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Phi Index: A New Metric to Test the Flush Early and Avoid
the Rush Hypothesis
Diogo S. M. Samia1*, Daniel T. Blumstein2

1Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil, 2Department of Ecology and Evolutionary Biology, University of California Los Angeles,
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Abstract

Optimal escape theory states that animals should counterbalance the costs and benefits of flight when escaping from a
potential predator. However, in apparent contradiction with this well-established optimality model, birds and mammals
generally initiate escape soon after beginning to monitor an approaching threat, a phenomena codified as the ‘‘Flush Early
and Avoid the Rush’’ (FEAR) hypothesis. Typically, the FEAR hypothesis is tested using correlational statistics and is
supported when there is a strong relationship between the distance at which an individual first responds behaviorally to an
approaching predator (alert distance, AD), and its flight initiation distance (the distance at which it flees the approaching
predator, FID). However, such correlational statistics are both inadequate to analyze relationships constrained by an
envelope (such as that in the AD-FID relationship) and are sensitive to outliers with high leverage, which can lead one to
erroneous conclusions. To overcome these statistical concerns we develop the phi index (W), a distribution-free metric to
evaluate the goodness of fit of a 1:1 relationship in a constraint envelope (the prediction of the FEAR hypothesis). Using
both simulation and empirical data, we conclude that W is superior to traditional correlational analyses because it explicitly
tests the FEAR prediction, is robust to outliers, and it controls for the disproportionate influence of observations from large
predictor values (caused by the constrained envelope in AD-FID relationship). Importantly, by analyzing the empirical data
we corroborate the strong effect that alertness has on flight as stated by the FEAR hypothesis.
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Introduction

Animals must escape predators because failure to do so can

result in death and termination of any future contribution to

fitness. However, escaping too early can also result in a loss of

benefits such as finding food or a mate. Optimal escape theory

predicts that prey flee from predators at the point in which risk

and cost are equal [1,2]. Because of the relative ease of studying

flight initiation distance (FID, the predator-prey distance when

escape begins), the theory has been widely supported by a number

of studies since its publication. Importantly, while there is a

species-specific signal to FID [3], within species, it is affected by

many different variables that may include both internal factors,

such as age, sex, condition, and pregnancy, as well as external

factors, such as temperature, season, degree of human impact,

distance to cover, and relative exposure to predators (e.g., [4–8]).

Understanding the distance at which an individual flees an

approaching predator is of more than mere academic interest

because animals may view humans as predators [9], and FID to

humans has been used to develop set-back zones to reduce human

disturbance on wildlife [10–13].

While many factors are correlated with FID, a previous study

[14] showed that most of the 63 Australian birds studied had a

significant positive correlation between FID and starting distance,

a proxy of alert distance (AD, the predator-prey distance when the

prey becomes aware of and begins to monitor the predator; [15–

17]). The positive relationship between AD and FID was also

frequently reported in other taxa (e.g., [18,19]).

The finding that prey seem to adjust flight according to the

distance at which the predator was detected was difficult to explain

with previously existing economic escape theory [20]. Thus, the

‘flush early and avoid the rush’ (FEAR) hypothesis was proposed

and stated that animals will flee from an approaching predator

soon after starts monitoring it in order to minimize costs incurred

by monitoring predator behavior [21]. Ongoing monitoring is

expected to increase costs by diverting attention away from

beneficial activities, as well as by incurring energetic costs [22],

although these latter costs may be modest compared to other costs

(such as lost opportunity costs from flight, as well as the costs of

not-fleeing; [20]). Nonetheless, a recent meta-analysis found

substantial support consistent with the FEAR hypothesis in birds

and mammals [23].

Most previous studies have used linear correlation analysis to

assess the support for the FEAR hypothesis; a large positive

correlation between AD and FID would suggest strong support

(example in Fig. 1a). If prey flush as soon as they begin monitoring

the predator, the FEAR hypothesis predicts a 1:1 relationship

between AD and FID (in terms of linear regression analysis,

intercept = 0, slope = 1 and r= 1, Fig. 1a). However, it is
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important to note that large positive correlations (e.g., Pearson’s

r,1) do not necessarily mean that prey flush as soon as they begin

monitoring the predator because other linear relationships

between AD and FID are also theoretically possible. Hypothetical

linear correlations between AD and FID under departure from the

1:1 expectations are illustrated in Figures 1b and 1c. Figure 1b

depicts a scenario in which prey always wait for an initial distance

after it begins monitoring a predator and flushes at intermediate

distances between immediate flight and not fleeing (i.e., FID,K

AD, slope ,1). Figure 1c illustrates a scenario in which prey

systematically wait for predators to travel 40 m before initiating

flight (intercept ,0 m).

