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In its simplest realization, the joint formed between the féoy the ligaments and cartilage. As a result, the representa-

mur and tibia features a pair of constraints on the relativéion enables clearer clinical descriptions of the kinetafs

rotation and translation of the two bones. Dating to the senthe knee joint, is useful in defining stiffness matricestier t

inal work by Grood and Suntay], parameterizations of the joint, and has application to helping design of total knee re

kinematics of the knee joint which accommodate these cqiacements.

straints are well-known and are easy to comprehend from a

clinical perspective. The purpose of the present paper is to

provide an equally transparent representation of the fercel Introduction

and moments at the knee joint. This new representation en- Motivated by anterior cruciate ligament (ACL) injuries

ables a clear distinction of the constraint forces and motsierand the 400,000 ACL reconstructions that are performed in

acting at the knee joint from the forces and moments supplittte US each year, there is a need to characterize the stiff-
nesses of the knee joint. This characterization can hadyeful
provide one measure of a patient's susceptibility to ACL

*Corresponding author.



injury and a post-operative metric of the ACL reconstrucyoint” translations and “clinical” translations. In adin,
tion. These stiffness, which relate the kinematics andtkinghe bases: andz are used to define a set of dual basis vec-
ics of the joint can also play a role in designing total kne®rs, {a',a? a*} and {g',g? g®}, respectively. The latter
replacements and could play a role in understanding posets provide transparent representations for forces and mo
operative complications, such as osteoarthritis, in ACL renents. In particular, the contact force and contact moment

constructions. that prevent the condyles from passing through the tibial
As can be partially appreciated from Figukethe mo- plateau act in the® andg? directions, respectively.
tion of the tibia relative to the femur is governed by theatrti An outline of this paper is as follows. In Secti@nl,

ular geometry of the knee joint which, in turn, places restri we discuss a range of frames associated with describing the

tions on possible motions. A good coordinate system is onglative motion of the tibia and femur. The background as-

which accommodates these restrictions and also providgsnbled in Sectio2.1 is applied to the specification of a

easy descriptions of clinical motions. These six motiornsordinate system for the knee joint in Sect®d. Related

include three rotations, extension-flexion rotation, garudevelopments for forces and moments are collected in Sec-

valgus rotation, and internal-external rotation, and ehreion 3.2, and clinical examples feature kinematics and kinet-

translations, compression-distraction, lateral-metéisla- ics are discussed in Secti@4. Due to its prevalence in

tion, and anterior-posterior translatibnSeminal work by studies on joint kinematics, we also discuss the Jacobian as

Grood and Suntayl] provided the first coordinate systemsociated with infinitesimal motions of the joint in Section

for the three-dimensional motions of the knee joint. Thes®5. The paper closes in Sectidwith several comments on

authors used a 1-2-3 set of Euler angles to describe the optimization schemes that are used to determine joint axes

tational motion and used the axes associated with the theged a brief discussion on stiffness matrices.

individual rotations of the Euler angles to describe a set of For convenience, the paper has three appendices which

joint translations. We denote these axeq 8y, 92,03} inthe  present explicit details on several matrices and vectas th

sequel. feature prominently in the paper. We also refer the inter-
After a period, Grood and Suntay’s parameterizationssted reader ta3f-5] for additional background on the dual

of the kinematics of the knee joint became well-accepteguler basis and its applications to conservative momerts an

However, the corresponding developments for the kinetiggnstraint moments. The dual Euler basis is also related to

were not immediately forthcoming. A primary difficulty in the dual basis used in the screw motion descriptions of rigid

finding clinically relevant descriptions for the forces and-  body motions in ¢, 7].

ments at the knee joint can be traced to the geometry of the

joint and the fact that the axes of rotation for the two of the

Euler angles are not orthogonak f gs. Progress towards 2 Methods

a useful repreﬁentatlon of the fqr<_:es and momen_ts was mazdf Coordinate Systems and Frames

in 1996 by Fujie et al.4]. Examining the paper] in light | Ivsis of ioints. it is standard t lov th i

of the works B—7] on dual basis vectors, we find that Fujie N analysis ot JoInts, 1t IS standard o émploy three co

et al. P] used, what is now known as, the dual Euler baSl%rdmate frameslL, P, D. The first of these frames, which

