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ABSTRACT OF THE DISSERTATION

Characteristics, Origins and Recent Trends in Extreme Precipitation in the United States
Including the Role of Atmospheric Rivers

by

Maryam Asgari Lamjiri

Doctor of Philosophy in Earth Sciences

University of California San Diego, 2019

F. Martin Ralph, Chair

Mitigating the impacts of extreme precipitation is particularly complicated in California,

where more than 50% of precipitation typically falls in less than 120 hours annually, and where

droughts and floods are extreme and frequent. Lack of reliable precipitation datasets with

high temporal resolution has limited investigation of key (hourly) aspects of important storm

characteristics that strongly modulate their impacts.

Here, a newly-available quality-controlled long-term dense network of hourly precipitation

observations in California is used with hourly to multi-day precipitation observations in the United

States (U.S.) to study extremes across the U.S. and through time. Recent advances in atmospheric

xiv



river (AR) monitoring and cataloging enabled not only the confirmation of ARs as primary

sources of extreme precipitation along the U.S. west coast but also recognition of their lesser-

known contributions to the eastern U.S. extremes. The coexistence of ARs and hurricanes, which

has not yet been explored, is identified here to contribute substantially to eastern U.S. extreme

precipitation.

Storm duration, more so than hourly precipitation rates, is found to strongly modulate

precipitation totals, especially in the western U.S. These findings emphasize the importance of

improving forecasts of storm duration, which has high practical importance as longer storms are

more likely to yield severe floods over large areas.

A unique scaling method, the R-CAT scale, is applied to daily precipitation records to

provide a basis for placing the extraordinary nature of several recent precipitation extremes in the

context of historical storms. While confirming the increase in intensity and frequency of extreme

storms in the eastern U.S., new results are found in the western U.S. identifying significant

declines in annual maximum 3-day precipitation totals and frequency of R-CAT storms in this

region. Results here also provide a deeper perspective on these overall trends, in that a significant

shift towards more temporally uniform precipitation during the most extreme storms is identified

in the eastern U.S.

These findings provide improved scientific foundations for the development and imple-

mentation of effective hazard-mitigation, climate-adaptation, and water-management strategies in

California and across the Nation.
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Chapter 1

Introduction

Precipitation is one of the most important factors in the global hydrologic cycle and

substantially impacts many aspects of human’s life and his surrounding environment. Depending

on timing, intensity, duration, total precipitation, and antecedent land conditions, precipitation

events may beneficially replenish water resources, may be hazardous and cause floods and other

disasters, or yield a combination of these impacts.

For as long as humans have lived on this planet, they have suffered from deaths, casualties,

and economic loss due to too much, or too little, precipitation. Mortality risks associated with

flood and drought as a fraction of population size has been falling in recent decades due to the

increase in capacities to accommodate to, and mitigate against, such events (UNISDR; 2011).

Nonetheless, increasing economic losses from these events still affect many regions (IPCC, 2012),

and too many deaths are still resulted from these extremes each year around the world, especially

with the population increase.

Precipitation mechanisms and their characteristics vary significantly by region and season.

Identifying which precipitation mechanisms are dominant in each region enables efforts to be

funneled towards improved understanding of these phenomena and their characteristics, which

in turn can support improved forecasts of the events and their impacts. The resultant advanced
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understanding, monitoring, and forecasts of these weather systems provide more reliable and

timely information that emergency and water resource managers can employ for more efficient

management of water resources and minimization of flood and drought risks.

United States (U.S.) experiences multiple million-dollar weather-related disasters each

year from different causes. The eastern U.S. frequently suffers from tropical cyclones and winter

storms, while the U.S. west coast often is impacted by extreme floods from a type of storms

called Atmospheric Rivers (ARs). These different meteorological processes across the U.S., while

potentially being similarly disastrous as shown by Ralph & Dettinger (2012), have very distinct

characteristics, both in terms of related atmospheric processes and associated precipitation. They

thus pose different water management challenges and require accordingly tailored mitigation and

adaptation strategies. While hurricanes and tropical storms are mostly hazardous and usually

associated with flood risks, ARs are important for both replenishing water resources and causing

floods (e.g. Dettinger et al., 2011), which makes their management even harder.

California water management, in particular, is very challenging due to its unusually

volatile water resources, which has the largest variability, in terms of annual precipitation totals,

in the U.S. (Dettinger et al., 2011). This results mainly from large contributions of only a few big

storms (that are mostly ARs) over a short period of time to California’s water resources so that

too many or too few occurrences of these storms in any given year can result in extreme floods or

droughts, respectively (Dettinger et al., 2011). Therefore, water managers require strategies to

save as much precipitation as possible in the reservoirs to increase water availability and prepare

for and cope with drought episodes, while keeping as much empty space in the same reservoirs to

reduce flood risks associated with these storms (Ralph et al., 2014).

In this chapter, a brief overview of different meteorological sources for extreme precip-

itation across the U.S., their regional and national impacts, and their projected changes in the

future is presented. In particular, the central role of ARs in modulating most of the U.S. west

coast impactful precipitation is outlined. Then, a discussion of how the research presented in

2



this dissertation provides additional understanding of these impactful phenomena is begun, to be

returned to in each subsequent chapter.

1.1 Sources of U.S. extreme precipitation

Precipitation extremes, their meteorological causes, seasonalities, and responses to climate

change vary notably across the U.S. Tropical cyclones are one of the deadliest and costliest weather

events in the U.S. and, from 2004 to 2013, caused $392 billion damage losses and more than 1000

fatalities. Floods and winter storms are among the other disastrous weather types in the U.S. with

more than 700 and 200 fatalities, respectively, over the 10 years of 2004-2013 (USGCRP, 2016).

Kunkel et al. (2012) documented major meteorological causes of extreme precipitation in

nine climate regions across the U.S. defined by Karl & Knight (1998; Table 1). In the Kunkel

et al. (2012) analysis, extreme precipitation events are daily precipitation totals exceeding

5-yr recurrence interval threshold, using weather-station observations from 1908-2009. The

meteorological processes identified by Kunkel et al. (2012) include extratropical cyclones near

fronts (FRT), extratropical cyclones near the low-pressure centers (ETC), tropical cyclones (TC),

mesoscale convective systems (MCS), airmass convection (AMC), North American monsoon

(NAM), and upslope flows (USF).

Table 1.1: Climate regions defined in Karl and Knight 1998.

Climate Regions U.S. States

Northwest WA, OR, ID
West CA, NV

Southwest AZ, UT, CO, NM
West North Central MT, WY, ND, SD, NE
East North Central MN, IA, WI, MI

Central MO, IL, IN, OH, WV, KY, TN
South TX, OK, KS, AR, LA, MS

Northeast ME, NH, VT, NY, PA, VA, MD, DE, NJ, CT, RI, MA
Southeast FL, AL, GA, SC, NC, VA
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Contributions of these meteorological processes to extreme precipitation events in each cli-

mate region, documented by Kunkel et al. (2012), are summarized in Table 2. Almost all extreme

events in the west and northwest regions are caused by ETC and FRT during December-January-

February (DFJ) and September-October-November (SON). ARs, which will be overviewed in

section 1.2, are specific types of storms, usually associated with extratropical cyclones, that

largely impact extreme precipitation along the U.S. west coast. Depending on characteristics of

ARs and their associated cyclones, they may be categorized as ETC or FRT.

About 80% of extreme precipitation in the southwest region occurs during June-July-

August (JJA) and SON with FRT and NAM being the primary causes in JJA and FRT and ETC the

primary causes in SON. Eastern U.S. regions including north central, central, south, southeast, and

northeast experience most of their extreme precipitation during JJA and SON with much lower

occurrences of extreme precipitation events during winter in these regions. FRT has the largest

contributions to extreme precipitation in north central, central, south, and northeast regions, while

most of the extreme precipitation in the southeast is caused by TC. TC contributes substantially

to extreme precipitation in the northeast and south regions during JJA and SON, as well.

Table 1.2: Contribution of different meteorological causes to extreme precipitation events in
different climate regions across the U.S.

Climate Regions FRT ETC TC MCS AMC NAM USF

Northwest 19% 80% - - - - -
West 14% 84% - - - 1% -

Southwest 52% 22% 3% - - 21% 2%
West North Central 71% 25% - 2% - - -
East North Central 82% 7% - 6% - - -

Central 78% - 9% 8% - - -
South 66% - 17% 11% - - -

Northeast 47% 16% 36% - - - -
Southeast 34% 7% 51% 6% 2% - -

These meteorological processes yield different precipitation characteristics across the

U.S., some of which are documented in the few available studies on the sub-daily analysis of
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Table 1.3: Seasonality of extreme precipitation events in different climate regions in the U.S.

Climate Regions DJF MAM JJA SON

Northwest 41% 11% 16% 32%
West 66% 11% 4% 19%

Southwest 9% 13% 43% 13%
West North Central < 1% 22% 61% 17%
East North Central < 1% 11% 66% 23%

Central 3% 19% 44% 29%
South 9% 23% 33% 35%

Northeast 3% 7% 46% 44%
Southeast 7% 15% 32% 46%

precipitation characteristics at the national scale. Palecki et al. (2005) analyzed 15-minute

precipitation observations across the U.S. and found differing characteristics and trends in western

versus eastern U.S. precipitation. Namely, they found declines in storm precipitation totals and

duration in the western U.S. and increases in storm intensity in this region. Eastern U.S., on the

other hand, showed increasing trends in storm totals, durations, and intensities. Consistently,

Peterson et al. (2013) found decreases in flood magnitude in the southwest and increases in that

in central and northeast U.S.

The increase in precipitation totals from the 99th percentile daily precipitation events

(1958-2012) is documented across the U.S. with the largest increases in the northeastern (71%)

and midwestern regions (37%; Karl et al., 2009), respectively. On average, a 4% increase in

annual precipitation totals is reported across the U.S. during the past century (USGCRP, 2018),

which is mostly modulated by the increase in heaviest precipitation events (Kunkel et al., 1999a).

Kunkel et al. (1999b) reported a steady increase in damages associated with floods from

1903 to 1997 and an increase in the frequency of years with high flood-related mortalities in years

since 1970 compared to years before. A decreasing trend in adjusted hurricane losses based on

increases in population, inflation, and wealth have been reported by Kunkel et al. (1999b), in line

with the decrease in the frequency of intense landfalling hurricanes identified by Landsea et al.
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(1999). Kunkel et al. (1999b) reported an increase in damages associated with winter storms,

partially due to the increase in the frequency of these storms that impact the northeastern U.S.

The magnitude and sign of observed and projected trends in extreme precipitation depend

strongly on how such extremes are defined. In chapter 4, a fixed threshold method is used to

identify the most extreme precipitation storms across the U.S., addressing much more extreme

events than in any of these previous studies, which are then analyzed for spatial and temporal

differences and changes. New results are found on how these extremes have been changing

through time in western and eastern U.S.

1.2 Atmospheric rivers

ARs are long (several thousand kilometers) and narrow (several hundred kilometers)

synoptic-scale weather systems that transport large amounts of vertically-integrated water vapor

to generally higher latitudes (Glossary of Meteorology, 2017). These atmospheric phenomena

largely modulate midlatitude hydrologic cycle by contributing more than 90% of poleward

transport of water vapor in midlatitude regions (Zhu & Newell, 1998; Guan & Waliser, 2015).

Disastrous impacts of ARs include not only precipitation-related extremes, such as floods,

levee breaks, landslides, and debris flows, but also other types of disasters, such as extreme

winds, storm surge, and wildfires, and have been documented by many studies (e.g. Paltan et al.,

2017; Waliser & Guan, 2017; Ralph & Dettinger, 2012; Dettinger, 2011; Dettinger et al., 2004;

Florsheim & Dettinger, 2015; Guan et al., 2013; Kim 2015; Konrad & Dettinger, 2017; Lamjiri et

al., 2018; Neiman et al., 2008, 2011; Ralph et al., 2006; Rutz et al., 2014; Wayand et al., 2015;

Mahoney et al., 2016; Moore et al., 2011; Lavers et al., 2011, 2012; Liberato, 2014; Stohl et al.,

2008; Garreaud, 2013; Viale & Nuez, 2010; Bonne et al., 2015; Gorodetskaya et al., 2014; Neff

et al., 2014; Oakley et al., 2018; Young et al., 2017; Albano et al., 2017).

It is important to note that, while not all ARs are hazardous, the hazardous impacts of
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ARs tend to increase with the increase in their level of extremity. Ralph et al. (2019) recently

developed a scale to categorize ARs and their impacts based on their maximum IVT intensity and

duration. Economic losses from floods associated with ARs increase exponentially with increases

in their AR scale level (Corringham et al., 2019).

ARs also play a beneficial and important part in providing water resources to most western

coastal regions globally (Guan & Waliser, 2015), including the U.S. west coast. Dettinger

(2013) highlighted the important role of ARs in ending drought episodes. Rutz et al. 2014

reported that 40-50% of cool-season precipitation in the U.S. west coast, and 25%-35% of that

in some inland regions of the southwest, comes from ARs. Dettinger et al. (2011) quantified

10%-50% contribution from cool-season ARs to western U.S. annual precipitation. In California,

in particular, ARs contribute the large majority of interannual variability in total precipitation

(Dettinger, 2016).

ARs contribute significantly to western U.S. snowpack, as well (Guan et al., 2010), which

serves as a natural water reservoir and is an important supplier for water resources. However,

in cases when ARs bring anomalously warm moist airmass to snow-covered regions and yield

large amounts of rain-on-snow, they can result in heavy streamflow generation and severe floods

(Wayand et al., 2015).

With the increased capacity of the atmosphere to hold more water vapor as a result of the

climate change and global warming, changes in AR characteristics and promotions in their water

vapor transport are also expected in the future (Lavers et al., 2013), intensifying AR-related flood

risks (Dettinger, 2011). Dettinger (2011) found strong changes in extreme ARs, expansion of AR

season, and increase in AR storm temperature in future simulations, while no strong changes in

average AR characteristics were found in these simulations. Warner et al. (2014), Hagos et al.

(2016), and Gao et al. (2016) identified an average increase in AR-days in future simulations.

Espinoza et al. (2018) projected longer AR durations in the future, which will be discussed in

coming chapters, and which can have significant impacts on resulting precipitation totals from
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these storms.

1.3 Objectives of this dissertation

This dissertation investigates characteristics of extreme precipitation and their spatial

and temporal variations from aspects that have not previously been fully explored. Nearly all

recent studies of extreme precipitation across the U.S. have focused on daily to longer time

scales of precipitation accumulation, often due to the lack of availability of long-term quality-

controlled hourly precipitation datasets. As a result, some characteristics of individual storms

that require higher temporal resolution analyses, such as duration, have not previously been

resolved. Here, advantage is taken of available hourly precipitation datasets to explore some

of these characteristics of extreme precipitation in general and ARs in particular. AR-related

precipitation depends largely on orographic enhancement and inland penetration through gaps

in coastal topography. Such interactions with the topography are generally not fully resolved in

coarser-resolution model estimates of precipitation. Therefore, to better represent AR-related

precipitation, we explore observational precipitation datasets here.

In the second chapter of this dissertation, storms with flexible durations determined

by continuous sequences of nonzero hourly precipitation are identified across the U.S., and

their characteristics are compared between the west coast, which is heavily impacted by ARs,

and the eastern U.S., which is regularly affected by other precipitation mechanisms such as

hurricanes and tropical storms. The hourly analysis performed here resulted in a much higher

(temporal) resolution understanding of precipitation nation-wide than provided by traditional

storm climatologies at the national scale. Specifically, important differences are found between

the relative modulation of storm totals by storm intensity and duration in western and eastern U.S.

Acknowledgment and consideration of these differences is essential for the enhancement and

focusing of the extreme storm and flood forecasts.
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After the chapter 2 research on the differing characteristics of precipitation in western

versus eastern U.S., in the third chapter, a higher (spatial) resolution perspective is developed for

regional characteristics of AR-related precipitation and their modulating factors in California.

Specifically, we look at differences between AR characteristics and their associated rainfall in

coastal vs. inland regions. We identify regions in California with the most extreme rainfall events

and explore regional differences in their characteristics from an hourly perspective, as well as their

association with ARs. The relationship between the intensity of ARs and the level of extremity of

their resulting precipitation is also explored in different regions in California.

The fourth chapter returns to the whole-CONUS scale to explore characteristics of the

most extreme storms in western and eastern U.S. by applying a fixed-threshold scaling method

to extreme multi-day precipitation across the U.S. These extremes are investigated not only

at the station and grid-level but also at the storm level by identifying spatially and temporally

flexible storm episodes. The climatological properties of the most extreme storms ever recorded

across the U.S. are described and the relative contributions of ARs versus tropical storms to these

extremes are quantified for the west coast and east coast extremes. The frequency, spatial extent,

and distribution of precipitation during these extreme storms have changed in the recent decade

compared to the historical period and this chapter contextualizes the recent extremes and how the

long-term temporal changes differ from western to the eastern U.S.