Additionally, the linear correlation analyses used to test the

FEAR hypothesis are critically sensitive to outliers, which becomes

even more important when sample sizes are relatively low [24–26].

Influential observations, defined as an observation which simul-

taneously lies near an extreme in the space of predictor and

response variables [26], are especially troublesome. In extreme

cases, an observation with a high influence could make a positive

AD-FID relationship become negative.

Figure 1. Examples of how a correlation coefficients (Pearson’s r and Spearman’s r) can lead to misleading conclusions about the
flush early and avoid the rush (FEAR) hypothesis. In panel a, individuals flush immediately upon responding to a predator. Panels b and c
illustrate other strategies that lead to identical correlation coefficients despite individuals not flushing immediately after response. Panels d and e
illustrate how other non-linear monotonic relationships can result in r= 1. AD, alert distance; FID, flight initiation distance. The dashed line represents
a 1:1 relationship.
doi:10.1371/journal.pone.0113134.g001
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The Spearman’s rank correlation (coefficient denoted by the

Greek letter rho, r) could be used as a non-parametric alternative

to test the FEAR hypothesis. Beyond the relaxation of the

normality assumption, Spearman’s test is argued to be more robust

to outliers than Pearson’s r [25]. However, in addition to sharing

the same problem of Pearson’s r regarding its production of large

coefficient values even when there is a departure from a 1:1

relationship (Fig. 1a–c), the Spearman’s correlation has an

additional peculiarity: a r= 1 represents a perfect monotonic

relationship between variables, not necessarily a linear one

(Fig. 1d–e). Therefore, even a prey adopting a quite different

strategy to that predicted by the FEAR hypothesis, such as FID

increasing exponentially (Fig. 1d) or logistically (Fig. 1e) with AD,

would result in a maximum correlation between variables.

Pearson’s chi-square test (x2) is a goodness-of-fit metric widely

applied when one wants to know whether, and by how much, the

observed data fit an a priori prediction (or a given theoretical

distribution; [25,27–32]). Thus, as a standardized measure of

departure (distance) from an a priori expectation, x2 assumes that

both observed and expected variables are measured on the same

units and scale (e.g., both in meters). Pearson’s x2 is calculated as

x2~
Xn

i~0

oi{eið Þ2

ei

where, o and e are vectors of observed and expected values

(respectively), both of length n. Because x2 is a standardized

distance between observed and expected, small values indicate

small differences between observed and expected.

Tests of the FEAR hypothesis could potentially be carried out

with a Pearson’s x2 test. First, the FEAR hypothesis provides a

clear a priori expectation of FID, given AD. In extreme cases,

FIDs will be exactly equal to ADs (1:1 line). Second, both AD and

FID are measured in the same units (meters). However, the AD-

FID relationship has an additional characteristic: AD-FID values

lie in a constrained envelope [23,33]. By definition, FID#AD;

consequently, by chance alone, FID observations with large AD

are able to vary substantially more than those FIDs with smaller

AD. For example, a prey that detects a predator at 10 m is able to

evade it when the predator is any distance between 0 to 10 m,

while a prey that detects a predator at 100 m away may choose to

evade at any distance from predator between 0 to 100 m. Thus, by

using x2, as originally defined, the statistic would be dispropor-

tionally biased by observations with the largest ADs.

We suggest that an ideal metric to test the FEAR hypothesis

must meet three criteria: (1) it must provide an intuitive measure of

how close FIDs are from ADs, (2) it must be robust to outliers in

order to properly capture the strategy used by most individuals

observed, and (3) it must not be biased by observations with large

ADs that may have a larger range of FID values.

To test the FEAR hypothesis we designed the phi (W) index, a

distribution-free metric to evaluate the goodness of fit of a 1:1

relationship in a constraint envelope. We initially employed

simulation procedures to evaluate the statistical properties of W
and its expectation under the null hypothesis. We then proceeded

to evaluate if W meets the three criteria described above. We

employed W to evaluate the FEAR hypothesis using a large

empirical data set of bird species. We compared the results

obtained with the conventional correlation analyses with those

obtained using W to better understand how the choice of statistical

method influences conclusions.

