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ABSTRACT

Large-scale climatic indices have been used as predictors of precipitation totals and extremes in many studies

and are used operationally in weather forecasts to circumvent the difficulty in obtaining robust dynamical sim-

ulations of precipitation. The authors show that the sea level pressure North Pacific high (NPH) wintertime

anomaly, a component of the Northern Oscillation index (NOI), provides a superior covariate of interannual

precipitation variability in Northern California, including seasonal precipitation totals, drought, and extreme

precipitation intensity, compared to traditional ENSO indices such as the Southern Oscillation index (SOI), the

multivariate ENSO index (MEI), Niño-3.4, and others. Furthermore, the authors show that the NPH anomaly

more closely reflects the influence of Pacific basin conditions over California in general, over groups of stations

used to characterize statewide precipitation in the Sierra Nevada range, and over the southern San Francisco Bay

region (NASA Ames Research Center). This paper uses the term prediction to refer to the estimation of pre-

cipitation (the predictand) from a climate covariate (the predictor), such as a climate index, or atmospheric

moisture. In this sense, predictor and predictand are simultaneous in time. Statistical models employed show the

effectiveness of the NPH winter anomaly as a predictor of total winter precipitation and daily precipitation ex-

tremes at the Moffett Field station. NPH projected by global climate models is also used in conjunction with

atmospheric humidity [atmospheric specific humidity (HUS) at the 850-hPa level] to obtain projections of mean

and extreme precipitation. The authors show that future development of accurate forecasts of NPH anomalies

issued several months in advance is important for forecasting total winter precipitation and is expected to directly

benefit water resource management in California. Therefore, the authors suggest that investigating the lead-time

predictability of NPH anomalies is an important direction for future research.

1. Introduction

Establishing a statistical association between local

precipitation and large-scale climate patterns has po-

tential value for several applications in water resources

planning over different time scales, among which are

1) seasonal forecasts of total precipitation, which can

provide support for planning reservoir operations for
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water supply and flood control, over time frames of

months; 2) forecasting the risk of intense precipitation

and wet antecedent conditions that may lead to flooding,

over seasonal time scales; and 3) projecting future

changes in local precipitation that are consistent with

climate model projections of large-scale variability over

decadal time scales. Global climate models simulate

larger-scale climate variability better than regional and

local-scale precipitation, which is a challenging variable

because of its complexity, its being influenced by topog-

raphy, and the high spatial and temporal resolution of its

physical dynamics, none ofwhich can be fully represented

in these models. The same is true of the climate models

used for seasonal forecasting and decadal predictions of

precipitation (Meehl et al. 2014). To circumvent the dif-

ficulty in obtaining reliable dynamical simulations of

precipitation, statistical models of precipitation have

been used in conjunction with global climate models to

produce precipitation projections (e.g., Zorita et al. 1995;

Zorita and von Storch 1999; Cavazos 1999; Wang and

Zhang 2008; Zhang et al. 2010; Kharin et al. 2007, 2013).

The El Niño–Southern Oscillation (ENSO) phenom-

enon has been identified as the major driver of climate

variability arising from the coupled ocean–atmosphere

system of the Pacific basin (Wallace and Gutzler 1981;

Philander 1983, 1990). Several studies have examined

the influence of ENSOon precipitation and temperature

over North America (e.g., Ropelewski and Halpert

1986, 1996; Shabbar et al. 1997; Gershunov and Barnett

1998; Cayan et al. 1999; Gershunov and Cayan 2003;

Schubert et al. 2008; Zhang et al. 2010) and worldwide

(Ropelewski and Halpert 1987; Peel et al. 2002, and

references therein). These studies have documented

associations between the strength and phase of ENSO

and precipitation frequency and intensity over different

regions, particularly the southwestern United States.

Of great importance to the southwestern United

States is ENSO’s influence on the East Asian jet stream

position. During El Niño episodes, the East Asian jet

stream typically changes its position and direction,

taking a more zonal path and crossing the southwestern

United States. Associated with this jet stream position

is a shift of the Aleutian low southward and eastward

(Bjerknes 1966) and the positioning of themain cyclone-

formation region closer to the coast of California,

leading storm tracks to enter the southwestern United

States. Thus, California has an increased likelihood of

storms, precipitation extremes, and precipitation totals

under El Niño conditions (e.g., Chikamoto et al. 2015).

