UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Troubleshooting Strategies in a Complex, Dynamical Domain

Permalink
https://escholarship.org/uc/item/5jg1x0sf

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 16(0)

Authors

Recker, Margaret M .
Govindaraj, T.
Vasandani, Vijay

Publication Date
1994

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5jg1x0sf
https://escholarship.org
http://www.cdlib.org/

Troubleshooting Strategies in
a Complex, Dynamical Domain

Margaret M. Recker
. Govindaraj
Georgia Institute of Technology
Atlanta, GA 30332-0280 U.S.A.
mimi.recker@cc.gatech.edu
tg@chmsr.isye.gatech.edu

Abstract

In this paper, we present results from two empirical studies in
which subjects diagnosed faults that occurred in a computer-
based, dynamical simulation of an oil-fired marine power plant,
called Turbinia. Our results were analyzed in the framework of
dual problem space search (DPSS), in which non-routine diag-
nosis was characterized as a process of generating hypotheses
to explain the observed faults, and testing these hypotheses by
conducting experiments.

In the first study, we found that the less-efficient subjects
conducted significantly more experiments, indicating a strong
bottom-up bias in their diagnostic strategy. In the second study,
we examined the effects of imposing external resource bounds
on subjects’ diagnostic strategies. Results indicated that con-
straints on diagnosis time led to a reduction in the number of
actions performed and components viewed, without appearing
to affect diagnostic performance. Constraints on the number
of diagnostic tests reduced search in the experiment space,
which appeared to negatively affect performance. Taken to-
gether, these suggest results that subjects’ diagnostic strategies
were sensitive to constraints in the external task environment.
We close with a sketch of how DPSS might be augmented to
include effects due to external resource bounds.

Introduction

The need for effective troubleshooting is rapidly becoming
ubiquitous in our increasingly technological society. Trou-
bleshooting is a complex cognitive process, requiring the inte-
gration of detailed system knowledge with strategies for locat-
ing, testing, and repairing faults under adynamically changing
environment. In this paper we attempt to understand and char-
acterize this complexity. We present results from two empir-
ical studies in which subjects diagnosed faults in a computer-
based, dynamical simulation of an oil-fired marine power
plant, called Turbinia [Vasandani and Govindaraj, 1993].

The data were analyzed in the context of a theoretical frame-
work in which non-routinediagnosis is characterized as a pro-
cess of generating hypotheses to explain the observed faults,
and testing these hypotheses by conducting experiments. In
cognitive science, such models have been described as dual
problem space search, where processing alternates between
search in the hypothesis problem space and search in the ex-
periment problem space [Klahr and Dunbar, 1988].

In the first study, subjects’ diagnoses were analyzed in or-
der to determine their strategies for generating hypotheses,
for conducting experiments, and for integrating search in the
two problem spaces. In addition, we analyzed the efficiency
of these strategies. Note that subjects were diagnosing faults
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with essentially no constraints on time and resources. How-
ever, in the real-world, resource bounds strongly affect the
way diagnosis is conducted [Towne and Munro, 1988]. For
example, a diagnosis situation may require that the failed de-
vice be repaired immediately, or a longer turnaround time may
be permitted. Moreover, replacement parts may be plentiful
and cheap, or they may be scarce and expensive. Finally,
certain diagnostic tests may be difficult or time-consuming to
perform. Therefore, in the second study, we imposed bounds
on available resources in order to investigate their effect on
subjects’ diagnostic strategies. Two kinds of bounds were im-
posed: time and costs. The effects of time were investigated
by manipulating the time available for diagnosing faults. The
effects of cost were investigated by limiting the number of
diagnostic tests. More theoretically, the goal of this study
was to augment the framework to account for effects due to
resource bounds during troubleshooting.

The remainder of the paper is organized as follows. In the
next section, we present the theoretical framework underlying
our studies. The following section describes the computer-
based simulator, Turbinia. We then present the method and
results.