{ 1.9 3} to find one set of representations for these forces often known as a laboratory frame, is an inertial refeeenc
agd’?né?nents P frame which is associated with a fixed po@t The second

o . . frame, is attached at a poi@p to the proximal anatomical
The insights found in3-7] on dual basis vectors and the egment and corotates with this body. Correspondingly, the

role they play in the description of moments associated wifn. . . .
rotations enables us to establish transparent represesat. Ird frame is attached at a poifl to the distal anatom-

for the forces and moments at the knee joint. SpeciﬁcallICaI segment and corotates with the distal segment. The 4

we follow [1] and use a set of 1-2-3 Euler angles to parameéz@)mponents of these respective frames are denoted by

terize the rotation of the tibia relative to femur. This aw®i

prescribes the set of unit vectors= {g1,92,93}. We then L ={O,E1,E2,E3}, P={Op,p1,p2,P3}.
choose a related set of vectots= {aj,az,a3} to help pa-

rameterize the translational motion. Our choice leads to a

transparent description of the tibial translations andiss d

tinct from the two sets of vectors used ifi] to describe D = {Op, d1,da,ds} L

1 While the knee joint consists of the tibiofemoral articidatand the Here, {E1,E2,E3}, {p1.p2,p3}, and{d1,d>,d3} are right-
patellofemoral articulation, for the purposes of the pnegmper, attention handed set of orthonormal vectors.
will be focused on the former.
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Fig. 1. Schematic of the right knee joint showing the proximal and distal frames of the femur and tibia, respectively, and a) the bases vectors
{al, ay, a3} associated with translational motions of the knee joint and b) the bases vectors {gl, 02, g3} associated with rotational motions
of this joint. The axes are drawn to intersect in the interests of clarity.

Of particular interest is the rotation of the distal anatonangle is restricted. For the 1-2-3 set of Euler angles which
ical segmengp with respect to the proximal anatomical segfeature in the sequel
mentsp. The rotation can be characterized by a rotation ma-
trix R:

T T
0<(55) 2
dy Rt RizRiz| [ p1
d2| = |Ra1R2Re3| [ p2 |- (2)
ds Rs1 Rs2 Raz | | pa For each of the 12 sets, the three vect@s g2,9s} form a

fourth set of basis vectors which is known as the Euler basis.
This set of basis vectors is not orthogonal (nor is it neces-
Here,Ry are the components &. We also use the compactsyyily right-handed). Howevegp is always perpendicular to

notation the plane formed byg; andgs.
A fifth set of basis vectors, which is known as the dual
dy = Rpk, (k=1,2,3). (3) (or recriprocal) Euler basiég*, g%, g3}, plays a key role in

this paper. Given a specific choice of Euler angles, one is
able to define the Euler bas{g)1,92,93}. The dual Euler

Inthe sequelR is parameterized by a set of Euler anglep s is then defined by the following 9 identities:
W, 6, andg. Thus,R is decomposed into the product of a ro-

tation about a unit vectog; followed by a rotatior® about

a unit vectorg and, finally, a rotationp about a unitvector ;[ 1wheni =k i 1923Kk—123
g3. There are 12 possible sets of Euler angles, and, for eacl] "% Owheni #k [’ ((=1,23k=123).
set, the first and third angles range from 0 to Pepending (5)

on the specific set of Euler angles, the range of the secais known (see, e.g.8]) that the solutiong' to these equa-



tions can be represented as follows: 3 Results
3.1 A Coordinate System for the Knee Joint
. 1 , 1 For the knee joint, we identify the proximal body with

9 =3 (2xg3s), O = g (93 x 01) = G2, the femur and the distal body with the tibia. We follod] |
and use a set of 1-2-3 Euler angles to describe the rotation
R of the tibia relative to the femur. For convenience, ex-
plicit details on the Euler and dual Euler basis vectors for

3 1 6 this choice of Euler angles are contained in Appendik A.