Methods

The index
The phi (W) index can be thought of the complement of the

average standardized distance between expected (AD) and

observed (FID), or, alternatively, how close the observed

relationship is from the 1:1 line:

W~1{

Pn
i~0

ei{oið Þ
ei

n

In the x2 statistic the differences between observed and expected

outcomes are squared, therefore equating negative and positive

deviations [25]. Because AD-FID is an envelope relationship,

squaring the differences is unnecessary, as ei2oi (i.e., ADi2FIDi)

.0. We then divide this difference by the expected outcome (AD).

By doing so we are calculating the deviance in a relative way

(percent difference). This approach aims to overcome the

problems of potentially excessive influential observations in cases

with large ADs that result from the envelope pattern seen in AD-

FID relationships. We then divide the sum of percent deviances by

the sample size (n) to obtain a mean percent difference. Because

differences (ei2oi) are standardized by their maximum value (ei),

the mean sum of standardized differences ranges between 0 and 1.

Finally, we subtract the mean percent difference from 1 so that W
becomes a similarity index: large W values (W,1) support the a
priori hypothesis (no departure from 1:1 AD-FID relationship,

consistent with the FEAR hypothesis), while small W values (W,0)

show maximum departure from the expectation. We provide the

R code [34] to calculate the index and test its significance in the

file S1.

Null expectation
Although W ranges from 0 to 1, observing extreme values of W

must be rare. Thus, W requires a null model to allow comparison

between an observed W value and its null expectation under

chance alone.

To generate a null distribution of W we calculated the index for

a series of simulated AD-FID relationships. The null models start

by sampling n simulated AD values (sADi) from a uniform

distribution bounded between 10 and 100 m, a range usually

observed in empirical studies. However, as we show in the figure

S1, the results are not influenced by the choice of AD range used.

Next, for each sADi, a simulated FID (sFIDi) value is sampled from

a uniform distribution bounded between 0 and sADi. Given the

vectors of sAD and sFID, one simulated W is calculated. The

process was repeated 10,000 times, generating the distribution of

W under the assumption of independence (but constraint) between

FID and AD (null expectation).

As with any frequentist null hypotheses testing, statistical

significance is a balance between effect size and sample size

[35]. To evaluate how hypothesis testing using W is influenced by a

null hypothesis we varied sample size (n) from 4 to 200 individuals.

The null model for W has a mean expectation of 0.5 (Fig. 2a),

and the greater the departure of an observed W from 0.5, the

larger the magnitude of the effect. Despite the wide range of

simulated sample sizes (4 to 200), the mean of the null expectation

varied narrowly (0.005 for the worst case scenario of n= 4). A

mean expectation of 0.5 is obtained because most random FIDs

generated by a uniform distribution (which represents a total

absence of an a priori escape strategy) is homogenously spread

along the envelope range (AD-0), so that, on average, the percent

Phi Index to Test FEAR Hypothesis
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distance of the sFID fall in the intermediate point between flush

early and flush later. The standard deviation of the null

expectation shows an exponential decrease as sample size increases

(Fig. 2b), indicating that the distribution of the null expectation

becomes progressively leptokurtic as sample size increases

(Fig. 2c–g).

However, an important point must be highlighted. Significance

tests tell us whether an observed pattern is random or not, but the

results of a significance test tell us nothing about whether the effect

is large or small. Indeed, there is a large amount of literature

arguing that one should base inferences on the effect size [35,36].

Practically, this means that it is essential to calculate the magnitude

and direction of the effect to judge its biological importance. To

this end, our null model analysis reveals a desirable and

informative property of W: as sample size increases, W-values that

deviate from 0.5 are robust indices of a population that flushes

later (,0.5) or earlier (.0.5).

Type I error and power analysis
The type I error rate is the probability that a given statistic

rejects the H0 when it is true [25,37]. To estimate the rate of type I

error in our proposed metric, we estimated the proportion of

randomly generated datasets that produced statistically significant

W-values. To do so, we first generated random datasets using a

uniform distribution under the constraint sFIDi#sADi. The sAD

were bounded between 10 and 100 m. The W-value of each

random dataset was calculated. Next, this ‘‘observed’’ W-value was

compared against a null distribution generated from 1,000

iterations (as specified in ‘‘Null expectation’’ section). The p-value

of this observed F was stored in a vector. This routine was

repeated 1,000 times. The type I error rate was calculated as the

proportion of the time in which the random data sets produced

significant W (i.e., P#0.05). Because type I error rate is affected by

sample size [37], we conducted the described test simulating

random data sets with sample size of 4, 25, 50, 75, 100, 150, and

200 observations.