In most previous studies focused on western U.S.

precipitation, the phase and strength of ENSO has been

represented by the Southern Oscillation index (SOI),

which is used as a covariate in statistical models for

precipitation prediction, including precipitation ex-

tremes (e.g., Cayan et al. 1999; El Adlouni et al. 2007;

Wang and Zhang 2008; Zhang et al. 2010; Shang et al.

2011). The SOI is defined as the normalized difference in

atmospheric sea level pressure (SLP) at two locations:

one near Tahiti and the other near Darwin, Australia.

These locations are close to the centers of action of the

southern branch of the Hadley–Walker circulation

(Bjerknes 1966, 1969) and were chosen given their long

climatological records. Hence, the SOI represents a

simple and effective measure of the state of atmospheric

circulation drivers of this southern branch. The warm

phase of ENSO is associated with negative SOI values

sustained over several months. Conversely, the cold

phase of ENSO (La Niña) is indicated by sustained

positive SOI values.

Roughly half the time, however, ENSO is in a neutral

phase and SOI is near zero. Such neutral conditions are

not an indication of average meteorology over Cal-

ifornia. The currently ongoing multiyear drought in

California provides an example of an extreme meteo-

rological drought occurring at a time when both ENSO

and the Pacific decadal oscillation (PDO; Zhang et al.

1997; Mantua et al. 1997) are in near-neutral states. In

this paper, we investigate whether climate variability

indices other than the traditional ENSO indices and the

PDO index (PDOI) represent favored covariates (or

predictors) of precipitation over California. In this pa-

per, we use the term prediction to refer to estimating

precipitation (the predictand) from a climate covariate

(the predictor), such as a climate index (e.g., the SOI), or

atmospheric moisture. In this sense, predictor and pre-

dictand are simultaneous in time.

We show that, despite its widespread usage, the SOI

is a weak predictor of precipitation over most of Cal-

ifornia, excepting Southern California. We show that

SOI’s lesser-known northern counterpart, the Northern

Oscillation index (NOI; Schwing et al. 2002), exhibits

higher correlation coefficients with total precipitation

over California and the southwestern region of the

United States. The NOI was specifically proposed as a

new index to represent the impacts on the North Pacific

of tropical and extratropical climate events on intra-

seasonal, interannual, and decadal scales (Schwing et al.

2002). The NOI is defined as the anomaly in the differ-

ence in atmospheric sea level pressure at the North

Pacific high (NPH) long-term mean (climatological)

location (358N, 1308W) and a location near Darwin

(108S, 1308E). These two locations are the centers of

action of the northern branch of the Hadley–Walker

circulation.

The NOI and SOI are strongly correlated (Schwing

et al. 2002). These two indices share a component in
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common (the Darwin sea level pressure anomaly), and

Schwing et al. (2002, their Fig. 2a) showed that their

remaining components (the sea level pressure anomalies

at Tahiti and the NPH) are also significantly correlated.

Importantly, the NOI reflects specifically the state of the

northern branch of the Hadley–Walker circulation and

its associated jet stream.

We show that the NOI’s predictive power for Cal-

ifornia precipitation results primarily from its first com-

ponent [i.e., the North Pacific high sea level pressure

anomaly (NPH anomaly)] and that the NPH anomaly

by itself is a better predictor than NOI for California

precipitation.

The NCEP–NCAR reanalysis dataset (Kalnay et al.

1996) is used (in section 2) to investigate the correlation

between the NPH anomaly and California precipitation

over 1948–2014, including seasonal precipitation totals

and the Palmer drought severity index (PDSI), using

spatial data as well as point-based data (precipitation

indices used in the main water supply region of the state,

the upper-elevation watersheds of the Sierra Nevada

that flow into the Central Valley).

