
Lawrence Berkeley National Laboratory
LBL Publications

Title
Optimizing MILC-Dslash Performance on NVIDIA A100 GPU: Parallel Strategies using SYCL

Permalink
https://escholarship.org/uc/item/5jk320jv

Authors
Sabatini Dufek, Amanda
Gottlieb, Steven A
Awan, Muaaz Gul
et al.

Publication Date
2024-11-18

DOI
10.1109/SCW63240.2024.00151

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5jk320jv
https://escholarship.org/uc/item/5jk320jv#author
https://escholarship.org
http://www.cdlib.org/

Optimizing MILC-Dslash Performance on NVIDIA
A100 GPU: Parallel Strategies using SYCL

1st Amanda S. Dufek
NERSC

Lawrence Berkeley National Lab
Berkeley, CA, USA

asdufek@lbl.gov

2nd Steven A. Gottlieb
Department of Physics

Indiana University
Bloomington, IN, USA

sg@iu.edu

3rd Muaaz Gul Awan
NERSC

Lawrence Berkeley National Lab
Berkeley, CA, USA

mgawan@lbl.gov

4th Douglas Adriano Augusto
Oswaldo Cruz Foundation

Rio de Janeiro, RJ, Brazil
daa@fiocruz.br

5th Jack Deslippe
NERSC

Lawrence Berkeley National Lab
Berkeley, CA, USA
jrdeslippe@lbl.gov

6th Brandon Cook
NERSC

Lawrence Berkeley National Lab
Berkeley, CA, USA

bgcook@lbl.gov

Abstract—MILC-Dslash is a benchmark that is de-
rived from the MILC code which simulates lattice-
gauge theory on a four-dimensional hypercube. This
paper outlines a gradual progression in increasing the
granularity of parallelism in the MILC-Dslash kernel
using the SYCL programming model, transitioning
from a simple to a fully parallel implementation. We
explore the impact of various parallel strategies on
the MILC-Dslash performance on an NVIDIA A100
GPU. This investigation encompasses different work-
item index orders, work-group sizes, and memory ac-
cess patterns that arise from these strategies. Examples
of components intertwined with the parallel strategies
include atomic memory operations, shared variables,
divergent instructions, synchronization barrier, scenar-
ios with and without dependencies between iterations,
as well as versions with and without using the SYCL
complex library (SyclCPLX) and the SYCLomatic tool.
The best parallel strategy is twice as fast as the simplest
strategy and shows a 10% improvement over the QUDA
baseline, thanks to enhanced parallelism and the use
of work-group local memory. This, along with other
findings — such as optimizing GPU resource utilization
even at the expense of concurrency, prioritizing the use
of work-item indexing methods that favor more local-
ized memory access patterns, and maximizing both the
number of active work-items per warp and the sequence
of successive active work-items — could provide valu-
able guidance for researchers and developers seeking to
optimize parallel computing applications.

Index Terms—MILC-Dslash, SYCL, SyclCPLX,
SYCLomatic, QUDA

I. Introduction
MILC-Dslash is a benchmark that is derived from the

MILC code [1] which simulates four-dimensional hyper-
cubic lattice quantum chromodynamics (QCD). The ap-
plication su3_rhmd_hisq from the MILC code suite is one
of the main applications used to generate gauge configura-
tions with staggered quarks. It has been used in production
for many years at U.S. Department of Energy (DOE) and

U.S. National Science Foundation (NSF) supercomputer
centers. It has also been used in benchmark requirements
for new supercomputer acquisitions such as for NSF’s Blue
Waters, several generations of NERSC computers (includ-
ing N10), and ORNL’s Frontier and upcoming Discovery.

The so-called Dslash operator and its corresponding
kernel is one of the most important ones for lattice QCD.
Dslash describes the interaction of the quarks with the
gluons. The name comes from a notation invented by
Feynman in which a vector, say p, is Lorentz contracted
with the Dirac gamma matrices would be denoted /p, with
an angled bar crossing the letter p. The Dirac equation for
spin-1/2 particles involves a differential operator D, hence
Dslash or /D.

Many details of QCD and its applications can be found
in Ref. [2]. This reference covers both the continuum and
lattice versions of the theory. In lattice field theory, there
are a number of common ways to describe the quarks.
These include Wilson (or Wilson-clover), Domain Wall,
and staggered. In the Wilson approach, there are four spin-
components at each site, each of which is an SU(3) color
vector. The stencil involves eight neighbor sites displaced
by ±x, ±y, ±z, and ±t. In the Domain Wall approach,
a fifth dimension is introduced. The quarks, that have
improved chiral symmetry are on the edges of the domain.
The gauge fields don’t vary in this extra dimension, so
there is a higher arithmetic intensity as quark fields for
each value of the extra dimension interact with the same
gauge fields.

The formulation that we consider here is called stag-
gered, or Kogut-Susskind. It requires only one SU(3) color
vector at each site. So, we don’t benefit from applying the
gauge field to each of four SU(3) vectors as in the Wilson
case. Another difference with staggered quarks is that
modern formulations involve terms with both first and
third nearest neighbors, so it is a 16 point stencil rather

1106979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00151

than eight. Because the arithmetic intensity of staggered
quarks is low compared to the other two formulation, it is
important to pay careful attention to memory traffic.