Theoretical Framework

We define diagnosis as identifying the component that is
causing the faulty condition. We propose that this process
involves identifying and clarifying the initial symptoms, gen-
erating hypotheses to explain the symptoms, running diag-
nostic tests, and evaluating test results, Within cognitive
science, the alternation between hypothesis generation and
testing has been characterized as dual problem space search
[Klahr and Dunbar, 1988]. In such models, search alternates
between (1) the hypothesis space, which contains all possible
hypotheses for the task, and (2) the experiment space, which
contains all possible experiments for the task. Search in the
hypothesis space entails proposing components whose failure
best explains the observed symptoms. The search is guided by
both prior knowledge and results from experiments. Search
in the experiment space entails conducting diagnostic tests
whose results, in turn, may confirm or disconfirm particular
hypotheses under consideration. Search in the experiment
space may be guided by currently active hypotheses, or may
serve to gather information for formulating hypotheses.

In their studies of scientific discovery, Klahr and Dunbar
(1988) have used this framework to characterize subjects in
terms of how they search the two problem spaces. Theorists
describe subjects who first attempt to generate hypotheses
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Figure 1: The boiler schematic in Turbinia.

that are then confirmed or disconfirmed through experiments.
This top-down approach begins with search in the hypothesis
space, and the search in the experiment space is constrained by
the hypotheses under consideration. Experimenters describe
subjects who search the experiment space without explicit hy-
potheses. In this bottom-up strategy, hypotheses are induced
from experimental results.

Thus, strategies are crucial for determining where and how
the two problem spaces are searched. For example, when
searching the hypothesis space, are several hypotheses con-
sidered, or only one? When searching the experiment space,
are tests conducted to 1) confirm the leading hypothesis, 2)
disconfirm hypotheses, or 3) maximize information gain? In
our empirical studies, we were interested in determining sub-
jects' strategies for coordinating search in the two problem
spaces, whether subjects could be characterized as theorists
or experimenters, and the effects of resource bounds on sub-
jects’ search strategies.

Turbinia-Vyasa

Turbinia-Vyasa is an instructional system that trains opera-
tors in diagnostic problem solving in the domain of marine
power plants. Itis comprised of a steam power plant simulator
and an intelligent tutoring system. Turbinia-Vyasa is imple-
mented in Macintosh Common Lisp with Common Lisp Ob-
ject System and runs on Apple Macintosh II computers. The
simulator, Turbinia, is based on a hierarchical representation
of subsystems, components, and primitives together with nec-
essary physical and logical linkages among them. Turbinia
can simulate a large number of failures in a marine power
plant. Approximately 100 components have been modeled to
achieve fairly high degrees of structural and dynamic fidelity
even though the physical fidelity of the simulator is rather
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low. Vyasa is the computer-based tutor that teaches the trou-
bleshooting task using Turbinia. The simulator, an interactive,
direct manipulation interface, and the tutor (with its expert,
student, and instructional modules) comprise the instructional
system.

Vyasa operates in two modes: passive and active. In the
passive mode the student is solely responsible for initiating
the communications. When help is needed, the student must
interrupt the simulation. She can then browse through and
obtain detailed knowledge about the system and generic fail-
ures. When the passive tutor is invoked, the simulation is
temporarily brought to a halt and the student can access var-
ious segments of knowledge in the expert module. In the ac-
tive mode, the tutor takes the initiative to provide instructions
when it infers a possible misconception based on the student’s
actions. In this mode, the tutor monitors the student’s actions
and offers help when appropriate. The instructions may be
provided by the active tutor with or without intervention. The
capabilities of active tutor include all the capabilities of the
passive tutor as well.

A student interacts with Turbinia-Vyasa by choosing a
schematic icon, a component, a gauge, or icons represent-
ing functions of the tutor. The boiler schematic, along with
various icons, is shown in Figure 1.

Experiment 1

An empirical study was conducted with goal of determining
the effectiveness of three training methods used by Turbinia-
Vyasa. The details and results of this study can be found in
Vasandani and Govindaraj (1993). In the analysis presented
here, we focus on subjects’ diagnostic strategies while diag-
nosing faults using only the simulator.



