
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
A Study Of Energy Disaggregation Using Deep Learning

Permalink
https://escholarship.org/uc/item/5jc2x5zt

Author
Madenur Venkatesha, Abhiram

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at 
https://creativecommons.org/licenses/by-nc-sa/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5jc2x5zt
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

SANTA CRUZ

A STUDY OF ENERGY DISAGGREGATION USING DEEP
LEARNING

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Abhiram Madenur Venkatesha

December 2018

The Thesis of Abhiram Madenur Venkate-
sha
is approved:

Professor Patrick Mantey, Chair

Dr. Ali Adabi

Assistant Professor Yu Zhang

Lori Kletzer
Vice Provost and Dean of Graduate Studies



Copyright c© by

Abhiram Madenur Venkatesha

2018



Table of Contents

List of Figures v

List of Tables vi

Abstract vii

1 Non-intrusive Load Monitoring (NILM) 1
1.1 Appliance Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 On/Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Multi-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Infinite State Appliances . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Deep Learning 4
2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 ”Vanilla” RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Long-Short Term Memory Networks . . . . . . . . . . . . . . . . 7

2.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Batch Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.4 ADAM optimization . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Initialization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Random Initialization . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Xavier Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Work 17
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 REDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 UK-DALE Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



3.1.3 SEADS Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Implementations 25
4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 REDD & UK-DALE . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 SEADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Neural Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Test Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Results and Conclusion 34
5.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 42

iv



List of Figures

1.1 A representation to summarize the power consumption of different appli-
ance types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Elman Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Representation of a LSTM Cell . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Representation of a Convolutional Neural Network . . . . . . . . . . . . 10
2.4 SGD without momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 SGD with momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 REDD information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Pie Chart depicting the total power consumption of house 1 . . . . . . . 20
3.3 Stacked Area Chart depicting the overview of the power consumption of

house 1 for the duration of the data . . . . . . . . . . . . . . . . . . . . 20
3.4 UK-DALE dataset details . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Panel 3 of SEADS data visualized over the depicted period . . . . . . . 24

4.1 The structure of the API used to access SEADS data . . . . . . . . . . . 29

5.1 LSTMv1 loss value vs. number of epochs . . . . . . . . . . . . . . . . . 35
5.2 LSTMv2 loss value vs. number of epochs . . . . . . . . . . . . . . . . . 36
5.3 Intermediate LSTMv1 accuracy vs. number of epochs . . . . . . . . . . 37
5.4 Intermediate LSTMv2 accuracy vs. number of epochs . . . . . . . . . . 38

v



List of Tables

5.1 Validation Accuracies of the LSTM architectures on the datasets . . . . 39
5.2 Test Accuracies of the LSTM architectures on the datasets . . . . . . . 39
5.3 Average inference time (in seconds) of the LSTM architectures on the

test datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



Abstract

A Study of Energy Disaggregation Using Deep Learning

by

Abhiram Madenur Venkatesha

Energy disaggregation estimates appliance-by-appliance electricity consumption from

a single meter that measures the total energy consumed in a house. Recently, deep

neural networks have driven remarkable improvements in classification performance in

neighbouring fields such as image classification and automatic speech recognition. In

this work, I make use of recurrent neural networks with three datasets (two of which

are publicly available) in order to study the energy disaggregation ability of recurrent

neural networks.
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Chapter 1

Non-intrusive Load Monitoring (NILM)

Non-Intrusive Load Monitoring (NILM) methodologies are used to extract and

infer the amount of power consumed by an individual appliance using the aggregated

time-series power data. NILM helps provide important feedback to both the user and

the electric utility which can help toward energy saving behaviour.

The initial studies on NILM were presented by Hart in the 90’s. Hart’s [18]

work concentrated on residential appliances that were modeled as finite state machines

(FSM) with two states (On/Off).

1.1 Appliance Types

Appliances differ in the number of operational states and their power consump-

tion behaviour. Three of the commonly used abstract models namely on/off, multi-state

and infinite state appliances are presented below.
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1.1.1 On/Off

On/Off appliances include common household appliances such as a toaster or

a light bulb.

On/Off appliances draw a constant amount of power during their steady-state

operation. Most on/off appliances are purely resistive.

1.1.2 Multi-State

Multi-state appliances have more than one state in which they are actively

operating. Each of these appliance’s states draws a specific amount of power. A common

way to represent multi-state appliances is a finite state machine (FSM) representation.

1.1.3 Infinite State Appliances

Infinite state appliances are the ones in which the set of active states is not ob-

servable. As an example, the power consumption of light-dimmers changes continuously

with no stepwise change. In comparison to on/off appliances and multi-state appliances

that change their state in detectable steps, infinite state appliances show a behavior of

drawing a continuously varying amount of power.

