
UCSF
UC San Francisco Previously Published Works

Title
On Representations for Joint Moments Using a Joint Coordinate System

Permalink
https://escholarship.org/uc/item/5jh9c3qj

Journal
Journal of Biomechanical Engineering, 135(11)

ISSN
0148-0731

Authors
O'Reilly, Oliver M
Sena, Mark P
Feeley, Brian T
et al.

Publication Date
2013-11-01

DOI
10.1115/1.4025327
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5jh9c3qj
https://escholarship.org/uc/item/5jh9c3qj#author
https://escholarship.org
http://www.cdlib.org/


A New Coordinate System for Describing Forces
and Moments in the Knee Joint

Mark P. Sena
Graduate Student

UCB-UCSF Joint Program in Bioengineering
Department of Orthopaedic Surgery

University of California
San Francisco, California 94143

Brian T. Feeley
Assistant Professor in Residence

Department of Orthopaedic Surgery
University of California

San Francisco, California 94143

Jeffrey C. Lotz
Professor

Department of Orthopaedic Surgery
University of California

San Francisco, California 94143

Oliver M. O’Reilly∗

Professor, Member of ASME
Department of Mechanical Engineering

University of California
Berkeley, CA 94720

oreilly@berkeley.edu

In its simplest realization, the joint formed between the fe-
mur and tibia features a pair of constraints on the relative
rotation and translation of the two bones. Dating to the sem-
inal work by Grood and Suntay [1], parameterizations of the
kinematics of the knee joint which accommodate these con-
straints are well-known and are easy to comprehend from a
clinical perspective. The purpose of the present paper is to
provide an equally transparent representation of the forces
and moments at the knee joint. This new representation en-
ables a clear distinction of the constraint forces and moments
acting at the knee joint from the forces and moments supplied

∗Corresponding author.

by the ligaments and cartilage. As a result, the representa-
tion enables clearer clinical descriptions of the kineticsof
the knee joint, is useful in defining stiffness matrices for the
joint, and has application to helping design of total knee re-
placements.

1 Introduction
Motivated by anterior cruciate ligament (ACL) injuries

and the 400,000 ACL reconstructions that are performed in
the US each year, there is a need to characterize the stiff-
nesses of the knee joint. This characterization can hopefully
provide one measure of a patient’s susceptibility to ACL



injury and a post-operative metric of the ACL reconstruc-
tion. These stiffness, which relate the kinematics and kinet-
ics of the joint can also play a role in designing total knee
replacements and could play a role in understanding post-
operative complications, such as osteoarthritis, in ACL re-
constructions.

As can be partially appreciated from Figure1, the mo-
tion of the tibia relative to the femur is governed by the artic-
ular geometry of the knee joint which, in turn, places restric-
tions on possible motions. A good coordinate system is one
which accommodates these restrictions and also provides
easy descriptions of clinical motions. These six motions
include three rotations, extension-flexion rotation, varus-
valgus rotation, and internal-external rotation, and three
translations, compression-distraction, lateral-medialtransla-
tion, and anterior-posterior translation.1 Seminal work by
Grood and Suntay [1] provided the first coordinate system
for the three-dimensional motions of the knee joint. These
authors used a 1-2-3 set of Euler angles to describe the ro-
tational motion and used the axes associated with the three
individual rotations of the Euler angles to describe a set of
joint translations. We denote these axes by{g1,g2,g3} in the
sequel.

After a period, Grood and Suntay’s parameterizations
of the kinematics of the knee joint became well-accepted.
However, the corresponding developments for the kinetics
were not immediately forthcoming. A primary difficulty in
finding clinically relevant descriptions for the forces andmo-
ments at the knee joint can be traced to the geometry of the
joint and the fact that the axes of rotation for the two of the
Euler angles are not orthogonal:g1 6⊥ g3. Progress towards
a useful representation of the forces and moments was made
in 1996 by Fujie et al. [2]. Examining the paper [2] in light
of the works [3–7] on dual basis vectors, we find that Fujie
et al. [2] used, what is now known as, the dual Euler basis
{

g1,g2,g3
}

to find one set of representations for these forces
and moments.

The insights found in [3–7] on dual basis vectors and the
role they play in the description of moments associated with
rotations enables us to establish transparent representations
for the forces and moments at the knee joint. Specifically,
we follow [1] and use a set of 1-2-3 Euler angles to parame-
terize the rotation of the tibia relative to femur. This choice
prescribes the set of unit vectorsE = {g1,g2,g3}. We then
choose a related set of vectorsA = {a1,a2,a3} to help pa-
rameterize the translational motion. Our choice leads to a
transparent description of the tibial translations and is dis-
tinct from the two sets of vectors used in [1] to describe

1 While the knee joint consists of the tibiofemoral articulation and the
patellofemoral articulation, for the purposes of the present paper, attention
will be focused on the former.

