Ψ0⟩ . (1)

Here we define the gates Ui as generic parameterized
unitary operators, and in our numerics below they take
the form of exponentiated antisymmetric combinations
of fermionic excitation and deexcitation operators. For
many ansatz it may be more natural to define Ui as el-
ementary quantum gates, and this requires no modifica-
tion of the algorithm. In this work we take the param-
eters of the gates to be constants determined by some
prior classical optimization procedure. The first step of
the CSVQE algorithm is generating the set of states ex-
plored by the circuit as it evolves the initial wavefunc-
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tion via the sequential application of the quantum gates.
Each of these states is obtained by the ordered applica-
tion of the first M ≤ N gates in the circuit to the initial
wavefunction,

|ΨM ⟩ = UMUM−1 · · ·U2U1 |Ψ0⟩ . (2)

The subspace of wavefunctions {|Ψi⟩}, i ∈ [0, N ], con-
tains the initial wavefunction |Ψ0⟩, the final state pro-
duced by the circuit, and many additional mid-circuit
states.

Next we construct the generalized eigenvalue problem
by calculating the Hamiltonian matrix elements and the
overlap matrix in this subspace,

Hij = ⟨Ψi|Ĥ|Ψj⟩ (3)

Sij = ⟨Ψi|Ψj⟩ . (4)

The resulting generalized eigenvalue problem,∑
j

Hijxj = E
∑
j

Sijxj , (5)

can be solved via classical algorithms for approximate
eigenvalues of the original Hamiltonian. We treat the cir-
cuit parameters as fixed in the application of the CSVQE
algorithm, thus the CSVQE algorithm can be considered
a post-processing step to be performed after a standard
VQE calculation. The construction and solution of the
above generalized eigenvalue problem can, in principle,
be integrated into the optimization process of the VQE
circuit, but we leave the question of how best to do that
to future work.

We remark that the overlap matrix, S, can be rank
deficient, as is commonly encountered in other work on
quantum subspace methods [67, 82]. This occurs most
often when the mid-circuit states from nearby layers of
the circuit have large overlaps with each other. In this
work, we address this problem by projecting out singular
values of S that are less than some threshold, which we
take to be 1 × 10−10. However, this threshold has to be
adjusted in general when accumulating data from noisy
hardware, as discussed in previous work [67]. The final
wavefunction produced by VQE is limited by the ansatz
and initial state chosen and, in most cases, is not capable
of producing the exact groundstate. Solving the general-
ized eigenvalue problem utilizes these subspace states to
generate a new groundstate wavefunction that has equal
or larger overlap with the true groundstate, and also a
lower energy than any individual wavefunction in the sub-
space.

In practice, the quantum circuit may contain an enor-
mous number of gates, making it impractical to calculate
the matrix elements for the entire circuit-generated sub-
space. Instead, some subset of M < N + 1 states from
the full subspace must be chosen. However, choosing an
optimal subset of states is a challenging problem. To
illustrate this for a circuit that has not been fully opti-
mized, in Fig. 1 we plot the groundstate energies obtained
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FIG. 1. The error produced by the CSVQE algorithm when
applied to the circuit generated by the first optimization step
for C2 as a function of the number of intermediate states
used. The dashed black line is the error in the VQE en-
ergy, to which we compare the errors of the CSVQE energies.
The gray squares, blue pentagons, and teal triangles mark
the error produced by the “front-loaded”, “back-loaded”, and
“even” state selection methods. The green stars mark the
lowest error obtained from 20,000 random combinations of
mid-circuit states, and N = 149 for this circuit.

by CSVQE for the molecule C2 using three heuristic ap-
proaches and a random selection approach for choosing
subsets of the full subspace. We describe these state se-
lection methods below, and describe the details of the
circuit used in the following section.
The first method we consider is to choose states that

are approximately evenly distributed throughout the cir-
cuit, e.g. {|Ψi⟩} with i in the set{

0, ⌊ N

M − 1
⌋, ⌊ 2N

M − 1
⌋, . . . , ⌊ (M − 2)N

M − 1
⌋, N

}
, (6)

which we refer to as the “even” method. We also consider
the “back-loaded” method that chooses states only from
the end of the circuit,

i ∈ {N −M + 1, N −M + 2, . . . , N − 1, N} , (7)

and the “front-loaded” method, in which states are taken
from the beginning of the circuit (also including the final
state produced by the full circuit),

i ∈ {0, 1, . . . ,M − 3,M − 2, N} . (8)