An example chart below from Non-Intrusive Load Monitoring: A Review and

Outlook by Christoph Klemenjak1 and Peter Goldsborough shows a representation to

summarize the power requirements of different appliance types. [24]
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Figure 1.1: A representation to summarize the power consumption of different appliance
types

1.1.4 Learning Approaches

Learning approaches for NILM can be divided into supervised and unsuper-

vised techniques. The fundamental difference between an unsupervised and supervised

approach is the availability of ground truth data for individual appliances for training

the algorithm.

Supervised Learning is the approach in which the algorithm is trained using

both the aggregate data and the individual appliance data. Labeled data for training

purposes is collected using an intrusive approach by measuring appliance level data.

Unsupervised Learning is the approach in which the algorithm is trained

using only aggregate power data. Ground truth appliance-level data is not made use of

in order to train the algorithm. In comparison to a supervised approach an unsupervised

approach does not help in obtaining better results.
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Chapter 2

Deep Learning

Deep Learning is a subset of machine learning and has been the trending

research for many tasks such as object recognition, object detection, image classification,

speech translation, question-answering systems and speech recognition.

In classic machine learning manual feature engineering is necessary in order

to improve the performance of the machine learning algorithm. In the case of deep

learning, the algorithm is built from composing multiple stages of non-linear feature

maps, thereby reducing the need for feature engineering as the composed feature maps

learn the features necessary during training of the algorithm.

Deep learning approaches are useful in NILM because of their feature-learning

ability. Although deep learning techniques do not require feature engineering, they do

require training using a supervised approach in order to improve performance during

inference time. Hence labeled data is important to train a deep learning algorithm in

order to achieve high performance during real world testing and application.
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2.1 Neural Networks

A neural network is a hierarchical set of weighted summations followed by a

non-linearity applied to the output of the weighted sum. A Neural Network (NN) can

be represented as directed acyclic graph (DAG) where the nodes or ”neurons” are the

components that calculate weighted sum of its inputs, adds a bias and then ”activates”

itself based on a non linearity function. A neural network can be divided into a set of

layers namely: input layer, output layer and hidden layers. Input layer is the layer of

neurons that accept the input data and the output layer is the final layer at which the

output of the NN is obtained. Every layer between input and output layers is termed

to be a hidden layer. A hidden layer is a set of neurons in which the activations are

calculated to produce hidden feature maps. The activations of any of the layer l is sent

to the next layer l + 1 through edges. Typically in a simple Neural Network, neurons

of every layer l are connected to neurons of layers l − 1 and neurons of layer l + 1.

The ”learning” part of a NN takes place in two steps: the forward pass and

the backward pass. Forward pass is the step in which the information from the input

layer is passed through the hidden layers, and the calculated activations are utilized to

produce an output that can be obtained in the output layer. Backpropogation is a

common term used to define backward pass of a NN. During backpropogation, gradient

descent is used to update the weights of the hidden layer depending upon the error

calculated between the actual output and the predicted value.

The following sections present different types of NNs specially built to solve
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specific application domains.

2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is a type of artificial neural network whose

output at any time step depends on the current input and the network’s previous hidden

state.[13] [20] RNNs have hidden states that store previous information, thereby acting

as a memory element. Hence, RNNs perform well when the inputs are sequences such

as words in a sentence or time series data.

The training of RNNs happens in a similar manner to backpropogation in

an artificial neural network. Backpropogation through time (BPTT) is a technique in

which weights are updated by considering the states of all the previous timesteps.

2.2.1 ”Vanilla” RNN

A ”vanilla” or the simple RNN is the most basic RNN. The most common

vanilla RNN used is the Elman Network (shown below): [13]

Figure 2.1: Elman Network
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The update rule of the parameters is defined in the equation below:

ht = σ(xtWx + ht−1Wh + b)

ot = σ(htWho+ bo)

where ht is the hidden state of the RNN at timestep t, ht−1 is the hidden state

of the RNN at timestep t− 1, ot is the output state of the RNN at timestep t, wx is the

input weight matrix, Wh is the hidden to hidden weight matrix, Who is the output to

hidden weight matrix.

Vanilla RNNs perform well on short sequences. However as sequences get

longer, the issue of vanishing/exploding gradients starts to occur. Vanishing/exploding

gradients is the problem in which during backpropogation the gradient values decrease

(vanish) or increase (explode) significantly thereby causing the neural network to satu-

rate and rendering it ineffective. A more complex type of RNN known as the Long-Short

Term Memory (LSTM) network aims to solve this problem with the help of additional

activations and weights, composed as gating mechanisms.