Type II error is the probability of a significance test rejecting a

false H0. For a given effect size, alpha, and sample size, the

probability of having a type II error is b [25,37]. Thus, 1- b is the

statistical power of a given test [37]. To test the statistical power of

W we compared both intermediate (0.75) and high (0.9) W-values

against a null model (1,000 iterations). As with our type I error test,

1,000 random datasets were generated using a uniform distribu-

tion under the constraint that sFIDi#sADi, where the sAD were

bounded between 10 and 100 m. To simulate intermediate and

high W-values, we simulated the sFID by multiplying the sAD

vector by 0.75 and 0.9, respectively, and then calculated W using

these vectors. The next steps were the same as those in the type I

error test. We calculated the power as the proportion of the time

that simulated 0.75 and 0.9 W-values were significant (equivalent

to subtracting the number of non-significant W-values from 1).

Table 1 summarizes the results of both type I error and the

power analysis of W. Regardless of the sample size used, W has type

I error rates below the nominal rate commonly accepted (,5% at

a= 0.05). Moreover, we demonstrated that W is a powerful test.

With only one exception, all simulations had the maximum power

( = 1), because all simulations were significant in both intermediate

and high W (Table 1). The intermediate W with the lowest sample

size (n= 4) had a power of 0.915 (Table 1), considerably above the

standard level of 0.8 [37]. Such findings demonstrate that W can

be reliably applied even with small datasets.

Robustness to outliers
A good metric to test the FEAR hypothesis should be

simultaneously robust to outliers and not biased by large

departures when AD is large (due to the constraint envelope).

Here we used a worked example to evaluate how W behaves in

both cases. We compared W with the outcome of the Pearson’s r,
Spearman’s r, and with a traditional Pearson’s x2. Although

Pearson’s x2 is commonly applied to categorical data [28], the

Pearson’s x2 statistic can also be used with continuous data (as

shown below) and its significance tested against a null model

respecting the constraint FID#AD. By comparing results from

Pearson’s x2 with W we aim to demonstrate how Pearson’s x2 is an

inadequate statistic to evaluate the FEAR hypothesis because it is

disproportionately affected by deviance in large AD values.

To test the robustness to outliers, we first created a hypothetical

species that rigorously follows the FEAR hypothesis (i.e., all

FID = AD; Fig. 3a). To simulate the outliers, we randomly chose

one of the twelve observations of the hypothetical species and

reduced its FID from FID = AD to FID = 0, while keeping the

remaining observations (11) unchanged. With these reduced data

sets we then calculated the four metrics (W, r, r, x2).

As we see, r, r, and x2 were affected as a function of the

magnitude of the AD of the outlier (Fig. 3b). As the magnitude of

the outlier’s AD increases, x2 increases, and r decreases. In

contrast, because W standardized the differences between AD and

FID (by dividing by AD), the observed W value remains exactly the

same regardless of the magnitude of AD of the outlier. This

exercise demonstrates that using relative differences between

expected (AD) and observed (FID) outcomes, as opposed to

natural differences used by a x2 statistic, provides W with the

necessary robustness to deviations along the range of magnitudes

of AD. This is a desirable propriety of a metric aimed to test

relationships when there is a constrained envelope.

Our hypothetical species example had the ADs homogeneously

distributed (ca. 3 m of difference between them). It showed how

conventional metrics are biased as a function of the envelope

relationship, but it does not directly address the issue of influential

points with significant leverage. To test how the four metrics are

affected by influential observations in constrained envelope

relationships, we used the same hypothetical species, but replaced

the previous largest AD value (40 m) with progressively larger ADs

(respectively, 50, 60, 70, and 80 m).

Figure 4 illustrates the disproportionate effects a single outlier

with high leverage has on r and x2, as well as illustrates how the W
and r remains unchanged. Spearman’s r, although substantially

affected by outliers (r was reduced from 1 to 0.54 because a single

outlier; Fig. 4), is robust to influential points. Because r calculates

the correlation between ranked variables, the values of the largest

observations will always be set as the first position and will yield

exactly the same r regardless of the absolute or relative difference

between the first and the second largest AD values.