Mouse Overall Mean Mean Main Effect Group X Trials
Category Mean Quick Slow F(1,28) p-value p-value
Gauges 25.19 1676 3342 6.85 .0001 .0001
Components  18.26 1224 2428 27.22 .0001 .02
Schematics 5.78 478  6.77 9.69 005 n.s.
Symptoms 1.62 1.57 1.68 n.s. n.s.
Diagnoses 4.00 357 442 - n.s. n.s.

Table 1: Mean number of mouse actions per group and per category, and ANOVA results.

Method

Subjects. Thirty Georgia Tech Naval ROTC cadets served as
subjects, and were paid for their participation. All subjects
had taken an introductory course on naval systems and had a
basic understanding of thermodynamics.

Procedure. The experiment consisted of a training phase
(10 sessions, each lasting approximately 1 hour) and a testing
phase (two sessions). During the training phase, in which sub-
jects diagnosed 28 faults, subjects were randomly assigned to
one of three training conditions: (a) training using the simula-
tor alone (Turbinia), (b) training with the aid of a passive tutor
(passive Vyasa), and (c) training with the aid of an active tutor
(active Vyasa). This was followed by an identical test phase
(2 sessions), in which subjects diagnosed 10 faults, using only
Turbinia. Five of these faults were new, while five had been
given during the training sessions. The fault ordering was
identical for all subjects.

Results

As previously mentioned, the present goal was to focus on
subjects’ diagnostic strategies. Since the differences between
training conditions were small, we collapsed subjects across
conditions, and only considered their performance during the
final test (Turbinia only) phase, when they diagnosed the
previously-unseen faults.

Turbinia kept a permanent record of each subject’s mouse
actions. Each mouse action served one of the following func-
tions: 1) a request to view the initial fault symptoms (problem
formulation or elaboration), 2) a request to view a schematic,
3) arequest to view a component, 4) a request to view a gauge
(hypothesis testing), and 5) a request to make a diagnosis
(hypothesis evaluation).

The first mouse action was assumed to be problem formula-

tion or elaboration. The second and third mouse actions were
assumed to involve hypothesis formulation. Actions in the
fourth category were assumed to involve hypothesis testing,
while actions in the the fifth category were considered to be
hypothesis evaluation.
Mouse Actions. Overall, the mean number of mouse actions
per fault varied widely, and can be seen as reflecting fault
difficulty. The high variability also suggested that there was
no learning effect. For this reason, in the analysis, faults were
sorted by difficulty (determined by the mean number of mouse
actions per fault).

Table | shows the overall mean number of actions in each
mouse action category. Viewing gauges was the most com-
mon activity, accounting for 39% of subjects’ mouse actions.
Viewing components accounted for 28% of subjects’ mouse
actions. Calls for viewing a new schematic accounted for 9%
of the mouse actions, while evaluating diagnoses accounted
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for 6%. The most infrequent action was viewing the initial
symptoms (2%). Thus, over a third of the subjects’ actions
involved conducting experiments.

Transitions. In Turbinia, the user can be in one of five di-
agnostic states: viewing a symptom, schematic, component,
gauge, or requesting a diagnosis. At each state, the user
can select from among the five possible actions (except the
schematic state, in which only four kinds of actions are pos-
sible).

This results in a quite large state transition network, with
24 possible transitions. However, a much smaller portion of
the network, with 9 possible transitions, accounted for the
vast majority of subjects’ state transitions. The reduced net-
work did not show a transition between viewing the fault
symptoms and requesting a diagnosis, suggesting that sub-
jects did not rely upon symptom-fault associations. This
is not surprising, since such pairs likely arise through gain-
ing experience and developing sensitivity to common fail-
ures [Towne and Munro, 1988], and subjects in this study
were lacking such experience. The most frequent transi-
tions were gauge-to-gauge and component-to-gauge transi-
tions (accounting for 39% of all transitions), again suggesting
that subjects relied highly on testing.

