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When faced with two nigh intractable problems in cosmology – how to remove the original cos-
mological constant problem and how to parametrize modified gravity to explain current cosmic
acceleration – we can make progress by counterposing them. The well tempered solution to the
cosmological constant through degenerate scalar field dynamics also relates disparate Horndeski
gravity terms, making them contrapuntal. We derive the connection between the kinetic term K

and braiding term G3 for shift symmetric theories (including the running Planck mass G4), extend-
ing previous work on monomial or binomial dependence to polynomials of arbitrary finite degree.
We also exhibit an example for an infinite series expansion. This contrapuntal condition greatly
reduces the number of parameters needed to test modified gravity against cosmological observations,
for these “golden” theories of gravity.

I. INTRODUCTION

Current cosmological acceleration is an overwhelming characteristic of our universe, driving the expansion rate and
shutting down the growth of large scale structure. Yet in seeking its origin, physics explanations almost invariably
sweep under the rug the elephant in the room: the original cosmological constant problem that a much higher energy
scale vacuum energy should have dominated the history of the universe, calling into question our understanding of
how gravity reacts to vacuum energy [1–5]. Exploring a low energy cosmic acceleration by traversing a physics terrain
where there is an elephant under the rug is an uncomfortable position.
Well tempering [6–9] aims to solve the original cosmological constant problem by employing a dynamical scalar field

with certain degeneracy conditions in the equations of motion. To do so requires modifications of general relativity,
which is also one of the favored approaches to explaining current cosmic acceleration. However, modified gravity
is quite difficult to test against cosmological observations in a general manner, without a large number of model
dependent assumptions and multiple free functions. By contraposing the two problems, well tempering shows a path
toward resolving them both.
Modified gravity often works within Horndeski theory, the most general scalar-tensor theory giving second order

equations of motion. While generally this involves four free functions, we take the simplest approach to setting the
speed of gravitational waves to be equal to the speed of light so that G5 = 0 and G4 = G4(φ). Then Horndeski gravity
involves three free functions K(φ,X), G3(φ,X), G4(φ) of two variables: the scalar field φ and its canonical kinetic

form X = −gµν∂µφ∂νφ/2 = φ̇2/2 for a homogeneous scalar field in a Robertson-Walker spacetime.
To test against cosmological data, one could adopt the effective field theory approach [10–14] that reduces three

functions of two variables to four functions of time, at the linear perturbation level. This has the drawback that
one loses information from the nonlinear regime (including details of screening to satisfy solar system tests), where
cosmological data can give great insight. If we wish to keep the full leverage, one generally has to assume a specific
gravity theory, a specific functional dependence within that theory, and specific parameters within those functions.
For example, one does not “test gravity” but says the data is or is not consistent with, say, “the class of f(R) gravity
with a specific function f and specific ranges of parameters appearing within that function f .” The conclusions tend
to be highly model dependent. To put the general case of three functions of two variables in perspective, figuring out
how to modify gravity yet obtain consistency with cosmological observations is like trying to figure out how to kick
a football to score a goal when 1) the pull of gravity depends on the ball’s location and velocity, 2) the wind speed
varies with the ball’s location and velocity, and 3) the ball’s mass depends on its location (e.g. K(φ,X), G3(φ,X),
G4(φ) respectively).
In [8] we demonstrated that well tempering could not only address the original cosmological constant problem, but

reduce the modified gravity parameter space from multiple functions to a small number (∼ four) of parameters. These
give well defined, valuable theories that are predictive across the full range of cosmological observations, including
on nonlinear scales, and could be regarded as the “golden” theories to use in cosmology, without climbing over the
elephant under the rug.
The solutions in [8] were predominantly within shift symmetric theories, which have important protection against

quantum corrections [15, 16], and gave particular solutions to the well tempered degeneracy equation by assuming
various Ansätze for either K(X) or G3(X), with the other then determined by the equations. The degeneracy equation

http://arxiv.org/abs/2012.03965v1


2

is a nonlinear differential equation and so other solutions can exist as well. Here we carry out a systematic analysis
of all solutions having certain conditions discussed below.

In Section II we restate the key degeneracy equation giving well tempering and introduce a series expansion method.
The remarkably simple solutions for a finite series are presented in Sec. III and we discuss some special cases as well,
and how previous solutions are unified by our general expression. We present an example of an infinite series solution
in Sec. IV. We summarize and conclude in Sec. V.

