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Abstract

Local electric fields can alter energy landscapes to impart enhanced reactivity in enzymes and 

at surfaces. Similar fields can be generated in molecular systems using charged functionalities. 

Manganese(V) salen nitrido complexes (salen = N,N′-ethylenebis(salicylideneaminato)) appended 

with a crown ether unit containing Na+ (1-Na), K+, (1-K), Ba2+ (1-Ba), Sr2+ (1-Sr), La3+ (1-La), 

or Eu3+ (1-Eu) cation were investigated to determine the effect of charge on pKa, E1/2, and 

the net bond dissociation free energy (BDFE) of N–H bonds. The series, which includes the 

manganese(V) salen nitrido without an appended crown, spans 4 units of charge. Bounds for the 

pKa values of the transient imido complexes were used with the Mn(VI/V) reduction potentials to 

calculate the N–H BDFEs of the imidos in acetonitrile. Despite a span of >700 mV and >9 pKa 

units across the series, the hydrogen atom BDFE only spans ~6 kcal/mol (between 73 and 79 kcal/

mol). These results suggest that the incorporation of cationic functionalities is an effective strategy 

for accessing wide ranges of reduction potentials and pKa values while minimally affecting the 

BDFE, which is essential to modulating electron, proton, or hydrogen atom transfer pathways.
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The activation of strong heteroatom–hydrogen (X–H) bonds using high-valent metal oxidos 

or nitridos as hydrogen atom acceptors is a robust area of bioinspired reaction chemistry.1-4 

The free energy of these reactions is dependent on the hydrogen atom bond dissociation 

free energies (BDFEs) for the reactants and products. BDFE values are comprised of both 

the pKa and redox potential (E1/2) according to eq 1 (Chart 1).5-7 Exergonic reactivity with 

metal oxidos/nitridos requires the BDFE values for the resultant hydroxido/imido bonds to 

exceed that of the targeted X–H bond. However, the relative contributions of pKa and E1/2 

to the BDFE are also critical for steering reactivity.8,9 The difference in reduction potential 

(ΔE1/2) and pKa (ΔpKa) between the donor and acceptor governs the most favorable reaction 

pathway for proton, electron, or concerted hydrogen atom transfer (HAT).10-12 In some 

cases, the rate of HAT correlates more strongly with ΔE1/2 or ΔpKa than with ΔG(H•),13-15 

deviating from the Bell–Evans–Polanyi principle that the overall free energy governs kinetic 

reactivity.16,17 This occurrence can lead to a kinetic selectivity for the cleavage of stronger 

X–H bonds in the presence of weaker bonds. Thus, understanding how synthetic variations 

modify the reduction potential, pKa, and consequential BDFE is critical for controlling HAT 

reactions.18

Most studies have used inductive effects to modulate these quantities, leading to modest 

changes; an alternative approach is to use the secondary coordination sphere. Borovik 

and co-workers used hydrogen-bond donation from an amide ligand to demonstrate basicity-

controlled HAT to a manganese oxido (Figure 1a, left).19 Tolman and co-workers found that 

the incorporation of sulfonate or trimethylammonium substituents expands the range of the 

Cu(III/II) reduction potential (E1/2) by 275 mV in Cu(II) hydroxide complexes (Figure 1a, 

right).20 Despite the change in E1/2, the BDFE of the Cu(II) aqua species remained relatively 

constant while the kinetics of hydrogen atom transfer to the Cu(III) hydroxide varied, which 

is attributed to steric contributions of the counterions in addition to possible electrostatic 

effects. Thus far, direct correlations between changes in thermochemical parameters and 

electrostatic effects at molecular complexes have been minimally explored.21-24

In this study, we report the effect of proximal mono-, di-, and trications on high-valent Mn 

nitrido complexes and the hydrogen atom BDFEs of their associated imidos. Manganese 

nitrido complexes are used in many catalytic and stoichio-metric reactions that form 

intermediate imidos (Figure 1b).27-46 Although their BDFEs are central in catalytic nitrogen 

cycles47-52 and C–H activation,53-58 few values have been measured in comparison to 

isoelectronic metal oxido analogues. The salen-crown framework provides a unique platform 

for isolating the effect of the cationic charge on the metal center (Chart 1). Non-redox-active 

cations in the crown modify the electric field potential around the redox-active metal.25 Our 

previous investigation with complexes 1-Na, 1-K, 1-Ba, and 1-Sr exhibited anodic shifts 

of over 400 mV of the Mn(VI/V) reduction potential (Table 1) with increasing cationic 

charge.26

We have now synthesized two derivatives with +3 cations, 1-La and 1-Eu, so that our 

series spans four different units of charge (see the Supporting Information). Single crystals 

suitable for X-ray diffraction of 1-La (Figure 2a) and 1-Eu (Figure S32) were obtained from 

concentrated acetonitrile solutions.
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The electrochemical properties of 1-La and 1-Eu were measured in acetonitrile using cyclic 

voltammetry (Figure 2b and the Supporting Information). We previously described the 

bimolecular coupling of the oxidized Mn(VI) species to form 2 equiv of the corresponding 

Mn(III) complex and N2 or an EC mechanism (electron transfer, chemical step) (Figure 

1b-ii).26,30 Lau and Man recently reported the reactivity of a Mn(VI) nitrido complex 

that was also isolated and structurally characterized despite undergoing similar bimolecular 

reactivity.59 In our prior study with the mono- and dicationic nitrido complexes, an increase 

in charge corresponded to a slower rate of bimolecular coupling. Consistent with this trend, 

there is no evidence of bimolecular coupling upon oxidation of 1-La to Mn(VI) even at slow 

scan rates (10 mV/s) (Figure 1b and Figures S16 and S17). The redox event is reversible, 

and there is no reduction event corresponding to the Mn(III/II) couple at more negative 

potentials, which would be the expected product of bimolecular coupling.