2.2.2 Long-Short Term Memory Networks

Long short-term memory (LSTM) is a type of recurrent neural network and

was introduced in 1997 by Hochreiter et. al. [20] However, in the LSTM that Hochreiter

et. al formulated, a phenomenon in which the error becomes trapped in memory known

as ’error carousel’ occurs. Gers et al. [14] introduced peephole connections that reduced

the error carousel problem, Gers et al. in his formulation of the LSTM network also
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introduced the ”forget gates” which led to substantial improvement in the performance

of LSTM enabling it to partially or completely reset the hidden state that it deems to

be of no value at any time step.

A diagram of a LSTM is shown below [35]

Figure 2.2: Representation of a LSTM Cell

The expressions below represent the update rule for the LSTM network:

it = σi(xtWxi + ht−1Whi + wci� ct−1 + bi)

ft = σf (xtWxf + ht−1Whf + wcf � ct−1 + bf )

ct = ft � ct−1 + itσc(xtWxc + ht−1Whc + bc)

ot = σo(xtWxo + ht−1Who + wco � ct + bo)

ht = ot � σh(ct)

2.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of Neural Network that is

mainly used in the field of image recognition [29] due to its ability to recognize complex

8



patterns in images while delivering high performance. Convolutional Neural Networks

are composed of multiple layers that are made up of any of the layer types namely:

convolution layer, pooling layer, the activation layer and the fully connected layer.

• Convolution layer: This layer is made up of one or more kernels (filters). Each

kernel extracts features from the image. Multiple kernels ensure that more com-

plex features are recognized in a single layer. The kernels act in a similar way

as that of hand coded kernels (edge detectors etc.) but are learnt during the

backpropogation stage of the training.

• Pooling layer: The output of the convolutional layer is generally a high dimensional

feature map. In order to reduce the amount of data to be processed in further

layers, the feature maps are downsampled. This in turn helps the network be

translationally and rotationally invariant thereby increasing performance. Max-

pooling and average pooling are the most common types of pooling.

• Activation Layer is the layer at which an elementwise non-linear activation is

applied to the feature maps in order to reduce the vanishing gradient problem.

Non linear activations also help improve computational speed and induce sparsity

in the feature maps. Rectified Linear Unit (ReLU) is the most common type

of activation function used and is defined as f(x) = max(0, x) (fundamentally a

thresholding function)[31]. A variant of ReLU, called the Leaky ReLU may also

be used. The only difference is the lower threshold may not be 0 in Leaky ReLU.

• Fully Connected Layer is generally the final layer and is used to make predictions

9



using the weighted sum of the feature maps in the previous layer. A fully connected

layer, also known as the dense layer is made up of an artificial neural network. The

output of the fully connected layer is generally the prediction of the Convolutional

Neural Network.

A representation of a Convolutional Neural Network is as shown below: [11]

Figure 2.3: Representation of a Convolutional Neural Network

2.4 Optimization Methods

Optimization in the context of machine learning and deep learning is the min-

imization of an objective function known as the loss function in order to improve per-

formance of the algorithm. Optimization in a neural network is achieved by updating

the hyper-parameters of the network in proportion to the error.

10



2.4.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is one of the most used backpropogation

approaches to train a neural network. The hyperparameters of the neural network

must be updated in proportion to the error generated by making a prediction on each

training example. While training larger and more complex neural networks. The update

equation of SGD is:

Algorithm 1: Stochastic Gradient Descent (SGD)

Input: Training data S, regularization parameters λ, learning rate η, initialization

σ

Output: Model parameters Θ = (w0,w,V)

w0 ← 0; w← (0, . . . , 0); V ∼ N (0, σ);

repeat

for (x, y) ∈ S do

w0 ← w0 − η( ∂
∂w0

l(y(x | Θ), y) + 2λ0w0);

for i ∈ {1, . . . , p} ∧ xi 6= 0 do

wi ← wi − η( ∂
∂wi

l(y(x | Θ), y) + 2λwπwi);

for f ∈ {1, . . . , k} do

vi,f ← vi,f − η( ∂
∂vi,f

l(y(x | Θ), y) + 2λvf,π(i)vi,f );

end

end

end

until stopping criterion is not met ;
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SGD is not seen to perform well because of less stable convergence and the

computational time it takes to achieve convergence close to the global minimum without

getting stuck at local minima.