II. SERIES EXPANSION APPROACH

Well tempering works by reducing the equations of motion involving ä and φ̈, i.e. the expansion and scalar field
evolutions, to have degenerate solutions for de Sitter spacetime, referred to as “on shell”. This empowers the scalar
field dynamics to cancel the cosmological constant both on and off shell, i.e. for the full cosmological history. See [6]
for details.

The equation guaranteeing the degeneracy is

(M − 2g)
{

3hφ̇KX + 18h2g − 6h2M + λ3
}

= (KX + 2XKXX + 6hφ̇gX)
[

−hφ̇(M − 6g) + 2XKX

]

, (1)

where we have imposed shift symmetry so that G4 = (M2
pl +Mφ)/2, and G3 = G3(X), K(φ,X) = F (X)− λ3φ. For

notational convenience we write g = XG3X , where a subscript X denotes a derivative with respect to X , and h ≡ HdS

is the de Sitter value of the expansion rate.

This nonlinear differential equation relates the Horndeski termsK, G3, andG4. A variety of solutions were presented
and analyzed in [8]. Here we look for more general solutions using a series expansion method like that introduced and
used to good effect in [7]. Note that in their work they assumed K = X − V (φ), which turns the nonlinear equation
into a simpler one (but their nonassumption of shift symmetry makes it a partial differential equation). Here we
impose shift symmetry, justified for its protection against quantum loop corrections, but allow general K(X) with the
permitted λ3φ tadpole term.

By resummation and judicious insight, a series expansion can provide the general functional dependence K(X) or
G3(X). This method can deliver an algorithm for generating new solutions, and some general principles.

Since the quantities entering the degeneracy equation are KX and g, we will carry out series expansion of these;
they can be rewritten in terms of K and G3(X) as desired. Thus,

g =
∑

anX
n/2 (2)

KX =
∑

bpX
p/2 . (3)

The sums go from nmin to nmax and pmin to pmax respectively, and we will see there are relations between these values.
The degeneracy equation becomes

0 = 6h2M
∑

an

(

5 + n− λ3

3h2M

)

Xn/2 − 36h2
(

∑

anX
n/2

) (

∑

an(1 + n)Xn/2
)

+ Mh
√
2X

∑

bp(4 + p)Xp/2 − 2X
(

∑

bpX
p/2

) (

∑

bp(1 + p)Xp/2
)

− 6h
√
2X

[(

∑

anX
n/2

) (

∑

bp(1 + p)Xp/2
)

+
(

∑

an(1 + n)Xn/2
) (

∑

bpX
p/2

)]

− 6h2M2 +Mλ3 . (4)

III. FINITE SERIES SOLUTION

One solves Eq. (4) by equating terms order by order in X to obtain relations between an and bp, and then summing
the series to derive functional relations between K and G3 (or g), with or without M from the G4 term. We begin
by considering a finite series.
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A. General Results

The results are

KX = −3h
√
2X−1/2g + h

√
2X−1/2

(

M − λ3

6h2

)

[Branch A] (5)

KX = −3h
√
2X−1/2 (g − a0)−

3h
√
2

2
X−1/2

∫

dX
g − a0
X

+ b−1X
−1/2 [Branch B] . (6)

Appendix A shows the steps in the derivation but one can verify the solutions by direct substitution into Eq. (1).

The coefficient b−1 entering as K
[−1]
X = b−1X

−1/2 plays a special role (since K
[−1]
X +2XK

[−1]
XX = 0 in the degeneracy

equation) and helps distinguish the two branches. For Branch A,

b−1 = h
√
2M − λ3

3h
√
2
− 3h

√
2 a0 [Branch A] , (7)

i.e. b−1 is specifically connected to a0, the constant term in g or the contribution G
[0]
3 = a0 lnX (recall from [8] that

constant g is a hallmark of Brans-Dicke type scalar-tensor theories as well as f(R) gravity and No Slip Gravity). The
quantity b−1 is also connected to the G4 mass M and the tadpole scale λ for Branch A, so all the functions are woven
together.
Branch B has different contrapuntal conditions between the functions, with

b−1 = {−h
√
2M, arbitrary}, a0 =

M

2
, λ3 = 3h2M [Branch B] . (8)

Here the connections are more concrete between G3, G4, and K, i.e. a0, M , and λ, but b−1 also has the possibility of
being arbitrary, as we discuss in the next section.
Equations (5) and (6) are general solutions. They cover many of the particular solutions given in [8] (hereafter

called HV). For example, HV Eq. 3.36 is a Branch A solution; Eqs. 3.34 and 3.38 are Branch B solutions. We have
essentially succeeded in deriving a unified solution for all the individual solutions obtained in HV.
Some particular solutions need or merit special treatment and we deal with these in the next subsections.