This dissertation, as a whole, aims to analyze extreme precipitation from various angles

using datasets with differing temporal and spatial resolutions to identify factors that most strongly

modulate their hydrologic impact. A common finding among all chapters of this dissertation is the

importance of storm duration in modulating precipitation totals, especially in mostly AR-driven

extremes along the U.S. west coast. It is also shown that for extreme storms in the eastern U.S., the

storm duration is increasingly becoming more important. Perhaps the most important motivation

for the research presented here is that these results may be a basis to direct some future studies on

ARs and extreme precipitation toward better understanding of the role of storm duration, changes
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to this storm characteristic in the future, and how the strong modulation of storm impacts by

duration can be used to improve forecasts of their associated extreme precipitation and floods.
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Chapter 2

Hourly Storm Characteristics Along the

U.S. West Coast: Role of Atmospheric

Rivers in Extreme Precipitation

Abstract

Gridded hourly precipitation observations over the conterminous US, from 1948 to 2002,

are analyzed to determine climatological characteristics of storm precipitation totals. Despite

generally lower hourly intensities, precipitation totals along the U.S. West Coast (USWC) are

comparable to those in Southeast U.S. (SEUS). Storm durations, more so than hourly intensities,

strongly modulate precipitation-total variability over the USWC, where the correlation coefficients

between storm durations and storm totals range from 0.7 to 0.9. Atmospheric rivers (ARs)

contribute 30-50% of annual precipitation on the USWC, and make such large contributions to

extreme storms that 60-100% of the most extreme storms, i.e. storms with precipitation-total

return intervals longer than two years, are associated with ARs. These extreme storm totals are

more strongly tied to storm durations than to storm hourly or average intensities, emphasizing the
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importance of AR persistence to extreme storms on the USWC.

2.1 Introduction

Precipitation events (referred to here as storms) naturally range from weak to strong,

and depending on their precipitation totals, intensities, and durations, they can be beneficial

and contribute to water resources, be hazardous and result in floods, or yield a combination of

impacts. Understanding the conditions that determine where storms are along this spectrum has

great practical importance, especially in areas such as northern California where a particular type

of storms called atmospheric rivers (ARs; American Meteorological Society [2017]) has been

responsible for both replenishing water resources and causing extreme floods [e.g., Dettinger,

2016]. During the past few decades many studies have been devoted to investigating different

aspects of storms in the U.S., from their diurnal cycles [Higgins et al., 1996; Nesbitt and Zipser,

2003; Dai and Trenberth, 2004; Liang et al., 2004] and seasonal and multi-year variability [Cayan

and Redmond, 1994; Dettinger et al., 1998; Higgins et al., 1998, 1999, 2007; Higgins and Kousky,

2012], to the frequency of wet days in various regions [Sun et al., 2006; Dettinger et al. 2011].

However, nearly all of these studies have focused on daily to longer time scales of

precipitation accumulation, possibly because higher frequency and temporally and spatially

complete rainfall data are uncommon. In this paper, storms defined by continuous sequences

of nonzero hourly precipitation are investigated, allowing much finer (temporal) resolution

conclusions than from traditional national-scale storm climatologies. Particularly, storm durations

and storm intensities and their relationship with storm precipitation totals are evaluated across

the conterminous United States (CONUS), with specific focus on the U.S. West Coast (USWC),

where precipitation exhibits unusual variability compared to the rest of the CONUS [Dettinger et

al., 2011].

One of these unusual characteristics is the dominant role of ARs as determinants of
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variations in long-term precipitation totals. Landfalling ARs, which are long, narrow plumes

of enhanced water vapor transport (IVT) [Zhu and Newell, 1998; Ralph et al., 2004; Dettinger,

2011] have been shown to be responsible for most major storms and floods in USWC [Ralph et

al., 2006; Neiman et al., 2008; Dettinger et al., 2011; Neiman et al., 2011; Ralph and Dettinger,

2011; Ralph et al., 2014]. At the same time, ARs provide 30-50 % of the annual precipitation

in this region [Guan et al., 2010; Dettinger et al., 2011; Rutz et al., 2014]. The connection

between landfalling ARs and USWC precipitation has been the focus of many studies; however,

at the regional scale, only annual, monthly, and in a few cases, daily precipitation data have been

used to investigate this connection. Impacts of ARs at sub-daily storm levels have not yet been

investigated regionally despite the importance of these time scales to storm impacts [e.g. Ralph et

al., 2013]. Using gridded hourly precipitation observations from 1948 to 2002, we explore here

the impacts of ARs on duration and intensity of storms and evaluate their contributions to the

larger storms with higher potential of causing floods.

Section 2 describes data and methods used in this study. Storm characteristics derived

from hourly observations and their relationships across the United States are discussed in section

3. Section 4 then focuses on USWC storms and contribution of ARs to the extreme storms over

the USWC. Lastly, a summary of results and conclusions is presented in section 5.

2.2 Data and methodology

This study analyzes gridded, hourly U.S. precipitation observations from the NOAA Cli-

mate Prediction Center (hereafter referred to as CPC precipitation data, https://www.esrl.noaa.gov

/psd/data/gridded/data.cpc hour.html ) for the period of 1948 to 2002 [Higgins et al., 1996, 2000].

This dataset is derived from hourly precipitation observations at approximately 2500 stations,

about one-third of which are from National Weather Service (NWS) first-order stations and the

rest are from Cooperative Observer Network (COOP) stations. The station data were compiled
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and quality-controlled by the NWS/Techniques Development Laboratory and gridded into 2

latitude by 2.5 longitude grid-cells using a modified Cressman scheme [Higgins et al., 1996].

Most stations used to create this dataset are located in the USWC states and in the eastern U.S.,

while western and central US states such as Nevada, Arizona, Utah, and Wyoming contain fewer

stations.

Using this hourly dataset, storms within each grid-cell in CONUS are defined as continu-

ous stretches of precipitation separated by at least 6 hours of zero precipitation, with minimal

total precipitation of 5 mm during the storm. These criteria were selected to be comparable with

previous studies [Palecki et al., 2005], which used minimal 6-hour gap between consecutive

storms and minimal 2.54 mm of storm total precipitation criteria; however, a range of different

criteria (2-48 hours of minimal zero precipitation period separating storms and 2.54-15 mm of

minimal storm precipitation) was tested to ensure that results are not dependent on the way storms

are defined. While the values for storm total precipitation, storm duration, and storm intensities

are inevitably different when using different criteria, the overall results remain unchanged.

For each storm, storm total precipitation (mm) is defined as the total rainfall from the

beginning to the end of the storm; storm duration (h) is the number of hours with non-zero

precipitation (zero-precipitation hours within storm events are not included when computing

storm duration) from the start to the end of the storm; mean storm intensity (mm hr-1) is storm

total precipitation divided by storm duration; and maximum storm intensity (mm hr-1) is the

largest hourly rate of precipitation observed between the start to the end of the storm. Simple

statistics including correlation analysis are performed to better understand storm characteristics.

Guan and Waliser [2015] recently developed a technique to objectively identify ARs

globally using 6-hourly fields of IVT in reanalysis datasets based on a combination of AR

geometry and IVT intensity thresholds. AR landfall dates along the USWC based on this

technique compare well with the AR landfall record developed by Neiman et al. [2008] based on

manual examination of satellite-observed integrated water vapor (IWV). A record of all landfalling
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ARs (ARs which intersect the coastline) detected based on applying the Guan and Waliser [2015]

technique to the NCEP/NCAR reanalysis for the period of 1948-2002 is used here to evaluate

characteristics of storms associated with ARs on USWC from 34N to 48N. This IVT-based AR

record is desirable for this study given the length of record and because IVT is more directly

related to precipitation than is IWV [Neiman et al., 2009; Rutz et al., 2014]. The NCEP/NCAR

reanalysis has 6-hourly analysis time step. Therefore, in order for the AR chronology dataset to

correspond with hourly precipitation dataset, landfalling AR conditions are assumed to last for at

least 6 hours centered around the time recorded in the chronology. At each coastal grid cell, if

landfalling AR conditions were present at any time from the start to the end of a storm, that storm

is considered to be an AR storm, otherwise, it is referred to as a non-AR storm.

2.3 Storm characteristics in the CONUS

The total number of storms detected, using the criteria described earlier, between 1948

and 2002 varies from 1600 at grid cells in the western-central U.S. to 6000 at grid cells in the

northwestern and southeastern United States. Figure 2.1 shows the period of record averages

of storm precipitation totals, duration, and average and maximum storm intensities across the

CONUS. On average, the USWC and Southeast U.S. (SEUS) have the largest average storm

precipitation totals, ranging from 23 to 30.5 mm and from 19 to 23 mm, respectively. These

regions correspond well to the regions found by Ralph and Dettinger [2012] to contain most of

the recorded extreme storms with 3-day total precipitation exceeding 40 cm (labeled there as

R-Cat 3 and R-Cat 4). Although the hourly dataset used here has a coarse spatial resolution, the

spatial patterns of the storm characteristics climatology such as duration, intensity, and storm

total precipitation are consistent with previous studies which used daily [e.g. Ralph and Dettinger,

2012] and 15-minute [e.g. Palecki et al., 2005] precipitation records from individual stations

across the United States.
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While on average both USWC and SEUS have relatively large storm totals, storm charac-

teristics differ between these two regions. The average duration of USWC storms is about 30-50

hours, longer than the average SEUS durations of 15-25 hours (Figure 2.1b). On the other hand,

the average maximum (and average) storm intensity in SEUS ranges from 3.5 to 7 (0.7 to 1.7)

mm hr-1, notably higher than in USWC where the average maximum (and average) intensities

are about 1.5-3 (0.6-1) mm hr-1 (Figure 2.1c and 1d). These different storm characteristics

reflect dominant storm mechanisms in the regions. In SEUS, convective precipitation is the major

contributor to the storms, leading to short but intense precipitation, whereas in USWC, ARs and

stratiform precipitation are dominant sources of precipitation resulting in longer storms with

relatively lower intensities.

a) b)

c) d)

Figure 2.1: Climatology of storm total precipitation (a), storm duration (b), storm maximum
intensity (c), and storm average intensity (d) based on gridded hourly precipitation observations
from 1948 to 2002.

For applications such as reservoir management and flood-risk mitigation, it is extremely

important to understand which storms will contribute the largest amounts of precipitation in
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a region. As shown in Figure 2.2, storm-total precipitation is more strongly correlated with

storm duration than with storm maximum intensity in many parts of CONUS, especially on

USWC where Pearson-correlation coefficients between storm total precipitation and duration

are from 0.7-0.9. These findings are consistent with results presented in Brommer et al. [ 2007],

stating that coastal areas of northern California and regions within the Gulf States are more likely

influenced by storms with long-duration than other parts of CONUS. The correlation between

storm total precipitation and maximum storm intensity is comparable between USWC and SEUS

with correlation coefficients ranging from 0.5-0.65. Storm-total precipitation has rather weak

correlation with storm average intensity than with storm duration and maximum intensity across

the CONUS (Figure 2.2c).

a)

b) c)

Pearson-Correlation Coefficient 

Figure 2.2: Spatial map of Pearson correlation coefficients of storm precipitation total with
storm duration (a), storm maximum intensity (b), and storm average intensity (c) for storms
observed from 1948 to 2002.

In order to compare the results from coarse spatially gridded CPC precipitation data

with point-scale in-situ observations, Pearson-correlation coefficients were calculated for storm-
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precipitation totals and storm duration, maximum intensity, and average intensity in a two-minute

precipitation record from one of the NOAA Hydrometeorology Testbed stations (Cazadero) in the

Russian River watershed in northern California (ftp://ftp1.esrl.noaa.gov/psd2/data/realtime/Csi

Datalogger/SurfaceMet/czc/ ) for the period of 2011-2016, following the same methodology

described in section 2. The location of this station is shown by the red star in Figure 2.2c. A

range of criteria for minimal zero-precipitation hours separating two consecutive storms (0-48

hours) and minimal storm-precipitation totals (0-15 mm) were used to define storms at this

station (Figure 2.3). Regardless of the criteria used to define storms, precipitation totals have

stronger correlations with storm duration (0.7-1) than with storm maximum (0.4-0.7) and average

intensities (0.1-0.5), in agreement with the correlations from the gridded CPC precipitation

data. Thus the results here do not appear to be contingent on the gridding applied to the hourly

precipitation data by Higgins et al. [1996, 2000].

According to these results, storm totals in USWC depend more on storm duration than on

maximum or storm-average intensities, and thus long storms tend to generate the largest amounts

of precipitation, potentially contributing more to water resources or leading to extreme floods.

In this region, persistent AR conditions have been shown to increase amounts of precipitation

remarkably and result in the most streamflow generation [Ralph et al., 2013].

2.4 Extreme storms in USWC and role of ARs

ARs contribute importantly to USWC water resources and are regionally known to be the

cause of major floods. Here, we explore some characteristics of storms associated with ARs and

investigate the role of ARs in USWC extreme storms through the lens of hourly precipitation

records. Among all storms that occurred along the USWC from 1948-2002, 16-32% were

associated with ARs, and on average ARs contributed 31-52% of annual precipitation in this

region. The contribution of storms associated with ARs to annual precipitation is largest in
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a)

b) c)

Figure 2.3: Pearson-Correlation coefficient of precipitation totals with duration, maximum
intensity, and average intensity at Cazadero station (shown by red star in Figure 2c), using
two-minute observations from 2011 to 2016.

northern California (between 36N and 38N), in line with the results from previous studies [e.g.

Guan et al., 2010; Dettinger et al., 2011; Kim et al., 2013; Rutz et al., 2014]. Using 91 AR events

detected based on hourly observations of IWV and terrain-normal component of IWV flux from

2004 through 2010 in California’s Russian River, Ralph et al. [2013] showed that, on average,

landfalling ARs lasted about 20 hours, and that AR events with longer duration yielded larger

amounts of precipitation. In the present analysis, this result is extended all along the USWC,

using storms defined based on 55 years of hourly precipitation observations. For each coastal grid

cell, storms were categorized as either AR or non-AR storms. Frequency distributions of storm

total precipitation, duration, average intensity, and maximum intensity of storms in the USWC

are presented in Figure 2.4. Average storm totals, duration, average intensity, and maximum

intensity during AR storms are found to be 68%, 48%, 29%, and 33% higher than their mean

states, respectively.
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Neiman et al. [2008] documented the seasonality of ARs in the Eastern Pacific and

showed that warm-season (April-September) ARs are generally weaker and result in much less

precipitation relative to cool-season ARs. Comparing the distribution of warm season AR storms

with cool season AR storms in USWC confirms these results and indicates that warm-season AR

storms are generally shorter, weaker and produce less amounts of precipitation, and therefore, are

less probable to cause severe floods. Moreover, the frequency of cool season AR storms along

the USWC is notably larger than the frequency of warm season AR storms, thus dominating the

overall distribution of AR storms characteristics (Figure 2.4; black dotted lines, blue solid lines,

and red dashed lines represent distribution of all-year, cool season, and warm season AR storms,

respectively). As discussed previously, ARs are known to yield extreme precipitations and major

floods along the USWC. Here, the role of ARs in USWC extreme storms is explored in more

detail by studying the relationships between the fraction of storms associated with ARs in cool

and warm seasons and their corresponding storm characteristics. The fraction of storms associated

with ARs is larger for storms that yield larger precipitation totals, so that 60-80% of storms with

totals larger than about 50 mm are associated with ARs (presented by white triangles and color

shadings in Figure 2.4a). ARs are more prevalent among the more persistent storms (Figure 2.4b),

which generally result in heavy precipitation along the USWC, than among short-duration storms.

The fraction of storms associated with ARs also are larger for storms with average

and maximum intensity greater than about 1.2 and 4 mm h-1, respectively (Figure 4c and 4b).

However, among storms with even greater intensities, the fractions of storms associated with ARs

do not increase smoothly and instead are quite variable, spanning a wide range of 0-70%. This

variability is partly due to the reduced sample number towards the tail of the intensity distributions.

However, extreme storms along the USWC are amongst longest storms, and thus can span a wide

range of average and maximum intensities, from weak to strong. Examining cool season versus

warm season AR storms (blue versus red lines and markers in Figure 2.4) highlights the fact that

the prevalence of ARs among extreme storms along the USWC is larger in the cool season. The

26



role of ARs in establishing the relation between longer and larger storms is also clearest in the

cool season. These findings are consistent with previous observations that warm season ARs are

generally weaker and yield much less precipitation totals than cool season ones [Neiman et al.,

2008].

a) b)

c) d)

Figure 2.4: PDF of storm totals (a), storm duration (b), average storm intensity (c), and
maximum storm intensity (d) for all storms, all-year AR associated storms, cool season (October-
March) AR associated storms, and warm season AR associated storms in USWC coastal grid
cells are shown by bars, dotted black lines, solid blue lines, and dashed red lines, respectively.
The colors of bars represent the fraction of storms in each bin that are associated with ARs. The
fraction of all-year, cool season and warm season storms that are associated with ARs are shown
by white triangles, blue circles, and red squares, respectively.

To better understand the role of ARs in the USWC extreme storms and its importance in

applications such as water resource management and flood risk mitigation, the contribution of

ARs to the storms with storm totals recurrence intervals longer than two years are considered

next. A two-year return interval is selected here to identify large storms in USWC, because these
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storms are large enough to help to replenish water resources after elongated drought episodes,

cause major erosion and debris flow, and to result in some major floods. Furthermore, since

55 years of precipitation observations are used in this study, choosing a return interval longer

than two years would reduce the sample size and reduce reliability of the results. Figure 2.5

presents average intensity-duration plots for the coastal grid-cell storms from 34N to 48N along

the USWC. Storms with recurrence intervals longer than two years are colored as red and blue

circles to represent AR and non-AR storms, respectively.

Remarkably, 78-100% of the storms with recurrence intervals longer than two years

in northern California, Oregon, and Washington are associated with ARs in USWC, while in

southern California only 60% of these storms are AR related. These results are consistent with

previous studies, identifying ARs as the major cause of river floods in USWC [Ralph et al.,

2006; Neiman et al., 2011; Dettinger and Ingram, 2013; Ralph et al., 2014]. As shown in

Figure 2.5, large storms with recurrence interval longer than two years are generally within the

top 10% longest storms, while their average intensity has a wide range from weak to strong.

These characteristics of large storms are in line with the strong correlation between storm total

precipitation and duration observed in USWC, and highlight the importance of storm duration for

determining storm totals and potential impacts in this region.