2.4.2 Batch Gradient Descent

Batch Gradient Descent or commonly known as ”mini-batch” gradient descent

is a variant of SGD in which the updating of hyperparameters of the neural network

takes place in proportion to the average of the errors caused by a specific number of

training examples. The number of training examples after which the backpropogation

takes place is called the batch size and it is a hyperparameter that is normally decided by

the user. A higher batch size results in increased memory consumption of the processing

component.

2.4.3 Momentum

SGD has trouble with local optima and oscillates across the ravines (areas

where the surface curves steeply in one dimension compared to others) and makes min-

imal progress toward the optimum.

The below image shows the behaviour of SGD without momentum: [9]

12



Figure 2.4: SGD without momentum

Momentum is a method that helps the SGD algorithm by accelerating SGD in

the relevant direction and reduces the oscillations. Momentum achieves this by adding

to the current update a fraction γ of the previous update value. [9]

Figure 2.5: SGD with momentum

vt = γvt−1 + η∇θJ(θ)

θ = θ − vt

The momentum term γ is normally set to a value close to 0.9.
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2.4.4 ADAM optimization

Adaptive Moment Estimation (ADAM) [12] [17] is a method that computes the

adaptive multipliers to control the update of hyperparameters. It stores exponentially

decaying average of past squared gradients vt and exponentially decaying average of

past gradients mt. The decaying averages are computed as follows:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t

(2.1)

mt is the estimate of the first moment (mean) of the gradient and vt is the

estimate of the second moment (uncentered variance) of the gradient. Since mt and

vt are initialized as zero vectors, during the inital steps of training they remain biased

toward zero. This is compensated by using the bias corrected mt and vt expressions:

m̂t =
mt

1− βt1

v̂t =
vt

1− βt2

(2.2)

The Adam update rule is thus defined as:

θt+1 = θt −
η√
v̂t + ε

m̂t

The authors propose default values of β1 to be 0.9 and β2 to be 0.999 and ε to be 10−8

2.5 Initialization Methods

Initialization of hyperparameters, mainly weights of a neural network help

improve performance and achieve faster convergence thereby reducing computational

14



costs. Poor initialization may lead the neural network to get caught in local minima and

increase convergence times. Initializing weights with zeros causes an effect of symmetry

in a neural network, during which the output of every neuron in every layer is zero,

thereby rendering the network ineffective. Some of the better initialization approaches

is presented in this section.

2.5.1 Random Initialization

In order to break the symmetry that is caused by zero initialization of weights,

weights can be randomly initialized using small random numbers not equal to zero.

Example: W ∼ N (0, σ) Using this expression, every neurons weight vector is initialized

as a random vector sampled from a multi-dimensional gaussian.

2.5.2 Xavier Initialization

Glorot and Bengio (2009) [15] suggested to initialize the weights from a distri-

bution with zero mean and variance:

V ar(W ) =
2

nin + nout

where nin and nout are respectively the number of inputs and outputs of a layer. Xavier

initialization is technique that tries to make the variance of the outputs of a layer to be

equal to the variance of its inputs. In the paper Glorot and Bengio considered logistic

sigmoid activation function, which was the default choice at that moment. Later, ReLU

started to become the more common choice for activation function in comparision to the

the sigmoid activation since it allowed to solve vanishing/exploding gradients problem.

15



Consequently, a new initialization technique that applied the same idea (balancing of

the variance of the activation) to this new activation function was proposed by Kaiming

He at al. [19] It is now referred to as He initialization.

16



Chapter 3

Related Work

Academic work on energy disaggregation began with the work of Hart et. al

during 1980s. Preliminary approaches were mostly event detection based approaches

using real and reactive power.

Kolter et. al [26] made use of Factorial Hidden Markov Models (FHMMs)

to approach the energy disaggregation problem. The inference was difficult and the

algorithm tends to easily get stuck in local minimas. They constrained the model at

inference by making the algorithm consider only one appliance state change at a time.

In order to avoid local minimas, they developed an effective inference step and achieved

good results.

Parson et al. [32] also utilized HMMs for energy disaggregation and developed

an algorithm without using sub-metered data from appliances. They made use of prior

models of appliance types that were tuned using the aggregate signal and achieved

results that were comparable with systems that used sub-metered data.

17



Kelly and Knottenbelt [23] used deep learning techniques and achieved very

good results. They made use of appliance signatures in order to extract activations from

the aggregate data and train the algorithm. They make use of 3 different methods and

compare them. Recurrent Neural Networks with an LSTM variant seem to not perform

well in their work.

In the current work, the training methodologies are adopted from the work

Kelly et. al in order to prepare the dataset to train the deep learning algorithm. The

algorithm (recurrent neural network architecture) used is in this work is different from

the work of Kelly et. al.