B. Special Case: Truncation Below b
−1

Under the standard solutions of the previous section, for some an, even anmin
, there must be a bn−1, as shown in

Eq. (A3). However, we see that the a2nmin
contribution (the second term in Eq. 4) vanishes when n = −1 and so this

term is an exception: if we set nmin = −1 we are free to set b−2 = 0 (and all bp<−2 are zero likewise). This may be
considered attractive in that it means that K does not have any negative powers of X , so when the field rolls slowly
there is no blow up of the kinetic term. Thus we consider this special case nmin = −1, i.e. an<−1 = 0.
With b−2 = 0, for the next higher order equation, which involves X−1/2 terms, b−1 actually cancels out of the

degeneracy equation. We continue going through the intermediate powers and find that for Branch A, b−1 takes the
form in Eq. (7), unless an>0 = 0 and a0 = M/2, in which case b−1 remains arbitrary. The value of a−1 does not

affect b−1 under these conditions. For Branch B, Eq. (7) reduces to b−1 = −h
√
2M ; however, if the above conditions

hold and we also require a−1 = 0, then b−1 is arbitrary. This explains the “b−1 arbitrary” possibility mentioned in
the previous subsection.
Cases with arbitrary b−1 can be seen in HV Eqs. 3.31, 3.35, and 3.39, all Branch B solutions, and Eq. 3.37, a Branch

A solution but where the arbitrary b−1 arises from an arbitrary term in a0, i.e. it still follows Eq. (7).

C. Special Case: nmin = 0, nmax = 1

One other special case of note is truncation where nmin = 0 and in addition nmax = 1, i.e. g = sX1/2 + a0. This
gives only three equations, so in addition to determining b−1 and b0 they must fix a0. The result shows that despite
the tight restrictions this case nevertheless follows the general Eqs. (5) and (6). That is, Branch A gives

g = sX1/2 +
M

3
− b−1

3h
√
2
− λ3

18h2
(9)

KX = −3h
√
2s+ b−1X

−1/2 , (10)
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with b−1 arbitrary and λ3 6= 3h2M , following from Eq. (5), and Branch B, i.e. Eq. (6), yields

g = sX1/2 +
M

3
+

λ3

18h2
(11)

KX = −6h
√
2s− λ3

√
2

3h
X−1/2 . (12)

We can show this as follows. The X1 equation gives b0 = {−3,−6}h
√
2 a1, as expected from Eq. (A2); for the choice

b0 = −3h
√
2 a1, i.e. following Branch A, the X1/2 equation gives Eq. (7) for b−1, but for the choice b0 = −6h

√
2 a1

then b−1 cancels out and instead the equation imposes

a0 =
M

3
+

λ3

18h2
, (13)

so this is a hidden version of Branch B. The hidden aspect arises because of the lack of extra equations that would
impose the usual additional consistency conditions such that λ3 = 3h2M and hence a0 = M/2. Finally, the X0

equation determines b−1 following Eq. (7), which would only lead to Eq. (8) upon setting the additional consistency
conditions a0 = M/2, λ3 = 3h2M , which do not apply here. Thus we have g = sX1/2 + a0 leading to HV Eq. 3.37
for Branch A and HV Eq. 3.33 for the “hidden” Branch B.

D. Special Case: lnX Terms in KX

A finite expansion in powers will not always work. Before we move on to an infinite series in Sec. IV, let us consider
the special case where KX contains terms involving lnX . This is particularly of note since [8] did find solutions
involving lnX . Equations (21) and (22) below provide the final solutions. To derive them we begin by expanding g
and studying the form of the resulting degeneracy equation, writing

g =
∑

anX
n/2 (14)

KX = X−1/2B(X) , (15)

where K still has a tadpole term −λ3φ.
The degeneracy equation becomes

0 = XBX

(

4B + 12h
√
2
∑

anX
n/2 − 2h

√
2M

)

+ h
√
2B

[

6
∑

an(1 + n)Xn/2 − 3M
]

(16)

−6h2M
∑

an

(

5 + n− λ3

3h2M

)

+ 36h2
(

∑

anX
n/2

)(

∑

an(1 + n)Xn/2
)

+ 6h2M2 −Mλ3 .