AR events used in this study are defined solely based on atmospheric conditions (length,

width, and intensity of IVT plumes), without inclusion of precipitation in the definition. Thus

the dominant role that ARs, and especially duration of AR storms, play in the arrival of extreme

storms is not a foregone conclusion. This dominance highlights the value of AR awareness

in forecasting and analysis of major storms and floods on the USWC [Lavers et al., 2016];

recognizing the arrival of ARs in observations or forecasts clarifies flood risks, and forecasting

AR durations is particularly important over the course of many storms.
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34°N 36°N 38°N 40°N

42°N 44°N 46°N 48°N

Figure 2.5: Average intensity-duration plots for storms at coastal grid cells along the USWC
from 34N to 48N. Only the storms with precipitation accumulations larger than 25.4 mm are
shown in these figures (shown by gray circles) to avoid including a large number of relatively
small storms, as the focus of this plot is on the most extreme storms along the USWC. Storms
with recurrence interval longer than two years based on storm totals are colored as red and blue
to represent AR storms and non-AR storms, respectively.

2.5 Conclusions

Storms range from weak to extreme and, depending on where they are along this spectrum,

they have the potential to be beneficial, replenishing water resources and ending prolonged

drought episodes, or to be hazardous, resulting in socioeconomic losses from floods, debris flows

and landslides. Storms defined as continuous stretches of precipitation in hourly records from

1948 to 2002 are studied here to evaluate their characteristics. In CONUS, USWC and SEUS

have the largest average storm-total precipitations. These two regions were shown by Ralph

and Dettinger [2012] to have the largest 3-day precipitation totals in the U.S.. Analyzing storm

characteristics in these two regions reveals that, on average, USWC storms have relatively long

duration and low intensity compared to the SEUS storms, highlighting differences between storm

29



mechanisms in these areas. Storm-total precipitation is more closely related to storm duration

than to storm intensity, especially in USWC where total-vs-duration correlation coefficients are

0.7 to 0.9. This emphasizes the importance of improving the skill of weather forecasts of the

duration of storms. This is particularly important in practice because storms with longer duration

have higher potential to cause severe floods over large areas.

In terms of extremes storms in the USWC, using the hourly data analyzed here, ARs are

found to be larger, longer, and have higher-than-average intensities during the period of record

(1948-2002). Cool season AR storms yield significantly more precipitation than warm season AR

storms, in line with previous studies. The percentages of ARs among USWC storms increase for

storms with larger precipitation totals and for storms with longer durations, until for the largest

storms–60-80% are associated with ARs in the cool season. The fraction of storms associated

with ARs also increases as the average and maximum intensity of storms increase up to 1.2 and 4

mm hr-1, respectively. The fractions of AR storms with still higher intensities are highly variable

and range from 0-70%.

Average intensity-duration graphs for USWC storms reveal that storms with greater than

two-year recurrence intervals (based on storm precipitation totals) are dominantly associated

with ARs in the USWC coastal grid cells. The duration of large storms with recurrence intervals

longer than two years are generally within the top 10% longest storms, whereas their average

and maximum intensities vary widely, consistent with high correlation observed between storm

duration and storm total precipitation in this region.

Thus, storm duration plays an important role modulating the size and impacts of storm to-

tals, especially in the USWC. Improving skill of forecasts of duration of storms in USWC should

be a particular priority, as durations provide valuable information that could be used to enhance

water reservoir management and flood risk mitigation. ARs are verified as major contributors

to the largest storms in this region, and the present study indicates that, regionally and over the

several decades considered here, ARs play this important role because they tend to be of longer
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durations with relatively intense precipitation than other storm types. More research is required to

disentangle the relationship between storm duration, storm intensity and the resultant streamflows

at these regional and hourly scales. Impacts of AR duration and intensity on resulting storm

characteristics such as duration, intensity, and storm-total precipitation also need to be explored

in more details and can enhance the skill of extreme storm and flood forecasts. Considering the

stronger relations between storm durations and storms totals–rather than storm intensities and

storm totals–especially along the USWC, more effort should be focused on predicting changes

in storm durations, including especially landfalling ARs, in response to climate change with

increasing greenhouse gas concentrations in the atmosphere.
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Chapter 3

Hourly Analyses of the Large Storms and

Atmospheric Rivers that Provide Most of

California’s Precipitation in Only 10-100

Hours per Year

Abstract

California is regularly impacted by floods and droughts, primarily as a result of too many

or too few atmospheric rivers (ARs). This study analyzes a two-decade-long hourly precipitation

dataset from 176 California weather stations and a 3-hourly AR chronology to report variations

in rainfall events across California and their association with ARs. On average, 10-40 and

60-120 hours of rainfall in southern and northern California, respectively, are responsible for

more than half of annual rainfall accumulations. Approximately 10-30% of annual precipitation

at locations across the state is from only one large storm. On average, northern California

receives 25-45 rainfall events annually (40-50% of which are AR-related). These events typically
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have longer durations and higher event-precipitation totals than those in southern California.

Northern California also receives more AR landfalls with longer durations and stronger Integrated

Vapor Transport (IVT). On average, ARs contribute 79%, 76%, and 68% of extreme-rainfall

accumulations (i.e., top 5% events annually) in the north coast, northern Sierra, and Transverse

Ranges of southern California, respectively.

The San Francisco Bay Area terrain gap in the California Coast Range allows more

AR water vapor to reach inland over the Delta and Sacramento Valley, and thus, influences

precipitation in the Delta’s catchment. This is particularly important for extreme precipitation in

the northern Sierra Nevada, including river basins above Oroville Dam and Shasta Dam.

This study highlights differences between rainfall and AR characteristics in coastal versus

inland northern California, differences that largely determine the regional geography of flood

risks and water-reliability. These analyses support water resource, flood, levee, wetland, and

ecosystem management within the catchment of the San Francisco estuary system by describing

regional characteristics of ARs and their influence on rainfall on an hourly timescale.

3.1 Introduction

California’s precipitation is vital to its people, agriculture, and ecosystems, and dictates its

frequent flooding and (when lacking) droughts. A large part of California’s annual precipitation

totals arrives in only a few large storms, which introduces large interannual rainfall variability

(Dettinger et al. 2011). The large storms are most often associated with atmospheric rivers (ARs)

that are long, narrow regions of intense horizontal water vapor transport, typically associated

with extratropical cyclones (Zhu and Newell 1998; Ralph et al. 2004, 2006, 2018a; Neiman et al.

2008; Dettinger et al. 2011; Rutz et al. 2014; Waliser and Guan 2017; Glossary of Meteorology

2017).

Many previous studies have documented impacts of ARs on extreme precipitation and
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flooding around the world (Dettinger and Ingram 2013; Lavers et al. 2013; Lavers and Villarini

2015; Waliser and Guan 2017; Paltan et al. 2017). Particularly, over the U.S. West Coast, ARs

contribute greatly to annual precipitation accumulation and streamflow generation (Neiman et

al. 2008; Guan et al. 2010; Dettinger et al. 2011; Kim et al. 2013; Konrad and Dettinger 2017),

and play a critical role in ending drought episodes (Dettinger 2013). ARs are also responsible for

extreme precipitation and major floods as well as flash floods, landslides, and debris flows in this

region (Ralph et al. 2006; Neiman et al. 2011; Ralph et al. 2013; Dettinger and Ingram 2013;

Lamjiri et al. 2017; Young et al. 2017; Oakley et al. 2017).

Lavers et al. 2016 have demonstrated that, at lead times of several days, water vapor

transport, a defining characteristic of ARs, has higher predictability than precipitation. AR forecast

potential together with the critical influence of ARs on water resources of California has inspired

many efforts to integrate AR forecasts into reservoir management strategies (FIRO Steering

Committee 2017). In utilizing AR forecasts, it is important to identify region-specific precipitation

characteristics of, and responses to variations in AR characteristics. Such characteristics may

include AR orientations, durations, or intensities and variations may yield extreme precipitation

and floods in one region, while causing only moderate or weak precipitation over nearby areas

(Ralph et al. 2003; Neiman et al. 2011; Hughes et al. 2014). An important example of this

is the role of the gap in coastal terrain near the San Francisco Bay, which recent studies have

found allows greater water vapor transport in ARs to penetrate inland into the Central Valley and

enhance precipitation in the Sierras (Neiman et al. 2013; White et al. 2015). These studies are

particularly important in California, where future increases in heavy precipitation and horizontal

water vapor transport are projected in a warming climate (Dettinger 2011, 2016; Lavers et al.

2013; Warner et al. 2014; Hagos et al. 2016; Polade et al. 2017; Espinoza et al. 2018).

Most studies have explored California’s precipitation using 6-hourly, daily, 3-day, monthly,

or longer timescales of precipitation. As a result, some temporal characteristics of individual

precipitation events such as duration have been only coarsely resolved. To extend understanding
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of such precipitation characteristics and their association with ARs, this study analyzes two

decades of hourly precipitation observations from 176 California weather stations in the context

of a 3-hourly AR chronology. In particular, this study addresses three questions: 1) Which regions

in California receive the most extreme rainfall events and how do rainfall characteristics differ

regionally? 2) What is the contribution of ARs to rainfall and extreme rainfall events at hourly

time-scales? and 3) How does extreme rainfall in different regions depend on the intensity of

arriving ARs? Precipitation extremes are central to California’s water resources, floods, and

ecosystems, and the more precisely we understand their details, the better we will be able to

anticipate and manage the state’s resources and hazards.

3.2 Data and methodology

3.2.1 Hourly rainfall observations

This study uses a dataset of quality controlled hourly rainfall observations from the

Remote Automated Weather Station network (RAWS; Brown et al. 2011) produced by Oakley et

al. (2018). The dataset contains observations from 137 RAWS stations that have at least 80%

complete October-May data between 1995-2016. While all measurements of precipitation in

any month are analyzed here, the requirement that missing measurements be limited is based

on October-May records because most of the annual precipitation in California falls during that

season. RAWS began as a fire-weather network and its stations tend to be located in remote

areas with high-altitude, complex terrains that typically are not well-sampled by other networks,

which instead focus more on population centers and transportation corridors (Myrick and Horel

2008). Thus, the RAWS network provides useful information in areas where much of California’s

precipitation falls.

In addition to the RAWS dataset, hourly precipitation observations from California

Irrigation Management Information System (CIMIS; http://www.cimis.water.ca.gov/) are included
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to provide coverage in the Central Valley and other agricultural areas. These observations are

processed for quality and accuracy and flagged accordingly before being stored in the CIMIS

database. After removing observations flagged as missing or inaccurate, 39 CIMIS stations are

also included here. Thus the 176 RAWS and CIMIS stations cover most regions in California;

however, gaps exist in the southeastern deserts, and no coverage in the high elevations of the

Sierra Nevada where snowfall is a complicating issue.

Precipitation gauges in RAWS and CIMIS networks are unheated and thus are unreliable

monitors of frozen precipitation. All of the 176 stations are located below the mean freezing

level (1700 m) in the Sierra Nevada, to reduce measurement problems associated with snowfall

and subsequent melt. Furthermore, precipitation measurements coincident with air temperatures

below 0 C (as an estimate of frozen precipitation) are excluded from the analysis. Therefore, the

focus of the current study is precipitation in the form of rainfall rather than snow.

3.2.2 Chronology of California’s AR landfalls

A number of different AR chronologies have been developed by research groups in recent

years using differing detection algorithms and datasets (Shields et al. 2018; Ralph et al. 2018b).

The AR landfall chronology used in this study is based on the methodology of Rutz et al. (2014) as

applied to the NASA Modern-Era Retrospective analysis for Research and Applications (MERRA-

2) dataset with 3-hourly temporal resolution and 0.5 latitude x 0.625 longitude spatial resolution

(retrieved from http://www.inscc.utah.edu/ rutz/ar catalogs/merra 0.5/). This chronology offers

a high temporal and spatial resolution that is important for the current study to capture AR

variability in relation to hourly precipitation.

The methodology of Rutz et al. (2014) catalogs ARs as features in vertically integrated

vapor transport (IVT) fields that have IVT rates 250 kg m-1s-1 and are at least 2000 km long.

This catalog was compared with a number of other leading AR catalogs and key reanalyses and

was found to be representative of other analogous AR Detection Tools (Ralph et al. 2018b).
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In the current study, an AR event’ is defined as the continuous presence of AR conditions

above a grid point. Based on this definition, ARs may exist for only one 3 hourly time step and

still be considered as an event. This allowance for shorter duration AR events is applied for two

reasons: 1) Rainfall events are defined based on hourly observations and are not required to meet

a minimum duration requirement (see below). Therefore, for consistency, inclusion of very short

AR events is preferred and 2) Requiring that AR events be arbitrarily long would significantly

reduce their perceived frequencies, more so in inland than coastal regions, and would result in

under-attribution of rainfall events to AR influences.

3.2.3 Delineation of rainfall and extreme rainfall events

Using hourly rainfall observations for the period of 1995-2016, and following the method-

ology of Lamjiri et al. (2017), a rainfall event’ is defined here as a period of continuous rainfall

with at least 5 mm of rain accumulation over the total event period. As delineated here, a rainfall

event is separated from others by at least 6 hours with no precipitation. For each rainfall event,

event-total rainfall (mm) is defined as accumulated rainfall from the beginning to the end of

the event; event-duration is the total number of hours with non-zero rainfall (h); event-average

intensity is event-total rainfall divided by event-duration (mm h-1), and event-maximum intensity

is the largest hourly rate of rainfall during the event (mm h-1). In this study, rainfall events with

the 5% largest event-total rainfall annually are considered extreme. This 5% threshold is an

arbitrary indication of large storms. However, we acknowledge that not all 95th percentile rainfall

events yield severe hydrological impacts or activate geomorphologic processes.

3.2.4 Delineation of AR-related rainfall

In this study, at each station, a rainfall event is considered to be AR-related’ if AR

conditions are present over the MERRA grid cell nearest to the station during at least 50% of the
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duration of the rainfall event. Based on this definition, an AR-related rainfall event may overlap

with one or more distinct AR events. Requiring presence of AR conditions overhead, rather than

considering landfall conditions at the nearest coastal grid point, is relatively restrictive. This

criterion overlooks the fact that some ARs do not remain as coherent and continuous features

once they penetrate inland, while still being related to the same atmospheric phenomenon and

providing the same moisture (Albano et al. 2017). However, attending to AR conditions overhead

avoids overestimation of AR impacts on in-land extreme precipitation as most ARs tend to decay

by orographic rainout over coastal regions and result in less frequent and weaker AR conditions

further inland. Moreover, coastal topography can directly impact inland penetration patterns of

ARs, and therefore, some inland areas might be more influenced by ARs than others based on the

location of gaps in the coastal topography.

Meeting the requirement of the presence of AR conditions during at least 50% of the

duration of rainfall events is harder to meet in northern than southern California due to longer

duration of rainfall events in this region (See section 3.1 and Figure 3.1c). Consequently, even

though some long rainfall events include precipitation more accurately attributed to ARs, in the

case that they do not meet this criterion, they are misclassified as non-AR rainfall.

3.3 Results

3.3.1 Characteristics of rainfall and extreme rainfall events, 1995-2016

There are important distinctions between characteristics of northern and southern Califor-

nia rainfall events (north and south of 37.5 N, respectively, following the methodology of (Kim

et al. 2013)). These distinctions result in different associated hydrologic impacts and require

adjusted water and flood management strategies. In general, northern California receives more

than twice as many rainfall events per year (25-45) as southern California (2-15; Figure 3.1a).

Rainfall events in northern California generate a median of 10-22 mm rainfall per event, where
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higher values of event-totals are associated with events along the north coast and some stations in

northern Sierra and northern Central Valley. Rain-shadowed regions of north-easternmost Califor-

nia generally experience smaller rainfall events with a median of 8-10 mm rainfall generated per

event. Southern California rainfall events have lower median event-totals (10-14 mm per event)

than those in northern California (10-22 mm per event) with the exception of some parts of the

Transverse Ranges which receive a median of 20 mm rain per event (Figure 3.1b).

Rainfall events in northern California are significantly (at 95% confidence level, based

on the Mann-Whitney U test (Mann and Whitney 1947)) more persistent than those in southern

California with median event-durations in the range of 10-14 and ¡5-11 hours, respectively.

Rainfall events are particularly more persistent along the north coast (with median event-duration

of 13-14 hours; Figure 3.1c), where frequent AR landfall occurs every year during the cool season.

These ARs usually yield relatively long and moderately intense rainfall events in this region.

Median values of event-maximum, and event-average rainfall intensities are significantly

(at 95% confidence level, based on the Mann-Whitney U test) greater in southern (3.5-6 and

1.0-2.0 mm h-1, respectively) than northern California (3-4.5 and 0.8-1.6 mm h-1, respectively;

Figures 3.1d and 1e). High intensity rainfall events in southern California are mostly related to

short-duration, high-intensity thunderstorms in summer and autumn seasons. Due to a lower

number of rainfall events per year in southern California and the shorter duration associated

with these events, annual total rainfall is much lower in this region than in northern California.

Southern California, and the Transverse Ranges in particular, regularly suffer flash floods, shallow

landslides, and debris flow associated with short, but intense rainfall events, while northern

California experiences fewer instances of flash floods, but faces regular river flooding associated

with often AR-driven rainfall (Young et al. 2017; Oakley et al. 2017).