Ty (91 92). ©) Three Euler angles are identified with the three rota-

tional degrees of freedom of the knee joint:

g

whereg = (g1 x @2) - 93.2 As discussed in4, 5], the dual
Euler basis plays a key role in establishing transparent ex-
pressions for conservative moments and constraint moments varus-valgus rotation8yy = 6,
For instance, if one wishes the restrict the rotatjpabout internal-external rotation8g = ¢.
gs, then a constraint momemg? needs to be applied. This

moment has no components in teor g directions and so |t js well-accepted, see, for example9-L1], that the
does not affect these rotations. extension-flexion (EF) axis is fixed to the femur and passes
The final sets of basis vectors pertain to the translationgkough its lateral and medial epicondyles, the internal-
motion so a joint. We define a basfsy,a,as} which is  external rotation axis is fixed to the tibia and is paralletso
used to describe the clinical translations of the distalresy  |ongitudinal axis, and the varus-valgus rotation axis iato

extension-flexion rotationBgr = U,

relative the proximal segment: ing and is perpendicular to both the extension-flexion and
internal-external rotation axes.
u = utay + u?ay + Ulas. (7) Commensurate with the choice of Euler angles, the basis

{01,02,03} is defined, where the vectgi = p; is taken to
be aligned with the femur-fixed extension-flexion axis, and
the vectorgs = d3 is aligned with the tibia-fixed internal-
external rotation axis (see Figur2and3). A key feature of
these axes is that the angle subtended by théfmiinus the
varus-valgus rotation angyy (which is negative in Figure
8 3). The axisg, associated with the latter angle of rotation
h B (8) points along the varus-valgus axis, which is both paradiel t
w efa_ (albxr?z)ﬂ& [ disti . ith the tibial plateau and perpendicular to the line connedtieg
vectorb has severa Istinct representations with reg, points of contact between the femoral condyles and the
spect to the aforementioned bases. For example, tibial plateau
Unlike the rotational axes of the knee joint, there is
3 3 3 3 3 no universal agreement on the prescriptions for the axes of
_ _ _ _ Koy — k
b= Z BB = Z bpPk = Z b dk = Z bgk = Z g translation of the knee joini[12]. For example, Grood and
K=1 K=1 K=1 K=1 k=1 e i
9) Suptay_ ] use two sets of axes, one fqr joint translations,
The components are obtained by projecting the vestotto  Which is equivalent fo the set of rotation axggs. d2, s}
the appropriate basis vector. It is important to distinguis2d one for “clinical translations, which is equivalenthet
how one computes the components by projectimmto the dual of the rotation axefg*, g*,¢°} (see Sectiod.1below

appropriate set of basis vectors. For example, for further details). _ _ _
Here, we define a lateral-medial translation axis along

the line connecting the two points of contact between the
femoral condyles and tibial plateau, an anterior-posterio
translation axis fixed to the tibia and parallel to the atticu
One cannot expeds; = b'. Related remarks pertain to thesurface of the tibial plateau, and a compression-distacti
components ob alongak anda;.

This basis has a dual badia,a?,a®}. The dual basis vec-
tors are, following %) and @),

1

a 2

1 3
= — (& a
a( o X ag),

1
(agxa1), a

1
a 5 (A xa),

b-Ex = By, b-gt= b, b-g=hb. (10)

3In particular, expressions for, and graphical represiemisidf, the Euler
and dual Euler basis vectors for the 1-2-3 set of Euler argylepresented

2For the 1-2-3 set of Euler angles used later in this cog0).
9 Pgpercos() in (27) and in Figures.
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Fig. 2. Schematic of the transverse plane of the right knee joint. In the interests of clarity, the magnitudes of the vectors al and a2 have
been exaggerated. The lateral-medial (LM), varus-valgus (VV), and anterior-posterior (AP) axes are also shown.