The Dslash operator is also a major component in other
lattice QCD applications like Chroma [3], for example. In
lattice QCD, the space-time continuum is discretized on
a four-dimensional lattice, where quark “fields” contain
complex numbers (similar to a electron wavefunction),
and spinor and “color” components. Gluon fields connect
neighboring lattice points and define the Dslash operator.
The application of this operator is a key aspect of lattice
QCD simulations (see Section II). It also represents a
Stencil operation that is similar to those at the core
of many computational differential equations. So, what
we learn from optimizing the MILC-Dslash benchmark
not only enhances lattice QCD numerical simulations but
also can be applied to numerous other problems in the
greater field of high-performance computing. For instance,
this knowledge can be extended to computational fluid
dynamics, real-space implementations of material science
applications, and lattice-based simulations in other re-
search domains like epidemiology and ecology.

Previous work [4] has demonstrated a comparative per-
formance analysis between portable (SYCL and Kokkos)
and accelerator-specific (CUDA and HIP) programming
models of a parallel MILC-Dslash implementation across
GPU architectures from three different vendors: NVIDIA,
AMD, and Intel. The authors concluded that SYCL and
Kokkos showed satisfactory performance portability across
NVIDIA, AMD, and Intel GPUs, with speed-up values
very close to those obtained by CUDA and HIP.

SYCL [5] has proved to be a parallel programming
model effectively portable across multiple hardware ar-
chitectures, vendors, and generations. It has experienced
substantial growth in usage, gaining popularity in both
the scientific and industry communities. SYCL stands as
a high-level open-standard framework, providing a single-
source solution for the development of modern C++ par-
allel applications designed for heterogeneous computing
systems.

In the current work, we refine the SYCL parallel imple-
mentation of MILC-Dslash, further detailing the gradual
progression in increasing its granularity of parallelism,
going from a simple to a fully parallel implementation (see
Section III). The parallel MILC-Dslash implementation
reported in the former work [4] refers to just one of the
multiple versions presented here. Furthermore, we examine
how different parallel strategies, work-item index orders,
and work-group sizes affect the MILC-Dslash performance
on an NVIDIA A100 GPU (see Section IV). The findings
highlight some good practices for optimizing GPU execu-
tion performance when programming with SYCL.

The tested parallel strategies include among other
things assessing two recent additions to the SYCL ecosys-
tem, SyclCPLX and SYCLomatic. SyclCPLX [6] pro-
vides enhanced support for complex numbers and com-

plex number operations which has broad applications in
scientific computing. However, in a performance-oriented
code, it is important to understand how the use of a
more general-purpose library impacts the performance of
application kernels. SYCLomatic [7] [8] is a tool for
converting CUDA applications to SYCL. The quality of
implementations generated by this tool is of central in-
terest. The use of this tool on an application with mul-
tiple high-quality “manual” implementations in various
programming models allows for a direct assessment of its
quality.

QUDA [9], [10] is likely the most popular library for run-
ning lattice QCD applications on GPUs. QUDA was ini-
tially developed at Boston University for use on NVIDIA
GPUs, but it has recently been refactored to support HIP
and SYCL back ends for use on AMD and Intel GPUs,
respectively. To name just three of its features, QUDA
supports gauge field compression, mixed-precision solvers,
and auto-tuning to optimize the size of thread blocks
and number of blocks launched simultaneously for each
kernel. It also supports different quark formulations of
lattice QCD, including domain-wall, staggered, twisted-
mass, and Wilson-clover. QUDA’s staggered approach is
adopted here as a reference for comparing the multiple
SYCL parallel implementations of MILC-Dslash proposed
in this paper.

II. MILC-Dslash Benchmark

MILC-Dslash is a benchmark that is derived from the
MILC code [1] which simulates four-dimensional SU(3)
lattice-gauge theory, also known as lattice quantum chro-
modynamics. The Dslash operator, commonly employed
in applications solving partial differential equations, repre-
sents a finite-difference approach to the partial differential
operator found in the four-dimensional Dirac equation.
The Dirac equation describes the movement of quarks in
the presence of a gluon field. The Dslash operator acts on
lattice quark fields, characterized by a three-component
complex vector on every site s within a four-dimensional
regular grid of size L4, where s = 0, . . . , L4, and L = 32.
Let Bj,s and Ci,s be quark fields with i = j = 0, 1, 2 at
site s, then the discrete form of the operator equation
C = Dslash × B involves a sum of generalized central
differences as follows:

Ci,s =
3∑

k=0

2∑
j=0

(
Ui,j,s,kBj,s+k̂ − U†

i,j,s−k̂,k
Bj,s−k̂

)
, (1)

where i and j represent the three color indices, k ranges
over the four space-time dimensions, and the Us denote
SU(3) matrices — square complex matrices of order three
— that parametrize the gluon field. U and U† will here-
after be referred to as U l, where l = 0, 1. The dslash code
consists of the more modern and commonly used version,
which includes first- and third-nearest neighbor terms. For

1107

implementation purposes, we store fat-links (U) and long-
links (U†) along with their respective adjoints, which leads
us to have |l| = 4 instead of |l| = 2.

In summary, the MILC-Dslash kernel essentially com-
prises the execution of five nested for loop structures
to compute C. The outcome C vector is the product of
multiple independent matrix-vector operations between U
matrices and B vector.

III. Implementation Details

This section describes a gradual progression in increas-
ing the granularity of parallelism in the MILC-Dslash ker-
nel over the sections, with each new version building upon
the previous one. It starts with coarse-grained parallelism
(Section III-A), followed by two stages of medium-grained
parallelism (Sections III-B and III-C), until achieving fine-
grained parallelism of the MILC-Dslash kernel in Sec-
tion III-D. For data management, we opted for Unified
Shared Memory (USM) device allocations, ensuring ex-
plicit control over data movement between host and device
memories. All parallel MILC-Dslash versions are written
in C/C++ and SYCL, and are available at https://gitlab.
com/NERSC/nersc-proxies/milc-dslash/-/tree/SYCL un-
der the LBNL-modified BSD license.