Worked Example with Empirical Data

Data
Here we employ W to test the FEAR hypothesis using a large

dataset with 75 bird species. These species represent most species

(75 of 79 species; 95%) that were previously used in a meta-

analysis which found support for the FEAR hypothesis using

Pearson’s correlation coefficient [23]. Thus, the bird dataset is

suitable for a comparison between statistical methodologies. The

75 species used here represent those species used in the primary

studies of one of the authors (Blumstein) and were used because we

had the raw data required for the analysis. In the primary studies,

Phi Index to Test FEAR Hypothesis
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the effect of detection and monitoring on FID was frequently

studied by using starting distance as proxy of AD (e.g., [6,14,38]).

However, because there are some concerns about the validity of

doing this [33], we extracted from the dataset only those FID

Figure 2. Null expectation of the phi (W) index using simulated data. Plots show the distribution of the expected (a) mean and (b) standard
deviation of W as a function of sample size (n). Panels c–g illustrate how the null distribution of W becomes progressively leptokurtic as sample size
increases: respectively, 4, 50, 100, 150, and 200.
doi:10.1371/journal.pone.0113134.g002
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observations in which the AD was recorded. By doing so, we

reduced the sample size from that previously studied (more details

are supplied in Tab. S1).

Analysis
We compared the W outcomes with the outcomes of r and r.

Because of the envelope constraint, traditional hypothesis testing

cannot be carried out with the r and r values since the expected

distribution differs greatly between constrained and non-con-

strained relationships [33] (see Fig. S2). Hence, the significance of

the rs and rs calculated for the 75 species were tested using the

same null model described in the ‘‘null expectation’’ section (i.e.,

respecting the AD$FID constraint).

Closely related species are more likely to have similar

phenotypes because of their common ancestry, which makes data

points statistically dependent [39]. We then estimated the mean r,
r, and W for our set of 75 bird species by fitting a phylogenetic

generalized least-squared model (PGLS; [40]). We ran an

intercept-only model with PGLS to estimate the ‘‘phylogenetically

correct mean’’ (sensu [41]). We use such a strategy because the

intercept of this model is the same as the average value of the

dependent variable, and the PGLS permits us to factor in the

phylogenetic dependence [41]. PGLS was calculated using the

‘‘pGLS’’ R package [42]. We used the most recent avian

phylogeny [43] (Fig. S3). But, since this phylogeny was built using

Bayesian methods, we randomly selected 100 phylogenies from

those available (http://birdtree.org/) and ran the analysis for each

tree. Results were very similar regardless of phylogenetic tree.

Thus, we conservatively used those with the least overall mean

effect size.

Results of the worked example
We calculated r, r, and W of the AD-FID relationship for all 75

bird species (Tab. S1). Calculated r-values ranged from 20.35 to

0.96 with the most frequent values occurring between 0.85 and 0.9

(13 species; 17%; Fig. 5 and Tab. S1). Calculated r-values ranged

from 20.06 to 0.96 with the most frequent values also occurring

between 0.85 and 0.9 (11 species; 15%; Fig. 5 and Tab. S1).

Calculated W-values ranged from 0.42 to 0.9 with the most

frequent ones occurring between 0.75 and 0.8 (19 species; 25%;

Fig. 5 and Tab. S1). When the FEAR hypothesis was evaluated

with Pearson’s r, 63% (47) of the AD-FID relationships were

significant, while 49% (37) relationships were significant using r,

and 81% (61) relationships were significant using W (Fig. 5 and

Tab. S1). Overall, the mean values were: r= 0.75 (SE = 0.24),

r= 0.71 (SE = 0.20), and W= 0.71 (SE = 0.09).

A comparison among the metrics outputs showed a markedly

heteroscedastic relationship between W and Pearson’s r and

between W and Spearman’s r (Fig. 6). The variance of both r and

r increased as W decreased (Breusch-Pagan test; r: x2 = 15.27, d.f.

= 1, P,0.001; r: x2 = 13.12, d.f. = 1, P,0.001). The regression

analysis also showed how r and r are strongly related

(intercept = 0.173, b= 0.737, P,0.001, R2 = 0.75). Plots 6a and

6b show that some species with a W around 0.5 (the mean null

expectation) had large effect sizes when evaluated using correla-

tional analysis (r and r<0.8). However, higher W values (above

0.78) were associated exclusively with high r’s and r’s (Fig. 6). This

result suggests the absence of outliers that bias estimates of

correlation coefficients in species with high index values.