axis perpendicular to both the lateral medial and anteriaelative to a point on the femur, we can write

posterior translation axes. A ba$i, a,az} is defined with

the help of the axes of translan.on (see Figzesd3). In d = d"May + dAPay + dPag, (13)
particular, we definey as a unit vector along the lateral-

medial axis,a; as a unit vector along the anterior-posterior

axis of the tibia, ands as a unit vector in the compression Ve take this opportunity to note that while tagandag are
distraction direction: perpendicular, the same cannot be saidafoanda,.Thus, a

pure displacement = da; along the lateral-medial direction
has scalar projections on both the lateral-mediabg = d)

am = a1 = cos(Byv) g, and anterior-posteriod( a; = —dsin(Bg )) axes.
aap = ap = cos(Bg ) g2 — sin(B ) cos(Byv) gt
acp = az = 0s. (11) 3.2 Representations of Forces and Moments

Itis possible to represent the forces and moments acting
on the knee joint using any of the seven sets of basis vectors
The presence of c@vy) in the definitions {1); 2 is due to  giscussed in SectioB.1 However the resulting represen-
the fact that the magnitude gf is seqByy) The setof dual tations are often inconvenient. For the forces and moments
vectors{a',a” a’} can be defined usin@|and (L1): acting on the knee joint, of particular interest here are the
representations

al = cos(Byv)g! +tan(Big) gz,
a? = sedBi) g2,
a3 = 03. (12)

F = Fia' + Fa® + Fea’,
M = Mig'+ Mag? + Mag®. (14)

The componentdl, are computed by projecting onto the
Explicit representations for these basis vectorsin terfitteo  Euler basis vectorsMy = M - gx. Expressing force vectors
basis vectors associated with the proximal and distal feamgnd moment vectors as linear combinations of contravariant
are presented ir8@). basis vectors and dual Euler basis vectors has a long and il-
Given a displacement vectar of a point on the tibia lustrious history. However, the basis vectors are often not
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Fig. 3. Schematic of the frontal plane of the right knee joint. In this figure By < 0, and the magnitudes of gl and g3 have been exaggerated
in the interests of clarity. The lateral-medial (LM), internal-external (IE), compression-distraction (CD), and anterior-posterior (AP) axes are

also shown.

explicitly mentioned in classical texts and this can ofterab

source of confusion.
With the help of 81) or, equivalently, by computing; -
Ok, the relationship between the componevifsandM' can

be found:

[se@(Byy) 0 — sin(Bvv) My

cog (Byy)
0 1 0 Mz |,
sin(Bvy)
_cosz(evvv) 0seé(Bvy) | LMs

1 OsinByy)] [M!
0 1 0 M?2
|sin(Byy) 0 1 M3

(15)

A key feature of these identities is the presencéaf. For
instance, ahyy| increases from 0, then the componeviis
andMs become increasingly distinct from! andM3. Some
examples of these relations are shown in Figure

In a similar manner, the componefis= F - a andF' =
F-a can be related with the help 032):

F1 se@(6|E) sedBie)tan(Big) O F
F2| = |sed@e)tanBe) sed(®e) Of [F|,
F3 0 0 1| | Fs

Fi 1 —sin6g)0] [F!
R = —Sil’l(e|E) 1 0 F2 (16)
Fs 0 0 1| |F3

It is interesting to note the role played by the angjle rep-
resenting internal-external rotation of the tibia in thesla-
tions: when the internal-external rotation is zero, thethbo
sets of basis vectors and components are identical.

We next consider the power of an applied moment acting
on the tibia. Assuming a fixed femur and given a relative
motion of the tibia which has an angular velocity then,
with the help of 85), the power of an applied momeit; =
Ma, 0% + Ma,g? + Ma,@® has a simple representation:

Ma- @ = Mg, O + Ma,Byv + Magbie. (17

The corresponding expression featuring the comporidfits
is far more complicated. Related remarks apply to an applied
forceF,.