The large number of tests suggested that subjects were fol-

lowing a strategy of attempting to confirm their hypothesis.
The ubiquity of the positive-test strategy is a robust finding in
the scientific discovery literature. While the positive-test strat-
egy is generally acknowledged to be a less-efficient strategy
than a negative-test strategy [Freedman, 1992], its optimality
is, in reality, a function on the distribution of positive and
negative instances [Klahr and Dunbar, 1988]. For example, if
the probability of confirming a hypothesis is high, then a posi-
tive test result does not add much new information. However,
in the Turbinia simulation, the majority of the gauges had
normal levels. Therefore, subjects had a low probability of
encountering abnormal gauges, which would serve to confirm
their current hypothesis. As such, the use of a positive-test
strategy is a quite reasonable heuristic.
Diagnostic Efficiency. Subjects were divided into two
groups, Quick vs. Slow. The split was based on a post-
hoc median split of the mean number of mouse actions per-
formed when diagnosing novel faults during the test phase.
In performing this split, we were interested in characterizing
differences between efficient (Quick) and less-efficient (Slow)
troubleshooters.

Analyses of variance were conducted with the number of
mouse actions in each category per fault (sorted by difficulty)
as the repeated measure, and group as the between-subjects
factor. There was a strong main effect of trials (all p’s < .0001)
inall mouse action categories. This result again reflected fault



difficulty. On harder faults, subjects were simply making
many more mouse actions in all categories.

In terms of the number of gauges viewed by subjects in
the two groups (Quick or Slow), there was a strong main
effect of group and an interaction of group with trials (see
Table 1). Moreover, as faults increased in difficulty, the less-
efficient group viewed significantly more gauges (there was a
significant linear trend showing increased viewing of gauges
with increased fault difficulty, F(1, 28) = 24.66, p = .0001).

Similar significant differences were found for the number
of component viewings. There was a main effect of group and
an interaction of group (Quick vs. Slow) with trials (see Table
1). Not only did the less-efficient subjects make significantly
more component checks, their number increased significantly
as faults became more difficult (there was a significant linear
trend showing increased viewing of component with increased
fault difficulty, F(1, 28) = 13.07, p = .001).

In terms of viewing schematics, there was a main effect

of group, but no interaction of group with trials. There were
no significant differences between groups nor interactions of
group with trials in the number of times the initial symp-
toms were viewed or the number of diagnostic evaluations
conducted (see Table 1).
Summary. By definition, the less-efficient subjects made
more mouse clicking actions. An examination of their cate-
gories showed that the less-efficient subjects performed more
mouse actions in all categories. However, a significant differ-
ence between less-efficient troubleshooters was found in the
number of diagnostic tests performed. The less-efficient sub-
jects conducted significantly more tests, and this difference
became more pronounced as faults increased in difficulty.
These subjects could thus be characterized as experimenters
in that they were attempting to induce the failed component
by searching for abnormal gauges. The more-efficient sub-
jects conducted significantly fewer experiments, suggesting a
better search of the hypothesis space.

Experiment 2

In the real world, many kinds of external constraints oper-
ate during diagnosis. In the second study, we investigated
the effects of two kinds of external resource bounds on sub-
jects’ diagnostic strategies: time and cost. Time limits within
Turbinia were implemented by restricting the time available
to diagnose faults. Cost limits within Turbinia were imple-
mented by adding a “Cost” window to the interface. Upon
startup, this window displayed a number that was decremented
by one each time a diagnostic test was conducted. In the case
of Turbinia, this corresponded to consulting a gauge attached
to a component.

Method

Subjects. Twenty-four Georgia Tech Naval ROTC cadets
served as subjects, and were paid for their participation’. They
were required to have the same background as subjects in the
first study.

