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ABSTRACT: Formaldehyde (FA) is a reactive carbonyl
species (RCS) produced in living systems that has been
implicated in epigenetics as well as in the pathologies of
various cancers, diabetes, and heart, liver, and neuro-
degenerative diseases. Traditional methods for biological
FA detection rely on sample destruction and/or extensive
processing, resulting in a loss of spatiotemporal
information. To help address this technological gap, we
present the design, synthesis, and biological evaluation of a
fluorescent probe for live-cell FA imaging that relies on a
FA-induced aza-Cope rearrangement. Formaldehyde
probe-1 (FAP-1) is capable of detecting physiologically
relevant concentrations of FA in aqueous buffer and in live
cells with high selectivity over potentially competing
biological analytes. Moreover, FAP-1 can visualize
endogenous FA produced by lysine-specific demethylase
1 in a breast cancer cell model, presaging the potential
utility of this chemical approach to probe RCS biology.

Formaldehyde (FA), the simplest aldehyde, is a reactive
carbonyl species (RCS) that has long been known as a

human toxin and carcinogen that is released into the environ-
ment from natural (e.g., biomass combustion, solar degradation
of humic substances, vegetation and microbe emissions) as well
as anthropogenic (e.g., FA production and fumigation, vehicle
exhaust, etc.) sources.1 At the same time, FA is also produced
endogenously in the body by demethylase and oxidase enzymes
that regulate epigenetics2,3 and metabolism4,5 such as lysine-
specific demethylase 1 (LSD1),6 JmjC domain-containing
proteins,7−10 and semicarbazide-sensitive amine oxidase.11

Active degradation by formaldehyde dehydrogenase/S-nitro-
soglutathione reductase and aldehyde dehydrogenase 212

enzymes gives physiological FA levels ranging from 100 μM in
blood to 400 μM intracellularly.13−15 Elevations of FA and
related RCS are implicated in a variety of disease pathologies,
including various cancers,16 neurodegenerative diseases,15,17,18

diabetes, and chronic liver and heart disorders.19 The rapidly
growing list of modified DNA20−22 and RNA23 bases, particularly
N-methylated bases whose demethylation pathways may involve
FA production,24−26 presage a diverse array of important
contributions for FA chemistry to biology.
Despite its significance, methods for monitoring FA within

intact, living biological specimens remain underdeveloped.
Current methods for FA analysis rely on radiometry,27 gas
chromatography,28,29 selected ion flow tube mass spectrome-

try,30,31 and high-performance liquid chromatography,32,33

which offer high sensitivity and selectivity but are limited by
the need for sample processing and/or destruction of the intact
specimens. As such, we sought to develop FA-responsive
fluorescence-based probes that would give the potential to
track this RCS in living samples. We now report the design,
synthesis, and application of formaldehyde probe-1 (FAP-1), a
first-generation reactivity-based fluorescent indicator for selec-
tive imaging of FA in solution and in living cells at physiological
levels, including endogenous FA production in a cancer cell
model.
We34 and others35−37 have exploited reactivity-based fluo-

rescence detection for transient small-molecule analytes,
including carbonyl species such as CO38−42 and methylglyoxal,43

and we sought to employ this general approach to FA detection.
Our present design exploits an FA-induced 2-aza-Cope reaction
to transform a homoallylic amine into an aldehyde coupled to a
fluorogenic turn-on response.44 Indeed, previous attempts to
monitor FA have relied on formimine formation;45,46 however,
this condensation tends to have an unfavorable equilibrium
constant in water, leading to difficulty in detecting low
concentrations of the RCS. We reasoned that an aza-Cope
rearrangement could trap the imine and lead to accumulation of a
fluorescent product after hydrolysis (Scheme 1). Inspired by the
work of Urano, Nagano et al. that aminomethyl silicon
rhodamine dyes are weakly emissive at physiologically relevant
pH due to spirocyclization,47,48 we designed FAP-1 with a
homoallylamine that would favor ring closure and low
fluorescence. Upon reaction with FA, imine formation and
subsequent 2-aza-Cope rearrangement and hydrolysis would
yield an aldehyde product that is incapable of spirocyclization
and would give a fluorescence turn-on. Spirocyclization-based
strategies have been employed fruitfully to detect a wide variety
of biological analytes.49,50 FAP-1 was synthesized in seven steps,
utilizing a key boronate-mediated aminoallylation to install the
reactive trigger (Scheme 2).
With FAP-1 in hand, we tested its fluorescence turn-on

response to FA in aqueous solution buffered to pH 7.4, in which
it shows good solubility (log Doct/wat = 0.53 ± 0.01). FAP-1 is
weakly fluorescent (ε650 = 190 M−1 cm−1, ϕfl = 0.36; Figures S1
and S2) and exhibits a ∼8-fold fluorescence turn-on response
(λmax = 645 nm, λem = 662 nm) upon treatment with 100 μMFA,
a physiological concentration of this RCS, within 1 h (Figure
1).13,14 This fluorescence enhancement is likely due to the
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increase in absorptivity observed during FA treatment (Figure
S1b). At extended incubation times, the turn-on response
saturates at ∼45-fold (Figure S3). At a 10 μM FAP-1
concentration and a 2 h cutoff, the in vitro detection limit for
FAwas found to be 5 μM(Figure S4). To verify that the observed
fluorescence turn-on response was the result of the proposed 2-
aza-Cope reaction, the reaction between FAP-1 and FA was
monitored by LC-MS, which shows clean conversion from FAP-
1 to a product with the expected mass of aldehyde 2 (Figure S5).