3.3 Forces and Moments at the Condyles

A central feature of the knee joint are a pair of con-
tact forces exerted by the condyles which prevents the tib-
ial plateau from passing through them. These forces re-
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Fig. 4. Three representative examples of moments: M3gz, M1g! = My se@(Byv)g1 — M1seé(Byy)sin(Byy)gs, and T = Tlg; +
T3g3 = (Tl + Sin(e\/v)T3) gt+ (T3 + Sin(e\/V)Tl) g®. The different representations for the moments were obtained using (15).

strict varus-valgus rotatio,y and compression-distractionthat resists lateral translation in addition to a component
d°P. Referring to Figure8 and5, the resultant of the pair (—Faa?) that resists anterior translation.

of forces acts antiparallel to th& direction. The pair is Similarly, to test the soft tissue restraints against inter
equipollent to a resultant forde. and a resultant momentnal rotation, a clinician should apply an external moment in
M¢ acting at pointC: the g® direction. If instead, for example, a moméwigs is

applied, then the opposing joint reaction momentiags =
M1g* + M3g®) will have a component\l; = —Masin(8yy)
that resists flexion in addition to a componeMiz(= —Ma)
M¢ = pog? = Ty X Fe, + Tk X Fo,. (18) resisting internal rotation.

On the other hand, under an applied momdgp, only
a reaction moment in thg? direction is required to prevent
?/arus-valgus rotation, sinag = g is perpendicular to the
plane formed by the other basis vectors.

FC = l.l]_a3 = FC]_ + FC27

Here,m and o are the respective position vectors of th
condylesC; andC; relative toC. The forceF is an example
of a constraint (or normal) force, whiM ¢ is an example of
a constraint moment. The latter serves to prevent rotation

in the gz direction. As the relative translational motion in3.5 Infinitesimal Displacements and Rotations

the ag and relative rotational motion in thg directions are For the purposes of understanding incremental displace-
assumed to be zero when both condyles are in contact wifents and rotations of the knee joint, we now consider the
the tibia,Fc andM do no work. case where the knee joint has been given a finite displace-
ment and rotation and an infinitesimal motion is then super-
posed on this motion. The finite rigid body motion is defined

34 Clinical Forcgg qnd Mpments ) by the following displacements and angles:
Suppose a clinician wishes to test the soft tissue re-

straints against anterior translation by applying a fowe t

the tibia. This force should lie entirely in tha? direc-  dg™, di®, dSP, Bero, Bvvo, Bieo.

tion. Otherwise, i # 0, the internal joint reaction force (29)

will have components that resist motions other than anteribhe respective basis vectors associated with the given val-
translation. For example, if a clinician applies the exéérnues of the angles and displacements are distinguished using
force Faaz, then the opposing joint reaction forcefaa; =  subscript and superscript 0s.

Fasin(8jg Jal — Faa?) will have a componenfsin(6 )al) The incremental rotation of the tibia relative to the femur
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Fig. 5. The reaction forces F¢; and F¢, acting at the condyles shown in (a) are equipollent to a moment M¢ = T x F¢, + T x F¢, and

aforce Fe = pya® where [y = (Fe, + Fe,) - @z acting at the point C.

is defined by the vectd¥® and incremental displacement ofC). The Jacobian has an inverse

the tibia relative to the femur is defined by the vecbdr
These vectors have the respective representations:

3 .
0= 50'd? = 50ergl -+ 36vv ) + 561,
k=1

3
&d =y &aid = ad-Ma? -+ 8d"Fad + 8d“Pag
k=1
+d5Mday + dfP3ap + d§Psas. (20)

The incrementday, are computed with the help of 1), (27)
and B1). In addition, a Jacobiafcan be defined:

56t 00eF

562 d6vv .