Having established the predictive ability of the NPH

anomaly for California precipitation, we then examine

its predictive skill at the location of NASA Ames Re-

search Center in the southern San Francisco Bay. This

location was selected as part of a larger evaluation of cli-

mate impacts to NASA centers nationwide (Rosenzweig

et al. 2014), and because it is representative of the highly

urbanized, low-lying, and flood-prone lands surrounding

the southern San Francisco Bay. We develop two statis-

tical models (section 3), the first for predicting the like-

lihood of intense daily precipitation and the second for

predicting winter season (December–March) precipita-

tion totals, both using the NPH anomaly and the 850-hPa

atmospheric specific humidity (HUS) as covariates (or

predictors). These models are then used to obtain pro-

jections based on GCM runs from the CMIP5 dataset. In

the final section (section 4), we present the conclusions

and a discussion of important practical applications of our

findings. This work is focused on identifying and applying

the relationships between precipitation and the NPH

anomaly, not on the prediction of NPH itself.

Datasets used in this work

The daily rainfall datasets were downloaded from

the National Centers for Environmental Information

website (http://gis.ncdc.noaa.gov/) for stations Moffett

Field, San Jose, and Palo Alto. Hourly rainfall datasets

for Moffett Field and San Jose were also downloaded

from the same website. The hourly data, and the daily

data for San Jose and Palo Alto, were used for filling the

gaps in the daily Moffett Field station time series, as

described in detail in the supplemental material. The

monthly SOI and NOI values were downloaded from

the NOAA/ESRL Physical Sciences Division (PSD)

website (http://www.esrl.noaa.gov/psd/data/climateindices/

list/). All precipitation index data for the Central Valley

were downloaded from the California Data Exchange

Center website (http://cdec.water.ca.gov/).

The monthly mean sea level pressure data from the

NCEP–NCAR reanalysis dataset were downloaded from

NOAA/ESRL PSD (http://www.esrl.noaa.gov/psd/data/

gridded/data.ncep.reanalysis.derived.surface.html, file

name: slp.mon.mean.nc), as were the monthly mean

precipitation data from the NCEP–NCAR reanalysis

dataset (http://www.esrl.noaa.gov/psd/data/gridded/data.

ncep.reanalysis.derived.surfaceflux.html, file name: pres.

sfc.mon.mean). Reanalysis datasets, such as the ones

used in this work, are based on simulations by dynamical

climate models combined with observations and entail

considerable uncertainty [characterized, e.g., in Bosilovich

et al. (2008), Guirguis and Avissar (2008), and Janowiak

et al. (1998)].

2. The NPH anomaly versus traditional ENSO
indices as a predictor of seasonal precipitation
and extreme precipitation in California

To investigate the relationship between high and low

precipitation in California, the SLP composite anoma-

lies are shown in Fig. 1 for the 11 highest (Fig. 1, top) and

11 lowest (Fig. 1, bottom) precipitation water years in

California. During both regimes, the strongest SLP

anomalies can be seen in the northeastern Pacific. The

locations of the peak SLP anomalies are northwest of

the climatological winter position of the North Pacific

high (indicated on the maps). The composite anomalies

at Darwin and Tahiti are comparatively small.

Associations between large-scale climate and local

precipitation can be inferred from linear correlation of

climate indices with precipitation. The spatial variability

of linear correlation values between six monthly cli-

mate variability indices and precipitation across North

America in December–March is shown in Fig. 2. For

California and much of the U.S. southwest region, the

NPH anomaly (Fig. 2a) achieves correlation values far

higher than the ENSO or the PDO indices (Figs. 2c–f).

The NOI, of which the NPH anomaly is a component,

also correlates highly with precipitation over this region

(Fig. 2b). Linear correlation values jrj between monthly

NPH anomaly and precipitation totals for December–

March are above 0.5 over all of California, above 0.6

over most of California, and above 0.7 over San Fran-

cisco Bay and a long stretch of coast south of the bay

(Fig. 2a). For the period January–March, correlation
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FIG. 1.Multiyear composite of sea level pressure anomalies (mb; 1mb5 1 hPa) duringwinter