In some species, the three metrics led to similar conclusions

about whether a species did or did not flush early (Fig. 7). For

example, some species had both large and significant relationships

regardless of the metric used (Fig. 7a–c), consistent with the FEAR

hypothesis. Conversely, other species had both low and non-

significant relationships using the three metrics (Fig. 7d–f), which

are not consistent with the FEAR hypothesis.

Interestingly, the conclusion about whether or not a species

followed the FEAR hypothesis was metric-dependent for some

species. There were cases in which the effect of outliers and

influential points led to an underestimation (and hence non-

significance) of the correlation coefficients (Fig. 7g–i). For exam-

ple, four influential points in Anthus novaeseelandiae (n= 60), and

three in Sturnus vulgaris (n= 29). Heteromyias albispecularis
(Fig. 7i) was an extreme example of high influential points creating

a negative relationship between AD and FID (r=20.35 and

r=20.06), despite all metrics being non-significant in this case.

However, non-significant AD-FID relationships calculated using

correlation analyses were significant when measured by W in other

cases (Fig. 7j–l). Despite all metrics yielding relatively high values,

the low sample size (n= 4) led Tringa melanoleuca to have a non-

significant r and r values but a highly significant W-value. This

finding is unsurprising because a high correlation coefficient from

a small sample size is expected only by chance [26]. Conversely, as

we showed here, W is a powerful test even when we have low

sample sizes (Tab. 1).

Discussion

In this study we proposed and evaluated a new index (phi, W)

designed to test the Flush Early and Avoid the Rush (FEAR)

hypothesis, which states that prey flee soon after they begin

monitoring a potential predator that is approaching it to reduce

the cost associated with on-going monitoring of the predator’s

approach [21]. The FEAR hypothesis is supported by a large

Table 1. Type I error rate and statistical power of W with a variety of sample sizes.

N type I error power (0.75) power (0.9)

4 0.042 0.915 1

25 0.049 1 1

50 0.047 1 1

75 0.045 1 1

100 0.043 1 1

150 0.048 1 1

200 0.033 1 1

Power analyses were conducted with a W= 0.75 and W=0.9.
doi:10.1371/journal.pone.0113134.t001
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positive correlation between alert distance (AD) and flight

initiation distance (FID). Our new index possesses the mathemat-

ical and statistical properties necessary to robustly take into

account the peculiarities of the AD-FID relationship. These

include the 1:1 expectation, the envelope constraint, and expected

heteroscedasticity. Additionally, we showed that W is a powerful

test, even with low sample sizes. The W is accurate because the

departure of the observations from the 1:1 line is calculated as a

per cent deviation. Thus, any individual observation has

potentially the same weight in the final statistic (all can range

from 0 to 1) regardless of the distance at which an individual is first

alerted to a predator (AD). By doing so, the index does not put

Figure 3. a) Relationship between alert distance (AD) and flight initiation distance (FID) of a hypothetical species that strictly
followed the FEAR hypothesis (i.e., all FID=AD). Outcome of the four statistics and the 1:1 line is shown on plot. b) The relationship between
magnitude of the AD of outlier (where FID was set to 0; see text for detailed methods) and the resulting calculation of alternative metrics. Squares,
Pearson’s r; circles, Spearman’s r; grey triangles, Pearson’s chi-squared (x2), and black triangles, phi index (W).
doi:10.1371/journal.pone.0113134.g003
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extra weight on the largest ADs which are a potential source of

error given the envelope relationship between AD and FID.

To demonstrate the utility of W, we contrasted the results of

calculating W with the traditional methods, the standard Pearson’s

linear correlation coefficient and Spearman’s rank correlation. We

showed that the choice of metric influences the conclusion drawn

about the FEAR hypothesis. For example, by using empirical data,

we detected that 30% more species behaved in a way that was

consistent with the FEAR strategy when tested with W than when

tested with Pearson’s linear correlation coefficient. We must

emphasize that this was not over-attribution, because by exam-

ining individual species’ AD-FID relationships we were able to see

how the presence of influential observations biased our potential

conclusions that might be draw from a traditional correlational

analyses.