“joint” translations and “clinical” translations. In addition,
the basesA andE are used to define a set of dual basis vec-
tors,

{

a1,a2,a3
}

and
{

g1,g2,g3
}

, respectively. The latter
sets provide transparent representations for forces and mo-
ments. In particular, the contact force and contact moment
that prevent the condyles from passing through the tibial
plateau act in thea3 andg2 directions, respectively.

An outline of this paper is as follows. In Section2.1,
we discuss a range of frames associated with describing the
relative motion of the tibia and femur. The background as-
sembled in Section2.1 is applied to the specification of a
coordinate system for the knee joint in Section3.1. Related
developments for forces and moments are collected in Sec-
tion 3.2, and clinical examples feature kinematics and kinet-
ics are discussed in Section3.4. Due to its prevalence in
studies on joint kinematics, we also discuss the Jacobian as-
sociated with infinitesimal motions of the joint in Section
3.5. The paper closes in Section4 with several comments on
optimization schemes that are used to determine joint axes
and a brief discussion on stiffness matrices.

For convenience, the paper has three appendices which
present explicit details on several matrices and vectors that
feature prominently in the paper. We also refer the inter-
ested reader to [3–5] for additional background on the dual
Euler basis and its applications to conservative moments and
constraint moments. The dual Euler basis is also related to
the dual basis used in the screw motion descriptions of rigid
body motions in [6,7].

2 Methods
2.1 Coordinate Systems and Frames

In analysis of joints, it is standard to employ three co-
ordinate frames:L, P, D. The first of these frames, which
is often known as a laboratory frame, is an inertial reference
frame which is associated with a fixed pointO. The second
frame, is attached at a pointOP to the proximal anatomical
segment and corotates with this body. Correspondingly, the
third frame is attached at a pointOD to the distal anatom-
ical segment and corotates with the distal segment. The 4
components of these respective frames are denoted by

L= {O,E1,E2,E3} , P= {OP,p1,p2,p3} ,

D= {OD,d1,d2,d3} . (1)

Here,{E1,E2,E3}, {p1,p2,p3}, and{d1,d2,d3} are right-
handed set of orthonormal vectors.
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Fig. 1. Schematic of the right knee joint showing the proximal and distal frames of the femur and tibia, respectively, and a) the bases vectors

{a1,a2,a3} associated with translational motions of the knee joint and b) the bases vectors {g1,g2,g3} associated with rotational motions

of this joint. The axes are drawn to intersect in the interests of clarity.

Of particular interest is the rotation of the distal anatom-
ical segmentSD with respect to the proximal anatomical seg-
mentSP. The rotation can be characterized by a rotation ma-
trix R:





d1

d2

d3



=





R11 R12 R13

R21 R22 R23

R31 R32 R33









p1

p2

p3



 . (2)

Here,Rik are the components ofR. We also use the compact
notation

dk = Rpk, (k= 1,2,3) . (3)

In the sequel,R is parameterized by a set of Euler angles
ψ, θ, andφ. Thus,R is decomposed into the product of a ro-
tationψ about a unit vectorg1 followed by a rotationθ about
a unit vectorg2 and, finally, a rotationφ about a unit vector
g3. There are 12 possible sets of Euler angles, and, for each
set, the first and third angles range from 0 to 2π. Depending
on the specific set of Euler angles, the range of the second

angle is restricted. For the 1-2-3 set of Euler angles which
feature in the sequel

θ ∈
(

−
π
2
,

π
2

)

. (4)

For each of the 12 sets, the three vectors{g1,g2,g3} form a
fourth set of basis vectors which is known as the Euler basis.
This set of basis vectors is not orthogonal (nor is it neces-
sarily right-handed). However,g2 is always perpendicular to
the plane formed byg1 andg3.

A fifth set of basis vectors, which is known as the dual
(or recriprocal) Euler basis

{

g1,g2,g3
}

, plays a key role in
this paper. Given a specific choice of Euler angles, one is
able to define the Euler basis{g1,g2,g3}. The dual Euler
basis is then defined by the following 9 identities:

gi ·gk =

{

1 wheni = k
0 wheni 6= k

}

, (i = 1,2,3,k= 1,2,3) .