563 | 98 | (Eq) 0
ody SdAP

ods3 3dcb

where the matriX is a function o®yvg, O, andigg and
a linear function ofi5™, dS$P, andd4® (see 86) in Appendix

Gy 0

(Eq)" T-IDGq GqT T | (22)

Jt=

The matricessq, T, andEq in (21) and @2) are evaluated at
Bvvo, OeFo, andBigo.

We emphasize that the Jacobihpresented here is re-
lated to, but distinct from, the Jacobidn discussed inZ].
There are two reasons for this. First, we use a different ba-
sis to describe the infinitesimal translations, and secoad w
assume that all the componentgicdre not necessarily zero.

The Jacobian and its inverse can be used to infer how
rotations and displacements about and along the tibial axes
influence the Euler angles and the clinical displacements.
For instance Z1) and @2) can be used to show that an
infinitesimal rotationd8! aboutd; induces an infinitesi-
mal extension-flexio®Oer = sedByvg) CoS(BiEo) 301, an
infinitesimal varus-valgus rotatio®6yy = sin(9|Eo)661,
and an infinitesimal internal-external rotatiod®g =
—tan(Byvg) cos(Bieg) 801, Given the complexity of the 4th
through 6th rows ofi 1, it is to be anticipated that an in-
finitesimal displacemerdd will result in several infinitesi-



mal rotations (i.e.00gr,86vv,00,) and infinitesimal clini- the forces and moments at the knee joint are expressed in
cal translations (i.edd"M, 5dAP, 5dCD). terms of theg® basis. Specifically, examining (10) and (11)

in [2], one can interpret their componerftsy, fap, and fpp

as the force componenks: gk, and their componentser,
4 Discussion myy, andmge as the moment componenté - gy, respec-

Asin[1], the femoral and tibial axeg andgs can be de- tively. Here, g are the Euler basis vectors for a 3-1-2 set
fined using bony landmarks, and the agjscan then be de- of Euler angles. That s,

fined as the unit vector perpendicular to the plane formed by

01 andgs. However, for a given motion, it is well-known that 1 ) 3

the choice of the femoral and tibial axes effects the rasyilti M = merg” +myvg” +meg’,

values of the three angl€sr, Byv, anddie (see, e.g.,J4)). F = fumgt + fapg® + frpg®. (24)
To eliminate some of this variability, optimization schesme
have been proposed with the aim of specifygagand/orgs . . L

(see [L5, 16] and references therein). These schemes se&}us’ for examplemer is obtained by projecting/ onto
to minimize some objective quantity (e.g., varus-valgua+o 9 — P3: y . ) .
tion and/or net tibial translation) under a particular Jeds Unfortunately, Fujie et al.q] did not explicitly mention

sumptions (e.g., a compound pinned hinge model, or asha{ & b_asis vectors they used when _they described the afpre—
function for the Euler angles) for a given motion of intere entioned forces and moments which may cause confusion.

(e.g., flexion within the range of 46- 80°, or constrained orexample, it was not clegar_that_the “pr(_)ximal-dista_l”cfer
tibial rotation). Motivated by the contact constraint fefe; componentpp acts in theg™ direction, which as mentioned
and moment. described in SectioB.3, we suggest that earlier, is not necessarily perpendicular to the tibiatgda.

' }qbus, feDg® might be misinterpreted as a workless contact

an optimization scheme be chosen to minimize increme traint f hen in fact it d d K duri i
tal varus-valgus rotation38yy and compression-distractioncons_ raintforce when in fact it wou 0 work during nat-
ral joint translations. In this respect, Desroches etld] [

translationsdd“P. Such an optimization scheme would bé(; dit f ini t the distinction bet h
valid for any knee joint motion during which. andM. do eserve Crtewll or p%lr':/llngkoul d © q Its> inction between the
not perform work. componentd - g an -g¢. Indeed by comparinglé),

to (1) in [13], we find that the joint coordinate system they
_ _ are using is simply expressing the moment vebiaas a lin-
4.1 Forces and Moment Representations in Other ear combination ofl with the components! - g¥. However,