(December–March) over the Pacific basin for (top) the San Francisco Bay area’s 11 highest-

precipitation water years and (bottom) 11 lowest precipitation water years, from the 66 water

years of available reanalysis data (1949–2014). Water years are indicated at the bottom of each

panel. The geographical reference locations used to determine the NOI and SOI are shown;

they are the NPH climatological mean location (358N, 1308W), Darwin (108S, 1308E), and
Tahiti (188S, 1508W). Note that the center of the dominant NPH anomaly region does not

coincide with the center of the NPH. These figures were created using NOAA’s web page

(http://www.esrl.noaa.gov/psd/cgi-bin/data/composites/printpage.pl), which displays on de-

mand variables from NCEP–NCAR reanalysis and the correlations between them.
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values are even higher and extend inland, surpassing 0.8

over much of California and surpassing 0.7 over all of

California excepting its northernmost strip (see Fig. S.3

in the supplemental material).

Computed jrj relating the SOI and December–March

precipitation are not statistically significant for all Cal-

ifornia locations at latitudes higher than San Francisco

and are near their minimum significance level for the

San Francisco Bay area (Fig. 2c). The significance

threshold value for a sample of n 5 66 water years and

p5 0.05 is jrj5 0.24 for the case of an uncorrelated time

series (obtained by inverting the classical Student’s t test

for significance of Pearson correlation) and lower than

that value if there is serial correlation [Fig. S.8 in the

supplemental material shows test results accounting for

serial correlation following Ebisuzaki (1997) and Wilks

(2011)]. The values for jrj are statistically significant over
Southern California where they remain within a modest

range, 0.4, jrj, 0.5, for the period of water years 1949–

2014 (66 years; Fig. 2c). The predictive power of SOI for

seasonal precipitation totals varies widely across North

America (Fig. 2c) and across the globe (Fig. S.1c in the

supplemental material).

Also shown in Fig. 2 is the linear correlation of pre-

cipitation with two ENSO indices, the multivariate

ENSO index (MEI) and Niño-3.4 (Figs. 2d,e), as well as
with the PDO index (Fig. 2f). Correlation values over

California are weak in all three cases. The MEI (Wolter

and Timlin 1998) is based on the six main observed

variables over the tropical Pacific: SLP, surface wind

(speed and direction), SST, surface air temperature, and

cloud fraction. The Niño-3.4 is the sea surface temper-

ature (SST) anomaly over the eastern tropical Pacific

region encompassed within 58N–58S, 1708–1208W (Cane

et al. 1997; Kaplan et al. 1998). The PDO is defined as

the leading principal component of monthly SST anom-

alies in the North Pacific Ocean northward of 208N
(Zhang et al. 1997; Mantua et al. 1997). Results for six

additional climate variability indices provided by NOAA

are included in Fig. S.1 of the supplemental material.

FIG. 2. Linear correlation coefficient r between winter (December–March) monthly values of precipitation totals and the monthly

values of six climate variability indices, in 1948–2014 (http://www.esrl.noaa.gov/psd/data/correlation/). NPH anomalies and NOI were

determined from the NCEP–NCAR reanalysis monthly means dataset 1948–2014. The climate indices used in this figure are described in

the text.

1 JULY 2016 CO STA - CABRAL ET AL . 5013

http://www.esrl.noaa.gov/psd/data/correlation/


As shown in Fig. 1 (bottom), the positive mode of

NPH is associated with a strong high-anomaly SLP re-

gion over the northeastern Pacific. Abnormal north-

eastern Pacific high pressure ridges that extend from

lower- to upper-atmospheric levels tend to block storm

systems from reaching the California coast. Their role

has been much discussed in the context of the currently

ongoing multiyear drought in California, which has ex-

hibited the strongest and most persistent ridge ever

observed (e.g., Wang et al. 2014, 2015; Stevenson et al.

2015; Swain et al. 2014). The strong correlations shown

in Fig. 2a, in conjunction with the pressure pattern shown

in Fig. 1 (bottom), suggest that the association between

the recent high NPH anomaly and California drought

conditions is not unique to the ongoing drought but is a

recurring phenomenon detectable using reanalysis data.

Such surface pressure anomalies are frequently associ-

ated with atmospheric geopotential height anomalies

over the northeastern Pacific, also shown to correlate

with precipitation in California (Swain et al. 2014). The

supposition that high NPH is associated with drought in

California is supported by the strong anticorrelation of the

NPH anomaly with the PDSI, shown in Fig. 3, with cor-

relation values in the range 0.5, jrj , 0.7 in both winter

and summer.