Using daily data, Dettinger et al. (2011) determined that 50% of California’s annual

precipitation accumulation falls over the course of only 5-15 days (Figure 3.2a and 2b; from

Figure 3.2c of Dettinger et al. (2011)). Using hourly observations, we extend these results
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Figure 3.1: Median characteristics of rainfall events including (a) annual numbers, (b) event-
total rainfall, (c) event-duration, (d) event-maximum hourly intensity, and (e) event-average
hourly intensity for the period of 1995-2016. Northern and southern California are separated
by the dashed line at 37.5 N shown in panel a. Stations on the north coast, northern Sierra, and
Transverse Ranges are enclosed by the two ellipses and the rectangular in panel a, respectively.
In general, northern California receives a higher number of rainfall events with larger event-totals
and longer durations, but lower event-maximum and average rainfall intensities compared to
southern California.

for total rainfall, instead of total precipitation (i.e. not including snowfall), to show in Fig. 2c

that, 50% of annual rainfall accumulation comes from only 10-40 and 60-120 non-zero rainfall

hours in southern and northern California, respectively. In fact, the rainfall event with the largest

event-total rainfall each year contributes a median of 15% of annual rainfall accumulation in

northern California and more than 30% in southern California (Figure 3.2d). Converting the

daily precipitation values by Dettinger et al. (2011) to hourlies by simply multiplying them by

24-hours/day (Figure 3.2a and 2b) overestimates the number of hours that contribute half of the
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total precipitation. This is mainly because a median rainfall event in California lasts less than 18

hours (Figure 3.1c). Consequently, the largest differences between Figures 3.2a and 2c are located

over the (northeastern-most) parts of California with shortest average rainfall events, lasting only

8-12 hours.

Median Number of Hours/Year Generating 
50% of Total Rainfall, 1995-2016 

Median Fraction of Total Rainfall from the 
Largest Rainfall Event, 1995-2016

(C) (D)

Number of Hours (Days x 24)/Year Generating 50% 
of Total Precipitation, 1951-2008*

# of Hours Fraction of Total Precipitation
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Figure 3.2: (a) Median and (b) average number of hours (days x 24) per year generating 50% of
total precipitation, 1951-2008 (*from Figure 2c of Dettinger et al. 2011), (c) median number of
hours generating 50% of annual total rainfall, 1995-2016, and (d) median fraction of annual total
rainfall from the largest rainfall event, 1995-2016. A large portion of annual rainfall totals in
California falls during only a few hours, highlighting the strong dependence of large interannual
variability of California’s annual rainfall totals on a few big storms.

Lamjiri et al. (2017) used coarsely gridded (2 latitude by 2.5 longitude) hourly precipita-

tion observations to show that along the U.S. West Coast, and especially in California, event-total

rainfall is more strongly correlated with event-duration than with event-maximum or -average

intensity. Figure 3.3 is a generalized confirmation of that result using station-based observations.
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Kendall’s Tau Correlation coefficients (r) are used here in order to allow for hourly precipita-

tion data that is not necessarily normally distributed. The nonparametric correlations between

event-total rainfall and duration range mostly from 0.5 to 0.7 across California (Fig. 3a) with the

exception of some rain-shadowed regions of the Central Valley and southeastern California, where

correlation coefficients decline to about 0.3-0.5. Correlation coefficients between event-totals

and event-maximum precipitation intensities decay from coastal ( 0.5-0.65) to inland regions

( 0.4-0.5). As found by Lamjiri et al. 2017, correlation coefficients between event-total rainfall

and event-duration are significantly (based on KolmogorovSmirnov tests) greater than those

between event-total rainfall and event-maximum intensities (Figure 3.3d), especially in northern

California. However, these findings are more subdued in the current study, where nonparametric

statistics are used.

Relatively strong correlations between event-totals and event-maximum precipitation

intensities, shown in Figure 3.3b, indicate that in addition to event-durations, event-maximum

rainfall intensities play an important role in modulating event-total rainfall in coastal regions.

Moreover, moderate yet significant (at 95% confidence level) correlations between event-durations

and event-maximum intensities exist in the north coast, some stations in the Sierra Nevada, and

the Transverse Ranges (Figure 3.3c). Therefore, longer rainfall events in these regions have

the potential of also experiencing larger hourly intensities, and thus, may lead to even greater

event-total rainfall.

Median characteristics of extreme rainfall events compared to those from all rainfall events

are shown in Figure 3.4. Based on the definition of extremes used here (section 2.3), extreme

rainfall events produce from 3 to more than 5 times larger event-total rainfall. Extreme rainfall

events also last 1.5-4.5 times longer and have event-maximum intensities 1-2.5 times greater

compared to median characteristics of all rainfall events. The ratio of the median of event-total

rainfall from extreme events to the median value from all rainfall events in general must, by

the definition of extreme events, be greater than one. Median event-durations and -maximum
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Figure 3.3: (a) Median and (b) average number of hours (days x 24) per year generating 50%
of total precipitation, 1951-2008 (Kendall’s Tau correlation coefficient between (a) event-total
rainfall and event-duration, (b) event-total rainfall and event-maximum rainfall intensity, and
(c) event-duration and event-maximum rainfall intensity. The histogram of correlation values
in panels a and b are shown in panel d. Symbols with white dots in panels a,b, and c represent
significant correlations at 95% confidence level. Event-totals are more strongly dominated by
event-durations than by event-maximum intensities across California except for some stations in
the Transverse Ranges and southeastern California.

intensities, however, are not necessarily constrained to be larger in extreme events. Nonetheless,

the lack of white symbols in Figures 3.4b and 4c indicates that extreme rainfall events are almost

always longer and more intense than rainfall events in general. Event durations are particularly

long for extreme events across almost all of California.
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Figure 3.4: The ratio of median characteristics of extreme rainfall events relative to median val-
ues from all rainfall events for (a) event-total rainfall, (b) event-duration, and (c) event-maximum
intensity. Extreme rainfall events are longer and more intense than median events across Califor-
nia with larger differences associated with event-duration than with event-maximum intensity.

3.3.2 Characteristics of AR landfalls, 1995-2016

Median characteristics of AR landfalls for the period of 1995-2016 are presented in Figure

3.5. The median number of AR events per year declines from 55 along the northern California

coast to 10 in southern California (Figure 3.5a). In general, AR events persist overhead for

a median of 12 hours along the north coast compared to about 9 hours in the southern Sierra

Nevada and southern California (Figure 3.5b). Median AR event-maximum IVT values are

greater than 400 kg m-1s-1 along the north coast and decline towards the southern Sierra Nevada

and southern California, where average values are about 280 and 340 kg m-1s-1, respectively
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(Figure 3.5c). AR event-average IVT shows the same patterns as event-maximum IVTs but

with lower magnitudes (Figure 3.5d). These AR characteristics (i.e. AR event-duration and

event-maximum and -average IVT intensities) are significantly (at 95% confidence level, based

on the Mann-Whitney U test) different in northern and southern California, where distinct rainfall

characteristics are also observed as discussed in section 3.1.

Impacts of the San Francisco Bay Area gap on inland AR characteristics

One interesting feature, highlighted by the black oval in Figures 3.5a, 5c, and 5d, is the

enhanced penetration of AR vapor through the gap in the coastal terrain near 38N, referred to as

the San Francisco Bay Area (SFBA) gap. Neiman et al. (2013) first linked the inland penetration

of ARs through this gap to the precipitation distribution across the interior northern California.

They showed that as the low-level moisture from ARs penetrates through this gap, it contributes

to the moistening and deepening of the Sierra Barrier Jet, which transport the moisture northward

up to the Central Valley and yields precipitation in this region. White et al. (2015) documented

that as a result of penetration of ARs through this gap, northern Sierra sites received precipitation

compositions similar to those over coastal regions of northern California during AR landfalls. In

Figures 3.5a, c, and d, we extend these results and highlight the enhancement of inland AR vapor

transport through the SFBA gap based on the composite characteristics of AR events using a high

spatial resolution AR chronology. Due to the penetration of ARs through this gap, a region of

more frequent AR landfalls with higher maximum and average IVT intensities originates from

the gap and reaches inland and northward up to the northern Central Valley. Seasonal analysis

of AR characteristics over California (not shown here) confirms the presence of this region of

intense AR conditions during all seasons, but with greater duration and IVT intensities during

December-January-February (DJF).
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(A) Median Annual Number of AR Events (B) Median Duration of AR Events

(C) Median AR Event-Maximum IVT 
(kg m-1 s-1)

(D) Median AR Event-Average IVT 
(kg m-1 s-1)

Figure 3.5: (a) Median annual number, (b) durations, (c) event-maximum IVT, and (d) event-
average IVT of AR events, 1995-2016. The shading in panels c and d represent the median
magnitude of AR event-maximum and average IVT fields (regardless of their directions),
whereas the vectors represent the median direction of maximum and average IVT fields with the
length of vectors corresponding to the median magnitude of directional maximum and average
IVT fields. The black ovals in panels a, c, and d indicate penetration of ARs through the SFBA
gap.

3.3.3 Contribution of ARs to California’s rainfall

About 10-30% of rainfall events in southern Sierra and southern California to 40-55% of

those in northern Sierra and central and northern coastal regions are associated with ARs (Figure

3.6a). These AR-related rainfall events contribute from 20-40% of annual rainfall accumulations

in southern Sierra and southern California to up to 70% of those along the north coast (Figure 3.6b).

Comparing values presented in Figures 3.6a and 6b highlights the fact that AR-related rainfall

events generally yield more event-total rainfall than non-AR rainfall events. The contribution

of AR-related rainfall events to annual rainfall accumulations found in this study is in broad
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agreement with that found by Rutz et al. (2014), but are slightly higher than those reported by

Dettinger et al. (2011). These differences are likely produced by different AR chronologies

used in these analyses and different methodologies adopted to define rainfall events and attribute

rainfall to ARs.

Nonetheless, the north-south gradient of AR contributions to annual precipitation accu-

mulations is consistent with previous studies with more contributions to northern than southern

California precipitation accumulations. These results also highlight the decline in AR-related

rainfall over the inland areas as a result of the AR decay, in line with the findings of Rutz et

al. (2014). The broad agreement between the findings of this study based on hourly rainfall

observations and previous studies based on daily precipitation observations increases confidence

in the use of both hourly and daily precipitation datasets.

%

Median Contribution of ARs to Annual 
Number of Rainfall Events

Median Contribution of ARs to Annual 
Rainfall Accumulations

(A) (B)
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120°W 116°W
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Figure 3.6: Median contribution of ARs to (a) the total number of rainfall events and (b) annual
rainfall accumulations from all rainfall events at each station. Note that all rainfall events are
required to generate at least 5mm of rainfall per event. From 10% of rainfall events in southern
to 55% in northern California are associated with ARs, which contribute 40% to more than 70%
of annual rainfall totals in southern and northern California, respectively.

Median precipitation totals, durations, and maximum intensities of AR-related rainfall
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events are compared with those from non-AR events (Figure 3.7). AR-related rainfall events

are generally longer than non-AR events, especially in southern California. Maximum rainfall

intensities associated with AR-related rainfall events are slightly higher than those of non-AR

rainfall events, except for rain-shadowed regions of northeastern and southeastern California and

the Central Valley. In general, AR-related rainfall events generate from 1.2 to more than 2.5 times

greater event-total rainfall than non-AR events with greater ratios (more rainfall generated per

AR event) in the Transverse Ranges and the Sierra Nevada.

124°W 120°W 116°W

34°N

38°N

124°W 120°W 116°W

34°N

38°N

124°W

42°N

120°W 116°W

34°N

38°N

(C)

Event-Maximum Hourly Intensity

(B)

Event-DurationEvent-Total Rainfall

(A)

Ratio of Median Characteristics of AR-Related Rainfall 
Events to Those of non-AR Rainfall Events

≥

42°N42°N

Figure 3.7: The ratio of median (a) event-total rainfall, (b) event-duration, and (c) event-
maximum intensity of AR-related rainfall events to those of non-AR rainfall events. AR-related
rainfall events are generally longer with higher event-maximum intensities and generate 1.2 to
more than 2.5 times larger event-total rainfall than non-AR rainfall events.

3.3.4 Contribution of ARs to California’s extreme rainfall

The previous sections addressed rainfall events, both large and small. Here we turn to

the largest 5% of rainfall events. Stations located in the north coast, northern Sierra, and the

Transverse Ranges (shown in Figure 3.1a) experience the largest extreme rainfall-event totals

in California. Overall, 77%, 71%, and 58% of extreme rainfall events over these regions are

associated with ARs, respectively, which contribute 79%, 76%, and 68% of rainfall accumulations

from all extreme rainfall events (Figure 3.8b).
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The hourly data used here allows us to more precisely explore, in Figure 3.8c and Table 1,

how AR-related extreme rainfall events over all three regions generate larger event-total rainfall

than non-AR extreme events. Over the north coast and northern Sierra, AR-related extreme

rainfall events have shorter durations, on average, than non-AR extreme events (Figure 3.8d).

However, AR-related extreme rainfall events over these regions have larger maximum rainfall

intensities and result in higher amounts of event-totals compared to non-AR extreme rainfall

events.

Extreme rainfall events in the north coast and northern Sierra are generally longer than

those in the Transverse Ranges, but have lower maximum (and average; not shown) rainfall

intensities. In particular, the median duration of non-AR extreme rainfall events in the north

coast and northern Sierra Nevada are 18 hours (86%) and 12 hours (57%) longer than those in

the Transverse Ranges, while their maximum intensities are 1 mm h-1 (13%) and 1.3 mm h-1

(16%) lower, respectively. The considerably longer duration of non-AR extreme rainfall events

in north coast and northern Sierra Nevada results in higher median extreme precipitation totals

in these regions compared to those in the Transverse Ranges (by 56% and 41%, respectively)

even though they do not have as high of rainfall intensities (Figure 3.8, Table 1). Unlike non-AR

extreme rainfall events, the median duration of AR-related extreme events in the north coast

and northern Sierra Nevada are only 35% and 23% longer than those in the Transverse Ranges.

Maximum rainfall intensities of AR-related extreme events are larger in Transverse Ranges than

in north coast and northern Sierra, which combined with their relatively long durations, result in

the largest AR-related extreme rainfall events in this region. Though Transverse Ranges receive

the largest extreme rainfall events, in general, such events are about three times less frequent in

this region than in the north coast and northern Sierra Nevada.

Averages of daily IVT and integrated water vapor (IWV, the total amount of water vapor

in the atmosphere above a point on the surface) for days of AR-related extreme rainfall events are

shown in Figure 3.9. The IVT composite averages for extreme rainfall events over the northern
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Figure 3.8: (a) Spatial map of stations on the north coast, northern Sierra, and Transverse
Ranges, (b) percentages of extreme rainfall accumulations (bars) and number of extreme rainfall
events (markers) associated with non-AR and AR-related extreme rainfall events, and box and
whisker diagrams of (c) event-totals, (d) durations, and (e) maximum intensities of extreme
rainfall. The solid ground boxes in panels c, d, and e represent non-AR extreme rainfall events,
whereas the hatched boxes represent those associated with ARs. The lower whisker, lower
edge of the box, upper edge of the box, and the upper whisker represent 5th, 25th, 75th, and
95th percentiles, respectively. The median and mean of distributions are shown by horizontal
black lines and yellow dots, respectively. Extreme rainfall events show distinct characteristics in
different regions of California with the Transverse Ranges AR-related extreme events generating
the largest event-total rainfall and largest event-maximum intensities compared to those on the
north coast and northern Sierra.

Table 3.1: Median characteristics of AR and non-AR extreme events on the north coast, northern
Sierra, and Transverse Ranges.

Median Extreme Median Extreme Median Extreme
Region Event-Total Rainfall Event- Duration Event-Maximum Intensity

(mm) (h) (mm h-1)

AR No-AR %Difference AR No-AR %Difference AR No-AR %Difference

North Coast 82.2 76.0 7.5 35.0 39.0 -11.4 8.5 6.9 18.8
Northern Sierra 85.6 68.9 19.5 32.0 33.0 -3.1 8.3 6.6 20.4

Transverse Ranges 88.9 48.8 45.1 26.0 21.0 19.2 11.2 7.9 29.5
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Sierra, on average, are supported by a longer plume of more intense IVT than those associated

with extreme rainfall events over the north coast and Transverse Ranges (Figures 3.9a-c). The

IVT and IWV composites for the northern Sierra extreme events feature the inland penetration of

ARs through the SFBA gap, and highlights the importance of this gap on extreme precipitation in

northern Sierra and northern Central Valley. IVT composites associated with extreme rainfall

in the Transverse Ranges display weaker IVT intensities than those in northern Sierra and north

coast, partly due to the fact that average IVT values are larger over the northern than southern

California, in general.

Daily-averaged 500-hPa geopotential height fields are also calculated and displayed as

black contour lines in Figure 3.9 to illustrate the large-scale atmospheric-circulation patterns

associated with AR-related extreme rainfall. The 500-hPa geopotential height composites feature

a trough (where height contours bow southward) over the North Pacific and a ridge (where height

contours bow northward) over the western U.S (Figure 3.9 a-b). Winds about 5 km above sea level

roughly follow these contours (on average during the AR-related rainfall extremes) so that this

pattern indicates flows over the central California coast proceeding from southwest to northeast,

perpendicular to the coastal mountain ranges in northern California. This pattern is favorable

for orographic precipitation enhancement in these regions. The 500-hPa geopotential height

composite associated with extreme rainfall over the Transverse Ranges shows a deeper trough

over the North Pacific (Figure 3.9c). This pattern favors southerly flow into the east-west oriented

mountains of the Transverse Ranges, favorable for orographic precipitation in this region.