Finally, we consider a random search approach of sam-
pling large numbers of distinct random combinations of
states from the subspace. In this way we can try to ac-
cess nearly optimal energies obtainable with CSVQE, al-
though we note this approach does not scale well and is
impractical for use on real quantum hardware. However,
in each of these methods, we always include the final
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FIG. 2. The error in the ground state energy produced by VQE and CSVQE at each step in the classical optimization process
for (a) LiH, (b) CH4, (c) H2O, (d) NH3, (e) N2, and (f) C2 using the UCC ansatz. The energies produced by the CSVQE
algorithm using four, twelve, and all (M = N + 1) mid-circuit states are plotted in green squares, blue pentagons, and gray
triangles, respectively. The reported errors represent the optimal values obtained by applying the CSVQE algorithm with 1000
different random combinations of mid-circuit states.

state produced by the VQE circuit in the restricted sub-
space. In doing this we ensure that the CSVQE energy
is never higher than the VQE energy, at least within sta-
tistical sampling error (shot noise) and biases from noisy
hardware.

As shown by the results in Fig. 1, the “even” and
“front-loaded” strategies are comparably effective. Both
reduce the error but do not quite achieve the accuracy of
the best result obtained from 20,000 distinct randomly
sampled state combinations. The “back-loaded” strat-
egy obtains only minimal advantage over the standard
VQE result. Repeating these calculations for all other
systems we study produces similar qualitative behavior
for each state-selection strategy. The intuition behind
these results is as follows. We have ordered the gates in
the circuit based on heuristic classical approximations,
such that the gates that make the largest changes to the
wavefunction are applied first in our construction of the
circuit, which we discuss in detail in the following sec-
tion. States obtained early in the circuit are therefore
both the most distinct from the final state produced by
the circuit, and also more distinct from their neighboring
states than those later in the circuit. As such, they likely
provide more utility when solving for the groundstate
than the states at the end of the circuit, which have very
large overlaps and contain nearly identical information.

III. QUANTUM CHEMISTRY
BENCHMARKING OF CSVQE

In this section we study the effectiveness of the CSVQE
algorithm in the context of quantum chemistry, consid-
ering a range of molecules and employing the unitary
coupled cluster (UCC) ansatz. The UCC ansatz is the

exponentiation of the coupled cluster operator T̂ acting
on the Hartree–Fock reference wave function |Ψ0⟩,

|ΨUCC⟩ = exp
(
T̂ − T̂ †

)
|Ψ0⟩ , (9)

T̂ =

occ∑
i

vir∑
a

θai â
†
aâi +

occ∑
ij

vir∑
ab

θabij â
†
aâ

†
bâj âi + · · · . (10)

The second-quantized creation and annihilation opera-
tors â† and â act on the occupied (indexed by i, j, . . .)
and virtual (indexed by a, b, . . .) molecular orbitals in the
reference wave function, respectively.

We employ the factorized form of the UCC ansatz,

|ΨUCC⟩ =
occ∏
ij···

vir∏
ab···

Ûab···
ij··· |Ψ0⟩ , (11)
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for which the individual gates are defined as

Ûab···
ij··· = exp

(
θab···ij··· (â

ab···
ij··· − âij···ab···)

)
âab···ij··· = â†aâ

†
b . . . âj âi .

(12)

For simplicity, we include only single- and double-
excitation operators, Ûa

i and Ûab
ij . We utilize a com-

putationally efficient implementation of the UCC ansatz
that expresses the UCC factors Ûab···

ij··· in terms of sines
and cosines of the parameters θ [83]. We choose to or-
der the individual UCC factors based on the magnitude
of the initial parameter values (|θ|), which we generate
from MP2 calculations using PySCF, such that the fac-
tor with the largest coefficient acts first [84]. To reduce
the computational resources required, we employ a sparse
wavefunction circuit simulator designed for simulating
the VQE algorithm [85, 86], which is based on techniques
developed for classical simulations [87–90]. After each
UCC factor is applied, we check the number of deter-
minants N in the wave function. If N is greater than
the desired number of determinants, NWF, we sort the
amplitudes by magnitude and discard the determinants
with the smallest amplitudes such that only NWF deter-
minants remain in the wave function. We set NWF to
50,000, which is sufficient to converge the groundstate
energy for each molecule tested here.

The results of our benchmarking are summarized in
Fig. 2, in which we plot the error of the groundstate
energy produced by VQE circuits with and without the
CSVQE algorithm at each step in the optimization pro-
cess for a range of molecule. The details of our bench-
mark procedure are as follows:

1. The set of molecules we consider is LiH, CH4, H2O,
NH3, N2, and C2.

2. We use the STO-3G basis set for each molecule
and employ experimental geometries from the CC-
CBDB database [91].

3. The circuits for each molecule are restricted to in-
clude at most fifty doubles operators, choosing the
ones with the largest initial parameter values.