3.1 Datasets

3.1.1 REDD

Reference Energy Disaggregation Data Set (REDD) [25] is a publicly available

dataset that contains detailed power usage information from several homes. The data

is specifically geared towards the task of energy disaggregation.

REDD consists of both whole-home and device level specific electricity con-

sumption for a number houses over a duration of several months.

For each of the houses REDD contains information about:

• The whole home electricity signal (current monitors on both phases of power and

a voltage monitor on one phase) recorded at a high frequency (15kHz)

• Up to 24 individual circuits in the home, each labeled with its category of appliance

18



or appliances, recorded at 0.5 Hz

• Up to 20 plug-level monitors in the home, recorded at 1 Hz, with a focus on logging

electronics devices where multiple devices are grouped to a single circuit.

The image below shows a table containing information regarding the monitors and

device categories at each home. (Table 1 in original paper)

Figure 3.1: REDD information

Attached below are images of 2 plots of house 1 data that I created as a part

of CMPS 263 coursework at UC Santa Cruz under the guidance of Prof. Suresh Lodha.

The web-link 1 has 2 more plots to get an overview of the day-to-day power consumption:

1https://abhirammv.github.io/d3PowerData/
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Figure 3.2: Pie Chart depicting the total power consumption of house 1

Figure 3.3: Stacked Area Chart depicting the overview of the power consumption of
house 1 for the duration of the data

20



3.1.2 UK-DALE Dataset

UK-DALE Dataset [22] is a publicly available dataset that uses 16 KHz of

sampling rate for whole-house and 1/6 Hz sampling for individual appliances. It is

the first publicly available UK data with the aforementioned temporal resolution. The

dataset consists of measurements from 5 houses, out of which one of them was for a

duration of 655 days.

Every six seconds the active power drawn by individual appliances and the

whole-house apparent power demand was recorded. Additionally, in three houses, whole-

house voltage and current at were sampled at 44.1 kHz and was later down-sampled

to 16 kHz for storage and also calculated the active power, apparent power and RMS

voltage at 1 Hz.

The image below shows a table containing details regarding the residence and

the measurements. (Table 1 in original paper)
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Figure 3.4: UK-DALE dataset details

3.1.3 SEADS Dataset

Smart Energy Analytic Disaggregation System (SEADS) [7] dataset is a private

dataset provided by Dr. Patrick Mantey and Dr. Ali Adabi and is stored on a local
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server in the CITRIS graduate Lab at UC Santa Cruz.

SEADS provides capabilities not found in other energy monitoring products.

The goal of the SEADS is to design and build smart sensors powered by intelligent

software capable of collecting and disaggregating information regarding energy usage

from individual appliances in real time. SEADS advanced algorithm optimizes the cost

of managing microgrids. SEADS aims at providing an efficient control platform for

microgrids based on information available through various sensors.

One of the core parts of Dr. Adabi’s doctorate thesis [7] (”Economical Real-

time Energy Management For Microgrids via NILM and With User Decision Support”)

concentrates on the SEADS system’s hardware hardware and software designs and im-

plementations.

The SEADS hardware unit is capable of sampling up to 65kHz and 24 bits of

data. The optimal sampling rate range is found to be 4kHz to 8kHz according to Dr.

Adabi’s work.

The data [6, 7] is available from the following panels:

• Power G - Generator

• Power S - Solar

• Panel 1 - HVAC, heat pumps and some lights & outlets

• Panel 2 - Water Heater, lights & outlets in bathrooms and bedrooms

• Panel 3 - Kitchen, laundry, garage and some outlets & lights in adjacent rooms
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There are 7 channels of data for panel 3. For this work I have used the harmonic data

of channels 3, 4, 5 and 6 from Panel 3 (Kitchen Panel). The data is obtained by using

an API endpoint served to access the data froma NoSQL (pseudo-JSON response type)

database on the local server.

The image below shows the radial heat map representation of Panel 3 energy

consumption data as a part of the work done by Sharad et. al. in collaboration with me,

Dr. Adabi and the SEADS laboratory. The work of Sharad et. al. includes visualization

of the rest of the panels as well and can be found at the web-link 2:

Figure 3.5: Panel 3 of SEADS data visualized over the depicted period

2https://sharad97.github.io/SEADS\_Visualization/FInal/index.html
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Chapter 4

Implementations

The present work focuses on energy disaggregation with a deep learning ap-

proach. I made use of a LSTM neural network architecture to better encode the sequen-

tial data in order to make predictions. In the following sections I compare and present

the results that were obtained for the three datasets namely: REDD, UK-DALE dataset

and the SEADS dataset.