Works these authors did not utilize results on dual Euler bases vec
It is instructive to compare our work with earlier worksiors as we do here.

on the kinematics and kinetics of the knee joint. Starting
with work in [1], two distinct types of displacements are dis- ) . )
cussed: clinical displacements and joint translationg. 42 Stiffness Matrices for the Knee Joint

Using the dual Euler basis, it is straightforward to see that Discussions of the stiffness of the knee joint can be
these displacements are simply related: found in the literature. For example, Cammarata and Dha-

her [17] and Hsu et al. 18] present experimental measure-
019" + B0 — Ga0° = S101 + So + Ss0s. (23) ments of th_e stiffness of the joint_by comparing a varus-
valgus rotation with the corresponding varus-valgus mamen
at O of flexion. Because of the multi-degree-of-freedom na-
ture of the knee joint, this data constitutes one of the many
components of the stiffness matrix of the knee joint and illu
minates the difficulties in measuring a complete set of-stiff

Unfortunately, the magnitudes gt andg® are se@yy) and
so the magnitudes of the displacemeqitsaand gz are diffi-
cult to interpret physically. Furthermore, singeis not per-
pendicular to the tibial plateau whéyy £ 0, natural joint L
translations would produce nonzero displacemgsiterhich ness data for this joint. o , i

might be misinterpreted as unnatural joint compression or To e_Iaborate fur_ther, Itis possmle_ tp con_struct a varl-
distraction. It was partially a result of these observatitirat ety of stiffness matrices for the knee joint using the meth-

we defined the unit vector for the clinical displacements ods discussed in3]. For instance, one such>66 matrix
d® dM anddAP. could relate thee; components of the increments fnand

i LM 5JAP s4CD
The seminal work on forces and moments at the knd4 © the |n|cremer;]t§eE|:_]Lf69vv, 50, od |66: » 8d~.
joint is Fujie et al. B]. In certain instances in this work,Ater_n""t'Ve y, another stifiness m_atr|x could be con
relating thedx components of the incrementsfandM to
the six increment$0! anddod'. In the interests of brevity

. _ , _ , , we don't present the explicit details here as they are easily
See, in particular, equations (4c), (5a), (7) in [1]. In their work, g;

are denoted bg and a dual Euler basis is never mentioned.
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Appendix A: Explicit expressions for the Euler and dual
Euler basis vectors for the 1-2-3 set of Euler angles

In the paper, we follow]] and use a 1-2-3 set of Euler

angles. For the 1-2-3 set, the rotati@rhas the decomposi-
tion

R=CBA, (25)
whereA, B, andC are three rotation matrices:
(1 0 0
A= |0 cosu) sin(y)
| 0 —sin(y) cos(y)
[ cos(B) 0 —sin(0) |
B= 0O 1 0O ,
| sin(B) 0 cog0) |
[ cos(g) sin(g) O]
C = | —sin(g) cos(p) O (26)
| 0 0 1j

The most frequently used choice of Euler angles in biom

and

Hsu, W.-H., Fisk, J. A., Yamamoto, Y., Debski, R. E.,
and Woo, S. L.-Y., 2006. “Differences in torsional joint

], (28)
[1 sin(y)tan(8) —cos(y)tan()
0 costy) sin(y)

| 0 —seq6)sin(y) seqB)cos(y) ] ’
[ seq®)cos(gp) sedB)sin(g) O
] . (29)

sin(@) cos(p) O
| —tan(6) cos(g) tan(6)sin(g) 1

The second Euler angle needs to be restrictétd—7, 7).