Time series of cumulative departures of NPH from

the monthly mean (i.e., running totals of the monthly

anomalies) are shown in Figs. 4 and 5. Plotting cumu-

lative departures from the mean is an effective way of

visually evaluating the covariability between different

variables, which may otherwise be obscured by signifi-

cant year-to-year variability and by variation in the lag

of the covariability. The precipitation’s cumulative de-

parture from the mean (Fig. 4, in black, expressed in

meters) is obtained as the running sum of monthly

anomalies from October 1948 to June 2014 for the

NCEP–NCAR-reanalysis-derived precipitation dataset

(approximately 1.98 resolution) grid cell that covers

much of California. Also shown is the NPH cumulative

departure from the mean (Fig. 4, in blue, expressed in

millibars), computed from the NCEP–NCAR-reanalysis-

derived sea level pressure dataset of 2.58 resolution.

FIG. 3. Linear correlation coefficient r between themonthlyNPHanomalies and themonthly

PDSI in (a) winter and (b) summer, for water years 1949–2012. For summer, a lag of 5 months

(NPH leading) was used, to maximize correlation. The linear correlation between November–

March NPH anomalies and May–September PDSI is shown in (b). This figure was produced

with NOAA’s interactive website (http://www.esrl.noaa.gov/psd/data/usclimdivs/correlation/),

which provides the historical monthly PDSI values. More negative PDSI indicates more ex-

treme drought conditions, resulting in the anticorrelation with positive NPH. NPH anomalies

were obtained using the NCEP–NCAR reanalysis dataset.
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Strong covariability is observed between the two records

when integrated in this manner over time, a type of re-

lationship known as cointegration (Engle and Granger

1987). While there is significant uncertainty associated

with spatial precipitation estimates from reanalysis

datasets, and with any spatial precipitation datasets, the

results in Fig. 4 are consistent with those obtained for

gauge-based precipitation, such as shown for the Moffett

Field gauge in Fig. 5.

The observed regional covariability between NPH

and precipitation shown in Fig. 4 suggests that similar

relationships may occur on local spatial scales where

critical infrastructure can be affected. Focusing on the

San Francisco Bay region, the daily precipitation record

from the Moffett Field meteorological station over

1948–2014, located on the NASA Ames Research Center

campus in the southern San Francisco Bay [station U.S.

Air Force (USAF)WeatherBureau–Army–Navy (WBAN)

identifier 745090 23244, located at 37.48N, 1228W], is ex-

amined next. The methodology used for filling Moffett

Field precipitation data gaps during 1994–96, data ho-

mogeneity tests, and tests for trends, are summarized in

the supplemental material.

The monthly values of the variables of interest are

shown in Fig. 5, expressed as their cumulative departure

from their mean value in the 67-yr period covered

(1948–2014). For each of the variables, monthly means

were computed for each of the 12 months of the year, by

averaging the 67 observed values. The time series of

monthly anomalies was obtained for each variable by

subtracting the monthly means from the original monthly

time series. The running total of the monthly anomalies

was then calculated and represents the cumulative de-

parture from the mean. The precipitation graph (black

line) resembles that of the reanalysis gridcell precipita-

tion in Fig. 4, despite the much different spatial scale and

different range of values between the two.

The cumulative monthly values of SLP anomaly (green

line) calculated from the NCEP–NCAR reanalysis data

in the grid cell centered at 37.58N, 122.58W that encom-

passes Moffett Field is shown in Fig. 5a. Some covari-

ability between SLP and precipitation is observed, as

expected given that storms producing high precipitation

are associatedwith atmospheric pressure lows. Local SLP

appears to capture much of the year-to-year and decade-

to-decade variability; however, SLP does not capture the

upward multidecadal trend witnessed after the late 1970s

when the dominant sign of the PDO switched from neg-

ative to positive. The cumulative value of the SOI

(Fig. 5c) and NOI (Fig. 5d) captures some of the pre-

cipitation variability at different time scales; however,

both severely fail to capture important time periods, such

as the 1980s.