A term involving B ∼ Xm lnX has nothing to cancel against if m 6= 0, so we allow only a term like B ∼ lnX , besides
standard powers. Writing

B = br lnX +
∑

bpX
p/2 , (17)

the degeneracy equation for the terms involving lnX becomes

0 = 4br lnX

(

br +
1

2

∑

bppX
p/2

)

+ h
√
2br lnX

[

6
∑

an(1 + n)Xn/2 − 3M
]

. (18)

If we set br = 0, there is no lnX term and we return to the power series of the previous sections. The solution for
general p 6= 0, −1 is

ap = bp
p

3h
√
2(1 + p)

. (19)

However, looking at the terms in the degeneracy equation involving only powers and not lnX , i.e. Xp, we find the
only consistent solution is bp = 0 for all p 6= 0. For p = 0, we find b0 is arbitrary and

a0 =
M

2
− br

√
2

3h
. (20)



5

For the X0 order (without lnX), the solution requires either a0 = M/2 (implying br = 0 and hence reducing to the
pure power expansion without lnX as in the previous sections) or λ3 = 3h2M .
Thus the final solution is B = b0 + br lnX , or

KX = b0X
−1/2 + brX

−1/2 lnX , (21)

with a tadpole term −3h2Mφ in K, and

g =
M

2
− br

√
2

3h
+ a−1X

−1/2 , (22)

where a−1 is arbitrary. This is the unique solution where KX involves a lnX term, and is equivalent to HV Eq. 3.20.
When g = 0, so br = 3hM/(2

√
2), we reproduce HV Eq. 3.11, and when g = rM (as for f(R) and No Slip Gravity),

we obtain HV Eq. 3.19.

IV. INFINITE SERIES SOLUTION

When the series expansion is infinite then one must use the Cauchy product to determine terms at a certain order.
Since there is no finite nmax = N , we are no longer constrained by the lack of a counter term to a2NXN . This breaks
the relation between an and bn−1. There is very little one can say in general for such a situation. However, if one
restricts the series in some way then some progress can be made. For example, consider the case where bn6=−1 = 0.
Then the only series product comes from the second term in Eq. (4), which we evaluate using the Cauchy product,
except for separating out where one term has a−1X

−1/2. If we choose an as a semi-infinite series, with an<−1 = 0,
then we can solve the equation.
Starting with the X−1/2 power equation and working up, we can obtain all an and hence g. A particularly compact

form obtains for b−1 = −λ3
√
2/(3h), in that then the (semi)infinite series sums to the solution

g =
M

2
+

c

2
X−1/2

[

1±
√

1 +
2(3h2M − λ3)

9h2c
X1/2

]

. (23)

Note that the lower root gives a−1 = 0, and hence g involves only nonnegative powers of X . (For the upper root
c = a−1.) When λ3 = 0, the entire kinetic term K = 2b−1X

1/2−λ3φ = 0 and we have HV Eq. 3.45. When λ3 > 3h2M

we have a “speed limit” on X , i.e. the scalar field motion φ̇, to keep the function real (see for example [17–19]).

V. CONCLUSIONS

The reduction of the description of modified gravity from three functions of two variables to a single function of one
variable, or a handful of constant parameters, could open up powerful leverage on scanning theory space to compare to
observational data. Remarkably, we have shown this can be done with the bonus of solving the original cosmological
constant problem – through well tempering – and protecting from at least some quantum corrections – through shift
symmetry. By contraposing two highly challenging problems we solve both.
Equations (5) and (6) give general solutions relating the Lagrangian terms K, G3, and G4 for a wide range of

gravity theories, derived using a power series expansion under well tempering. We show that they unify the disparate
solutions found piecemeal in [8], while going well beyond them, extending monomial or binomial cases to arbitrary
finite polynomials. Logarithmic terms are included as well. Branch A solutions are what [8] referred to as the (X)
class that gives a scalar field equation that becomes trivial on shell, while Branch B solutions are fully well tempering.
Allowing the series expansion to be infinite gives formal solutions but ones difficult to sum to a compact functional

form. We exhibit one example where this can be done, generalizing a case from [8]. For this result, the full gravity
theory can be described by four constant parameters: M , λ, h, and c, which can readily be sampled for likelihood
estimation compared to data.
Such theories that possess highly desirable characteristics for fundamental physics – solving rather than neglecting

the cosmological constant problem, and protecting against quantum corrections – soundness, and robust ability for
full comparison with observations (including nonlinear scales, in principle) could be regarded as the favored “golden”
gravity theories to work with. While exciting work remains to investigate further their detailed properties, they
represent a significant step away from arbitrary functions toward true benchmarks.
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Appendix A: Derivation for Finite Series