Although we have shown that the conclusions one draws about

a species following the FEAR hypothesis may be metric-

dependent, the overall effect size for 75 species here is consistent

with avian species generally flushing early. This conclusion is the

same as that of previous meta-analysis [23] and reassures us that

monitoring predators should be an important part of the

economics of escape behavior. Since W requires raw data to be

calculated, it may not be suitable for some comparative analyses

where researchers only have access to mean values reported in the

literature. Nevertheless, we suggest that researchers test the FEAR

hypothesis in other taxa using the metric proposed here so as to

evaluate the FEAR hypothesis with independent data. As a

measure of effect size, W is an intuitive estimate of how much a

species follows the FEAR hypothesis (or random anti-predator

strategy, or flush later strategy). Thus, W can be used in future as a

response variable used to investigate potential covariates predict-

ing prey’s flight decisions.

Limitations of alternative methods to test the FEAR
hypothesis

Recently two alternative algorithms were proposed to test AD-

FID relationships [33,44]. Nonetheless, we believe that while these

were valuable suggestions, and may be appropriate in some

circumstances, W may be a preferred metric.

Chamaillé-Jammes and Blumstein [44] suggested that the

FEAR hypothesis could be tested using quantile regression.

Because of the envelope constraint in AD-FID relationship, data

frequently show heteroscedasticity (the variance increases with

AD). As a result, data may violate a critical assumption of

regression analysis [25,26,29]. Under a quantile regression,

however, heterogeneous variance is not a problem since linear

relationships are modeled on quantiles of the range of response

Figure 4. Plots of the relationship between alert distance (AD) and flight initiation distance (FID) of the hypothetical species when
the largest outlier (where FID was set to 0) was changed from an AD of 40 m to, respectively, 50 m (a), 60 m (b), 70 m (c), and 80 m
(d). Outcome of the four statistics (Pearson’s r, r; Spearman’s r, r; Pearson’s chi-squared, x2; and phi index, W) and the 1:1 line is shown on their
respective plots.
doi:10.1371/journal.pone.0113134.g004
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Figure 5. Frequency distribution of (a) Pearson’s r, (b) Spearman’s r, and (c) phi (W) indices (light grey bars) for the 75 avian species
studied. Number of significant indices (P#0.05) in each interval of values is shown by the dark grey bars.
doi:10.1371/journal.pone.0113134.g005
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variable [45]. Nonetheless, while a valuable contribution, they

noted that quantile regression requires large sample sizes to be

implemented (.50; [44]). The required sample size can be a real

barrier in interspecific studies where sampling effort varies, and for

rare species, where it is simply difficult to obtain data. For

example, only 22% of species in our data set had n.50. As an

alternative metric, W has the advantage of simultaneously

overcoming the problem of potentially heterogeneous variances

(thus we do not need to invoke the homoscedasticity assumption)

and small sample sizes, since W provides a robust estimate of AD-

FID relationship even for small samples.

Because the AD-FID relationship is constrained by an envelope,

Dumont et al. [33] noted that an spurious relationship between

AD and FID should be expected. They suggested a regression-

based approach that tests the significance of the observed slope

against a null model. While recognizing the spurious relationship

was an important advance, their method should be cautiously

applied.

First, the Dumont et al. [33] method focuses on testing the

significance of the slope while ignoring the intercept. However,

when the intercepts change, comparisons among simulated slopes

are not meaningful [26,46]. For example, a slope of 0.6 with an

intercept of 0 predicts a very different relationship than a slope of

0.6 and an intercept of 20 (as shown in Fig. 1). Moreover, because

of the envelope relationship, an AD of 0 m must have an FID of

0 m. Thus, it may generally be recommended to force the

intercept through the origin. Indeed, we suggest that when testing

the FEAR hypothesis, it is essential to set the intercept to zero so

that a slope ,1 illustrates individuals that flush early (Fig. 1), and a

slope ,0 illustrates individuals that flush later.

Second, an assumption of the regression is that residuals follow

a normal distribution [26]. While recognizing that regression

estimates are robust to a weak to moderate violation of this

assumption, substantial deviations reduce our confidence in

parameter estimates [25,26,47]. For example, in our dataset, 30

species (40%) critically violated the normality of residuals

assumption. For these species, the Dumont et al. [33] approach

might have produced unreliable results. As we have described

above, W is not sensitive to distributional assumptions; a feature

that makes it particularly suitable for these analyses.

Finally, as with any regression analysis, the Dumont et al. [33]

method must guarantee that data are well described by some

model [26,47]. For instance, Dumont et al. [33] used a model

selection approach where they contrasted linear, logarithmic and

polynomial regressions to seek the best model describing their

data. However, the fact that a model selection approach always

produces the best model(s) does not mean that they are ‘‘good’’

models [48]. If all competitive models are poor, the criterion will

select the least poor model as the best model (this is usually the

one(s) with the fewest parameters; [48]). The considerable

variation (expected from data that follow a constraint envelope)

means that slope estimates are particularly sensitive to outliers.