The largest differences between IVT composites of northern Sierra and north coast exists

at the SFBA gap (Figure 3.10). This highlights the fact that, among ARs making landfall along

the northern California coast, the difference between those producing extreme precipitation over

the northern Sierra Nevada (and impacting the Delta) and those producing extreme precipitation

over coastal regions of northern California, is the greater penetration of IVT through the SFBA

gap. The SFBA gap and inland AR penetrations associated with it are important for the geography
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of flood risks and water-reliability along the Sierra Nevada front and Central Valley. This is

something that weather forecasters have long recognized and an example of why not all ARs are

equally impactful in this part of California.
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Figure 3.9: Composites of daily-averaged IVT (shadings) and 500-hPa geopotential height
(contours) from the MERRA-2 reanalysis dataset for days of AR-related extreme rainfall events
over (a) north coast (149 days), (b) northern Sierra (129 days), and (c) Transverse Ranges
(73 days). Panels d, e, and f are similar to panels a, b, and c, but with contours representing
MERRA-2 IWV composites instead of 500-hPa geopotential height.

3.4 Conclusions

Roughly two decades (1995-2016) of hourly rainfall observations at 176 stations across

California, as well as a 3-hourly AR landfall chronology, are analyzed to describe how large

storms, and especially ARs, impact California’s rainfall regime. This study complements the

existing literature on California’s precipitation and ARs by focusing on hourly characteristics

of rainfall events and extremes, and on their links to ARs, a subject that has previously been
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Figure 3.10: The difference between IVT composites for ARs associated with extreme rainfall
events in northern Sierra and the north coast (panel d subtracted from panel e in Figure 9). The
largest differences between ARs yielding extreme rainfall along the coast of northern California
and those yielding extreme rainfall over northern Sierra are located at the SFBA gap.

addressed in less temporally resolved datasets and at regional scales. Using hourly observations,

we find that annual rainfall in California is even more volatile than has been documented in the

literature, because at many locations just one storm contributes up to 25% of the total annual

rainfall. This study also highlights differences between extreme rainfall characteristics in different

regions of California and identifies some characteristics of ARs that contribute the most to extreme

rainfall events.

Northern California generally receives a larger number of rainfall events annually with

longer durations but smaller event-maximum rainfall intensities than does southern California.

Almost all across California, rainfall-event precipitation totals are more strongly dominated

by event durations, than by maximum intensities. Nonetheless, in coastal regions, maximum

intensities also play important roles determining event-total rainfall. Across California, ARs

contribute to extreme rainfall, with larger contributions in northern than southern California. In
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northern California, AR-related extreme-rainfall events are slightly shorter than non-AR extreme

events on average, but have larger maximum intensities, enough larger so that the AR extremes

have larger event totals than do non-AR extremes. In contrast, in the Transverse Ranges of

southern California, AR-related extreme rainfall events are both longer and have higher maximum

intensities than non-AR extreme events, which together yield the largest extreme event-total

rainfalls in the State.

ARs associated with extreme rainfall events in northern California have stronger IVTs

than those in southern California, following the general pattern of AR landfalls with stronger IVTs

in northern than southern California (Rutz et al. 2014; Dettinger et al. 2018). Vapor transports

in ARs that yield extreme rainfall along the northern California coast, on average, approach

somewhat more from the southwest and thus perpendicular to coastal topography in the northern

Coastal Ranges. The vapor transports in southern California ARs associated with extreme rainfall,

on the other hand, approach more from the south and thus also perpendicular to the Transverse

Ranges in southern California. These orientations are particularly favorable for the generation of

orographic precipitation in these regions.

The San Francisco Bay Area (SFBA) gap in coastal northern California topography plays

an important role in inland precipitation distributions of northern California by allowing more

IVT from AR landfalls near San Francisco to penetrate into the Central Valley and Sierra Nevada.

ARs that instead cross the major coast ranges lose more of their vapor through rainout before

reaching the Sierra Nevada. Here, we extend on these results found by previous studies (Neiman

et al. 2013; White et al. 2015) and show that the largest differences in IVT magnitudes of

ARs yielding extreme rainfall along the north coast and northern Sierra Nevada are located at

this gap, highlighting the importance of the gap and ARs penetrating there for flood risks and

water-reliability in the northern Sierra Nevada, Central Valley, and ultimately in the Bay and

Delta.

These kinds of findings provide improved scientific foundations potentially of value for
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water-management and flood-risk-mitigation strategies throughout the state. They also offer

insights into the storms that pose the greatest flood and landslide risks, as well as into the storms

that are most likely to prevent or mitigate drought conditions.

One of the major limitations of the current study is its lack of attention to frozen precipita-

tion. Deployment of more instruments capable of reliably measuring both frozen and unfrozen

precipitation at hourly levels in regions with frozen precipitation will be a valuable addition to

the existing observation network. Higher resolution models and targeted observation networks

(White et al. 2013; Ralph et al. 2014; Ralph et al. 2016) will be needed to more fully characterize

impacts and forecastability of the effects of topography and finer scale atmospheric mechanisms

on extreme AR-related rainfall events.
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Chapter 4

Recent Changes in United States Extreme

3-Day Precipitation Using the R-CAT Scale

Abstract

Extraordinary precipitation events have impacted the United States (U.S.) recently, in-

cluding hurricanes Harvey and Florence, with 3-day precipitation totals larger than any others

reported in the U.S. during the past 69 years. The R-CAT scaling method is used here to document

extreme precipitation events and test for trends nationally.

The R-CAT scale uses thresholds of 3-day precipitation total in 100 mm increments

(starting with 200 mm) that do not vary temporally or geographically, allowing for simple,

intuitive, comparisons of extremes over space and time. This contrasts with return-period

approaches, that are also sensitive to statistical assumptions and methods. The paper that

introduced the scale (Ralph and Dettinger 2012) only required levels 1-4, finding that R-CATs 3-4

strike the conterminous U.S. about as frequently as EF 4-5 tornadoes or Category 3-5 hurricanes.

Remarkably, Florence and Harvey require extending the scale to R-CAT 7 and 9, respectively.

Trend analyses of annual maximum 3-day totals (1950-2018) identified significant declines
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in northern California and Oregon and significant increases in eastern U.S. Consistent with these

results, R-CAT storms were less frequent in western, and more frequent in eastern, U.S. during

the past decade relative to 1950-2008. However, confidence in the statistical meaning of the most

recent R-CAT extremes remains low due to the extremity and infrequency of R-CAT storms.

Tropical storms dominate R-CAT events along the southeast and east coasts with surprising

contributions from atmospheric rivers, while atmospheric rivers completely dominate along the

west coast.

4.1 Introduction

While weather-related mortality risk relative to population size has been falling in recent

decades due to increasing capacities to accommodate to, and mitigate against, extreme events,

many regions are still struggling to address the increasing economic loss risk associated with

these events (UNISDR, 2011) and still too many people die each year as a result of these weather-

related extremes. On the other hand, these extreme events are projected to increase in strength

and frequency with climate change, and are likely to cause even more negative socioeconomic

impacts (IPCC, 2012).

The conterminous United States (CONUS) has experienced some truly remarkable and

catastrophic precipitation events during recent years. For instance, in February 2017, a particularly

strong and warm atmospheric river (AR) , in the midst of a winter with unusual numbers of ARs,

made landfall in northern California and, in combination with engineering failures and other

problems (e.g. Vano et al. 2019), resulted in failures of the operating and emergency spillways

safeguarding of Oroville Dam, the tallest dam in North America (Vahedifard et al. 2017; White

et al. 2018), putting almost 200,000 people downstream at great risk. In August of 2017 in

southeastern Texas, landfalling Hurricane Harvey yielded unprecedented precipitation totals, on

the order of 33 trillion gallons of rain (Pacheco 2017), and became one of the costliest (¿$125
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billion in damages) tropical cyclones on record (United States National Hurricane Center 2018).

In 2018, the following year, Hurricane Florence made landfall in the Carolinas, depositing equally

unprecedented precipitation totals, causing extreme flooding and damages.

Occurrence of these rare events in the past few years naturally raises the question of

whether they reflect a new precipitation regime with higher frequencies of these impactful and

destructive events. If so, these changes must be factored into the urgency of actions to reduce

greenhouse-gas emissions and preparations to adapt to and minimize their catastrophic impacts.

A number of recent studies have explored how climate change has altered the hydrologic

cycle and how these changes are projected to intensify or abate in the future. Amplification of

heavy and extreme precipitation has been demonstrated in many parts of the world including

the United States (U.S.), southern Canada, southeastern Australia, Norway, and northern Japan

((Iwashima and Yamamoto 1993; Groisman et al. 1999; Easterling, Meehl, et al. 2000; Easterling,

Evans, et al. 2000; Alexander et al. 2006).

In the U.S., increases in the number of heavy precipitation days per year and the frequency

of multi-day (1- to 7- day) extreme precipitation events with recurrence intervals longer than

1 and 5 years have been recorded since the 1930s (Karl et al. 1996; Karl and Knight 1998;

Groisman et al. 1999; Kunkel et al. 1999). Groisman et al. (2001) documented an increase

in heavy precipitation and a decrease in spring-time snow in western U.S. during the last few

decades prior to the year 2001. They have also found an increase in heavy precipitation during

spring in eastern U.S. Using daily precipitation records from 1895-2000, Kunkel (2003) showed

a significant increase in the frequency of extreme precipitation events in the U.S. since 1920s

and 1930s. Higgins and Kousky (2012) compared daily precipitation over the CONUS between

1950-1979 and 1980-2009 and concluded that there has been more precipitation (in all levels

of light, moderate, and heavy) in recent decades in some parts of the CONUS, especially in the

Great Plains and lower Mississippi Valley during winter and fall seasons, with decreases in winter

time precipitation in some parts of the southeastern U.S. and Pacific Northwest.
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In these studies, a variety of methods were used to identify precipitation extremes, method-

ological differences that impact results. Some studies defined extremes based on fixed thresholds

of daily or multi-day precipitation totals, some used percentile-based definitions, while others

evaluated recurrence intervals. Each approach has its advantages and disadvantages. Recurrence

interval and percentile-based approaches account for region-specific characteristics of precipita-

tion events and identify and quantify extreme precipitation accordingly. The region-dependent

methods directly accommodate the fact that what is extreme in one area may not be as extreme or

impactful elsewhere and that some areas never experience extremes as large as the largest ones in

the U.S. record. However, for other purposes, they can be limiting in that they make comparisons

between different locations difficult. Furthermore, thresholds used in the percentile-based and

recurrence interval-based approaches depend on the background distribution of magnitude and

frequency of precipitation events. These background distributions are likely to be impacted

by climate change, and consequently require non-stationary thresholds for identifying extreme

precipitation. This non-stationarity of thresholds makes the tracking of temporal changes in

extreme precipitation challenging. Finally, the concept of recurrence interval may be complicated

and hard for the public to understand and, therefore, may result in misinterpretation of reports

and results.

With these considerations in mind, Ralph and Dettinger (2012; referred to hereafter as

RD12) introduced a complementary characterization of extreme precipitation, the R-CAT scale,

which is a fixed-threshold scale based on 3-day precipitation totals, with a single set of (absolute)

precipitation thresholds applied everywhere in CONUS (Table 4.1). Because this scale is based

on a single set of precipitation thresholds applied equally everywhere, comparing extremes from

region to region, and through time, is trivial. On the down side, though, some regions simply

have never experienced R-CAT levels of precipitation in their historical records (yet) and thus

are largely excluded from R-CAT-based analyses. The R-CAT scale was designed specifically

to address only the very most extreme precipitation episodes recorded by U.S. Cooperative
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weather stations, with most stations only reaching the larger R-CAT levels once or twice, if at

all, during their entire periods of record. Thus the R-CAT scale focuses on the rarest and most

extreme precipitation episodes. The R-CAT strategy as applied thus far essentially substituted

consideration of the far extremes of precipitation at many stations for consideration of many less

extreme episodes at individual stations (i.e., if the R-CAT thresholds had been set lower).

Table 4.1: Definition of R-CAT events and modifications to the original RD12 R-CAT scale.

Defining 3-day precipitation thresholds (mm)
R-CAT Level Ralph and Dettinger (2012) This study

R-CAT1 200 ≤ P < 300 200 ≤ P < 300
R-CAT2 300 ≤ P < 400 300 ≤ P < 400
R-CAT3 400 ≤ P < 500 400 ≤ P < 500
R-CAT4 P ≥ 500 500 ≤ P < 600
R-CAT5 600 ≤ P < 700
R-CAT6 700 ≤ P < 800
R-CAT7 800 ≤ P < 900
R-CAT8 900 ≤ P < 1000
R-CAT9 P ≥ 1000

More recently, Slinskey et al. (2019) used a categorization scheme (P-Cat), paralleling the

original R-CAT scale of RD12, to identify and analyze extreme precipitation across the U.S. The

only difference between the P-Cat and R-CAT scale is the addition of a category with lower 3-day

precipitation total thresholds (100-199 mm) in the P-Cat scheme (The RCAT scale can be easily

adjusted to also represent the 100-199 mm range of precip, by designating that range as RCAT-0).

Including this lower level of extremes increased the number of extreme events considered, which

allowed Slinskey et al. (2019) to restrict their analyses to shorter, more recent periods of record.

In this study, we return to RD12’s R-CAT scale, analyzing 3-day precipitation totals from

more than 3573 weather stations across CONUS and comparing changes in characteristics of

R-CAT precipitation events between 1950-2008 and 2009-2018. The goals of this analysis are:

1) to place recent extremes into longer historical contextusing the R-CAT scale, 2) to provide a

more complete characterization of R-CAT level events around CONUS, in particular, focusing on
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the eastern and western U.S., and 3) to report on R-CAT level events in 2009-2018 in the context

of R-CATs in the historical period (1950-2008) analyzed by RD12.

Section 2 of this paper revisits the R-CAT strategy, modifies it to allow more detailed

studies, and describes data sources and methods used here. Section 3 presents spatial and temporal

distributions of storms rising to R-CAT levels, their causes and impacts, and observed trends in

their frequencies and characteristics. Conclusions are presented in section 4.

4.2 Data and methodology

4.2.1 Data

Daily precipitation observations

Daily precipitation observations used in this analysis are from the Global Historical

Climatology Network - Daily (GHCN-Daily) dataset version 3 ((Menne et al. 2012). This dataset

includes station-based observations of different climate variables from multiple sources. The full

GHCN-Daily dataset is regularly reconstructed with the newest versions of component records.

The latest set of quality control checks are applied routinely to the full dataset, from start to

finish, to ensure a coherent and uniformly quality controlled dataset. A total of 3573 stations with

less than 20% missing observations (after removing observations with quality assurance flags)

each year for at least 50 years from 1950 to 2018 were selected across the U.S. for the present

analyses. Among these 3573 stations, 26% are located in western U.S. (west of 105 W) and the

rest are located in eastern U.S. (east of 105 W, Figure 4.1). Annual number of stations used in

this analysis are shown in Figure B.1.
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Figure 4.1: Location of stations with at least 50 years of record from 1950 to 2018 and less
than 20% missing values each year. The dashed red line shows the location of the meridional
line at 105W which is used in this analysis to separate stations in western and eastern U.S. The
horizontal solid green line shows the zonal line at 36N which separates Northern (SOCAL) and
Southern (SOCAL) California in this study.

4.2.2 Methodology

Defining 3-day R-CAT events

The following terminology is used in this analysis with regards to R-CAT level extreme

precipitation: 1) R-CAT events are defined at station level and are 3-day periods during which the

precipitation total reaches or exceeds an R-CAT level based on Table 1 and 2) R-CAT episodes,

defined at regional level, expanding to include multiple stations as in RD12, but defined here based

on local clusters of spatially and temporally connected R-CAT events (in a way modified from

RD12). If during an extreme R-CAT storm, a station reaches R-CAT level during overlapping

3-day periods, the event is identified by the 3-day period with the largest precipitation total at the

station in question. As in RD12, back-to-back R-CAT events are treated as two distinct R-CAT

events.

As indicated by RD12, using multi-day (as opposed to daily) precipitation totals is

important for identifying extreme precipitation and analyzing their regional hydrologic impacts.
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RD12 argued that 3-day precipitation totals, in particular, yield a useful representation across

the CONUS. Following their methodology, R-CAT events are categorized, in this study, based

on maximum total precipitation falling in a 3-day period. However, we acknowledge that this

approach is limited in differentiating between instances when intense precipitation continues

relatively uniformly for more than 3-days and those when almost all extreme precipitation falls in

only one day.

Defining spatial R-CAT episodes

R-CAT events that have been defined at station level are connected temporally and

spatially with such events from neighboring stations to form R-CAT episodes. In this sense,

R-CAT episodes capture the larger scale characteristics of the R-CAT level storms by considering

precipitation totals and patterns over multiple stations.

In order to define R-CAT episodes, first, all R-CAT events from all stations across the

CONUS are combined and sorted based on their start and end dates (for overlapping R-CAT

events, the beginning and end of the period spanning the full range of the overlapping events are

used). Starting from the top of this sorted list of R-CAT events, all events that overlap temporally

(including back to back events) are identified and grouped together to form a potential episode

(at this point in the episode characterization process, k, the number of groups, is equal to 1).

However, all precipitation events within CONUS on a given date are virtually never a reflection

of a single storm. Thus, the R-CAT events in this initial super-group are analyzed to determine

whether multiple spatial groupings are present within the overall collection. The center location of

this super group is calculated by taking the average of longitudes and latitudes of all R-CAT-level

stations in the group. The distances of all stations from the center are then calculated. If the

maximum among all these distances exceeds a preset, arbitrary threshold of 500 km, the number

of groups is increased by one (k = 2) and the grouping algorithm (using the K-means algorithm

from the scikit-learn python package (Pedregosa et al. 2011)) is re-applied to divide the R-CAT
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events into k different sub-groups. These steps are repeated until all stations in each sub-group

are within 500 km from the center. At this step, if at least one station in a sub-group is within

500 km of a station in another sub-group, those sub-groups are merged (this allows for detection

of storms that yield precipitation over an elongated, rather than circular, region). This step is

repeated until no more merges are possible.