On the basis of the oxidation event observed for 1-Eu, the E1/2 is about ~1.13 V. However, 

we note that the cathodic wave for the Mn(VI/V) redox couple is smaller than the anodic 

wave (Figure S19). There is evidence that, upon oxidation, adventitious Na+ ions displace 

the europium(III) ions due to the latter’s poor fit in the crown (ionic radii of 102 and 

94.7 pm, respectively).60 Analytically pure 1-Eu was used for cyclic voltammetry and 

the 1-Na oxidation peak was not observed in the initial oxidative scan. However, after 

several oxidation cycles, an additional cathodic redox feature appeared at ~0.6 V (vs 

[Fe(C5H5)2]+/0) (Figure S21), which matches the oxidation potential of the Mn(V) nitrido 

with Na+ in the crown cavity.

The E1/2 values for the Mn(VI/V) reduction potential of 1.02 V (1-La) and ~1.13 V (1-Eu) 

vs [Fe(C5H5)2]+/0 correspond to anodic shifts of 600 and 730 mV in comparison to the 

noncrown (salen)MnN (A) or changes of 14 and 16 kcal/mol, respectively, in the E1/2 

contributions to the N–H BDFE (eq 1 in Chart 1 and Figure 3).

We investigated the protonation of the manganese(V) nitrido complexes to determine 

the pKa values. The direct detection and isolation of the parent electrophilic transition-

metal imido complexes is challenging because of accessible coupling, disproportionation, 

and nitrene transfer pathways.61-65 Acid titration experiments were conducted at room 

temperature or −35 °C in acetonitrile and were monitored by UV–vis spectroscopy through 

changes in two absorption bands associated with the manganese nitrido at ~380 and ~600 

nm. No spectral features corresponding to a putative imido were observed.

Lau and co-workers previously discussed the instability of the imido formed following 

protonation of the nitride, where 2 equiv of the resulting imido complex couples to form a 

manganese(III) μ-diazene species, which rapidly decomposes to give the final Mn(III), N2, 

and NH3 (Figure 1b-i).42 Indeed, in our studies the UV–vis spectrum at the end point of the 

acid titration corresponded to that of the Mn(III) complexes.

In an effort to observe the imido, we synthesized the 15N-labeled nitrido complex 1-
Ba(15N). Protonation of 1-Ba(15N) with 1 equiv of [H(OEt2)2][BF4] in acetonitrile-d3 was 

monitored by 1H and 15N NMR spectroscopy at −30 °C. Only resonances corresponding to 

the starting material and Mn(III) product were observed. An analysis of the gas headspace 
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following protonation of 1-Ba(15N) showed 14N15N and 15N2, further supporting the 

coupling pathway proposed by Lau. It is possible that, instead of protonating on the nitrido, 

nucleophilic attack at the imine of the salen could occur.66-68 Alternatively, protonation 

of the crown ether could displace the bound cation.69-71 However, these possibilities are 

unlikely, as there is quantitative recovery of the of the manganese(III) complex following 

protonation, indicating that the reactivity proceeds as shown in Figure 1.b-i.

The instability of the manganese salen imidos precludes establishing an equilibrium for 

protonation of the nitrido. Bounds for the pKa values were determined by 1H NMR in 

acetonitrile-d3 at room temperature using acids of known pKa values (see the Supporting 

Information). Notably, the pKa values span ~9 units, with the basicity of the Mn(V) nitrido 

decreasing with an increasing charge of the bound cation.

The BDFEs for the imido N–H bonds are given in Table 1. Despite the changes in pKa 

and reduction potential, the BDFE is relatively constant across the series, indicating that 

the positive shift in reduction potential is largely compensated by acidification of the imido. 

Although the determination of N–H bond strengths is challenging due to the reactive nature 

of the intermediate imido, these values are essential to predicting reactivity. A computational 

study by Cundari and co-workers on these complexes determined that an increase in charge 

at the bound cation resulted in an increase in the N–H BDFE and lower free energy barriers 

for hydrogen atom transfer (HAT) from methane.72 Our experimentally determined BDFE 

values do not indicate an increasing N–H BDFE with higher cation charges. However, this 

may be due to our use of bracketed pKa values due to the instability of the imidos. Still, 

we explored the hydrogen atom abstraction (HAA) reactivity of the Mn(VI) complexes with 

a hydrogen atom donor, 9,10-dihydroanthracene (DHA, BDFE(DMSO) = 72.9 kcal/mol)18 

(Scheme 1).