Much better covariability with precipitation is found

for the cumulative NPH anomaly (also calculated from

the NCEP–NCAR reanalysis dataset; Fig. 5b). NPH has

its highest year-to-year variability in themonth of January;

hence, the January NPH anomalies dominate variability

shown. The mean January values of NPH anomaly covary

closely with the values of precipitation totals in each water

year, as well as number of wet days and the annual maxi-

mum 5-day precipitation (shown in Fig. S.5 of the sup-

plemental material).

Based on the above insights, we demonstrate the re-

lationship betweenmonthly values of NPH anomaly and

wintertime precipitation at different combinations of

gauges used to characterize the Central Valley of Cal-

ifornia’s water supply (data obtained from the Cal-

ifornia Department of Water Resources; http://cdec.

water.ca.gov/) and at the Moffett Field location de-

scribed previously. Monthly relationships with the NPH

anomaly are shown, and linear correlation values r are

given in Fig. 6 for the eight-station index for the north-

ern Sierra Nevada (code 8SI), the five-station index for

the San Joaquin basin (code 5SI), and the six-station

index for the Tulare basin (code 6SI), for 1948–2015.

These three groupings represent the major subbasins in

the Central Valley, and these precipitation indices are

used in developing water supply forecasts each water

year for these river basins (part of the annually issued

Department of Water Resources Bulletin 120). Because

FIG. 4. Cumulative monthly anomalies from October 1948 to

June 2014 (nearly 67 water years). Anomalies are computed by

subtracting the monthly averages computed for this same period.

The cumulative monthly anomaly of SLP at the NPH climatolog-

ical location is shown in blue, referenced to the y axis on the left

(where values are in reverse order to aid comparison between the

two curves). The cumulative NCEP–NCAR reanalysis gridded

monthly precipitation anomalies are shown in black, referenced to

the y axis on the right, for the grid cell (approximately 1.98 reso-
lution) that covers much of California.
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much of California’s precipitation by volume falls in

these three basins, the water supply predictions de-

veloped for them have consequences for the entire

state’s water supply. The NPH is a strong predictor of

precipitation at all of the station groupings and the

Moffett Field station, especially for the latter months of

the wet season from January through March.

3. Projections of precipitation seasonal totals and
extremes for NASA Ames Research Center

In this section we develop statistical models to relate

climatic indices (the predictors) to daily extreme and

seasonal total precipitation at the NASA Ames Re-

search Center (the predictands), with the goal of appli-

cation to current conditions as well as future scenarios

projected by global climate models. Our model of ex-

treme precipitation is similar in principle to Zhang et al.

(2010), but, in light of our findings in section 2, we use

the NPH anomaly in lieu of the climate indices SOI,

PDOI, and North Atlantic Oscillation index (NAOI) as

the covariate (or predictor) of extreme precipitation.

Similar to Zhang et al. (2010), Wang and Zhang (2008),

and others, we also use HUS at the 850-hPa level as

a predictor. The inclusion of HUS is essential, given

that projected atmospheric warming will result in higher

FIG. 5. Cumulative monthly anomalies from 1948 to 2014 (67 yr of data). Cumulative monthly precipitation anomalies measured at the

Moffett Field meteorological station (black line) are shown in all panels (right y axis). The left y axis in all panels has values in reverse

order, to aid comparison between curves. The colored curves represent the cumulative monthly anomalies of (a) SLP at theMoffett Field

reanalysis grid cell (green curve), centered at 37.58N, 122.58W, (b) SLP at the climatological meanwinter location of theNorth Pacific high

(blue curve), 358N, 1308W, (c) SOI (orange curve), and (d) NOI (purple curve).
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FIG. 6. Correlations between NPH anomalies (November–March) from the NCEP–NCAR reanalysis dataset and

precipitation at different groups of stations in the Central Valley of California: (a) northern Sierra Nevada eight-

station index, code 8SI; (b) San Joaquin basin (central Sierra Nevada) five-station index, code 5SI; (c) Tulare basin

(southern SierraNevada) six-station index, code 6SI; and (d)Moffett Field station in the southern San Francisco Bay.