The temporal connectivity between R-CAT events (whether or not an R-CAT event in a

sub-group overlaps temporally, or is back to back with, at least one other R-CAT event in that

sub-group) in each sub-group is checked at the next step. If there is a temporal disconnection

between R-CAT events in a sub-group (i.e. at least one R-CAT event exists in that sub-group

without a temporal connection, as explained earlier, with any of the other R-CAT events in that

sub-group), that sub-group is divided into two. The temporal connectivity check is repeated until

all events within all sub-groups are temporally connected. Each resulting sub-group forms an

R-CAT episode, the intensity level of which is defined based on the R-CAT level of the strongest

event in the subgroup. All R-CAT events that have been included in episodes are removed from

the sorted events list. These steps are repeated for the remaining of R-CAT events until all R-CAT

events are grouped into R-CAT episodes.

The maximum distance threshold applied here to decide whether or not an R-CAT event

should be included in an episode is arbitrarily chosen to be 500 km, and is not adjusted to account

for region-specific storm characteristics. Moreover, the clustering algorithm is applied only to

stations that have experienced non-overlapping R-CAT events during a certain period of time,

while excluding stations that have experienced lower-than-RCAT-level precipitation. Thus, there

may be instances when two separate storms are categorized as one, resulting in underestimation

of the frequency of R-CAT episodes, and instances when one storm is divided into multiple

small episodes, resulting in overestimation of the frequency of R-CAT episodes. Despite some

limitations, this iterative grouping protocol succeeds in characterizing large-scale storms and

storm sequences in terms of multi-day, multi-station collections of extreme precipitation reports,
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referred to here as episodes. This characterization allows spatial and temporal scopes and level of

extremity of storms to be analyzed in the historical record.

Chronology of atmospheric river landfalls

A chronology of AR landfalls along the U.S. west and east coast is used here as a basis for

attributing R-CAT storms to ARs. The AR chronology used was developed by Guan and Waliser

(2015) and is based on 6-hourly fields of Integrated Vapor Transport (IVT) from the National

Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR)

reanalysis dataset for the period of 19502015. Guan and Waliser (2015) identify ARs based on

several geometrical and IVT- intensity criteria, including thresholds for the width to length ratio

and directional coherence of intense IVT features. The Guan and Waliser (2015) AR chronology

is suitable for this analysis because of its length of record and because it distinguishes well

between ARs from other atmospheric phenomenon such as closed lows and tropical cyclones.

An R-CAT episode is considered AR-related if there is at least a 6-hour temporal overlap

between that episode and an AR event at the nearest coastal grid cell to the episode center. AR

events are required to last for at least 12 hours (two consecutive 6-hourly reanalysis time steps) at

the coastal grid cell.

4.3 Results

4.3.1 Spatial and temporal distributions of R-CAT events and episodes

Spatial distribution of 3-day R-CAT events and their recurrence intervals

Following RD12, maximum levels of R-CAT events recorded at each station between

1950 and 2018 are presented in Figure 4.2a. Because of recent unprecedentedly large R-CAT

events, in this study 5 more R-CAT levels (R-CAT 5-9) are added to RD12’s scale (Table 1). In
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the period of record, R-CAT 6, 7, and 9 storms have only been recorded once each anywhere and

R-CAT 8 has not been recorded at any of the 3573 stations. Therefore, in Figure 4.2a, R-CATs 5

and larger are grouped together. The overall pattern presented in Figure 4.2a is similar to that

shown by RD12’s Figure 4.3, with precipitation events stronger than R-CAT 3 observed almost

entirely at stations along the U.S. west coast–especially along the southern California coast and

Sierra Nevada mountains– and southeastern stations along the Gulf coast and U.S. east coast.

Many of the studies analyzing extreme precipitation apply the concept of recurrence

interval to define and study such events. To give a sense of the level of extremity of R-CAT events

relative to these studies, Figure 4.2b shows the recurrence interval of R-CAT events (R-CAT 1

and stronger) based on observations from 1950 to 2018. These intervals were estimated at each

station as the ratio of total number of years of precipitation records used in this analysis to the

number of years with annual maximum 3-day precipitation totals exceeding 200 mm (R-CAT 1

or larger). The recurrence intervals of R-CAT events in California and especially over northern

Sierra Nevada are shortest across the U.S., even when compared to southeastern stations which are

regularly impacted by hurricanes and tropical storms. The recurrence interval of R-CAT events is

generally shortest along the coastal regions, in both eastern and western U.S., and increases in

inland stations.

Viewed differently, these recurrence intervals are related directly to the number of in-

stances when at least one station in a 1x1 degree grid cell is impacted by an R-CAT episode

(Figure 4.3). In the period of record studied here, R-CAT events have occurred more often along

the coasts, especially the U.S. west coast, than farther inland, having experienced twice as often

in the period of record as orange and yellow stations (5-10-year recurrence in Figure 4.2b) and

ten times as often as the stations in green and blue. Northern California, and in particular northern

Sierra, grid cells have experienced the most R-CAT episodes (Figure 4.3).
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Figure 4.2: (a) The highest R-CAT level reached at each station and (b) the recurrence interval
of 3-day precipitation totals reaching R-CAT 1 level (200 mm), 1950-2018.

Average characteristics of R-CAT episodes

Average characteristics of R-CAT episodes at different R-CAT levels with centers located

someplace in the U.S., western U.S. (west of 105W), or eastern U.S. (east of 105W), are compared

in Figure 4.4. On average, the number of R-CAT episodes decline with the increase in their

level of extremity of in all regions. Similar to RD12 findings, the frequency of R-CATs 1-4

is comparable in eastern and western U.S. when normalized by the number of stations in each

region. Normalized frequencies of higher-level R-CAT episodes, however, are notably lower in

western than eastern U.S. (Figure 4.4a). In the period studied here, 1950-2018, R-CAT 5 episodes

have been recorded only twice (2.11 times per 1000 stations) in western U.S. but eight times (3.04
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Figure 4.3: Number instances with at least one station in a 1x1 degree grid cell being impacted
by an R-CAT 1 and stronger episode, 1950-2018.

times per 1000 stations) in eastern U.S. Each of R-CATs 6, 7, and 9 episodes, on the other hand,

have only been recorded once, and all in eastern U.S., in 1978, 2017, and 2018, respectively.

The areal extent of R-CAT episodes, approximated by the number of stations reaching

R-CAT levels and also the maximum distance between stations during an average episode (Figure

4.4b, c), is larger in western than eastern U.S. (Figure 4.4b). This finding holds true for all

R-CAT levels with differences between the spatial scale of episodes in western and eastern U.S.

increasing rapidly for stronger R-CAT levels. R-CAT 3 and stronger episodes, on average, have

larger areal extents than smaller R-CAT episodes in both western and eastern U.S. As will be

discussed in section 3.2, R-CAT episodes in western U.S. are almost entirely associated with the

landfall of (strong) ARs that generally impact a large region during their landfall due to the large

scale of these features (typically ¿ 500 km wide) and their tendency to propagate southward along

the U.S. west coast once they make landfall. Stronger R-CAT episodes are generally associated

with the strongest ARs, as will be quantified in the next subsection.

The statistical significance of the differences in R-CAT episode characteristics between
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eastern and western U.S. cannot yet be quantified confidently due to the very extreme nature of

R-CAT episodes which leads to very small sample sizes. However, the east-west differences are

consistent and coherent in ways that suggest the patterns are real.

Figure 4.4: (a) Average number of R-CAT Episodes per year per 1000 stations and (b) average
number of stations with at least 200 mm/3-days during each episode, and (c) average largest
within-episode distance, 1950-2018.

Seasonality of R-CAT episodes

Strong distinctions exist between the seasonalities of R-CAT episodes in eastern and

western U.S. (Fig. 5), with majority of episodes occurring during March-November and October-

March in eastern and western stations, respectively. In western U.S., R-CAT 2 and stronger

episodes have exclusively occurred during October-May (Figure 4.5b), whereas in eastern U.S.

R-CATs 1 and 2 have been experienced all-year-long, and stronger R-CAT episodes are confined

exclusively to the March-November season. R-CAT 5 and stronger episodes have only occurred

between June-November in this region (Figure 4.5c).

4.3.2 Meteorological causes of R-CAT storms

In this section, the dominant meteorological processes associated with R-CAT episodes

are analyzed for five U.S. coastal regions: southern California (SOCAL), northern California

(NOCAL), Pacific Northwest (PNW), Gulf and southeastern coast (G&SEC), and central and

northeastern coast (C&NEC; Figure 4.6a). Four main meteorological processes are considered
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Figure 4.5: (a) Number of R-CAT episodes that have occurred in each month per 1000 stations
for eastern and western U.S. stations. (b) as in (a) but with logarithmic y-axis for western U.S.
stations. (c) as in (b) but for eastern U.S. stations.

here: hurricanes, tropical storms-tropical depressions-subtropical storms (TS-TD-STS), pure-ARs,

and mixed-ARs. Processes not identified to be part of any of these four groups, are referred to as

other.

Mixed AR episode, in the present analysis, refers to an R-CAT episode that overlaps with

a time when both an AR and a hurricane or TS-TD-STS are present somewhere along the coastal

area in the same region as the R-CAT episode. The term mixed AR is used because the separate

precipitation contributions from ARs, hurricanes, and TS-TD-STS during these episodes have

not been distinguished here. Instead, precipitation in those R-CAT episodes are assumed to be

associated with an unknown combination of these storm processes. Pure ARs, on the other hand,

refer to ARs not accompanied by hurricanes or TS-TD-STS. All ARs impacting the western U.S.

coastal regions are assumed here to be pure ARs.

Ralph et al. (2019) introduced a scale for the strength of ARs that divides ARs into 5

categories (AR 1 to AR 5) based on a combination of maximum IVT intensity and AR duration.

This AR-CAT scale is used here to further categorize pure ARs and mixed ARs into two AR-CAT
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Figure 4.6: (a) Center location of the R-CAT episodes, 1950-2015, colored based on their
R-CAT levels with blue polygons showing coastal regions used in panels b-d. (b), (c), and
(d) show number of R-CAT 1 and stronger, R-CAT 2 and stronger, and R-CAT 3 and stronger
episodes, respectively, in each coastal region associated with pure-ARs (solid green and red
bars), mixed-ARs ( ARs mixed with hurricanes and tropical storms, hatched green and red
bars), and non-ARs (tropical storms, tropical depressions, and subtropical storms (TS-TD-STS),
hurricanes, and other processes, shown by blue, orange, and gray bars, respectively).

ranges, 1-2 and 3-5. The western and eastern coastal regions have been impacted by 398 and

1427 R-CAT episodes in the period of analysis, respectively, with the rare cases of R-CATs 6

and stronger only being recorded in G&SEC. On the U.S. west coast, more than 90% of R-CAT

episodes have been associated with ARs. More than two-thirds of these episodes were caused by

AR-CAT 1-2 ARs, largely due to the much greater frequency of AR-CAT 1-2 compared to the

stronger AR-CAT ARs, especially in SOCAL. However, 43%, 65%, and 100% of R-CATs 3 and

stronger were associated with ARCATs 3-5 in SOCAL, NOCAL, and PNW, respectively.

ARs also underpin notable numbers of R-CAT episodes along the eastern coastal U.S.

About 48% (45%) of all R-CAT episodes in G&SEC (C&NEC) have been AR-related, of which

30% (40%) were associated with mixed ARs. Indeed, more R-CAT episodes, overall, have been
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associated with mixed- and pure-ARs along the eastern coastal U.S. than with hurricanes and

TS-TD-STS, especially in C&NEC. However, the fraction of R-CAT 2 episodes associated with

pure ARs declines while the fraction associated with hurricanes and TS-TD-STS (both acting

alone or when mixed with ARs) increases. About half of all hurricanes and TS-TD-STS yielding

R-CAT episodes in G&SEC and C&NEC have been accompanied by ARs. In both eastern coastal

regions, the fraction of R-CAT episodes due to unclassified (other) processes decline for stronger

R-CAT levels.

4.3.3 Disastrous impacts of R-CAT storms

As an indication of the hazards and impacts that have resulted from R-CAT episodes, Fig-

ure 4.7 presents the fractions of billion-dollar disasters from 1980-2018 (https://www.ncdc.noaa.gov

/billions/events/US/1980-2018) associated with R-CAT episodes. About 67%, of all billion-dollar

flooding disasters have been associated with R-CAT episodes. Among these flooding disasters is

the Oroville Dam crisis in February 2017. Among the four types of billion-dollar disaster types

analyzed here, tropical cyclones are by far the costliest and deadliest with greater than 20 billion

dollars cost and more than 140 fatalities, on average. About 90% of those billion-dollar tropical

cyclones have resulted in R-CAT episodes. R-CATs 3 and stronger, although much less numerous

than R-CAT 1 and 2s (from 1980 to 2018, 1058 R-CAT 1 and 2 episodes and only 56 R-CAT

3 and stronger episodes are recorded), contribute about 34% of flooding and 29% of tropical

cyclone billion-dollar disasters. Among 152 Billion-Dollar tropical cyclones from 1980-2015,

113 resulted in R-CAT episodes, from which only 15 were accompanied by ARs. R-CAT episodes

have also been recorded during 56% and 31% of disastrous severe storms and winter storms,

respectively.
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Figure 4.7: Percentage of billion-dollar disasters associated with R-CAT episodes, shown by
stacked bars corresponding to the left y-axis. Average disaster cost, and average number of
disaster fatalities are shown by orange dots, and black Xs, respectively which correspond to the
right axes.

4.3.4 Trends in 3-day precipitation totals and R-CAT storms

One of the main goals of the current study was to place several recent extremely high

R-CAT events into the context of the overall historical record. These extremely high R-CAT

events were by-far the largest historical R-CAT storms recorded, Hurricane Harvey (R-CAT 9)

over the Houston, TX, area in 2017 and Hurricane Florence (R-CAT 7) over the Carolinas in

2018. The strongest R-CAT storm recorded before these two was an R-CAT 6 event recorded

in northeastern Texas in 1978. The unprecedented magnitudes of 3-day totals produced during

Harvey and Florence compared to the strongest R-CAT episodes of previous years are evident in

(Figure 4.8a).

Trends in 3-day precipitation extremes

To begin to place these recent extremes into long-term context, we present observed

trends in annual maximum 3-day precipitation totals for the period of 1950-2018 (Figure 4.9a).
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Figure 4.8: (a) Maximum 3-day precipitation total during the strongest R-CAT episode recorded
each year in A1 region (shown in Figure 9) and (b) the ratio of average to maximum daily
precipitation total during the largest R-CAT event in episodes of panel (a).

Significant declines in annual 3-day maxima have been observed at 41 out of 204 stations in

northern California and coastal Oregon (A2 in Figure 4.9a) with remaining 162 stations showing

insignificant trends and only one station showing significant increasing trend. In the eastern

U.S., however, 3-day maxima at clusters of stations across central and northern Midwest, Gulf

coast, central and northeast coast (A1 in Fig. 9a), as well as in northern coastal Washington, have

increased significantly. The largest negative trends along the west coast and positive trends in

eastern U.S. exceed 1.5 mm per year, large enough to demote or promote R-CAT episodes by a

category over the course of the 69-year period of record analyzed here.

Time series of annual maximum 3-day precipitation totals for the 30 stations with largest

positive or negative trends each from the A1 and A2 areas in Figure 4.9a are shown in Figure

4.9b. Tendencies towards larger (smaller) 3-day precipitation totals in stations within A1 (A2)
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are evident. To assess the sensitivity of observed trends to the start and end year of the station

periods of record, trends are calculated for periods with different start and end years and average

significant trends are shown in Figure 4.9c. For the majority of tested periods, significant

increasing (decreasing) trends are observed in A1 (A2). However, the magnitude of average

trends varies with start and end dates of analysis.

Figure 4.9: Observed trends in annual maximum 3-day precipitation totals 1950-2018. At
each station only years with less than 20% missing values are used to calculate the trend (at
least 50 years meet this criterion at each station). Blue and red circles represent stations with
trends significantly different from 0 at a 95% confidence level. Trends are estimated based on
Kendall’s slope estimator algorithm (Hirsch et al. 1982). Significance of trends are estimated
using the Kendall’s statistic with the null hypothesis being that the fluctuations are random in
time. The smaller + markers represent stations where the null hypothesis could not be rejected
(a). A1 and A2 represent areas used in panels (b) and (c). Time series of annual maximum
3-day precipitation totals at 30 stations in A1 and A2 with highest magnitudes of trends that
are shown by yellow dots in panel a (b). Average annual maximum 3-day precipitation total
trends (calculated as in (a)) for periods with different start and end times using only stations with
significant trends in each period (c). The top triangle in panel c is associated with significant
trends in A1 and the bottom triangle is associated with significant trends in A2. The number of
stations with significant trends at each period are shown in each box.

Analysis of seasonal maximum 3-day precipitation totals (Figure 4.10) indicate stations

with significant negative trends in southern Sierra Nevada, northern California, and Pacific
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Northwest (PNW) in December-January-February (DJF) and in southern and northern California

during September-October-November (SON). Significant increasing trends are observed in some

stations in northern coastal Washington during SON and with lower magnitudes during March-

April-May (MAM). Trends are mostly small and nonsignificant during MAM and June-July-

August (JJA) in western U.S. stations.

Seasonal trends in eastern U.S. are mostly positive with the exception of significant

negative trends at some stations in southern Florida during SON, and in southeastern U.S. during

MAM. The most significant positive trends in seasonal maximum 3-day precipitation totals are

observed during DJF in a cluster of stations in northern Texas and central Great Plains and during

SON in three clusters, one in northern Great Plains, one extending from Louisiana in the Gulf

coast to Ohio, and one along the central and northeast coast.