A. One-loop Parallelism — 1LP

The first parallel version of the MILC-Dslash kernel
focuses on the parallelism of the outermost loop, which
is the most computationally costly loop, with the largest
number of independent iterations over the target sites
s∗, s∗ = 0, . . . , L4

2 , L = 32. For One-loop Parallelism
(1LP), the |s∗| iterations are distributed across |s∗| work-
items, i.e. each work-item corresponds to a single target
site. Each work-item is responsible for |l| × |k| × |i| × |j|
simple multiplication operations, where |l| = |k| = 4, and
|i| = |j| = 3, as illustrated in Fig. 1. The global size is

Fig. 1: Each target site s∗ has |l| × |k| SU(3) matrices,
l = k = 0, 1, 2, 3, and i = j = 0, 1, 2.

given by the total number of target sites, which in this
case is |s∗| = L4

2 . The local size must be defined such
that the division of global size by local size is exact, i.e.
the number of work-groups is an integer value. The 1LP
MILC-Dslash kernel is as follows:

1 queue.parallel_for(nd_range<1>{global_size,
local_size}, [=](nd_item<1> item) {↪→

2 int global_id = item.get_global_id(0);
3 int s = global_id;
4 for (int l = 0; l < nmat; l++) {
5 for (int k = 0; k < ndim; k++) {
6 // do some calculations
7 for (int i = 0; i < nrow; i++) {
8 for (int j = 0; j < ncol; j++) {
9 // do some calculations

10 }
11 // do some calculations
12 }
13 }
14 }
15 });

B. Two-loop Parallelism — 2LP
Two-loop Parallelism (2LP) increases the degree of

parallelism by partitioning the i rows in U l
k matrices

among the processing elements of the compute devices,
in addition to the target sites. By consequence, the total
number of work-items increases by a factor of 3, while
the amount of work done by each work-item is reduced
by the same factor, where 3 is the number of rows in U l

k

matrices. In other words, there are three work-items per
target site. That is, |l| × |k| rows — one row from each
of U l

k matrices — per work-item, totaling |l| × |k| × |j|
simple multiplication operations per work-item, as shown
in Fig. 2. The global size is given by the product of the

Fig. 2: Two-loop Parallelism: three work-items per target
site with |l| × |k| rows, one row from each of U l

k matrices,
per work-item. For illustrative purposes, we assume |l| = 2.

total number of target sites and the number of rows in U
matrices, that is L4

2 × |i|. The 2LP kernel is similar to the
previous one, except for lines 3 and 7 that are replaced,
respectively, by:

int s = global_id / nrow;
int i = global_id % nrow;

C. Three-loop Parallelism — 3LP
Three-loop Parallelism (3LP) consists of the parallel

decomposition of three for loop structures: target sites
s∗, matrix rows i, and Uk matrices. In this case, there

1108

are 12 work-items per target site — four times more
than the previous strategy — totaling |l| × |j| simple
multiplication operations per work-item — four times less
than the previous strategy, where four is the number of
Uk matrices (see Fig. 3). The global size is given by the

(a) k-major order

(b) i-major order

Fig. 3: Three-loop Parallelism: 12 work-items per target
site with |l| rows, one row from each of U l matrices,
per work-item. Two different ways to order the work-item
indices: k-major order and i-major order. For illustrative
purposes, only four work-items are shown in the schemat-
ics and we assume |l| = 2.

product of the total number of target sites, the number of
rows in U matrices, and the number of Uk matrices, that
is L4

2 × |i| × |k|. There are two different ways to order the
work-item indices in the parallel execution space: k-major
order, work-items grouped by k index; and i-major order,
work-items grouped by i index, as shown in Fig. 3.

Unlike the iteration-independent nature of the two
previous strategies, the current strategy exhibits a data
dependence carried by k-loop due to shared variable. For
each target site s∗ and matrix row i, their respective
four work-items, associate with the four k indices, might
require simultaneous access to update the same position
of the output vector C.

Three different parallel implementations of the MILC-
Dslash kernel are proposed to avoid a data race of shared
variables. The three pieces of codes presented below per-
tain to the k-major order (Fig. 3a) and declare a structure
data type named double_complex. This structure inter-
nally defines two doubles to represent complex numbers,
along with arithmetic functions designed for manipulating
complex numbers.

The first implementation (3LP-1) uses a local accessor
to allocate the shared variable c in the device’s local mem-

ory (line 2), and calls a barrier function to synchronize the
work-items within the same work-group (line 17):

1 queue.submit([&](handler &h) {
2 auto c = local_accessor<double_complex,

1>(local_size, h);↪→

3 h.parallel_for(nd_range<1>{global_size,
local_size}, [=](nd_item<1> item) {↪→

4 int global_id = item.get_global_id(0);
5 int local_id = item.get_local_id(0);
6 int s = global_id / (ndim * nrow);
7 int i = global_id % nrow;
8 int k = (global_id / nrow) % ndim;
9 c[local_id] = {0.0,0.0};

10 for (int l = 0; l < nmat; l++) {
11 // do some calculations
12 for (int j = 0; j < ncol; j++) {
13 // do some calculations
14 }
15 // update c[local_id]
16 }
17 group_barrier(item.get_group());
18 if (k == 0)
19 // update C(i,s)
20 });
21 });

For more details of the first implementation in k-major
order, the reader is referred to [4, Sections II-B].