(5)
It is known (see, e.g., [8]) that the solutionsgi to these equa-



tions can be represented as follows:

g1 =
1
g
(g2×g3) , g2 =

1
g
(g3×g1) = g2,

g3 =
1
g
(g1×g2) . (6)

whereg = (g1×g2) · g3.2 As discussed in [4, 5], the dual
Euler basis plays a key role in establishing transparent ex-
pressions for conservative moments and constraint moments.
For instance, if one wishes the restrict the rotationψ about
g3, then a constraint momentMg3 needs to be applied. This
moment has no components in theg1 or g2 directions and so
does not affect these rotations.

The final sets of basis vectors pertain to the translational
motion so a joint. We define a basis{a1,a2,a3} which is
used to describe the clinical translations of the distal segment
relative the proximal segment:

u = u1a1+u2a2+u3a3. (7)

This basis has a dual basis
{

a1,a2,a3
}

. The dual basis vec-
tors are, following (5) and (6),

a1 =
1
a
(a2×a3) , a2 =

1
a
(a3×a1) , a3 =

1
a
(a1×a2) ,

(8)
wherea= (a1×a2) ·a3.

A vectorb has several distinct representations with re-
spect to the aforementioned bases. For example,

b =
3

∑
k=1

BkEk =
3

∑
k=1

bpkpk =
3

∑
k=1

bdkdk =
3

∑
k=1

bkgk =
3

∑
k=1

bkgk
.

(9)
The components are obtained by projecting the vectorb onto
the appropriate basis vector. It is important to distinguish
how one computes the components by projectingb onto the
appropriate set of basis vectors. For example,

b ·Ek = Bk, b ·gk = bk
, b ·gi = bi . (10)

One cannot expectbi = bi . Related remarks pertain to the
components ofb alongak andai .

2For the 1-2-3 set of Euler angles used later in this paperg= cos(θ).

3 Results
3.1 A Coordinate System for the Knee Joint

For the knee joint, we identify the proximal body with
the femur and the distal body with the tibia. We follow [1]
and use a set of 1-2-3 Euler angles to describe the rotation
R of the tibia relative to the femur. For convenience, ex-
plicit details on the Euler and dual Euler basis vectors for
this choice of Euler angles are contained in Appendix A.3

Three Euler angles are identified with the three rota-
tional degrees of freedom of the knee joint:

extension-flexion rotationθEF = ψ,
varus-valgus rotationθVV = θ,

internal-external rotationθIE = φ.

It is well-accepted, see, for example, [9–11], that the
extension-flexion (EF) axis is fixed to the femur and passes
through its lateral and medial epicondyles, the internal-
external rotation axis is fixed to the tibia and is parallel toits
longitudinal axis, and the varus-valgus rotation axis is float-
ing and is perpendicular to both the extension-flexion and
internal-external rotation axes.

Commensurate with the choice of Euler angles, the basis
{g1,g2,g3} is defined, where the vectorg1 = p1 is taken to
be aligned with the femur-fixed extension-flexion axis, and
the vectorg3 = d3 is aligned with the tibia-fixed internal-
external rotation axis (see Figures2 and3). A key feature of
these axes is that the angle subtended by them isπ

2 minus the
varus-valgus rotation angleθVV (which is negative in Figure
3). The axisg2 associated with the latter angle of rotation
points along the varus-valgus axis, which is both parallel to
the tibial plateau and perpendicular to the line connectingthe
two points of contact between the femoral condyles and the
tibial plateau.

Unlike the rotational axes of the knee joint, there is
no universal agreement on the prescriptions for the axes of
translation of the knee joint [1,12]. For example, Grood and
Suntay [1] use two sets of axes, one for “joint translations,
which is equivalent to the set of rotation axes{g1,g2,g3},
and one for “clinical translations, which is equivalent to the
dual of the rotation axes

{

g1,g2,g3
}

(see Section4.1below
for further details).