A Long Short Term Memory Recurrent Neural Network architecture is used

with the preprocessed datasets (REDD, UK-DALE, SEADS). In the following section,

the approaches taken to preprocess datasets and the architectures of the neural network

are presented.

The task of disaggregation using neural networks involves two key steps namely:

training and testing. Section 4.1 describes the preprocessing of the data that has to be

done in order to efficiently train and test the neural network architectures. Section 4.2

describes the architecture of the LSTM network used along with the initializers and
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the regularization techniques used. Section 4.3 briefly describes the initialization of

hyperparameters to improve the speed of convergence of the neural network to a global

minima of the loss function. Section 4.4 describes the training and testing metrics used.

All the code is written in the Python v3.4 [4] programming language. Pandas

[30] and Numpy [21] are the packages that are used to prepare the training data along

with the NILMTK [3] package. The neural network algorithm is implemented with

the Keras [2] package with TensorFlow [5] backend and the data is efficiently fed into

the network using the TensorFlow’s new data ’tf.data()’ module. Compute instances

of Amazon Web Sevices [1] (a cloud platform) was utilized through a virtual machine

compute instance running the Ubuntu Operating System 14.04 with 4 NVIDIA K80

GPUs that help in parallelizing the training of the neural network.

4.1 Data Preprocessing

The input to the neural network is a window (time varying samples) of the

aggregate power demand given that the window has a 50% probability that it is from

a time at which the target appliance is either active or inactive. The 50% probability

ensures a balanced dataset which is a requirement to improve the efficacy of the neural

network algorithm.

The target label or the ground truth label is a vector of the presence or absence

of activation (device or channel); if present, the label vector of the activation (label

vector of the channel or label vector of the device), the start and end times of the
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activation.

The ground truth label as a vector was inspired by the bounding box prediction

made by the You Only Look Once (YOLO) [33] algorithm used to detect the presence

or absence of an object in an image along with the location of the object defined by

rectangular co-ordinates, if the object is detected and the present flag is set.

4.1.1 REDD & UK-DALE

REDD dataset and UK-DALE dataset were preprocessed using a process sim-

ilar to that of Kelly et. al. The first step was to extract activations of the appliances.

Activations here refers to power consumed by the appliance during one cycle of that

appliance being active. A variant of NILMTK’s ’get activations()’ function was imple-

mented. The variation made sure that all the information necessary to prepare the

target vectors was extracted from the dataset.

In order to prepare the training data as examples of (input, label) windows of

aggregate data were obtained. In a similar manner as implemented in Kelly et. al. all

the activations of the target appliance are located in the home’s submeter data for each

target appliance. For each training example, the algorithm makes a decision whether to

include the details of the target appliance or not with a probability of 50%. If the code

decides to include the target details, a random window of activation of the device is

selected and the details to construct the target vector are obtained. The corresponding

window of aggregate data is selected as the input. If the code decides to not include the

target appliance, a random window of aggregate data in which there are no activations
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of the appliance is selected.

80% of the total data was used as training data and 20% is used as testing

data.

Houses 1 and 2 were used from both REDD and UK-DALE datasets because

of similar appliances among the datasets in order to ensure valid comparision of results.

The appliances used in REDD Dataset are:

• Refrigerator

• Dishwasher

• Washer Dryer

• Microwave

The appliances used in UK-DALE Dataset are:

• Fridge

• Dish washer

• Washing machine

• Microwave

4.1.2 SEADS

SEADS dataset was available on the local server in the lab and was accessed

through the API endpoint provided.
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The image below presents the structure of the API

Figure 4.1: The structure of the API used to access SEADS data

It was a bit tricky to efficiently query and structure it to be able to input to

the neural network algorithm. The first 50 harmonics were used to make predictions.

Data from channels 3, 4, 5 and 6 queried over a period of 2 months day by day and

were stored in a different comma-seperated values (csv) file format files. The aggregate

values were computed for the same time duration for channels 3, 4, 5 and 6 and were

stored in a separate comma-seperated values (csv) file.

Once the csv file for aggregate and submetered channel data were ready, the

variant of the ’get activations()’ function was implemented in a similar manner to that

of REDD and UK-DALE datasets. 100% of the training data was used for training the

neural network algorithms.

Testing of the algorithm for SEADS dataset was done for 15 days worth of data.

In order to simulate the real-time scenario of testing with data coming in streams, each

day’s data was fed day-by-day through a function. The function was implemented to

query data of channels 3, 4, 5 and 6, parse and aggregate the data. The aggregated

dataset for each day was used to test the neural networks. After all the predictions were

made the performances of the neural networks was averaged out over 15 days.
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This method of testing by utilizing streams of data per day provides a sense of

the inference time that the algorithm would take in order to make the predictions. This

method also simulates the amount of data available to make predictions at the end of

the day and the computing required to parse the available data.