FAP-1 shows good selectivity for FA over potentially
competing biological RCS, including 4-hydroxynonenal, dehy-
droascorbate, glucosone, oxaloacetate, and methylglyoxal as well
as over simple carbonyl-containing molecules including
acetaldehyde, pyruvate, and glucose (Figure 2). FAP-1 is not

responsive to 10 μMmethylglyoxal, which is above its single-digit
micromolar physiological range51 but does show a small response
to superphysiological levels (100 μM) of this RCS. In addition,
we exposed FAP-1 to oxidizing and reducing conditions that
could be encountered in the cellspecifically 100 μMH2O2 and
5 mM glutathioneand observed no change in fluorescence
(Figure 2).
Having established that the 2-aza-Cope-based trigger of FAP-1

can selectively detect FA in solution at physiological levels, we
next evaluated its ability to visualize changes in FA in living cells
using confocal microscopy (Figure 3). Treatment of HEK293T
cells with 10 μM FAP-1 for 30 min followed by washing to
remove excess probe and addition of various concentrations of
FA (200 μM to 1 mM) showed a significant and dose-dependent
fluorescence turn-on in FA-treated cells over control cells
(Figure 3a−d,f), demonstrating the ability of FAP-1 to detect FA
in a cellular context. Notably, these FA concentrations fall well
within a physiological concentration range, which is estimated at
∼100 μM in blood,13 400 μM intracellularly,14 and up to 700−
800 μM in several cancer tissues.52 To rule out the possibility of
photoactivation and/or photobleaching interfering with fluo-
rescence intensity measurements, we conducted photostability
studies in HEK293T cells. FAP-1 exhibits consistent fluores-
cence intensity during 100 scans with 6% laser power (used for all
imaging experiments) but exhibits slight photobleaching at 50%
laser power (Figure S6). Moreover, cell viability was verified
using Hoechst 33342 staining, which clearly showed intact and
viable nuclei (Figure 3e) as well as a propidium iodide assay,
which indicated no difference between FA-treated and untreated

Scheme 1. Design of Formaldehyde Probe FAP-1

Scheme 2. Synthesis of Formaldehyde Probe FAP-1a

aReagents and conditions: (i) Boc2O, DMAP, THF, tBuOH, 70 °C, 12
h; (ii) NBS, AIBN, PhCF3, 115 °C, 8 h; (iii) AgNO3, H2O, MeCN, 70
°C, 24 h; (iv) NH3, MeOH, 0 °C, then allylboronic acid pinacol ester,
rt, 10 h; (v) Boc2O, THF, rt, 14 h; (vi) PhLi, THF, −78 °C, then
tBuLi, THF, −78 °C, then 7, −78 °C to rt, 3 h; (vii) TFA:DCM, 1:1,
rt, 12 h.

Figure 1. Fluorescence response of 10 μM FAP-1 to 100 μM FA. Data
were acquired at 37 °C in 20 mM PBS (pH 7.4) with excitation at λex =
645 nm. Emission was collected between 655 and 750 nm. Time points
represent 0, 20, 45, 60, 90, and 120 (red trace) min after addition of 100
μM FA.

Figure 2. Fluorescence response of 10 μM FAP-1 to biologically
relevant RCS and related molecules. Bars represent relative emission
from 655 to 700 nm at 0, 20, 45, 60, 90, and 120 (black) min after
addition. Data shown are for 100 μM of all species unless otherwise
denoted. Data were acquired in 20 mM PBS (pH 7.4) at 37 °C with
excitation at λex = 645 nm. Legend: (1) PBS; (2) FA; (3) acetaldehyde;
(4) 4-hydroxynonenal; (5) dehydroascorbate; (6) glucose, 1 mM; (7)
glucosone; (8) oxaloacetate; (9) pyruvate; (10) H2O2; (11) glutathione,
5 mM; (12) methylglyoxal; (13) methylglyoxal, 10 μM.
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cells (Figure S7a). To further probe the cellular distribution of
FAP-1, we performed colocalization studies using commercial
organelle-targeted dyes. FAP-1 was found to be excluded from
the nucleus (Figure S8m−r, Table S1) but showed overlap with
endoplasmic reticulum-, Golgi apparatus-, lysosome-, and
mitochondria-targeted dyes (Figure S8a−l, Table S1). In
addition, the distribution of FAP-1 was not appreciably affected
by the addition of 1 mM FA (Figure S8p−r).
We next moved on to show that FAP-1 could be applied to

image endogenous FA levels in a disease model. Specifically,
elevated FA levels in certain cancers have been attributed to
overexpression of LSD1, where pharmacological inhibition of
LSD1 can lead to an observable decrease in FA.53 To determine
whether FAP-1 was able to visualize changes in endogenously
produced FA, we employed the MCF7 human breast cancer cell
line that is known to overexpress LSD1.54 Upon treatment of
MCF7 cells with 20 μM tranylcypromine (TCP), an LSD1
inhibitor with an IC50 of 2 μM,55 a ∼20% decrease in FAP-1
fluorescence signal compared to control cells was observed.
Additionally, treatment with 1 μM GSK-LSD1, a more potent
LSD-1 inhibitor (IC50 of 42 nM),56 also attenuated FAP-1
fluorescence (Figure 4). Taken together, the data show that FAP-
1 is capable of detecting endogenously produced FA in a disease
model.
To close, we have presented the design, synthesis, and

properties of FAP-1, a new type of fluorescent indicator for
selective and sensitive detection of FA via a 2-aza-Cope reaction.
FAP-1 features a robust fluorescence turn-on response to
biologically relevant concentrations of FA as well as selectivity
over potentially competing analytes. Furthermore, FAP-1 is
capable of detecting exogenous and endogenous FA in live cells.
Current efforts are underway to utilize FAP-1 and develop next-
generation versions to probe the biology of reactive carbonyl
species, specifically in the context of epigenetics, aging, and
disease.
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