The second parallel implementation (3LP-2) also uses
local accessor to allocate the shared variable c in the work-
group local memory, but uses atomic memory operations
to update the output vector C (line 5) at the end of the
code, i.e. it replaces lines 17–19 of the first implementation
by:

1 if (k == 0)
2 // initialize C(i,s)
3 group_barrier(item.get_group());
4

5 atomic_ref<double, memory_order::relaxed,
memory_scope::work_group,
access::address_space::global_space>
c_atomic(C(i,s));

↪→

↪→

↪→

6 c_atomic += c[local_id];

Finally, the third implementation (3LP-3) uses atomic
operations instead of using local accessor (line 9):

1 queue.parallel_for(nd_range<1>{global_size,
local_size}, [=](nd_item<1> item) {↪→

2 int global_id = item.get_global_id(0);
3 int s = global_id / (ndim * nrow);
4 int i = global_id % nrow;
5 int k = (global_id / nrow) % ndim;
6 if (k == 0)
7 // initialize C(i,s)
8 group_barrier(item.get_group());

1109

9 atomic_ref<double, memory_order::relaxed,
memory_scope::work_group,
access::address_space::global_space>
c(C(i,s));

↪→

↪→

↪→

10 for (int l = 0; l < nmat; l++) {
11 // do some calculations
12 for (int j = 0; j < ncol; j++) {
13 // do some calculations
14 }
15 // update atomic variable c
16 }
17 });

For the correct computation of C, whose partial sums
are temporarily stored in the shared variable c, the size
of c, and consequently the local size, must be a multiple
of |i| × |k| = 3 × 4 = 12 for k-major order, and |k| = 4
for i-major order. In addition, the remainder of global size
upon division by local size must be zero.

The i-major order version (Fig. 3b) of the three parallel
implementations differs from the k-major order (Fig. 3a)
previously described in this section mainly in the declara-
tion of i and k indices:

int i = (global_id / ndim) % nrow;
int k = global_id % ndim;

D. Four-loop Parallelism — 4LP
The highest amount of parallelism is achieved by adding

the l-loop decomposition to the 3LP strategy, such that
the number of work-items per target site is multiplied by
|l|, and the amount of work per work-item is divided by
|l|. There are two main approaches to fully parallelize the
MILC-Dslash kernel. They differ in the way the work-
item indices are oriented in the parallel execution space. In
the first implementation (4LP-1), the work-items are first
grouped by l index, followed by k index, in the k-major
order (Fig. 5a), or i index, in the i-major order (Fig. 5b).
The piece of code below refers to the MILC-Dslash kernel
of Fig. 5a:

1 queue.submit([&](handler &h) {
2 auto c = local_accessor<double_complex,

1>(local_size, h);↪→

3 h.parallel_for(nd_range<1>{global_size,
local_size}, [=](nd_item<1> item) {↪→

4 int global_id = item.get_global_id(0);
5 int local_id = item.get_local_id(0);
6 int s = global_id / (ndim * nrow * nmat);
7 int i = global_id % nrow;
8 int k = (global_id / nrow) % ndim;
9 int l = (global_id / (ndim * nrow)) %

nmat;↪→

10 if (l == 0)
11 // do some calculations
12 else if (l == 1)
13 // do some calculations

14 ...
15 for (int j = 0; j < ncol; j++) {
16 // do some calculations
17 }
18 // update c[local_id]
19 group_barrier(item.get_group());
20 if (l == 0)
21 // update c[local_id]
22 group_barrier(item.get_group());
23 if (l == 0 && k == 0)
24 // update C(i,s)
25 });
26 });

The kernel code of Fig. 5b is similar to the previous one,
except for lines 7 and 8 that are replaced, respectively, by:

int i = (global_id / ndim) % nrow;
int k = global_id % ndim;

In the second implementation (4LP-2), the work-items are
first grouped by k index, followed by l index, in the l-major
order (Fig. 4a), or i index, in the i-major order (Fig. 4b).
The main differences between the codebases of Figs. 4a
and 5a concern the k and l declarations:

int k = (global_id / (nmat * nrow)) % ndim;
int l = (global_id / nrow) % nmat;

On the other hand, the codebases of Figs. 4a and 5b differs
in the i, k, and l declarations:

int i = (global_id / nmat) % nrow;
int k = (global_id / (nmat * nrow)) % ndim;
int l = global_id % nmat;

Both implementations contain two synchronization bar-
riers to prevent data race of the shared variable c due
to data dependence carried by k- and l-loops. Since the
control flow diverges with U l matrices, all warp threads
take the path through the conditional branches (lines 10–
14), one branch at a time, with a fraction of the warp
threads masked off during the execution of the instructions
within each branch. By following the same reasoning as
in the 3LP strategy, the local size must be a multiple of
|i|×|k|×|l| = 3×4×4 = 48 for all cases, and the remainder
of the division of global size by local size must be zero. The
global size is given by the product of the total number of
target sites, the number of rows in U matrices, and the
number of Uk and U l matrices, that is L4

2 × |i| × |k| × |l|.
IV. Performance Analysis

This section focuses on analyzing the impact of the
different parallel strategies, work-item index orders, and
local sizes on the performance of the MILC-Dslash kernel
on an NVIDIA A100 GPU.
A. Computational Environment

The experiments were conducted on a single NVIDIA
A100 GPU available on the Perlmutter (PM) supercom-
puter at the National Energy Research Scientific Com-
puting Center (NERSC) located at Lawrence Berkeley

1110

(a) k-major order

(b) i-major order

Fig. 4: Four-loop Parallelism: |i| × |k| × |l| work-items per
target site with one row per work-item. Two different ways
to order the work-item indices: k-major order and i-major
order. For illustrative purposes, only seven work-items are
shown in the schematics and we assume |l| = 2.

(a) l-major order

(b) i-major order

Fig. 5: As Fig. 4, but for two other ways to order the work-
item indices in the parallel execution space: l-major order
and i-major order.