Procedure. The study consisted of three sessions, each lasting
approximately two hours. The first session was a training
phase, in which subjects diagnosed 8 faults. During the two

'"The data from one subject were discarded due to an experimenter
error.
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COST

yes no
Proportion yes .75 56
Diagnosed no 68 90
Time yes  4.03 476
(mins) no 6.14 4.13
Mouse yes 13937 4479
Actions no 4995 59.35
Gauge yes 995 1456
TIME Actions no 1400 1785
Component yes 11.33  13.06
Actions no 1618 18.05
Schematic yes  4.20 3.62
Actions no 572 4.40
Symptom  yes  1.66 1.83
Actions no 2.18 1.70
Diagnosis  yes  4.31 3.79
Actions no 3.64 5.65

Table 2: Proportion of faults diagnosed, time to solution, and
means number of mouse actions per condition (yes=bounded;
no=unbounded)

test sessions, subjects were randomly assigned to one of four
conditions: 1) time and cost bounds, 2) cost bound only, 3)
time bound only, 4) no bounds. In each test session, subjects
diagnosed 8 faults using only Turbinia. The fault ordering
was identical for all subjects.

Design. There were two main factors of interest: diagno-
sis time (bounded, unbounded) and diagnosis cost (bounded,
unbounded), resulting in a 2 X 2 between-subjects design.
Manipulated Variables: Time and Costs. Bounds on time
and costs for each fault in the second study were determined
by analyzing data from Study 1. From these data, we cal-
culated the mean solution time and mean number of gauge
actions per fault condition. For diagnosis time, subjects in the
unbounded time condition were given 10 minutes to diagnose
each fault. In the bounded time condition, for each fault con-
dition, subjects were given the mean time to solution from the
Experiment I, rounded up to the nearest minute. For diagno-
sis costs, subjects in the unbounded cost condition were given
100 cost units for diagnosing each fault, an ample amount. In
the bounded time condition, for each fault condition, the cost
window was initialized with the mean number of gauge con-
sultations from the previous study, rounded up to the nearest
integer.

Results

In our analyses, we were interested in two performance mea-
sures (the number of faults diagnosed and the time to solution
for faults successfully diagnosed), and several process mea-
sures (the total number of mouse actions and the number of
mouse actions in the five mouse action categories). We con-
ducted ANOVA on the performance and process measures,
with COST and TIME as the independent factors. Means for
each condition are shown in Table 2.
Performance. Despite imposing time bounds on some sub-
jects, there were no main effects, but there was an interaction
of COST with TIME on the time taken to diagnose faults, F(1,
19)=5.48, p = .03.

There was a main effect of COST on the proportion of
faults diagnosed, F(1, 19) = 5.09, p < .05, and an interaction



of COST with TIME, F(1, 19) = 10.77, p < .005. A Scheffé
post-hoc analysis indicated that the subjects with cost bounds
but no time bounds diagnosed significantly fewer faults than
the subjects with both time and cost bounds (p < .01).
Number of Mouse Actions. Not surprisingly, there was a
main effect of TIME, F(1, 19) = 4.50, p < .05. Restricting
the time available to diagnosis faults appeared to reduce the
resulting number of actions. However, restricting the number
of gauge viewings (COST bounded) did not appear to affect
the overall number of actions.

Viewing Gauges. Recall that the COST factor manipulated
the number of gauge actions allowed. Predictably, there was
a main effect of COST, F(1, 19) = 3.75, p = .06. However,
there was not a main effect of TIME.

Viewing Components. There was a main effect of TIME F(1,
19) = 3.94, p = .06. However, there was not a main effect of
COST.

Schematic, Symptom, and Diagnosis Actions. There were
no main effects for these mouse action categories.

Summary. These results must be interpreted with care due to
the small number of subjects in the study. However, the results
suggested that subjects diagnosing faults with no resource
bounds exhibited the most successful performance. This was
not a surprising result. Interestingly, the subjects working
under both time and cost constraints showed the next best
performance. This suggested that the effect of working under
extremely bounded conditions caused subjects to act more
as theorists, rather than as experimenters. This conclusion
seemed warranted given that these subjects made far fewer
mouse clicks and consulted a much smaller number of gauges,
whereas the differences between the number of actions in ather
categories were not significant.