Here, we define a lateral-medial translation axis along
the line connecting the two points of contact between the
femoral condyles and tibial plateau, an anterior-posterior
translation axis fixed to the tibia and parallel to the articular
surface of the tibial plateau, and a compression-distraction

3In particular, expressions for, and graphical representations of, the Euler
and dual Euler basis vectors for the 1-2-3 set of Euler anglesare presented
in (27) and in Figure6.
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Fig. 2. Schematic of the transverse plane of the right knee joint. In the interests of clarity, the magnitudes of the vectors a1 and a2 have

been exaggerated. The lateral-medial (LM), varus-valgus (VV), and anterior-posterior (AP) axes are also shown.

axis perpendicular to both the lateral medial and anterior-
posterior translation axes. A basis{a1,a2,a3} is defined with
the help of the axes of translation (see Figures2 and3). In
particular, we definea1 as a unit vector along the lateral-
medial axis,a2 as a unit vector along the anterior-posterior
axis of the tibia, anda3 as a unit vector in the compression-
distraction direction:

aLM = a1 = cos(θVV)g1
,

aAP= a2 = cos(θIE)g2− sin(θIE)cos(θVV)g1
,

aCD = a3 = g3. (11)

The presence of cos(θVV) in the definitions (11)1,2 is due to
the fact that the magnitude ofg1 is sec(θVV) The set of dual
vectors

{

a1,a2,a3
}

can be defined using (8) and (11):

a1 = cos(θVV)g1+ tan(θIE)g2,

a2 = sec(θIE)g2,

a3 = g3. (12)

Explicit representations for these basis vectors in terms of the
basis vectors associated with the proximal and distal frames
are presented in (32).

Given a displacement vectord of a point on the tibia

relative to a point on the femur, we can write

d = dLMa1+dAPa2+dCDa3. (13)

We take this opportunity to note that while thea1 anda3 are
perpendicular, the same cannot be said fora1 anda2.Thus, a
pure displacementd = da1 along the lateral-medial direction
has scalar projections on both the lateral-medial (d ·a1 = d)
and anterior-posterior (d ·a2 =−dsin(θIE)) axes.

3.2 Representations of Forces and Moments
It is possible to represent the forces and moments acting

on the knee joint using any of the seven sets of basis vectors
discussed in Section2.1. However the resulting represen-
tations are often inconvenient. For the forces and moments
acting on the knee joint, of particular interest here are the
representations

F = F1a1+F2a2+F3a3
,

M = M1g1+M2g2+M3g3
. (14)

The componentsMk are computed by projectingM onto the
Euler basis vectors:Mk = M · gk. Expressing force vectors
and moment vectors as linear combinations of contravariant
basis vectors and dual Euler basis vectors has a long and il-
lustrious history. However, the basis vectors are often not
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in the interests of clarity. The lateral-medial (LM), internal-external (IE), compression-distraction (CD), and anterior-posterior (AP) axes are

also shown.

explicitly mentioned in classical texts and this can often be a
source of confusion.

With the help of (31) or, equivalently, by computinggi ·
gk, the relationship between the componentsMk andMi can
be found:





M1

M2

M3



 =







sec2 (θVV) 0 − sin(θVV)
cos2(θVV)

0 1 0

− sin(θVV)
cos2(θVV)

0 sec2 (θVV)











M1

M2

M3



 ,





M1

M2

M3



 =





1 0 sin(θVV)
0 1 0

sin(θVV) 0 1









M1

M2

M3



 . (15)

A key feature of these identities is the presence ofθVV. For
instance, as|θVV| increases from 0, then the componentsM1

andM3 become increasingly distinct fromM1 andM3. Some
examples of these relations are shown in Figure4.

In a similar manner, the componentsFk =F ·ak andF i =
F ·ai can be related with the help of (32):





F1

F2

F3



 =





sec2(θIE) sec(θIE) tan(θIE) 0
sec(θIE ) tan(θIE) sec2(θIE ) 0

0 0 1









F1

F2

F3



 ,





F1

F2

F3



 =





1 −sin(θIE) 0
−sin(θIE) 1 0

0 0 1









F1

F2

F3



 . (16)

It is interesting to note the role played by the angleθIE rep-
resenting internal-external rotation of the tibia in theserela-
tions: when the internal-external rotation is zero, then both
sets of basis vectors and components are identical.

We next consider the power of an applied moment acting
on the tibia. Assuming a fixed femur and given a relative
motion of the tibia which has an angular velocityω, then,
with the help of (35), the power of an applied momentMa =
Ma1g1+Ma2g

2+Ma3g
3 has a simple representation:

Ma ·ω = Ma1θ̇EF +Ma2θ̇VV +Ma3θ̇IE . (17)

The corresponding expression featuring the componentsMk
a

is far more complicated. Related remarks apply to an applied
forceFa.