National Laboratory. NVIDIA A100 GPU is equipped
with 40 GB of global memory and a 40 MB L2 cache for the
entire GPU, along with 108 compute units. Each compute
unit has 192 KB of shared L1 cache and local memory,
with a maximum of 2,048 processing elements and 65,536
registers. It accommodates work-group sizes of up to 1,024
work-items, organized into warps of 32 work-items each.

The SYCL MILC-Dslash implementations were com-
piled using Intel oneAPI DPC++/C++ compiler 2024.1.0,
with the optimization flag (-O3) enabled, and NVIDIA
driver version 525.105.17. The version of the SYCLo-
matic tool was the release of October 16, 2023, avail-
able at https://github.com/oneapi-src/SYCLomatic; and
the SyclCPLX library was based on commit 32684c7
from August 4, 2023, available at https://github.com/
argonne-lcf/SyclCPLX. The CUDA implementation was
compiled with CUDA 12.2 with the optimization flag (-O3)
also enabled.

B. Parameters and Methodology
The performance analysis is carried out by evaluating

the execution time of the SYCL MILC-Dslash kernel
on a single NVIDIA A100 GPU. The mean kernel run-
time is determined from a sample of 10 runs using the
clock_gettime() function with the CLOCK_MONOTONIC
option; each run comprises 100 kernel iterations and 1
warmup iteration. The monotonic clock guarantees that
the runtime values provided can only increase over the

course of its operation. A double-precision floating-point
arithmetic has been employed to represent the complex
matrices. The theoretical value of 600.8 million floating-
point operations (FLOP) was adopted to compute perfor-
mance in terms of FLOP/s.

The local sizes or work-group sizes have been defined
to adhere not only to the parallel strategy constraints
outlined in Section III but also to device constraints,
that includes: not exceeding the maximum limit of 1,024
work-items per work-group, and being a multiple of warp
size. For instance, the local sizes of 3LP-1, 3LP-2, 3LP-3,
4LP-1, 4LP-2 in k-major order that follow all established
restrictions are: 96, 192, 384, and 768.

The Nsight Compute profiling tool [11] was used to
provide additional information regarding the performance
differences between parallel strategies and work-item index
orders for the MILC-Dslash kernel on an NVIDIA A100
GPU, with a local size of 768 (256 for 1LP).

C. 3LP-1 versions

Given that 3LP-1 will end up being the best parallel
strategy, as we will see in the next section, five additional
implementations have come from minor changes in the
original 3LP-1 version described in Section III-C:

1) The double_complex data structure, which is de-
fined internally to represent complex numbers,
is replaced by the SYCL complex library [6,

1111

SyclCPLX], which means among other things that
line 2 is rewritten as follows:

auto c = local_accessor<
sycl::ext::cplx::complex<double>,
1>(local_size, h);

↪→

↪→

2) A CUDA version was posteriorly developed to com-
pare the CUDA and SYCL performances.

3) The CUDA version is compiled with the maximum
number of registers per thread (–maxrregcount) set
to 64.

4) A version provided by the SYCLomatic tool [7] [8]
to migrate MILC-Dslash kernel automatically from
CUDA to SYCL.

5) The SYCLomatic version after simplifying the ex-
pression to identify the work-item’s global index.
The expression in the original SYCLomatic version
is given by:

int global_id = item.get_local_range(2) *
item.get_group(2) +
item.get_local_id(2);

↪→

↪→

It has been replaced with a call to the
get_global_id() function:

int global_id = item.get_global_id(2);

D. Results
Fig. 6 shows the performance in terms of GFLOP/s

achieved by the multiple SYCL implementations of MILC-
Dslash on a single NVIDIA A100 GPU. For better data
visualization and comprehension, y-axis is divided into two
different scales that share the same x-axis. Each parallel
strategy comprises its two respective work-item index
orders, identified by filled and empty markers, except for
1LP and 2LP, which have only one work-item index order.
Each color and marker represents a specific local size or
work-group size, as shown by the legend on the right.
Gray shaded area highlights the five additional 3LP-1
implementations. QUDA’s staggered_dslash_test (gray
horizontal dashed line) is plotted as a benchmark reference
value (633.7 GFLOP/s). Furthermore, the profiling analy-
sis using the Nsight Compute tool is presented in Table I.

1) Overview: According to Fig. 6, the performance
(GFLOP/s) increases as the degree of parallelism increases
from 1LP to 3LP-1, and thereafter it gradually decreases
for 3LP-3, 3LP-2, 4LP-1, and 4LP-2. Table I shows that
increasing the number of work-items from L4

2 in 1LP to
|i|×|k|× L4

2 in 3LP-1 (row 2), along with the local memory
usage by 3LP-1 (row 9), led to better utilization of GPU
compute resources (row 3), with higher device occupancy
(row 4), lower L1 cache miss rate (row 7), and fewer L1 tag
requests by global memory (row 10). Consequently, 3LP-1
improved performance by approximately 2 times com-
pared to 1LP. Given that the MILC-Dslash performance

is bounded by memory bandwidth, this represents about
8% of the empirical peak performance of 7.6 TFLOP/s on
A100 for 3LP-1, in contrast to just 4% for 1LP (row 5).

2) 3LP: Although 3LP-1, 3LP-2 and 3LP-3 share the
same global size, they deal with the race condition in
slightly different manners, leading to differences in perfor-
mance. The 3LP-1 implementation uses work-group local
memory for a collective update after a group wide barrier,
while 3LP-2 atomically updates the shared variable, keep-
ing everything else the same. Meanwhile, 3LP-3 does not
use local memory at all and instead atomically updates a
global variable. Despite the larger number of shared mem-
ory1 bank conflicts (row 12), 3LP-1 outperforms the other
two strategies due to the absence of atomic operations,
which allows the GPU’s latency-hiding nature to domi-
nate. On the other hand, 3LP-2 and 3LP-3 have hundreds
of work-items within the same work-group competing for
an atomic region, which may result in a performance
decrease of up to 8.4% and 7.4%, respectively. The peak
performance is observed with the 3LP-1 strategy in its
different variations: SYCL, SyclCPLX, SYCLomatic
optimized, and CUDA, with particular emphasis on the
last two versions, as will be explained in Section IV-D6.