To begin the analysis of the finite series case order by order, let us look at the maximum powers for each series.
For N ≡ nmax we have one term going as XN . To match this we must have P ≡ pmax = N − 1, unless N = 0. That
is, the KX series must cut off at one less power than the g series. We find

bN−1 = −3h
√
2 aN

(

1 +
1∓ 1

2N

)

=

{

−3h
√
2 aN , −3h

√
2 aN

N + 1

N

}

. (A1)

Thus there are two branches of solutions, what we call Branch A and Branch B. We can then proceed to the next
lowest power, XN−1/2 and determine bN−2 from aN−1. By continuing this process for Xn, for N/2 < n ≤ N , we find

bp =

{

−3h
√
2 ap+1, −3h

√
2 ap+1

p+ 2

p+ 1

}

for 0 ≤ p ≤ N − 1 . (A2)

There are N equations, for XN , XN−1/2,. . .X(N+1)/2, and these define the N coefficients bN−1, bN−2,. . . b0. Now let
us jump to the most negative power of X , i.e. L ≡ nmin < 0 and evaluate the bp with p < 0 working upward. One
obtains basically the same expression as Eq. (A2), and again pmin = nmin − 1:

bp =

{

−3h
√
2 ap+1, −3h

√
2 ap+1

p+ 2

p+ 1

}

for L− 1 ≤ p < −1 . (A3)

Again there are two branches, and we must choose the same branch for the negative powers as the positive powers.
These determine the L coefficients bL−1, bL,. . . b−2.

There are several equations for the powers Xn with −L/2 ≤ n ≤ N/2 and only a single parameter b−1 left to
determine. All these equations must give a consistent solution for b−1. Note that more and more terms from Eq. (4)
enter into these equations, but a consistent solution occurs for each branch. For branch A, we need

b−1 = h
√
2M − λ3

3h
√
2
− 3h

√
2 a0 [Branch A] , (A4)

and for branch B, the requirements are

b−1 = {−h
√
2M, arbitrary}, a0 =

M

2
, λ3 = 3h2M [Branch B] . (A5)

To summarize, all bp are determined by Eq. (A2) (or equivalently Eq. A3), except for b−1 – special since for this
order KX + 2XKXX = 0 – which is given by Eq. (A4) or (A5) for the respective branch.

We can now try to sum up the series to obtain a functional relation. For Branch A,

KX =
∑

bpX
p/2 = −3h

√
2
∑

p6=−1

ap+1X
p/2 + b−1X

−1/2 = −3h
√
2X−1/2

∑

p6=−1

ap+1X
(p+1)/2 + b−1X

−1/2

= −3h
√
2X−1/2

∑

n6=0

anX
n/2 + b−1X

−1/2

= −3h
√
2X−1/2g + h

√
2X−1/2

(

M − λ3

6h2

)

[Branch A] . (A6)
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For Branch B,

KX = −3h
√
2
∑

p6=−1

p+ 2

p+ 1
ap+1X

p/2 + b−1X
−1/2 = −3h

√
2X−1/2

∑

p6=−1

p+ 2

p+ 1
ap+1X

(p+1)/2 + b−1X
−1/2

= −3h
√
2X−1/2

∑

n6=0

(

1 +
1

n

)

anX
n/2 + b−1X

−1/2

= −3h
√
2X−1/2 (g − a0)−

3h
√
2

2
X−1/2

∫

dX
g − a0
X

+ b−1X
−1/2 [Branch B] . (A7)

Recall that for Branch B, λ3 = 3h2M and the constant part of g is simply a0 = M/2. Thus we have derived our
general solutions Eqs. (5) and (6).
Substituting these back into the degeneracy Eq. (1), we find that Branch A gives a zero for the first factor on the

right hand side, KX + 2XKXX + 6hφ̇gX . This indicates the coefficient of φ̈ in the scalar field equation vanishes on
shell. This is what we called (X) models in [8]. Branch B does not zero out coefficients of φ̈ and gets a full X.
Note that if desired we can set M = 0, removing the coupling to the Ricci scalar and making the G4 term standard.

For Branch B this will also make λ3 = 0 and a0 = 0.
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