We also note the identities:

Eq = EpR, Ga(Ed) 1 =Gp(Ep) 1,

Ga=(Eq) T=GpR",  Gp=(Ep) ' =GaR. (30)

These identities can be used to establish the following rela
tionships:

g 1 0 -—sin®)] [g1
¢° | =seé(8) [ 0 cog® O ] [gzl ,
4 —sin@ 0 1 s
(g1 ] 1 0sin®)] [dt
Q| = 0 1 0 . (31)
e- |93 sin@) 0 1 g

chanics is the 3-2-1 set and the corresponding developments

for this set can be found ir{5].
The Euler basis and dual Euler basis for the 1-2-3 set

To illuminate the relations27), it is convenient to consider
gfaphical representations of the various basis vectoras@h

Euler angles can be expressed in terms of the proximal bagipresentations, first with respect to the distal basistlzera

vectors and the distal basis vectors:

01 P1 dy

92| =Ep|p2| =Eq|d2],

| 93] | P3| ds

g* p1 [d1]

9| =Gp|p2| =Gy |d2]. (27)
L 3_ L . d3

The four matrices in these equations have the represemgati
0 0
Ep — 5

1
0 cos(y) sin(y)
sin(B) —cos(B) sin(W) cos(B) cos(y)

with respect to the proximal basis are shown in Fighjre-
spectively. Referring to Figur@ we observe a pair of cones
of semi-anglé® whose axes of symmetry are definedday
andgs, respectively. For a fixed value 6fthe cones can be
considered to spinj() and precessg).

With the help of 27) and @1), we can expresd() and
(12) in several convenient representations:

ag P1 dy
0 a | = TEp P2 = TEd d2
ag P3 ds

1 —sin(p) 0] [at
=|-sinfg 1 0| |a®],
[ 0 0 1] L3]



J1=p1

0 =0°

Fig. 6. Graphical representation of the dual Euler and Euler basis vectors and their relationships with the proximal IP and distal ID frames.
Explicit expressions for these vectors can be found in (27). In this figure 6 > O.

al P1 dy Using @7), it follows that
@ =T TGy |p2| =T "Gy |d2
a P3 ds W P w1 Q
sed(qp) sedp)tan(@) 0] [as w2 | =(Ea)" [ 0], w|=R|Q|. (39
= | sedptan(p) sed(p) Of |ax|.(32) c! ® w3 Qs
0 0 1] |as
These results are used to relate incremental rotationseof th
tibia (wy) and femur ;) to changes in the Euler angles and
Here, the matrixt and its inversd —* are vice versa.
sed0) 0 —tan(0) Appendix C: An Element of the Jacobian
T = | —sin(¢)sedB) cog) sin(g)tan(d) |, For completeness, the lengthy expression for the matrix
L 0 0 1 D appearing in the expressior&l}j and @2) for the Jacobian
cogB) O sin®) and its inverse is given in this Appendix. Explicitly,
T = |tan(e) sedy) O (33)
o o0 1 D = d5"" D1+ d§"D2 +d§°Ds, (36)
where
Appendix B: Angular Velocity and Displacements sin(Byy)sin(Bie) —tan(Byv)cogBie) 0
The angular velocity vectap associated with the 1-2-3 D; = | sin(Byyv)cog6ig) —tan(Bvv)sin(Big) 0],
Euler angles has several equivalent representations 0 tanByv) (tan(Byv) — se¢byv)) O

= wydy + 0pd2 + 0003 D= |0 —sirf(Bg)tan(Byy) 0

w =g+ egz 99 0-— sin(9|E) COS(9|E)tar‘(9vv) — COS(29|E)
= Q1p1+ Qop2+ Q3ps. (34) 0 0 0



sin(Byy)sirf(Be) 00
— | sin(Byy)sin(6jg)cogBig) O 0]
0

x 0
[sin(Byv)cogByy)cogBig) O 2c0$6\/v)cos(6|E)]
+ | sin(Byy)sin(6jg)cog6yy) O 0 ,
cog(6yy) 0 0

D3 = —COievv) COS(9|E) —sin(B.E) 0.

—cog6yy)sin(Be) cogBg) O
(37)
0 0 0

In the expression foD,,

X = —sin(Byy ) sin(Bie ) se(Byy) + sin(Bj ) tarf(Byy ).
(38)
For convenience, we have dropped the superscript 0 appear-
ing onByv, OgF, andBje.
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