3) QUDA: The QUDA library (1.1.0) [9] has been
used for large scale lattice QCD applications running on
NVIDIA GPUs. It has recently been extended to include
support for HIP and SYCL in addition to CUDA. QUDA
contains many advanced features including autotuning,
compression of gauge fields (reducing required memory
bandwidth), and mixed precision solvers, to name a few.
The MILC-Dslash code using QUDA library was adopted
here as a reference value for comparison with the par-
allel strategies proposed in this paper. The benchmark
we use for comparison, staggered_dslash_test, does
not include QUDA’s gauge compression options as that
is not a current feature of our SYCL implementation.
If we run staggered_dslash_test without compression
(option recon 18) the speed is 634 GFLOP/s. Using recon
12 and 9, the speed is 728 GFLOP/s and 825 GFLOP/s,
respectively. As we can see in Fig. 6, all variations of the
3LP-1 strategy outperform the QUDA version without
compression (gray horizontal dashed line), with a maxi-
mum improvement of 10.2%.

4) 3LP-1 CUDA: SYCLomatic optimized and CUDA
baseline achieved equivalent performances. Moreover, a
performance improvement of up to 3.6% after CUDA
compiler optimization for register allocation reveals the
importance of preventing the CUDA compiler from al-
locating either too many or too few registers. Beyond
the results presented in Fig. 6, Dufek et al. [4] com-
pared the 3LP-1 performance in k-major order ported to
three parallel programming models: SYCL, CUDA, and

1Both local memory and shared memory are terms used to refer
to data storage specific to a work-group.

1112

Fig. 6: Performance in terms of GFLOP/s achieved by the multiple SYCL implementations of MILC-Dslash on a
single NVIDIA A100 GPU. For better data visualization and comprehension, y-axis is divided into two different scales
that share the same x-axis. Each parallel strategy comprises its two respective work-item index orders, identified by
filled and empty markers, except for 1LP and 2LP, which have only one work-item index order. Each color and marker
represents a specific local size, as shown by the legend on the right. Gray shaded area highlights the five additional
3LP-1 implementations. QUDA’s staggered_dslash_test (gray horizontal dashed line) is plotted as a benchmark
reference value (633.7 GFLOP/s).

Kokkos, when running on GPU devices from two different
vendors (NVIDIA and Intel). SYCL, CUDA, and Kokkos
performed similarly on both devices.

5) 3LP-1 SyclCPLX: The SyclCPLX version re-
ports positive and negative performance differences below
3% with 3LP-1, and these results may vary with system
updates over time and across different systems and com-
pilers, making them non-generalizable.

6) 3LP-1 SYCLomatic: In addition to the straight-
forward use of the SYCLomatic tool, it is worth noting
that its optimized version exhibits a better performance
than 3LP-1 for all local sizes. For instance, its perfor-
mance value is 6.1% superior to that obtained by 3LP-1
when set up with a local size of 768 and k-major or-
der. Unlike the default out-of-order queue in 3LP-1, the

SYCLomatic tool explicitly creates an in-order SYCL
queue, explaining the performance advantages ranging
from 1.5% to 6.7% in favor of the SYCLomatic optimized
version. A similar performance gain is obtained by non-
optimized CUDA, where the CUDA stream also follows
in-order semantics. These results indicate that out-of-
order semantics might lead to performance loss attributed
to scheduling overheads involved in managing multiple
tasks and their dependencies, particularly when there is
no opportunity for overlapping tasks [12]. The differences
in execution times of the SYCLomatic version before
and after optimization emphasize the importance of using
the direct primary work-item indexing function to obtain
information about the parallel index space, instead of
deriving it from a combination of other functions, when-
ever possible. Otherwise, performance may be 10.0–12.2%

1113

TABLE I: Profile information collected using the Nsight Compute tool for a single execution of the MILC-Dslash kernel
(specifically, the second kernel launch) on NVIDIA A100 GPU, using a local size of 768 for all parallel strategies and
work-item index orders, except for 1LP, which used 256. The exact metric names corresponding to rows 10, 11, and
12 are, respectively: memory_l1_tag_requests_global, memory_l1_wavefronts_shared, and the difference between
memory_l1_wavefronts_shared and memory_l1_wavefronts_shared_ideal.