UV–visible spectroelectrochemistry was used to monitor the reactivity of complexes A 
and 1-Ba with 100 equiv of DHA. Upon oxidation of A to the Mn(VI) species, only 

spectral changes that correspond to the formation of Mn(III) were observed (Figure S13). 

Recovery of the solution following electrolysis and analysis by 1H NMR spectroscopy 

showed no evidence for the formation of anthracene, the expected product of hydrogen 

atom abstraction. For 1-Ba, however, absorption bands corresponding to anthracene (340–

380 nm)73 increased in intensity during electrolysis (Figure S14), which was confirmed 

by 1H NMR spectroscopy of the recovered solution. Spectroelectrochemical electrolyses of 

solutions of 1-La with 100 equiv of DHA were unsuccessful due to the positive potential 

required to oxidize 1-La, which resulted in the direct oxidation of DHA. Therefore, we 

performed chemical oxidation of A, 1-Ba, and 1-La with tris(2,4-dibromophenyl)-aminium 

hexachloroantimonate (Magic Green) under an inert atmosphere in n-PrCN at −40 °C. 

Following the in situ generation of the Mn(VI) nitrido and consumption of Magic Green, 

10 equiv of DHA was added and the reaction mixture was stirred at −40 °C until no 

further reaction was observed. 1H NMR spectroscopy was used to quantify the yield of 

anthracene (2) for each manganese complex (Scheme 1, inset table, and Figure S15). Two 

equivalents of manganese is required to form 1 equiv of anthracene (two HAT events); thus, 

the maximum possible yield of anthracene is 50%. The results of the chemical oxidation 

were variable due to competitive bimolecular coupling of the Mn(VI) complex, even at −40 
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°C (Figure S23). However, we note that chemical oxidation of 1-La at −40 °C exhibited a 

minimal decay over 5 h.30 The addition of cationic charge has a slightly positive effect on 

C–H activation. The hydrogen atom abstraction exhibited by 1-Ba and 1-La may be due to 

the inhibition of bimolecular coupling following oxidation to Mn(VI) due to the charge.26 

However, additional electrostatic interactions facilitating HAT cannot be ruled out.

Our results establish that BDFEs for the manganese imido N–H bonds change minimally 

with charge despite significant changes to E1/2 and pKa. We also demonstrate enhanced 

reactivity for HAT when a cation is bound using the hydrogen atom donor DHA. Our 

findings demonstrate the utility of electric fields for tuning the reduction potential, pKa, and 

BDFE, while also differentially affecting hydrogen atom transfer. Future work will focus on 

understanding electrostatic effects for controlling different pathways for proton and electron 

transfer as well as C–H activation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Secondary coordination sphere effects on E1/2 or pKa in metal hydroxides (refs 19 and 

20). (b) Activation of salen manganese nitridos ((i) ref 42; (ii) refs 26 and 30; (iii) ref 72 and 

this work).
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Figure 2. 
(a) Solid-state molecular structure of 1-La with 50% probability ellipsoids. Hydrogen atoms 

are omitted for clarity. See the Supporting Information for a full list of bond lengths 

and angles. (b) Scan-rate-dependent cyclic voltammetry of 1-La (2 mM) showing MnVI/V 

oxidation event (scan rates 10–2500 mV/s, 0.2 M TBAPF6, CH3CN).
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Figure 3. 
Plot showing the compensatory relationship between the MnVI/V E1/2 and pKa for complexes 

with a cationic charge and contribution to BDFE. Axis values were calculated as (a) 

23.06(E1/2) and 0) 1.37(pKa) as shown in eq 1 in Chart 1.
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Chart 1. 
(Left) Manganese Nitrido Complexes and (Right) Thermodynamic Properties Investigated in 

This Study
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Scheme 1. Reaction of Manganese Complexes with DHA following Oxidation
aReaction performed by spectroelectrochemical UV–vis in MeCN at 20 °C. bReaction 

performed by chemical oxidation with 1 equiv of tris(2,4-dibromophenyl)aminium 

hexachloroantimonate in n-PrCN at −40 °C. See the Supporting Information for 

experimental details.

Léonard et al. Page 14

J Am Chem Soc. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Léonard et al. Page 15

Table 1.

Summary of Thermodynamic Parameters

complex
E 1/2 

c 
pKa

d
N–H BDFE

e

A 
a 0.43 8.0–9.4 73–75

1-Na 
a 0.59 6.2–8.0 75–77

1-K 
a 0.62 6.2–8.0 75–78

1-Ba 
a 0.80 0.2–2.6 71–75

1-Sr 
a 0.88 0.2–2.6 73–76

1-La 
b 1.02 <0.2 <76

1-Eu 
b 1.13 <0.2 <79

a
Reference 26.

b
This work.

c
In V; MnVI/V(N) couple vs Fe(C5H5)2+/0 in MeCN.

d
Protonation of nitrido complexes in MeCN-d3 at 20 °C as determined by 1H NMR.

e
In kcal/mol using experimentally measured E1/2 and pKa (eq 1 in Chart 1).
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