Figure 4.10: As in figure 9, but for seasonal maximum 3-day precipitation totals during DJF
(a), MAM (b), JJA (C), and SON (d).

Comparison of R-CAT events and episodes from 1950-2008 to 2009-2018

Consistent with the negative trends in annual maximum 3-day precipitation totals along

the U.S. west coast and positive trends in most of eastern U.S., the average number of stations
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reaching R-CAT levels (200 mm in a 3-day period) each year has been smaller in the west and

larger in the east in the past decade compared to 1950-2008 (Figure 4.11). The significance of

these differences in western and eastern U.S. were tested by applying a Monte Carlo approach

with 1000 random samplings of 10 years (independently of each other) drawn from the 1950

to 2018 period, with the difference between the average number of non-overlapping R-CAT

events per year in each sample set and 1950-2008 calculated for the eastern and western U.S.

The differences between average number of R-CAT events per year in the recent decade and

1950-2008 in each region were compared with differences from Monte Carlo analysis, and the

R-CAT levels for which the historical difference between 1950-2008 and 2009-2018 is larger

than the differences in the Monte Carlo samples at least 90% of the time are bolded in Figure

4.11e. Declines in the numbers of stations reaching R-CAT levels in the west and increasing in

the east are indicated for all R-CAT levels. The magnitude of these differences increases for the

higher R-CAT levels (Figure 4.11e).

Due to the larger area and greater number of stations in eastern U.S., the overall number of

R-CAT events in this region is nearly three times as large as that in western U.S. (from 1950-2018,

7194 and 2269 R-CAT events were recorded in eastern and western U.S., respectively). Thus,

the overall changes in average number of stations reaching R-CAT levels in the U.S. as a whole

follow the same increasing pattern as in eastern U.S region (Figure 4.11).

In Figure 4.12, the frequency and areal extents of R-CAT episodes in the past decade are

compared with those in 1950-2008 in eastern and western U.S. An increase in the frequency of

all R-CAT episodes in eastern U.S. and R-CAT 1 episodes in western U.S. is observed in the

past decade compared to 1950-2018 (Figure 4.12 b and c). The average areal extents of R-CAT

episodes for all R-CAT levels across CONUS were larger during the past decade than in the

longer historical record, except for R-CAT 1 episodes in western U.S. In the western US, the

average areal extent of R-CAT 1 episodes slightly decreased during the past decade (Figure 4.11

d-f). The significance of changes reported in this section cannot yet be confirmed due to the small
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Figure 4.11: Changes in average number of non-overlapping R-CAT events per year per 1000
stations between 1950-2008 and 2009-2018 for (a) R-CAT 1, (b) R-CAT 2, (c) R-CAT 3, and (d)
R-CAT 4 and stronger events. Percent changes from 1950-2008 to 2009-2018 for western and
eastern U.S. are summarized in (e). Significant changes (at 90% confidence level based on the
Monte Carlo approach with 1000 iterations) are shown by bold fonts.

sample size afforded by these extreme R-CAT episodes.

The way total precipitation is distributed throughout R-CAT level extreme precipitation

events is an important characteristic that may alter the severity of their associated hydrologic

impacts. Here, we evaluate changes to this characteristic of the strongest R-CAT episodes

each year from 1950-2018 using the ratio of average daily precipitation total to maximum daily

precipitation total during R-CAT episodes presented in Figure 4.8a (Figure 4.8b). This ratio is an

indication of how evenly the precipitation is distributed during the 3-day R-CAT time window (for

the largest R-CAT event in strongest R-CAT episodes each year). Lower ratios indicate a narrow

distribution with most of the extreme precipitation falling in one day, while higher ratios represent

a more evenly distributed precipitation throughout the 3-day time window. A significant upward

trend (at 90% confidence level based on Kendall’s statistic) is evident in Figure 4.8b, so that from

1950 to 2018, the ratio of average to maximum daily precipitation total increases about 10.8%, on

average, indicating that these most-extreme R-CAT events are increasingly being characterized by

sustained extreme precipitation rather than by single-day extremes, a characteristic that has not

been previously reported in the historical record nor discussed much in climate-change projections.
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Figure 4.12: Changes in characteristics of R-CAT episodes from1950-2008 (solid color bars)
to 2009-2018 (hatched bars) for the conus (gray bars), western U.S. (green bars), and eastern
colors (orange bars). Characteristics analyzed here include (a, b, c) average number of R-CAT
episodes per year and (d, e, f) average number of stations reaching 200 mm precipitation totals
in a 3-day period during the episode.

This increase in the duration of extreme precipitation rates presumably underlies the kind of

trends toward promotion of precipitation totals towards higher R-CAT levels, discussed earlier, in

the eastern U.S.

Characteristics of extreme, R-CAT level, storms between the historical period of 1950-

2008 to the recent decade of 2009-2018 have been compared here and tested for statistical

significance to an extent. However, the back to back occurrence of the two by-far most extreme

historical storms in the Autumns of 2017 and 2018 that inspired this study limits how certainly

we can interpret them in the long contexts of historical variability and evolving climate change.

Exceptional events that fall in the two final years of the time series analyzed here, or in any set

of multi-decade time series, provide too limited a sample, and are too close to analytical edge

effects, to determine whether they mark a new distribution or regime. Results here are intended
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to contextualize those recent most-extreme storms. But only (further) time will showwith any

great confidence–whether storms like Harvey and Florence are examples of a changed probability

distribution as opposed to reflecting only some really bad luck.

4.4 Conclusions

The R-CAT scale, which categorizes extreme precipitation based on very simple thresh-

olds of 3-day precipitation totals, is applied in this study to daily precipitation observations from

more than 3573 weather stations across the CONUS from 1950-2018. One goal is to describe

climatological properties, including the frequencies and areal extents of the most extreme storms

ever recorded at stations across the U.S. Another goal is to contextualize several recent storms in

the past decade (2009-2018) that have deposited whole new extremes of precipitation. Further-

more, this paper evaluates the relative contributions of atmospheric rivers vs. tropical storms to

the historically most extreme precipitation totals on the west coast and along the eastern seaboard

of the US.

In the 1950-2018 period, almost all R-CAT 2 and stronger events have been recorded

along the Gulf coast, east coast, and the U.S. west coast. The recurrence interval of R-CAT events

is shorter along the U.S. west coast compared to the Gulf and east coast regions; that is, many

more R-CAT events have occurred at individual stations on the west coast than on the east, in the

period of record. R-CAT storms are often accompanied by negative socioeconomic impacts due

to their level of extremity. They are associated with more than 90% of all flooding and tropical

cyclones with billion-dollar costs from 1980-2018. The most extreme R-CAT events across the

U.S. have been recorded in eastern U.S. during Hurricane Harvey (2017) and Hurricane Florence

(2018) reaching R-CAT 9 and R-CAT 7, respectively. Meanwhile the most extreme R-CAT events

ever recorded along the U.S. west coast (since 1950) have only reached level 5.

October-March and March-November are the most active seasons for R-CAT storms in
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western and eastern U.S., respectively, with the most extreme R-CAT storms being recorded in

October and December in the west coast and in August and September in the east. More than

90% of R-CAT storms in western U.S. are caused by ARs, while 40% of R-CAT storms in eastern

and Gulf coastal regions are associated with hurricanes and tropical storms, which are mixed with

ARs 48% of the time (Figure. 4.13).

Figure 4.13: A schematic of spatial distribution of R-CAT events and their meteorological
causes.

Trend analyses of annual maximum 3-day precipitation totals show significant declines at

many stations in northern California and coastal Oregon. In eastern U.S. stations, significant in-

creasing trends are observed in 349 stations, while only 10 stations indicate significant decreasing

trends. Consistent with these results, the number of stations reaching R-CAT levels per year have

decreased, on average, in the western US and increased in the eastern U.S. in the past decade

relative to 1950-2009. Changes in the frequency and areal extent of R-CAT storms are, however,

mostly positive across the CONUS. The statistical significance of these changes cannot yet be

confirmed due to the small sample size of R-CAT storms. An analysis of changes in distribution

of precipitation during the 3-day time window of the strongest R-CAT episodes each year in

eastern U.S. indicates a shift towards a more evenly distributed precipitation during these storms.

In fact, what made Harvey and Florence the most extreme R-CAT episodes recorded since 1950
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was their large average, rather than maximum, daily precipitation totals.

Hurricanes Harvey and Florence were of R-CAT levels 9 and 7, respectively, so extreme

that their like has never been recorded anywhere across the CONUS in the 68-yr period of record

analyzed here. The fact that these two storms have occurred in the most recent decade raises

the question of whether they have been reflections of the changing climate. The fact that they

occurred in the two final years of the record raises the question of whether we can adequately

determine whether they mark a trend or just bad luck. Many studies have by now shown that we

should expect more extreme storms. This study was unable to show a clear shift in the distribution

of R-CAT level storms in the past decade, primarily because a decade is too small a sample to

demonstrate long-term changes. Nonetheless, the severity of these recent storms provides, at

least, a very good analog for what enhanced future storms may look like and what impacts they

will bring, and also an admittedly precarious red flag that those changes may already be upon us.
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Chapter 5

Conclusions

Extreme precipitation events with severe economic loss or mortalities occur in many

regions around the world. Hurricanes and tropical storms in eastern U.S. and ARs along the U.S.

west coast are instances of meteorological processes that cause extreme precipitation in these

regions. Extreme precipitation events along the west coast have the potential of reaching disaster

levels similar to those in the southeast U.S.; however, they have different characteristics and may

respond differently to climate change. These different characteristics call for specialized hazard

management strategies. More importantly, the different hydrologic impacts associated with these

different meteorological processes motivate tailoring of monitoring, prediction, and management

approaches to the specific processes.

One of the important differences between the hydrologic impacts of ARs and those from

hurricanes and tropical storms is that hurricanes and tropical storms are largely hazardous in

nature so that flood managers approach these phenomena intending to mostly reduce their flood

risks. AR impacts, on the other hand, span a wide range from beneficial to hazardous, and where

they are along this spectrum depends on factors including their duration, IVT intensity, speed

at which the AR object moves, orientation of the AR object, upslope flux of water vapor, and

landfall location, among others.
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For a region like California with extremely variable water resources from year to year,

which are highly sensitive to the occurrence of few AR storms, efficient water management is

essential to avoid and cope with prolonged drought episodes, while reducing flood risks. Water

managers in California cannot afford to plan only for one of these (beneficial or hazardous)

aspects of ARs and, with every AR landfall, they seek strategies to save as much storm water as

possible in the reservoirs while mitigating flood risks.

Generally, stronger ARs are more hazardous and weaker ARs are more beneficial overall.

However, under the right circumstances, weaker ARs also can cause severe floods (for example

when clusters of back-to-back weak ARs make landfall over a particular region, or when ARs

bring anomalously warm and moist air to snow-covered regions and yield large amounts of

rain-on-snow). Identifying and understanding the factors that most strongly modulate how much

precipitation is generated during ARs, so that efforts to improve forecasts of these factors can

enhance prediction of extreme precipitation and floods with longer lead times, can be of great

benefit to water management in California.

In this dissertation, ARs and their associated precipitation at hourly to multi-day time

scales are investigated and duration is identified to be one of the most important factors modulating

storm-total precipitation during AR storms. It is shown that, even though storms along the U.S.

west coast and in the southeast U.S. have comparable precipitation totals on average, precipitation

totals are strongly dominated by storm durations along the U.S. west coast and by storm maximum

hourly intensity in the southeast U.S. The most extreme storms along the U.S. west coast are

generally very persistent ARs rather than the highest intensity ones. AR-related extreme storms

along the U.S. west coast are found to be larger, longer lasting, and have higher-than-average

precipitation intensities compared to other extreme storms in this region. Among the largest

storms along the U.S. west coast, 6080% are associated with ARs in the cool season. It is shown

that the longer the precipitation storm, and the higher the hourly rates of precipitation (to a lesser

extent compared to storm duration), the more likely it is for that storm to be AR-related. The
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duration of extreme storms with longer than 2-year recurrence interval is found to be within the

longest 10%, while their maximum and average hourly rates of precipitation vary widely.

Therefore, while IVT is one of the key characteristics of ARs, the duration of AR

conditions overhead is of (at least) equal importance to water resource management and emergency

management. Long-duration AR episodes can be categorized into two main types. The first type

includes single ARs that stall over a given location for an extended period. Dynamical origins

of this type of long-duration ARs include mesoscale frontal waves that modulate the geometry

and movement of an AR. These frontal waves result in the generation of small cyclones on the

western side of the AR. AR moisture is continuously replenished through lateral convergence

of moisture via cold front sectors of these small cyclones that yield longer durations of AR

conditions overhead (Sodemann and Stohl 2013). Case studies confirming the importance of

mesoscale frontal waves in long-duration ARs are reported in Ralph et al. (2010) and Neiman et

al. (2015). Slowing of the synoptic-scale Rossby wave patterns within which ARs are embedded

can also result in a slower translation of the AR object and therefore, sustained AR conditions

overhead (Moore et al., 2018).

The second type of long-duration ARs results from the passage of multiple ARs in rapid

succession (AR families; Fish et al., 2019 in revision) over a region, resulting in prolonged AR

conditions over that region. Stationary planetary-scale wave configurations, such as blocking,

are important contexts for these conditions as they can steer the extratropical storm track over a

given region for long periods of time. These different processes involved with long-duration ARs,

however, have not yet been fully studied and need further exploration. Future studies might be

focused on improving forecasts of these two types of persistent AR conditions.

Focusing specifically on California, with higher spatial resolution but still using hourly

precipitation observations, how large storms, and especially ARs, affect California’s rainfall

regime was discussed. It was shown that, on average, more than half of annual rainfall in southern

and northern California falls during only 1040 and 60120 hours each year, respectively. The
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single largest storm typically contributes 10-30% of annual precipitation at many locations across

the state. As discussed earlier, storm duration plays an important role in how much precipitation

total is generated during these large storms.

Another factor that strongly impacts inland extreme precipitation associated with ARs is

gaps in coastal topography that allow ARs to penetrate inland. The largest AR precipitation totals

in the northern Sierra are located where the ARs reach these mountain ranges by passing through

the San Francisco Bay Area gap. These findings highlight the importance of this gap and inland

penetration of ARs in flood risks and water-reliability in the northern Sierra Nevada and Central

Valley.

In chapter 4, important differences were observed between extreme precipitation events

in the U.S. west coast, which are mostly AR-driven, and the ones in the eastern U.S. These

differences include not only spatial differences across the U.S. but differences in how these

characteristics have been evolving through time. It was found that extreme storms with 3-day

precipitation totals larger than 200 mm have occurred more often at weather stations in the

western U.S. than in the eastern U.S. However, the maximum 3-day totals of precipitation

recorded between 1950 and 2018 have been larger in the eastern U.S. Individual R-CAT level

storms in western U.S. have impacted larger spatial areas, on average, than those in the eastern

U.S.

Significant declines and increases in annual maximum 3-day precipitation totals have

been observed in western and eastern U.S., respectively. These trends have been sufficient to

ensure that fewer (more) R-CAT level storms have been recorded during the past decade than

in 1950-2008 in western (eastern) regions. Many of the existing literature on the observed and

projected changes in the U.S. extreme precipitation agree on a positive shift in frequency and

intensity of extreme precipitation in eastern U.S., which are in line with the findings of this

dissertation. However, reported trends in extreme precipitation in western U.S. are less significant

and less consistent in the existing literature. For instance, USGCRP. (2018) reported 9% and
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10% increase in the total annual precipitation falling in the heaviest 1% events (defined as daily

precipitation events that exceed the 99th percentile of all wet days, 1958-2016) in the northwest

and southwest, respectively. However, Hoerling et al. (2016) reported more than 8% decrease in

annual precipitation associated with the upper 5% daily precipitation and the frequency of very

wet days in California and Nevada from 1979-2013.

Changes in extreme precipitation in response to climate change can arise from a combina-

tion of changes in associated thermodynamic or dynamic processes. Thermodynamic changes,

which are directly connected to the significant increase in surface temperature (through the

ClausiusClapeyron rate of increase in the capacity of the atmosphere to hold water vapor with

atmospheric warming) are already evident in the observations and are projected to intensify in the

future with a high confidence (Shepherd, 2014; Gao et al., 2016). However, dynamical processes

are subject to a high level of natural inherent variability and there is much less confidence in their

changes with global warming (Shepherd, 2014). These uncertainties in the response of dynamical

processes to climate change result in uncertainties in projected changes in regional precipitation

(Shepherd et al., 2014), especially in regions like the U.S. west coast where dynamical processes

and atmospheric circulation strongly modulate precipitation. This is while in regions like eastern

U.S., where precipitation is more thermodynamically modulated, there is a stronger and more

significant increasing trend in extreme precipitation.

Other factors such as how extreme precipitation events are identified, the period of

analysis, statistical methods used to identify the trend, and the spatial scale of the analysis

(station versus grid versus climate region, etc.) can also impact the sign and the magnitude of

the identified trends. In this analysis, significant decreasing trends in annual maximum 3-day

totals are found in Northern California and Coastal Oregon. These trends, even though significant,

cannot be fully attributed to climate change with high confidence at this time as they may be

impacted by interdecadal variations such as Pacific Decadal Oscillation (PDO). Separation of the

observed trends from multidecadal variations is not feasible with the currently available length of
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observational records and should be investigated in the future.

Even though recent studies have shown projected increases in the number of AR days

and intensity of ARs along the U.S. west coast (Warner et al., 2014; Hagos et al., 2016; and

Gao et al., 2016), these changes are associated more with the thermodynamics changes in ARs;

however, changes in dynamical and microphysical processes that can strongly modulate regional

AR-related precipitation remain uncertain (Gao et al., 2016). With these uncertainties in mind, a

few speculations can be made for the causes of declines in annual maximum 3-day precipitation

totals observed here.