Conclusion

In this paper, we have suggested that non-routine diagnosis can
be characterized as search in dual problem spaces, alternating
between hypothesis generation and testing. Search in the hy-
pothesis generation problem space results in suspected com-
ponents, while search in the hypothesis testing problem space
serves to confirm or disconfirm specific hypotheses. Applying
the DPSS framework, originally formulated to characterize
scientific discovery, to troubleshooting tasks is important in
suggesting common strategies underlying disparate problem
solving situations.

Our analyses of subjects’ diagnostic processes showed that
they performed a large number of diagnostic tests. This
suggests that subjects were primarily engaged in search of
the experiment problem space. Unlike other studies where
troubleshooters used strategies such as “half-split” or symp-
tomatic search [White and Frederiksen, 1990], the subjects in
the present study did not seem to engage in much symptom
evaluation, and did not rely on symptom-fault pairs. This is
perhaps due to their lack of experience in the domain, and the
great ease of conducting tests in Turbinia.

The results of our analyses of subjects’ diagnostic effi-
ciency are consistent with those found in scientific discov-
ery [Klahr and Dunbar, 1988]. We found that the primary
difference between the diagnostic strategies of efficient and
less-efficient subjects was in the number experiments con-
ducted. The less-efficient subjects appeared to adopt a highly
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data-driven strategy of searching for abnormal gauges. This
strategy could be viewed as a kind of abductive process, in
which abnormal gauge readings allow the faulty component
to be induced. The fact that the more efficient subjects per-
formed significantly fewer diagnostic tests suggested that they
engaged in a better search of the hypothesis problem space.
It is possible that differences in prior knowledge about steam
engines accounted for subjects’ ability to formulate and ef-
fectively search the hypothesis space.

In the second study, we examined the effects of impos-
ing resource bounds on subjects’ diagnostic strategies. Sub-
jects with no resource bounds exhibited the most succsessful
diagnostic performance. Bounds on time allowed for diag-
nosing faults led to a reduction in the overall number of ac-
tions performed and components viewed, without appearing
to affect performance. Bounds on the number of diagnostic
tests (costs) reduced search in the experiment space, which
appeared to negatively affect diagnostic performance. As
suggested by this first study, testing was greatly relied upon
by subjects (perhaps due to the structure of the Turbinia en-
vironment), and removing this capability adversely affected
performance. Subjects with no time bounds but with cost
bounds appeared to adopt a conservative diagnostic strategy,
which in the end did not prove beneficial.

In our study, the cost factor (bounds on the number of
experiments) appeared to have the largest effects on diag-
nostic efficiency and accuracy. We are currently working
on augmenting the DPSS model to account for these re-
sults. This requires analyzing the role of experimentation
within both DPSS and the task environment. In DPSS, ex-
periments are conducted to generate or test hypotheses, or
to gather data [Klahr and Dunbar, 1988]. In Turbinia, ex-
periments consisted of reading gauges. Gauges had a fairly
high density and, in the experimental conditions with no cost
bounds, their access was cheap and easy. Our modeling ap-
proach involves adding an additional component to the search
framework. Specifically, when considering a diagnostic test,
the model must first estimate the cost of a particular diagnostic
test against the expected information gain. As a model gains
expertise, these estimates better reflect the cost structure of the
task environment. We anticipate that this modeling approach
will better capture the decisions and complexity faced by trou-
bleshooters in real-world, resource-bounded situations.

Finally, these results also have design implications with
respect to the kind of fideliry that is maintained between a
computer simulation and its corresponding external system
[Collins, in press]. Generally, designs attempt to maintain
epistemic fidelity between the simulation and the external
system. In the studies reported here, subjects’ strategies were
clearly sensitive to features and limits present in the diagnostic
situation. As such, simulations of dynamical domains should
attempt to preserve the costs and resource bounds of real
problem solving situations.
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