4. The circuit parameters are optimized using the
Broyden–Fletcher–Goldfarb–Shanno implementa-
tion from SciPy, and we store the circuit obtained
at each step of the optimization process [92].

5. We apply the CSVQE algorithm at each step in the
optimization process to study the effectiveness of
the algorithm on circuits of varying quality. Rather
than deconstructing them into elementary gates, we
treat each single and double operator as a single cir-
cuit element and extract states after each operator.

6. We calculate the error relative to the FCI en-
ergy and apply the CSVQE algorithm using either
four, twelve, or all mid-circuit states. Each data

point represents the lowest energy obtained by the
CSVQE algorithm from 1000 distinct random com-
binations of M states chosen from the subspace.

The reduction in error accomplished by the CSVQE al-
gorithm ranges widely between both different molecules
and different optimization steps of a given circuit. For
all molecules studied here, CSVQE accomplishes signif-
icant error reduction by up to an order of magnitude
early in the optimization process, often achieving parity
with the error produced by the fully optimized circuit.
However, we note that this is an absolute best case sce-
nario and practical experiment likely cannot achieve the
number of random samples required to obtain these re-
sults. Furthermore, the error reduction produced by the
CSVQE algorithm diminishes as the optimization pro-
ceeds, indicating that optimized circuits produce wave-
functions with energies that cannot be improved via su-
perposition with mid-circuit states (at least within our
numerical tests).
To gain insight into the distribution of the errors pro-

duced by these random combinations of states, rather
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FIG. 3. Top: The mean and minimum energies produced by
applying CSVQE to the (a) unoptimized and (b) fully opti-
mized C2 circuits using 1000 random combinations of mid-
circuit states, with gray shading indicating the standard de-
viation. Bottom: Histograms of the energies obtained from
10,000 random combinations of 5 states for the (c) unopti-
mized and (d) fully optimized C2 circuits. The red, black,
and blue dashed vertical lines denote the standard VQE error,
the mean of the CSVQE error distribution, and the minimum
CSVQE error, respectively.
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FIG. 4. (a) The error in the energy relative to FCI produced by 30 randomly-initialized UCC circuits for H2 using the 6-31G
basis. The black dots indicate the error in the fully optimized VQE energies, arranged in ascending order. Four circuits obtained
energies at or near the global minimum of the circuit, and the remaining circuits ended the optimization process at local minima
or saddle points. Applying the CSVQE algorithm to these circuits using 4 intermediate states, marked with green squares,
slightly reduces the energy. Applying CSVQE with 8 states, plotted with blue-green pentagons, accomplishes significant error
reduction, sometimes producing errors as low as 10-100 µHa even for circuits that obtained local minima. Applying CSVQE
using 12 states achieves energies at parity with the global minimum for nearly all circuits. The scale is logarithmic above the
break and linear below. We plot the convergence of the VQE and CSVQE energies as a function of the optimization step for
the worst (trial index 30) and best (trial index 1) circuits in (b) and (c), respectively. In all CSVQE calculations we used 10,000
random combinations of mid-circuit states and report the lowest error obtained.

than only considering the minima obtained, we plot in
Figs. 3 (a) and (b) the mean, minimum, and standard
deviation of the CSVQE energies for the unoptimized
and fully optimized C2 circuits as a function of M . We
also plot in Figs. 3 (c) and (d) histograms of the errors
obtained for each circuit with M = 5 using 10,000 ran-
dom combinations of states. The data indicate that the
errors are relatively flatly distributed around the aver-
age error, and the minimal errors occur as rare events
below the main cluster of errors. Fortunately, the mini-
mal errors are never significantly smaller than the bottom
of the main distribution of errors, indicating that large
amounts of sampling are not necessary to obtain good re-
sults. Furthermore, the width of the distribution narrows
significantly as the circuit is optimized.

IV. LOCAL MINIMA ANALYSIS

One of the central challenges in implementing the VQE
algorithm is handling local minima of the energy land-
scape. Classical optimizers often get trapped in these
local minima, producing poor approximations of the
groundstate energy [93, 94]. Here we study the ability
of the CSVQE algorithm to produce accurate energies
even when the VQE optimization terminates at a local
minima.