Because of these points, we suggest that when using the Dumont et

al. [33] method one must not rely exclusively on model selection,

but rather use r2 to both judge the importance (i.e., effect size) of

the predictor(s), as well as the adequacy of the selected model

[35,36,48].

Final remarks
Evaluating the FEAR hypothesis is both of academic and

applied interest. Academically, the FEAR hypothesis suggests that

AD effect must be accounted for when studying the effects of other

factors on optimal escape decisions (such as a predator’s speed or

prey’s distance to refuge; [1,2]). FEAR is also important for

Figure 6. Relationship between (a) phi index (W) and Pearson’s
r (r), (b) W and Spearman’s r (r), and (c) r and r for the 75 avian
species studied. The dashed line in plot c represents a 1:1
relationship.
doi:10.1371/journal.pone.0113134.g006
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applied reasons. Because FID is frequently used to design set-back

zones to reduce impact of humans on wildlife [10,12,49], an

understanding what influences FID can help wildlife managers to

develop more effective protected areas [11,13]. Furthermore,

because over the last decade the optimal escape literature has

demonstrated that AD is probably the main predictor of FID for

many species [23], we suggest it is essential to take AD into

account for designing set-back zones and properly measuring the

AD-FID relationship.

Figure 7. Examples of relationships between alert distance (AD) and flight initiation distance (FID) of selected avian species used in
our empirical test. The FEAR hypothesis tested using both correlation coefficients (r and r) and phi (W) index values are shown along with their
associated P-values (in parentheses). Plots a–f illustrate the cases in which the three metrics lead to similar conclusion, whereas plots g–l illustrate the
cases where conclusions drawn from the r and r results diverge from those of W. n= sample size. Species name is indicated in the top of their
respective plot. The 1:1 relationship (dashed) is shown.
doi:10.1371/journal.pone.0113134.g007
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We have presented W as a way to evaluate the FEAR

hypothesis. However, we suggest that W can also be used to test

for 1:1 expectations in other situations where the relationship

between two variables is constrained by an envelope. For instance,

Blumstein [50] studied factors influencing maximum running

speed by regressing distance run against run time. Logically, such

a regression must be forced through the origin, and logically, there

can be more variation in run time as distance run increases. Thus,

the W statistic could be potentially useful in such analyses if one

expected a 1:1 relationship between the variables. As we have

shown in the present study, the use of conventional metrics can

lead one to erroneous conclusions about expected 1:1 relationships

if the properties of the envelope constraint are neglected.
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Figure S1 Null expectation of the phi (W) index using
simulated data. From left to right, columns shows the null

distribution of simulated data with alert distance ranging from 1–

1.01 m, 10–100 m, and 75–200 m. From top down, plots illustrate

the distribution of the expected mean and standard deviation

together, expected mean alone, and standard deviation alone of W
as a function of sample size (n). Histograms illustrate how the null

distribution of W becomes progressively leptokurtic as sample size

increases: respectively, 4, 50, 100, 150, and 200. Sample sizes

indicated in the top of plots.

(PDF)

Figure S2 Example of the null expectation of Pearson’s r
(r) and Spearman’s r (r) from non-constrained and

constrained relationships. The null expectations were

constructed by sampling 50 simulated alert distance values (sADi)

from a uniform distribution bounded between 10 and 100 m.

Next, for each sADi, a simulated flight initiation distance (sFIDi)

value was sampled from a uniform distribution. For the non-

constrained relationships, we permitted sFID to range from 2100

to 100, while for the constrained relationships, sFID varied

between 0 and sADi. Given the vectors of sAD and sFID, we

calculated both r and r. The process was repeated 10,000 times.

Note how the mean expectation diverges from zero in the

constrained relationships.

(PDF)

Figure S3 Phylogenetic hypothesis of the 75 avian
species included in the present study.

(PDF)

Table S1 Summary results of the relationship between
alert distance and flight initiation distance of the 75
avian species studied. n, sample size; r, Pearson’s correlation

coefficient; P(r), P-value of the r; r, Spearman’s correlation

coefficient; P(r), P-value of the r; W; the phi index; and P(W);

associated P-value of the phi index.

(PDF)

File S1 R script to calculate and test the significance of
the phi index.
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