3.3 Forces and Moments at the Condyles
A central feature of the knee joint are a pair of con-

tact forces exerted by the condyles which prevents the tib-
ial plateau from passing through them. These forces re-
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g3. The different representations for the moments were obtained using (15).

strict varus-valgus rotationθVV and compression-distraction
dCD. Referring to Figures3 and5, the resultant of the pair
of forces acts antiparallel to thea3 direction. The pair is
equipollent to a resultant forceFc and a resultant moment
Mc acting at pointC:

Fc = µ1a3 = Fc1 +Fc2,

Mc = µ2g2 = π1×Fc2 +π2×Fc2. (18)

Here, π1 and π2 are the respective position vectors of the
condylesC1 andC2 relative toC. The forceFc is an example
of a constraint (or normal) force, whileMc is an example of
a constraint moment. The latter serves to prevent rotation
in the g2 direction. As the relative translational motion in
thea3 and relative rotational motion in theg2 directions are
assumed to be zero when both condyles are in contact with
the tibia,Fc andMc do no work.

3.4 Clinical Forces and Moments
Suppose a clinician wishes to test the soft tissue re-

straints against anterior translation by applying a force to
the tibia. This force should lie entirely in thea2 direc-
tion. Otherwise, ifθIE 6= 0, the internal joint reaction force
will have components that resist motions other than anterior
translation. For example, if a clinician applies the external
forceFAa2, then the opposing joint reaction force (−FAa2 =
FAsin(θIE)a1−FAa2) will have a component (FAsin(θIE)a1)

that resists lateral translation in addition to a component
(−FAa2) that resists anterior translation.

Similarly, to test the soft tissue restraints against inter-
nal rotation, a clinician should apply an external moment in
theg3 direction. If instead, for example, a momentMAg3 is
applied, then the opposing joint reaction moment (−MAg3 =
M1g1+M3g3) will have a component (M1 = −MAsin(θVV)
that resists flexion in addition to a component (M3 = −MA)
resisting internal rotation.

On the other hand, under an applied momentMg2, only
a reaction moment in theg2 direction is required to prevent
varus-valgus rotation, sinceg2 = g2 is perpendicular to the
plane formed by the other basis vectors.

3.5 Infinitesimal Displacements and Rotations
For the purposes of understanding incremental displace-

ments and rotations of the knee joint, we now consider the
case where the knee joint has been given a finite displace-
ment and rotation and an infinitesimal motion is then super-
posed on this motion. The finite rigid body motion is defined
by the following displacements and angles:

dLM
0 , dAP

0 , dCD
0 , θEF0, θVV0, θIE 0.

(19)
The respective basis vectors associated with the given val-
ues of the angles and displacements are distinguished using
subscript and superscript 0s.

The incremental rotation of the tibia relative to the femur
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Fig. 5. The reaction forces Fc1 and Fc2 acting at the condyles shown in (a) are equipollent to a moment Mc = π1×Fc1 +π2×Fc2 and

a force Fc = µ1a3 where µ1 = (Fc1 +Fc2) ·a3 acting at the point C.

is defined by the vectorδθ and incremental displacement of
the tibia relative to the femur is defined by the vectorδd.
These vectors have the respective representations:

δθ =
3

∑
k=1

δθid0
i = δθEFg0

1+ δθVVg0
2+ δθIEg0

3,

δd =
3

∑
k=1

δdid0
i = δdLMa0

1+ δdAPa0
2+ δdCDa0

3

+dLM
0 δa1+dAP

0 δa2+dCD
0 δa3. (20)

The incrementsδak are computed with the help of (11), (27)
and (31). In addition, a JacobianJ can be defined:

















δθ1

δθ2

δθ3

δd1

δd2

δd3

















= J

















δθEF

δθVV

δθIE

δdLM

δdAP

δdCD

















, J=

[

(Ed)
T

0

D (TEd)
T

]

, (21)

where the matrixD is a function ofθVV0, θEF0, andθIE 0 and
a linear function ofdLM

0 , dCD
0 , anddAP

0 (see (36) in Appendix

C). The Jacobian has an inverse

J
−1 =

[

Gd 0

−(Ed)
T
T−1DGd GdT

−T

]

. (22)

The matricesGd, T, andEd in (21) and (22) are evaluated at
θVV0, θEF0, andθIE 0.

We emphasize that the JacobianJ presented here is re-
lated to, but distinct from, the JacobianJ1 discussed in [2].
There are two reasons for this. First, we use a different ba-
sis to describe the infinitesimal translations, and second we
assume that all the components ofd are not necessarily zero.