We use the H2 molecule as a test case, employing the
6-31G basis set and the experimental geometry [91], us-
ing the UCC ansatz described above including all dou-

bles operators with NWF = 30, 000. We construct 30 cir-
cuits with random initial parameters and plot the error in
the energy of the optimized VQE wavefunctions in black
dots in Fig. 4 (a). Four of these circuits obtain energies
at or near the true groundstate energy, but the remain-
ing circuits obtained local minima (or possibly saddle
points), producing energies on the order of tens or hun-
dreds of milliHartree above the true groundstate energy.
We also apply the CSVQE algorithm to each of these cir-
cuits using 10,000 random samples of M = 4, 8, and 12
mid-circuit states and plot the resulting groundstate en-
ergy errors. The M = 4 case somewhat reduces the error
produced by the circuits trapped at local minima, but
the M = 8 and M = 12 cases produce energies compara-
ble to the global minima. This result indicates that the
CSVQE algorithm has significant potential as a power-
ful tool for circumventing local minima in VQE circuit
optimization.

We also consider the performance of the CSVQE al-
gorithm throughout the optimization of both the best
(trial index 1) and worst (trial index 30) of these ran-
domly initialized circuits. We plot the VQE and CSVQE
energies of circuit 1 and circuit 30 as a function of the
optimization step in Fig. 4 (b) and (c), respectively. For
the energy before optimization, the initial error of circuit
30 is roughly 1.5 Ha, an astronomical error compared
to any other reported in this work. Despite this enor-
mous error, the CSVQE algorithm still produces energies
with errors on the order of 10 mHa using only four mid-
circuit states, or even on the scale of µHa using twelve
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mid-circuit states. Although this is a relatively small cir-
cuit for a relatively simple system, it is remarkable that
CSVQE can produce energies at or near the true ground
state energy even for randomized circuits. The result of
applying CSVQE to the best circuit is quite similar. For
the unoptimized version of circuit 1, the error starts at
the order of hundreds of mHa, but the CSVQE algorithm
produces errors on the scale of 10 µHa to 10 mHa, de-
pending on the number of mid-circuit states used. The
difference from circuit 30 is that the VQE and CSVQE
energies converge as the circuit is optimized to obtain the
true groundstate minimum.

V. CONCLUSIONS

In this work we devised a modification of the VQE
algorithm, dubbed circuit-subspace VQE, that utilizes
quantum spaces generated by sampling mid-circuit states
from VQE circuits. We applied the CSVQE algorithm to
UCC circuits for a range of molecules, studying the re-
duction in error that can be accomplished with the tech-
nique at each step in the optimization process. We found
that the CSVQE algorithm accomplished significant re-
duction in error in the best case when applied to partially
optimized circuits, but the advantage gained is minimal
for fully optimized circuits. However, due to shot noise,
hardware noise and difficult optimization landscapes, op-
timization on quantum hardware is likely to be less than
ideal and the tools laid out here provide another route to
improving accuracy in such cases.

The CSVQE algorithm also shows significant promise
for addressing the challenge of local minima in the opti-
mization of VQE circuits. We showed that the CSVQE
algorithm is able to produce energies comparable to the
global minimum when applied to circuits for which the
optimization process obtains a local minimum. Although
this result was obtained for a relatively small circuit, we
believe it indicates that the CSVQE algorithm can be
applied to large circuits to diagnose cases in which the
optimizer is stuck in a local minima. These promising
results merit additional study.

The utility of this algorithm is likely highly ansatz-
dependent, and further investigation of its utility beyond
the UCC ansatz and quantum chemistry problems is jus-
tified. One important shortcoming of the UCC ansatz
utilized in this work is that a large portion of the UCC
parameters are quite small, leading to a circuit-generated

subspace containing many nearly-identical wavefunc-
tions. The CSVQE algorithm will likely perform signif-
icantly better on more efficient ansatze in which each
gate meaningfully changes the wavefunction. This would
also significantly lessen the challenge of designing efficient
state selection strategies for generating useful subspaces.
Another approach to easing the difficulty of choosing a
useful subspace is to employ some measure of the over-
lap between the intermediate states as a selection crite-
ria. The decoupling of the VQE optimization and the
subspace calculations is a further area in which the al-
gorithm could be improved, but we leave the question of
how best to integrate circuit optimization with subspace
calculations to future work.
We note that our approach has standard scaling with

similar Krylov method techniques that require matrix el-
ements to be measured on quantum hardware. However,
the utility of the algorithm heavily depends on the quality
of the optimization of the circuit, as demonstrated in the
different case studied in this work. This is certainly of in-
terest, as optimization on quantum hardware is resource
intensive and will likely remain resource intensive even as
quantum hardware improves. The above considerations
imply that this algorithm may benefit significantly from
integration with existing techniques [10, 15, 95].
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