• The northward shift in the storm track may result in the weakening of winds in lower lati-

tudes and strengthening of the winds in higher latitudes. These changes may consequently

result in the weakening of the orographic precipitation enhancement in lower latitudes. The

observed decline in annual maximum 3-day precipitation totals in northern California and

Oregon and the observed increase of this metric in the coastal Washington are in line with

this speculation. However, these observed changes in extreme precipitation, especially in

the coastal Washington, may be (at least partly) associated with PDO.

• Changes in the orientation of ARs through time may impact their upslope flux and therefore

the degree of enhancement of their related orographic precipitation.

• The thermodynamic changes in the future climate (i.e. the warmer air can hold more water

vapor) are favorable for more extreme precipitation. However, dynamical changes in the

future climate may have opposite effects and result in the decay in AR-related extreme

precipitation due to the weakening of winds (Gao et al., 2016)). Considering the relatively

coarse spatial resolution of climate projection models and their limited ability to simulate

circulation-related fields, there is low confidence and large model-to-model variations in

their projected changes in extreme precipitation along the U.S. west coast.

• As longer AR durations are projected in the future (Espinoza et al., 2018), it is possible,
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however highly uncertain, that AR-related precipitation occurs over a longer period but

with less average and maximum precipitation intensities (potentially due to the weakening

of winds). This could result in a decline in precipitation totals over the fixed window of

3-days but potentially increases in precipitation totals over a longer window.

These speculations, however, have not been tested here and may be the subject of future

analyses. Observed temporal changes to extreme precipitation were not limited to their frequency,

intensity, and spatial and temporal extent. We found that the distribution of precipitation within

these 3-day storm windows has also been changing. While both maximum and average daily

precipitation totals within 3-day R-CAT storm windows were found to decline in the western

U.S., no significant changes were observed in the relative distribution of extreme precipitation

within these windows in this region. In the eastern U.S., on the other hand, it was found that

extreme precipitation has trended towards being more evenly distributed within the window rather

than having most of the extreme precipitation falling in only one or two days. These changes

may impact the watershed responses to these largest storms and should be taken into account for

resilient water management strategies.

ARs have almost entirely dominated R-CAT level storms along the west coast of the

U.S. Surprisingly, ARs also have made substantial contributions to the east coast and Gulf coast

extremes. Even though in general ARs in lower AR categories are mostly beneficial, we showed

here that under the right circumstances they are capable of yielding R-CAT level extremes.

However, the fraction of R-CAT storms associated with lower category ARs decreases as the

R-CAT levels increase. Future research is needed to understand the circumstances under which

ARs in lower AR categories cause extreme precipitation.

The research described in this dissertation was aimed to extend the existing literature

on extreme precipitation across the U.S. by focusing on hourly to multi-day characteristics of

precipitation events at the station and grid level to storm level This allowed us to place the

most extremes storms on the west coast, including ARs, into the context of the most extreme
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storms across the U.S. and to identify factors that most strongly modulate the size of extreme

precipitation in these regions. These results provide a basis for funneling the efforts towards

enhancement of forecasts of these factors. Furthermore, by outlining distinct differences between

characteristics and changes of extreme precipitation in western and eastern U.S. the need for

specified adaptation and mitigation strategies for each region based on these differences was

highlighted. Findings presented in this dissertation provide insight into the storms that yield the

most severe floods and other extremes, including those most likely to prevent or mitigate drought

episodes. The results here can provide improved scientific foundations for water and flood risk

management strategies throughout the nation.

In the future, more effort should be focused on improving forecasts of the durations of

ARs by improving understanding of the causes of long-duration storms. Looking farther forward,

research is needed into how storm duration, especially in ARs, will evolve as climate changes

due to increases in greenhouse-gas concentrations. More research is needed to disentangle the

relationship between storm durations and intensities and resulting streamflows. Furthermore,

identifying conditions under which weak ARs can be hazardous or strong ARs can be of low

impact requires further research and investigation. Further investigation is required for better

understanding of the relationship between ARs and hurricanes in the eastern U.S., the roles ARs

play (if any) in the enhancement of the intensity or duration of hurricane-related precipitation

in this region, and how these relationships have been evolving through time or are projected to

change in the future. The shift in characteristics of within-storm precipitation distributions in

eastern U.S. motivates the investigation of whether these changes are projected to intensify in the

future, and if so, how the water management strategies should be adapted to these changes.
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Appendix A

Chapter 3 Appendix

Table A1. List of hourly precipitation sites used in this analysis.

Station Name Station ID Data Set Longitude Latitude Elevation (m)

Havasu AHAV RAWS -114.5617 34.7872 144.78
Arbuckle Basin CABS RAWS -122.8333 40.3983 579.12
Acton CACT RAWS -118.2 34.4458 792.48
Alder Springs CALD RAWS -122.7236 39.6514 1310.64
Anza CANZ RAWS -116.6731 33.555 1194.816
Alder Point CAPT RAWS -123.5903 40.1867 281.3304
Ash Creek CASC RAWS -121.9794 41.2769 975.36
Ash Valley CASH RAWS -120.6861 41.0519 1554.48
Bald Mtn Loc CBAL RAWS -120.6972 38.9056 1426.464
Big Bar CBBR RAWS -123.2333 40.7333 457.2
Bell Canyon CBCN RAWS -117.5917 33.5417 213.36
Benton CBEN RAWS -118.4778 37.8431 1661.16
Bangor CBGR RAWS -121.3861 39.3975 244.7544
Black Diamond CBKD RAWS -121.8844 37.95 487.68
Ben Bolt CBLT RAWS -120.9336 38.5908 275.844
Boonville CBOO RAWS -123.3486 38.9875 196.2912
Branch Mountain CBRA RAWS -120.0833 35.1889 1149.096
Briones CBRI RAWS -122.1178 37.9442 441.96
Brooks CBRO RAWS -122.1447 38.7383 107.8992
Bull Flat CBUL RAWS -120.1139 40.4808 1339.596
Beaver Camp Loc CBVR RAWS -120.325 38.4883 1524
Brazie Ranch CBZE RAWS -122.5942 41.6853 914.4
Callahan CCAL RAWS -122.7958 41.3075 955.8528
Canby CCAN RAWS -120.8678 41.4342 1314.2976
Carizzo CCAR RAWS -119.7728 35.0964 758.952
Case Springs CCAS RAWS -117.4181 33.445 707.136
Cheeseboro CCHB RAWS -118.7172 34.1847 502.92
Chico CCHC RAWS -121.7789 39.7119 70.104
Chilaeo CCHI RAWS -118.0303 34.3317 1661.16
Chester CCHS RAWS -121.0853 40.2897 1379.22
Claremont CCLA RAWS -117.7069 34.1369 501.396
Cohasset CCOH RAWS -121.7689 39.8717 528.2184
Collins Baldy CCOL RAWS -122.9503 41.775 1674.2664
Corralitos CCOR RAWS -121.7978 36.9911 137.16
County Line CCOU RAWS -122.4119 39.0189 635.508
Camp 9 CCP9 RAWS -118.4217 34.3617 1219.2
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Corning CCRN RAWS -122.1697 39.9389 89.6112
Devils Garden CDGR RAWS -120.6714 41.53 1530.7056
Diablo Grande CDIA RAWS -121.2939 37.3292 563.88
Doyle CDOY RAWS -120.1056 40.0222 1292.352
Del Valle CDVA RAWS -118.6828 34.4311 389.5344
Devore CDVR RAWS -117.4044 34.2211 626.9736
Eel River CEEL RAWS -123.0833 39.8333 457.2
El Cariso CELC RAWS -117.4111 33.6472 925.9824
El Mirage CELM RAWS -117.5503 34.6344 877.824
Francher Creek CFAN RAWS -119.4658 36.8839 280.416
Fish creek Mountain CFIS RAWS -116.0669 32.9903 231.648
Five Mile CFIV RAWS -117.9183 35.8717 1264.92
Fountain Springs CFOU RAWS -118.915 35.8922 64.008
Fremont Canyon CFRE RAWS -117.7111 33.8081 542.8488
Friend Mountain CFRI RAWS -123.3417 40.505 1219.2
Green Spring CGSP RAWS -120.5 37.8331 310.896
Hastings CHAS RAWS -121.5517 36.3886 574.548
Hayfork CHAY RAWS -123.165 40.55 708.0504
Hell Hole CHEL RAWS -120.4217 39.0717 1597.152
Hernandez CHER RAWS -120.8558 36.3825 1137.8184
Horse Lake CHOL RAWS -120.5028 40.6306 1554.48
Hoopa CHOO RAWS -123.6714 41.0478 114.3
Horse Theif Springs CHOR RAWS -115.9092 35.7706 1524
Hurley CHUR RAWS -119.5678 37.0153 366.0648
Indian Well California CIND RAWS -121.5383 41.7417 1453.896
Indian Wells Canyon CINW RAWS -117.8894 35.685 1219.2
Jawbone CJAW RAWS -118.2264 35.2947 1310.64
Johnsondale CJOH RAWS -118.545 35.9717 1432.56
Juanita Lake CJUA RAWS -122.0056 41.7861 1645.92
Julian CJUL RAWS -116.5908 33.0758 1292.352
Juniper Creek CJUN RAWS -120.4725 41.3322 1332.5856
Keenwild CKEE RAWS -116.7667 33.6667 1499.616
Kettleman Hills CKET RAWS -120.0569 36.0333 246.888
Los Banos CLAB RAWS -121.0531 37.0547 106.68
La Honda CLAH RAWS -122.255 37.3053 265.7856
La Panza CLAP RAWS -120.1875 35.3811 496.824
Laurel Mountain CLAR RAWS -117.6989 35.4783 1338.072
Lassen Lodge CLAS RAWS -121.7136 40.3442 1267.6632
Lost Horse CLHO RAWS -116.1878 34.0178 1280.16
Lincoln CLIN RAWS -121.2683 38.8825 60.96
Los Prietos CLOP RAWS -119.7833 34.5358 310.896
Malibu Hills CMAL RAWS -118.6333 34.0583 480.06
Mill Creek (BDF) CMCB RAWS -117.0347 34.0836 899.16
McGuires CMCG RAWS -123.6011 39.3528 180.7464
Means Lake CMEA RAWS -116.5169 34.3906 883.92
Metcalf Gap CMET RAWS -119.7681 37.4094 937.8696
Mid Hills CMID RAWS -115.4114 35.1231 1649.8824
Mallory Ridge CMLR RAWS -121.7789 37.8172 621.792
Montecito CMNC RAWS -119.6481 34.4614 457.2
Markleeville CMRK RAWS -119.7667 38.6833 1676.7048
Mariposa CMSA RAWS -119.9869 37.5042 680.0088
Mount Zion CMTZ RAWS -120.6511 38.3894 902.208
Oak Knoll COAK RAWS -122.85 41.8386 591.312
Oak Creek COCR RAWS -118.2656 36.8436 1493.52
Oakland North COKN RAWS -122.2208 37.865 427.6344
Oak Opening COKO RAWS -118.7017 36.1753 987.552
Oakland South COKS RAWS -122.1447 37.7861 333.756
Opal Mountain COPA RAWS -117.1756 35.1542 987.552
Owens Camp Loc COWE RAWS -120.245 38.7333 1597.152
Owens Valley COWV RAWS -118.5506 37.39 1414.272
Parkfield CPAR RAWS -120.4319 35.8989 467.868
Patty Mocus CPAT RAWS -122.8667 40.295 1066.8
Pilot Hill CPIL RAWS -121.0086 38.8325 365.76
Poppy Park CPOP RAWS -118.3833 34.7325 841.248
Potrero CPOT RAWS -116.6089 32.6058 714.756
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Panoche Road CPRD RAWS -120.7658 36.7269 619.3536
Pulgas CPUL RAWS -122.2981 37.475 196.2912
Quartz Hill CQUA RAWS -122.9336 41.5992 1287.78
Quincy Rd CQUI RAWS -120.9419 39.9733 1066.8
Ranchita CRCH RAWS -116.4975 33.2222 1345.692
Rice Valley CRIC RAWS -114.7322 34.0608 249.936
Rodeo Valley CROD RAWS -123.3211 39.6681 740.0544
Rose Valley CROS RAWS -119.1842 34.5431 1015.2888
Round Mountain CROU RAWS -121.4639 41.4272 1602.6384
Saugus CSAU RAWS -118.525 34.425 441.96
Sawyers Bar CSAW RAWS -123.1322 41.3003 668.1216
Scorpion CSCN RAWS -122.6967 41.1117 1341.12
Santa Fe Dam CSFD RAWS -117.9458 34.1208 152.4
Shadequarter CSHQ RAWS -118.9556 36.5672 1240.2312
Slater Butte CSLA RAWS -123.3525 41.8586 1423.416
Santa Rita CSNR RAWS -120.5978 36.3478 1524
Soldier Mountain CSOL RAWS -121.5856 40.9258 1130.808
Somes Bar CSOM RAWS -123.4958 41.39 280.416
Squaw Springs CSQS RAWS -117.5683 35.37 1103.376
Squaw Lake CSQU RAWS -114.4944 32.9083 91.44
Santa Rosa CSRO RAWS -117.2306 33.5286 603.504
Santa Rosa CSRS RAWS -122.7119 38.4786 175.5648
Stonyford CSTO RAWS -122.575 39.3669 365.76
Tanbark CTAN RAWS -117.7606 34.2069 792.48
Thomes Creek CTHO RAWS -122.6097 39.8644 316.992
Las Trampas CTRA RAWS -122.0669 37.8339 536.448
Trinity Camp CTRI RAWS -122.8044 40.7864 1008.2784
UHL/ Hot Springs CUHL RAWS -118.6333 35.8889 1133.856
Valley Center CVAL RAWS -117.0086 33.2372 452.0184
Van Bremmer CVAN RAWS -121.7939 41.6431 1502.0544
Walker Pass CWAL RAWS -118.0256 35.6625 1590.1416
Weed Airport CWEE RAWS -122.4539 41.4789 893.064
Whitmore CWHT RAWS -121.8994 40.6194 736.7016
Wofford Heights CWOF RAWS -118.4989 35.7217 960.12
Wolverton CWOL RAWS -118.7033 36.445 1597.152
Yucca Valley CYUC RAWS -116.4078 34.1233 993.648
Alturas CIMIS 90 CIMIS -120.4803 41.4382 1342.644
Arroyo Seco CIMIS 114 CIMIS -121.2912 36.3474 71.628
Bishop CIMIS 35 CIMIS -118.4055 37.3586 1271.016
Brentwood CIMIS 47 CIMIS -121.6597 37.9282 13.716
Browns Valley CIMIS 84 CIMIS -121.3157 39.2526 286.512
Buntingville CIMIS 57 CIMIS -120.4339 40.2898 1220.724
Calipatria CIMIS 41 CIMIS -115.4158 33.0432 -33.528
Camino CIMIS 13 CIMIS -120.7339 38.7523 847.344
Carneros CIMIS 109 CIMIS -122.355 38.2195 4.2672
Castroville CIMIS 19 CIMIS -121.7738 36.7683 2.7432
Davis CIMIS 6 CIMIS -121.7764 38.5358 18.288
De Laveaga CIMIS 104 CIMIS -121.9969 36.9978 95.7072
Dixon CIMIS 121 CIMIS -121.7869 38.4156 11.2776
Durham CIMIS 12 CIMIS -121.8244 39.6086 39.624
Firebaugh CIMIS 7 CIMIS -120.591 36.8512 56.388
FivePoints CIMIS 190 CIMIS -120.1129 36.3362 86.868
Fresno State CIMIS 80 CIMIS -119.7423 36.8208 103.3272
Green Valley Road CIMIS 111 CIMIS -121.7639 36.944 33.528
Irvine CIMIS 75 CIMIS -117.7212 33.6885 124.968
King City-Oasis Rd. CIMIS 113 CIMIS -121.0845 36.1213 168.2496
Lindcove CIMIS 86 CIMIS -119.0593 36.3606 144.4752
Los Banos CIMIS 56 CIMIS -120.7542 37.0975 28.956
Manteca CIMIS 70 CIMIS -121.2232 37.8348 11.5824
McArthur CIMIS 43 CIMIS -121.456 41.0638 1008.888
Modesto CIMIS 71 CIMIS -121.1878 37.6452 10.668
Oakville CIMIS 77 CIMIS -122.4102 38.4285 60.6552
Parlier CIMIS 39 CIMIS -119.5041 36.5975 102.7176
Pomona CIMIS 78 CIMIS -117.8131 34.0566 219.456
Salinas North CIMIS 116 CIMIS -121.6919 36.7168 18.5928
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San Benito CIMIS 126 CIMIS -121.3627 36.8549 103.632
San Luis Obispo CIMIS 52 CIMIS -120.6618 35.3054 100.584
Sanel Valley CIMIS 106 CIMIS -123.0887 38.9827 167.3352
Santa Rosa CIMIS 83 CIMIS -122.7999 38.4036 24.384
Stratford CIMIS 15 CIMIS -119.8514 36.1581 58.8264
Temecula CIMIS 62 CIMIS -117.2283 33.4867 432.816
Tulelake FS CIMIS 91 CIMIS -121.4724 41.9589 1229.868
U.C. Riverside CIMIS 44 CIMIS -117.337 33.9649 310.896
Victorville CIMIS 117 CIMIS -117.2635 34.4759 880.872
Westlands CIMIS 105 CIMIS -120.3818 36.634 58.2168

Table A.1: List of hourly precipitation sites used in this analysis.
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Appendix B

Chapter 4 Appendix

Figure B.1: Annual number of stations in eastern and western U.S. which meet the requirement
of having at least 50 years of less than 20% missing values each year.
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