4.2 Neural Network Architectures

Two different versions of neural networks were constructed. The first version or

’LSTM v1’, was a relatively simple network in comparison to the second LSTM version

or ’LSTM v2’.

LSTM v1 consists of:

1. Input (of length MAX WINDOW SIZE)

2. LSTM layer with 64 hidden units

3. Fully connected layer with input size 64 units and 32 output units

4. Fully connected with 32 input units and 4 output units

LSTM v2 consists of:

1. Input (of length MAX WINDOW SIZE)

2. LSTM layer with 128 hidden units with recurrent dropout

3. LSTM layer with 64 hidden units with recurrent dropout

4. Fully connected layer with input size 64 units and 32 output units with dropout
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5. Fully connected with 32 input units and 4 output units

LSTMv2 took more longer time to train in comparision to LSTMv1 due to its

increased complexity.

For each dataset, and for each architecture one network per target (appliance

or channel) was performed in a manner similar to that of Kelly et. al. Training a

different neural network per target appliance ensures that when aggregate data is fed

in during testing, only one of the neural networks corresponding to the target appliance

that is active at the time would be producing a high output probability. This can help

in detecting multiple active appliances at the same time.

4.3 Hyperparameters

The initial settings of the hyperparameters prior to training are briefly de-

scribed in this section. Initial values of hyperparameters play a significant role in de-

termining the rate of convergence and the effectiveness of the neural network. The

following bullet points describe the initial values of number of epochs, weights, biases

and the learning rate

• The number of times the algorithm must process the entire training dataset or

number of epochs of training was not set to a value initially. I trained it in

increments of 500 steps each and upon measuring the test accuracies of each 500-

step increment, I later decided on the model trained until 5000 epochs. This is

further explained in the Results and Conclusion chapter of this work.
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• He initialization is used for initializing the weights of the neural network. biases

of the neural network are initialized with a random normal distribution with a

mean of 0.0001 and standard deviation 0.003.

• The value that controls the update of the parameters of the neural network with

respect to the gradient or learning rate is initialized at 0.45 and is set to decay

for every 100 steps of the 5000 steps of training. tf.train.exponential decay() is

a built-in tensorflow function that helps to achieve the decay.

4.4 Metrics

4.4.1 Loss Functions

A combination of two different types of loss functions are used to train the

algorithm using the batch gradient descent method. The cross entropy loss function

is used to train the algorithm to predict the presence or absence of an appliance or a

channel in the data and if the object is present, to predict the label of the object. A

square loss is used to train the algorithm to predict the start and end time bounds.

4.4.2 Test Metrics

A number of test metrics exist in order to measure the effectiveness of the

neural network during testing such as accuracy, area under the ROC curve, F1 score

etc. 1.

1https://machinelearningmastery.com/metrics-evaluate-machine-learning-algorithms-python/
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In the present work accuracy is the metric used to determine how well the

algorithm performs during validation and testing. Accuracy is the percentage of number

of correct predictions vs. total number of predictions. Accuracy is the most commonly

used metric for classification problem. Since the implementation makes sure that the

dataset is balanced, accuracy is a simple metric that can be used. The reasoning behind

the usage of the accuracy metric is the interpretation of the value directly.
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Chapter 5

Results and Conclusion

The results of performances of the LSTM architectures LSTMv1 and LSTMv2

on REDD, UK-DALE and SEADS datasets are presented here. LSTMv2 shows an

improvement in performance on the SEADS dataset and has the highest test accuracy

of 92.3%.

Training of both the neural networks were performed using the loss function

described in the previous section. Adam optimization technique was used to update the

hyperparameters in order to achieve faster convergence to the global minima of the loss

function in comparison to stochastic gradient descent algorithm.

The training was conducted in 500 step increments and the intermediate mod-

els were saved in order to test the model’s accuracy. The models which were trained for

5000 epochs were later used since the models trained for more than 5000 epochs showed

signs of over-fitting to the training data.

Testing of the neural networks was conducted after each 500 steps of training.
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Tensorflow’s feature of checkpointing and saving a model helped achieve the

intermediate testing step with ease. The results of both intermediate and final testing

are presented in this chapter.

5.1 Training

Graphs of the loss functions vs. number of epochs are presented below in

figures 5.1 and 5.2.