The Jacobian and its inverse can be used to infer how
rotations and displacements about and along the tibial axes
influence the Euler angles and the clinical displacements.
For instance (21) and (22) can be used to show that an
infinitesimal rotationδθ1 about d1 induces an infinitesi-
mal extension-flexionδθEF = sec(θVV0)cos(θIE 0)δθ1, an
infinitesimal varus-valgus rotationδθVV = sin(θIE 0)δθ1,
and an infinitesimal internal-external rotationδθIE =
− tan(θVV0)cos(θIE 0)δθ1. Given the complexity of the 4th
through 6th rows ofJ−1, it is to be anticipated that an in-
finitesimal displacementδdk will result in several infinitesi-



mal rotations (i.e.,δθEF,δθVV,δθIE ) and infinitesimal clini-
cal translations (i.e.,δdLM,δdAP,δdCD).

4 Discussion
As in [1], the femoral and tibial axesg1 andg3 can be de-

fined using bony landmarks, and the axisg2 can then be de-
fined as the unit vector perpendicular to the plane formed by
g1 andg3. However, for a given motion, it is well-known that
the choice of the femoral and tibial axes effects the resulting
values of the three anglesθEF, θVV, andθIE (see, e.g., [14]).
To eliminate some of this variability, optimization schemes
have been proposed with the aim of specifyingg1 and/org3

(see [15, 16] and references therein). These schemes seek
to minimize some objective quantity (e.g., varus-valgus rota-
tion and/or net tibial translation) under a particular set of as-
sumptions (e.g., a compound pinned hinge model, or a shape
function for the Euler angles) for a given motion of interest
(e.g., flexion within the range of 40◦ − 80◦, or constrained
tibial rotation). Motivated by the contact constraint forceFc

and momentMc described in Section3.3, we suggest that
an optimization scheme be chosen to minimize incremen-
tal varus-valgus rotationsδθVV and compression-distraction
translationsδdCD. Such an optimization scheme would be
valid for any knee joint motion during whichFc andMc do
not perform work.

4.1 Forces and Moment Representations in Other
Works

It is instructive to compare our work with earlier works
on the kinematics and kinetics of the knee joint. Starting
with work in [1], two distinct types of displacements are dis-
cussed: clinical displacementsqi and joint translationsSi .
Using the dual Euler basis, it is straightforward to see that
these displacements are simply related:4

q1g1+q2g2−q3g3 = S1g1+S2g2+S3g3. (23)

Unfortunately, the magnitudes ofg1 andg3 are sec(θVV) and
so the magnitudes of the displacementsq1 andq3 are diffi-
cult to interpret physically. Furthermore, sinceg3 is not per-
pendicular to the tibial plateau whenθVV 6= 0, natural joint
translations would produce nonzero displacementsq3, which
might be misinterpreted as unnatural joint compression or
distraction. It was partially a result of these observations that
we defined the unit vectorsak for the clinical displacements
dCD, dLM, anddAP.

The seminal work on forces and moments at the knee
joint is Fujie et al. [2]. In certain instances in this work,

4See, in particular, equations (4c), (5a),. . ., (7) in [1]. In their work, gi

are denoted byei and a dual Euler basis is never mentioned.

the forces and moments at the knee joint are expressed in
terms of thegk basis. Specifically, examining (10) and (11)
in [2], one can interpret their componentsfLM, fAP, and fPD

as the force componentsF · gk, and their componentsmEF,
mVV, and mIE as the moment componentsM · gk, respec-
tively. Here,gk are the Euler basis vectors for a 3-1-2 set
of Euler angles. That is,

M = mEFg1+mVVg2+mIEg3
,

F = fLMg1+ fAPg2+ fPDg3
. (24)

Thus, for example,mEF is obtained by projectingM onto
g1 = p3.

Unfortunately, Fujie et al. [2] did not explicitly mention
the basis vectors they used when they described the afore-
mentioned forces and moments which may cause confusion.
For example, it was not clear that the “proximal-distal” force
componentfPD acts in theg3 direction, which as mentioned
earlier, is not necessarily perpendicular to the tibial plateau.
Thus, fPDg3 might be misinterpreted as a workless contact
constraint force when in fact it would do work during nat-
ural joint translations. In this respect, Desroches et al. [13]
deserve credit for pointing out the distinction between the
componentsM · gk andM · gk. Indeed by comparing (14)2

to (1) in [13], we find that the joint coordinate system they
are using is simply expressing the moment vectorM as a lin-
ear combination ofgk with the componentsM ·gk. However,
these authors did not utilize results on dual Euler bases vec-
tors as we do here.