Description 1LP 2LP 3LP-1 3LP-2 3LP-3 4LP-1 4LP-2

k i k i k i k i l i

1 - Duration (µs) 1821.3 1078.6 929.2 912.9 971.5 996.4 981.3 988.6 1187.3 1287.8 1353.5 1463.8
2 - Work-items (global size) 0.5M 1.6M 6.3M 6.3M 6.3M 6.3M 6.3M 6.3M 25.2M 25.2M 25.2M 25.2M
3 - Compute (SM) throughput (%) 4.4 11.0 12.7 12.9 10.8 11.2 10.2 10.6 30.6 27.9 34.2 27.9
4 - Achieved occupancy (%) 47.6 72.7 74.0 73.7 70.3 70.7 66.3 66.5 72.0 72.2 72.3 72.4
5 - Peak performance (%) 4 7 8 8 8 7 7 7 6 5 5 5
6 - L1/TEX cache throughput (%) 55.5 60.4 59.1 76.7 56.6 69.2 59.0 73.3 66.6 77.9 72.5 82.5
7 - L1/TEX miss rate (%) 37.4 31.9 26.9 25.4 28.7 26.3 32.6 30.7 24.0 23.0 23.5 22.9
8 - L2 miss rate (%) 31.2 38.6 51.1 49.8 47.1 47.3 42.5 41.9 56.9 57.5 56.3 57.2
9 - Dynamic shared memory per 0 0 12.3 12.3 12.3 12.3 0 0 12.3 12.3 12.3 12.3work-group (Kbyte/work-group)
10 - L1 tag requests global (sectors) 190M 121M 86M 101M 87M 101M 89M 103M 120M 140M 123M 124M
11 - L1 wavefronts shared (sectors) 0 0 4.7M 7.9M 1.6M 1.6M 0 0 21.0M 25.2M 26.2M 46.1M
12 - Excessive L1 wavefronts 0 0 2.4M 5.5M 0.8M 0.8M 0 0 8.4M 12.6M 11.0M 30.9Mshared (sectors)
13 - Avg. divergent branches 0 0 0 0 0 0 0 0 5,461 5,461 7,281 7,281

less efficient. It may suggest that the mapping of work-
item indices to data varies with the indexing functions
employed, resulting in a more localized memory access
pattern in the first case. Three other SYCLomatic ver-
sions were also examined: (i) one-dimensional instead of
three-dimensional parallel index space, (ii) pass an explicit
local memory fence argument to the barrier function
(sycl::access::fence_space::local_space), and (iii)
removal code processing error codes (DPCT_CHECK_ERROR
and CUCHECK), but they do not affect performance.

7) Work-item index order: Let the U matrices be or-
ganized as |l| arrays of |i| × |j| double-precision complex
matrices, each array with a size of L4 × |k|. For a GPU
cache line of 128 bytes, k- and i-major orders (Figs. 3
and 4) can merge requests from five and two consecutive
work-items to the same cache line, respectively. In the
former, all data in the cache line is utilized, while in the
latter, 10 out of 16 8-byte words may remain unused. This
results in a higher degree of memory coalescing and fewer
memory transactions for k-major order, with a constant
gap of two 8-byte words between two adjacent work-items,
as opposed to eight for i major order. Although k-major
order outperforms i-major order in 31 out of 36 cases,
the performance differences are below 3% for most cases,
except for 4LP-1, where the values range from 7.2% to
8.5%. As we can see in Table I (row 10), k-major order
shows significant fewer L1 tag requests by global memory
compared to i-major order, indicating better data locality
that results in more coalesced memory accesses. Addition-
ally, the number of excessive wavefronts in L1 from shared
memory points to a higher number of bank conflicts in
the shared memory when using the i-major order for both

3LP-1 and 4LP-1 (row 12). The l- and i-major orders
relative to 4LP-2 will be discussed in Section IV-D8 below.

8) 4LP: Although 4LP presents greater concurrency
than 3LP, it does not translate into higher performance.
A quick look at Table I reveals large numbers of shared
memory bank conflicts (row 12) and L1 tag requests (row
10), suggesting poor memory coalescing. Regardless of the
better performance of k- and l-major orders, the overall
metrics still indicate suboptimal resource utilization com-
pared to 3LP. Another important factor that negatively
impacts the parallel efficiency of 4LP is the large number of
divergent branches (row 13). This results in only |i|×|k| =
12 work-items in a 32-wide warp being active at any given
time, concurrently executing the same SIMD instructions,
while the remaining work-items and associated computing
resources are in an idle state. Besides the aforementioned
reasons, the 4LP strategy is generally unsuitable for the
MILC-Dslash benchmark because it requires two synchro-
nization barriers, a large number of work-items launched,
and consequently, the creation of many warps. Since each
warp takes a long time to complete due to increased
bank conflicts and divergence, warp stalling occurs, thus
reducing the opportunities for the GPU to exploit its
latency-hiding capabilities. For instance, 4LP-1 shows a
performance decline of 13.2–29.0% compared to 3LP-1,
and it is almost equivalent to 2LP (Fig. 6). Unlike 4LP-1
with 12 consecutive active work-items (Fig. 4), the dis-
tribution of the 12 active work-items in 4LP-2 (Fig. 5)
is intercalated with inactive work-items. In the case of
l-major order, it alternates between a sequence of three
active work-items and three inactive work-items, while
i-major order alternates between one active work-item and

1114

one inactive work-item. By consequence, l-major order
outperforms i-major order by 8.2–11.0% for all local sizes
in 4LP-2. It can further be observed in Fig. 6 that the 4LP
performance degrades as the cluster size of active work-
items within a warp decreases, with 4LP-2 in i-major order
even underperforming 2LP by 3.9–26.3% in 3 out of 4 local
sizes. The optimal work-item index order (Fig. 4a) can
lead to performance improvements of 16.3–23.4% over the
worst-performing one (Fig. 5b). The findings indicate that
optimizing GPU execution performance involves maximiz-
ing not only the number of active work-items per warp but
also the sequence of successive active work-items, thereby
reducing branch divergence and increasing cache reuse.

9) Local size: Fig. 6 reveals that performance exhibits
minimal variance with local size, albeit with a higher local
size variability for 2LP. There is no unanimous consensus
regarding the optimal local size across all SYCL imple-
mentations. However, the peak performance was obtained
when configuring 3LP-1 in its different variations (SYCL,
SyclCPLX, SYCLomatic, and CUDA) with a local size
of 768. The performance differences between the optimal
and suboptimal local sizes can vary from 1.6% to 34.2%,
depending on the parallel strategy and work-item index
order.