Figure 5.1: LSTMv1 loss value vs. number of epochs
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Figure 5.2: LSTMv2 loss value vs. number of epochs

It can be seen that in LSTMv1 the loss at the end is higher in comparison to

loss of LSTMv2 at the end of the training phase.

In my hypothesis this disparity can be attributed to the relatively low com-

plexity of LSTMv1 and it’s lower ability to extract and store feature representations of

a higher complexity in relation to LSTMv2.

In both LSTMv1 and LSTMv2 the losses seem to be trending toward a linear

trend with the loss values starting at a higher value during the start of the training and

a relatively lower value at the end of the training phase.

Testing accuracies were measured during training by checkpointing the models.

This was done since I had not decided on the number of epochs of training initially. It
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can clearly be seen that the accuracy peaks and then starts to fall when the network

starts to overfit. The graphs of the intermediate accuracies of LSTMv1 and LSTMv2

are presented in figures 5.3 and 5.4.

Figure 5.3: Intermediate LSTMv1 accuracy vs. number of epochs
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Figure 5.4: Intermediate LSTMv2 accuracy vs. number of epochs

It can be seen that after 5000 epochs of training, the decrease in losses (as

shown above in figures 5.1 and 5.2) correspond to decrease in accuracy. Thus it can

be seen that the network starts to overfit to the training data and would later not be

viable for testing due to it’s decreased accuracy. Hence the trained model at 5000 steps

is considered the ”best” model and is used to present the results in the Results section

of this chapter.

5.2 Results

Table 5.1 presents validation accuracies obtained by LSTMv1 and LSTMv2 on

REDD, UK-DALE and SEADS validations datasets.
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Table 5.1: Validation Accuracies of the LSTM architectures on the datasets

LSTMv1 LSTMv2

REDD 81.2 88.1

UK-DALE 68.4 72.2

SEADS 82.4 94.2

Table 5.2 presents the accuracies obtained by LSTMv1 and LSTMv2 on the

test datasets. It can be seen from the table that LSTMv2 which is relatively complex

in comparison to LSTMv1 performs better on all the datasets.

Table 5.2: Test Accuracies of the LSTM architectures on the datasets

LSTMv1 LSTMv2

REDD 80.2 89.1

UK-DALE 65.4 70.2

SEADS 78.4 92.3

Table 5.3 presents the average inference time (in seconds) of LSTMv1 and

LSTMv2 on the test datasets
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Table 5.3: Average inference time (in seconds) of the LSTM architectures on the test
datasets

LSTMv1 LSTMv2

REDD 0.1 0.6

UK-DALE 0.1 0.6

SEADS 0.2 0.8

5.3 Conclusion

On basic comparison of the validation and the test dataset accuracies, an im-

proved performance on the SEADS dataset can be noticed. SEADS dataset being a high

frequency dataset seems to be very helpful in identifying detailed channel (or appliance)

signatures even when multiple channels (or appliances) are active. The present work

also is in line with Dr. Adabi’s [7] thesis in that the dataset was used as a comple-

mentary tool along with a variation of the NIMLTK package in order to streamline the

training process.

The test accuracy of 92.3% was obtained when the first 50 harmonics of SEADS

data was used to make predictions. 92.3% accuracy conveys that approximately 92 out

of a 100 samples are predicted correctly. Another interpretation that can be drawn

from the value is that, for the current version of the neural network 92.3% is the highest

accuracy it can achieve without overfitting the training data.

Although the inference time of LSTMv2 on SEADS dataset is on the higher
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side compared to other inference times, it can be noted that the higher inference time

is influenced by both the dimensionality (50 dimensions) of the input and also the

complexity of the LSTMv2 network. Advancements in the field have developed neural

network compression techniques such that the algorithms can efficiently work on edge

devices (mobile devices or low-energy computing devices).

I would like to conclude that the availability of real-time high frequency data

such as SEADS and the presence of a sufficiently complex and well trained neural

network algorithm with a low memory footprint, can bring us closer to disaggregating

power at low latencies without the need for measurement of power at every device.

5.4 Future Work

Future work can concentrate on improving the effectiveness of the neural net-

work by improving it’s complexity and at the same time making the best model work

on a real-time inference cycle. Techniques such as batch normalization can be used in

conjunction with advanced training techniques in order to achieve an optimal model.

Deploying the model on the existing SEADS hardware can be a challenge due to storage

and memory constraints. Recent trends in model compression techniques can shed light

on effective compression of the model thereby making it ”light-weight” to deploy it on

edge devices. Once deployed, it can be later considered an IoT device which can help

in consolidation of data from a myriad of sensors. Utilizing the same data, tasks such

as anomaly detection and usage trends of each appliance can be analyzed.
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