4.2 Stiffness Matrices for the Knee Joint
Discussions of the stiffness of the knee joint can be

found in the literature. For example, Cammarata and Dha-
her [17] and Hsu et al. [18] present experimental measure-
ments of the stiffness of the joint by comparing a varus-
valgus rotation with the corresponding varus-valgus moment
at 0◦ of flexion. Because of the multi-degree-of-freedom na-
ture of the knee joint, this data constitutes one of the many
components of the stiffness matrix of the knee joint and illu-
minates the difficulties in measuring a complete set of stiff-
ness data for this joint.

To elaborate further, it is possible to construct a vari-
ety of stiffness matrices for the knee joint using the meth-
ods discussed in [3]. For instance, one such 6× 6 matrix
could relate theEi components of the increments inF and
M to the incrementsδθEF , δθVV, δθIE , δdLM, δdAP, δdCD.
Alternatively, another stiffness matrix could be constructed
relating thedk components of the increments inF andM to
the six incrementsδθ j andδdi . In the interests of brevity
we don’t present the explicit details here as they are easily



inferred from [3]. However, one important point to note is
that if the knee is loaded so that increments to compression-
distraction and varus-valgus rotation are not possible (i.e.,
δdCD = 0 andδθVV = 0), then it is possible to construct a
4×4 stiffness matrix relating the increments inF ·a1, F ·a2,
M ·g1 andM ·g2 to δθEF, δθIE , δdLM, andδdAP. Such a stiff-
ness matrix would not be dominated by the components of
the reaction forceF3a3 and the reaction momentM2g2 which
ensure that the compression-distraction and varus-valgusro-
tation remain constrained. This is a unique feature of the new
coordinate system proposed in the present paper.

4.3 Closing Remarks
To summarize, we have introduced a coordinate sys-

tem for describing knee joint kinematics and kinetics. Cen-
tral to this coordinate system are two sets of basis vectors
({g1,g2,g3} and

{

g1,g2,g3
}

) which are used to express joint
rotations and joint moments in a manner consistent with
[1, 2], and two analogous sets of basis vectors ({a1,a2,a3}
and

{

a1,a2,a3
}

) which are used to express joint translations
and joint forces. All four sets of basis vectors are related by
the Euler anglesθIE andθVV. Importantly, sincea3 = a3 and
g2 = g2, our coordinate system highlights the articular con-
tact forceFca3 and momentMcg2, which prevent incremen-
tal compression-distraction translations alonga3 and varus-
valgus rotations aboutg2, respectively. If aligned such that
these incremental motions are minimal, our coordinate sys-
tem simplifies the description of joint motions and also joint
stiffnesses.
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Appendix A: Explicit expressions for the Euler and dual
Euler basis vectors for the 1-2-3 set of Euler angles

In the paper, we follow [1] and use a 1-2-3 set of Euler
angles. For the 1-2-3 set, the rotationR has the decomposi-
tion

R= CBA, (25)

whereA, B, andC are three rotation matrices:

A =





1 0 0
0 cos(ψ) sin(ψ)
0 −sin(ψ) cos(ψ)



 ,

B =





cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)



 ,

C =





cos(φ) sin(φ) 0
−sin(φ) cos(φ) 0

0 0 1



 . (26)

The most frequently used choice of Euler angles in biome-
chanics is the 3-2-1 set and the corresponding developments
for this set can be found in [4,5].

The Euler basis and dual Euler basis for the 1-2-3 set of
Euler angles can be expressed in terms of the proximal basis
vectors and the distal basis vectors:





g1

g2

g3



 = Ep





p1

p2

p3



= Ed





d1

d2

d3



 ,





g1

g2

g3



 = Gp





p1

p2

p3



= Gd





d1

d2

d3



 . (27)

The four matrices in these equations have the representations

Ep =





1 0 0
0 cos(ψ) sin(ψ)

sin(θ) −cos(θ)sin(ψ) cos(θ)cos(ψ)



 ,

Ed =





cos(θ)cos(φ) −cos(θ)sin(φ) sin(θ)
sin(φ) cos(φ) 0

0 0 1



 , (28)

and

Gp =





1 sin(ψ) tan(θ) −cos(ψ) tan(θ)
0 cos(ψ) sin(ψ)
0 −sec(θ)sin(ψ) sec(θ)cos(ψ)



 ,

Gd =





sec(θ)cos(φ) sec(θ)sin(φ) 0
sin(φ) cos(φ) 0

− tan(θ)cos(φ) tan(θ)sin(φ) 1



 . (29)