It is worth mentioning that the above-mentioned results
are subject to changes based on the architecture and the
choice of the following parameters: number of sites (L),
matrix size (i and j), and number of matrices (k and l).

V. Conclusion
This study has explored the performance of different

parallel strategies in the MILC-Dslash benchmark on a
GPU using SYCL. Some specific features that emerge
from these parallel strategies include atomic memory
operations, shared variables, divergent instructions, syn-
chronization barrier, and dependencies between iterations.
Additionally, we evaluated the SYCL complex library
(SyclCPLX) and the SYCLomatic conversion tool.

The SyclCPLX library has demonstrated its efficacy
in simplifying coding. Similarly, the SYCLomatic tool
has been acknowledged for its effectiveness in the present
case. However, ongoing efforts towards code optimization
are essential to address any inefficiencies and maximize its
utility.

The comparative analysis of SYCLomatic perfor-
mance before and after optimization underscores the sig-
nificance of specific adjustments. For instance, employ-
ing the direct primary work-item indexing function in
SYCLomatic was an important step in improving ef-
ficiency, otherwise incurring a penalty of approximately
12%. Our results illuminate the impact of such modifi-
cation on overall performance, emphasizing the need for
strategic code alterations.

Furthermore, an examination of the 3LP strategy shows
that non-atomic memory operations, an in-order queue

approach, and optimal work-item index order and local
size setup collectively yield a performance improvement of
about 15%. The peak performance is achieved by 3LP-1,
which provide a 2x speedup over 1LP and a 10% improve-
ment compared to the QUDA benchmark reference, thanks
to enhanced parallelism and the use of work-group local
memory.

The analysis of the 4LP strategy highlights some impor-
tant lessons. It is often assumed that higher concurrency
yields better performance. However, this study suggests
that better utilization of GPU resources can be achieved
even at the expense of concurrency. The benchmark under
consideration is memory-bound and therefore did not ben-
efit from the increased concurrency provided by 4LP. In-
stead, this approach led to suboptimal utilization of GPU’s
memory hierarchy and required frequent synchronizations
and branching, which resulted in warp stalling.

In summary, our investigation sheds light on effective
parallel strategies for the MILC-Dslash kernel, including
also the use of a complex numbers library (SyclCPLX)
and an automatic code conversion tool from NVIDIA
CUDA to SYCL (SYCLomatic). The findings could
contribute valuable insights into optimize not only parallel
computing applications in general but also the QUDA
library, which is widely used for lattice QCD applica-
tions in production environments, offering guidance for
researchers and developers in their pursuit of more efficient
implementations. As the ecosystem of massively parallel
programming languages continues to evolve, ongoing re-
finement and optimization of parallel strategies, tools and
libraries are crucial for maximizing performance in diverse
applications.

Acknowledgment

This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility lo-
cated at Lawrence Berkeley National Laboratory, operated
under Contract No. DE-AC02-05CH11231.

References

[1] “MILC code for lattice QCD calculations,” 2024. [Online].
Available: https://github.com/milc-qcd/milc_qcd

[2] F. Gross et al., “50 Years of Quantum Chromodynamics,” Eur.
Phys. J. C, vol. 83, p. 1125, 2023.

[3] B. Joó and F. T. W. Robert G. Edwards, “Lattice quantum
chromodynamics and chroma,” in Exascale Scientific Applica-
tions: Scalability and Performance Portability, T. J. W. Tjerk
P. Straatsma, Katerina B. Antypas, Ed. New York: Chapman
and Hall/CRC, 2017.

[4] A. S. Dufek, R. Gayatri, N. Mehta, D. Doerfler, B. Cook,
Y. Ghadar, and C. DeTar, “Case study of using kokkos and
sycl as performance-portable frameworks for milc-dslash bench-
mark on nvidia, amd and intel gpus,” in 2021 International
Workshop on Performance, Portability and Productivity in HPC
(P3HPC), 2021, pp. 57–67.

[5] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Penny-
cook, and X. Tian, Data Parallel C++: Programming Acceler-
ated Systems Using C++ and SYCL. Apress, 2023.

1115

[6] T. Applencourt, B. Videau, J. Le Quellec, A. Dufek, K. Harms,
N. Liber, B. Allen, and A. Belton-Schure, “Standardizing com-
plex numbers in sycl,” in Proceedings of the 2023 International
Workshop on OpenCL (IWOCL), 2023.

[7] Intel Corporation, “SYCLomatic Documentation,” 2024.
[Online]. Available: https://oneapi-src.github.io/SYCLomatic

[8] ——, “SYCLomatic: A New CUDA-to-SYCL Code
Migration Tool,” 2024. [Online]. Available: https://www.
intel.com/content/www/us/en/developer/articles/technical/
syclomatic-new-cuda-to-sycl-code-migration-tool.html

[9] M. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi,
“Solving lattice qcd systems of equations using mixed precision
solvers on gpus,” Computer Physics Communications, vol. 181,
no. 9, pp. 1517–1528, 2010.

[10] “Quda library for performing calculations in lattice qcd on
gpus,” 2024. [Online]. Available: https://github.com/lattice/
quda

[11] “NVIDIA Nsight Compute Profiling Tool,” 2024. [Online]. Avail-
able: https://docs.nvidia.com/nsight-compute/NsightCompute

[12] L. Crisci, L. Carpentieri, P. Thoman, A. Alpay, V. Heuveline,
and B. Cosenza, “Sycl-bench 2020: Benchmarking sycl 2020 on
amd, intel, and nvidia gpus,” in Proceedings of the 12th Interna-
tional Workshop on OpenCL and SYCL, ser. IWOCL ’24. New
York, NY, USA: Association for Computing Machinery, 2024.

1116