The second Euler angle needs to be restricted toθ∈
(

− π
2,

π
2

)

.
We also note the identities:

Ed = EpR, Gd (Ed)
−1 = Gp (Ep)

−1
,

Gd = (Ed)
−T = GpR

T
, Gp = (Ep)

−T = GdR. (30)

These identities can be used to establish the following rela-
tionships:





g1

g2

g3



 = sec2 (θ)





1 0 −sin(θ)
0 cos2 (θ) 0

−sin(θ) 0 1









g1

g2

g3



 ,





g1

g2

g3



 =





1 0 sin(θ)
0 1 0

sin(θ) 0 1









g1

g2

g3



 . (31)

To illuminate the relations (27), it is convenient to consider
graphical representations of the various basis vectors. These
representations, first with respect to the distal basis, andthen
with respect to the proximal basis are shown in Figure6, re-
spectively. Referring to Figure6, we observe a pair of cones
of semi-angleθ whose axes of symmetry are defined byg1

andg3, respectively. For a fixed value ofθ the cones can be
considered to spin (ψ) and precess (φ).

With the help of (27) and (31), we can express (11) and
(12) in several convenient representations:





a1

a2

a3



 = TEp





p1

p2

p3



= TEd





d1

d2

d3





=





1 −sin(φ) 0
−sin(φ) 1 0

0 0 1









a1

a2

a3



 ,



d1

d2

p2

p3

φ

θ

θ

ψ

g3 = d3

g1 = p1

g3

g3

g1

g1

g2 = g2

Fig. 6. Graphical representation of the dual Euler and Euler basis vectors and their relationships with the proximal P and distal D frames.

Explicit expressions for these vectors can be found in (27). In this figure θ > 0.





a1

a2

a3



 = T
−T

Gp





p1

p2

p3



= T
−T

Gd





d1

d2

d3





=





sec2(φ) sec(φ) tan(φ) 0
sec(φ) tan(φ) sec2(φ) 0

0 0 1









a1

a2

a3



 . (32)

Here, the matrixT and its inverseT−1 are

T =





sec(θ) 0 − tan(θ)
−sin(φ)sec(θ) cos(φ) sin(φ) tan(θ)

0 0 1



 ,

T
−1 =





cos(θ) 0 sin(θ)
tan(φ) sec(φ) 0

0 0 1



 . (33)

Appendix B: Angular Velocity and Displacements
The angular velocity vectorω associated with the 1-2-3

Euler angles has several equivalent representations

ω = ψ̇g1+ θ̇g2+ φ̇g3

= ω1d1+ω2d2+ω3d3

= Ω1p1+Ω2p2+Ω3p3. (34)

Using (27), it follows that





ω1

ω2

ω3



= (Ed)
T





ψ̇
θ̇
φ̇



 ,





ω1

ω2

ω3



= R





Ω1

Ω2

Ω3



 . (35)

These results are used to relate incremental rotations of the
tibia (ωi) and femur (Ωi) to changes in the Euler angles and
vice versa.

Appendix C: An Element of the Jacobian
For completeness, the lengthy expression for the matrix

D appearing in the expressions (21) and (22) for the Jacobian
and its inverse is given in this Appendix. Explicitly,

D= dLM
0 D1+dAP

0 D2+dCD
0 D3, (36)

where

D1 =





sin(θVV)sin(θIE) − tan(θVV)cos(θIE) 0
sin(θVV)cos(θIE) − tan(θVV)sin(θIE) 0

0 tan(θVV)(tan(θVV)− sec(θVV)) 0



 ,

D2 =





0 −sin(θIE)cos(θIE) tan(θVV) −cos(2θIE)

0 −sin2(θIE) tan(θVV) 0
0 0 0







−





sin(θVV)sin2(θIE) 0 0
sin(θVV)sin(θIE)cos(θIE) 0 0

0 x 0





+





sin(θVV)cos(θVV)cos(θIE) 0 2cos(θVV)cos(θIE)
sin(θVV)sin(θIE )cos(θVV) 0 0

cos2(θVV) 0 0



 ,

D3 =





−cos(θVV)sin(θIE ) cos(θIE ) 0
−cos(θVV)cos(θIE ) −sin(θIE ) 0

0 0 0



 . (37)

In the expression forD2,

x=−sin(θVV)sin(θIE)sec2(θVV)+ sin(θIE ) tan2(θVV).
(38)

For convenience, we have dropped the superscript 0 appear-
ing onθVV, θEF, andθIE .
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