[The data source for (a)–(c) is http://cdec.water.ca.gov/.]
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moisture content in air masses arriving in California from

the Pacific Ocean with the potential for significant ef-

fects on precipitation extremes (Trenberth 1999). We also

construct a model of total precipitation through the wet

season using the same covariates at the seasonal level.

a. Historical datasets for model training

The historical daily precipitation data for the Moffett

Field meteorological station at NASA Ames Research

Center (station USAF WBAN identifier 745090 23244)

span from March 1945 to mid-October 2012. Missing

data were filled using recordings at nearby meteoro-

logical stations, as described in the supplemental mate-

rial. The precipitation time series was successfully tested

for homogeneity and trends over time, with no signifi-

cant trends detected (see the supplemental material).

The statistical extreme value model was trained on

standardized values of two predictors: 1) the monthly

NPH anomaly and 2) monthly maxima of HUS at the

850-hPa level. The time series of both predictors were

extracted from theNCEP–NCAR reanalysis dataset. The

standardization consists of subtracting the long-term

(climatological) mean from each monthly value and

then dividing by the monthly standard deviation. This is

helpful in interpreting the relative importance of each

covariate in the model (e.g., Gelman and Hill 2007).

b. Model of extreme precipitation intensity

The monthly maxima of Moffett Field daily pre-

cipitation data (summarized in Fig. 7, showing Novem-

ber through March to be the period most prone to

extremely high values of daily precipitation) are con-

sidered to be conditionally independent realizations of

random variables with a generalized extreme value

(GEV) distribution with parameters determined by a

multilevel linear regression of the covariates—monthly

NPH anomaly and monthly maximum value of daily

average HUS. Only the extreme precipitation in the wet

season (October–May) was modeled.

The model can be mathematically described as

follows:

y;GEV(m,s, j); (1)

m5Xb
m
; (2)

logs5Xb
s
; (3)

j5b
j
; (4)

b5 (b
m
, b

s
, b

j
);N(g, S); (5)

where X is the matrix of covariates (including an in-

tercept); b is the vector of regression coefficients for the

GEV location, scale, and shape parameters—m, s, and j,

respectively; g and S are the parameters of the group-

level model; y is the vector of Moffett Field monthly

precipitation maxima; and GEV(�) and N(�) are the den-

sities of the GEV and multivariate normal distributions,

respectively. The logarithm of the scale parameter s is

used to ensure the parameter assumes only positive values.

c. Model of wet season precipitation total

The seasonal precipitation total for the wet season

(October–May) was modeled using a robust linear

model with 7 degrees of freedom, where the location

parameter is defined to be a linear function of the cli-

mate covariates:

y; t
7
(Xb,s). (6)

Here, tn(m, s) is the Student’s t density with 7 degrees of

freedom, location parameter m, and scale parameter s;

X is the matrix of covariates; y is the vector of obser-

vations; and b is the vector of regression coefficients for

parameter m.

d. Model of extreme low Sierra Nevada winter
precipitation totals

The December–March totals of the three Sierra Ne-

vada precipitation indices (Fig. 6) were fit to the GEV,

gamma, and Pearson type-III distributions viamaximum

likelihood estimation. The gamma distribution had the

smallest value of the Akaike information criterion

(AIC; a goodness-of-fit statistic that penalizes models

with additional parameters), and we therefore use the

gamma distribution in a regression model including the

NPH and HUS covariates:

y;Gamma(k, u); (7)

logm5Xb
m
; (8)

logu5Xb
u
; (9)

k5
m

u
; (10)

where X is the matrix of covariates; y is the vector of

Sierra Nevada precipitation totals; m, u, and k are the

mean, scale, and shape parameters of the gamma distri-

bution, respectively; and parameter-specific regression

coefficients are denoted by b with parameter subscripts.

e. Parameter estimation

All three models were estimated in a Bayesian

context with relatively uninformative prior distribu-

tions. Posterior samples of the model parameters were

simulated using a Markov chain Monte Carlo

(MCMC) sampler implanted in the modeling language
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Stan. The sampler consisted of four independent

chains of length 1000 (2000 for the seasonal models)

with random starting points, and the first half of each

chain was discarded to minimize initialization effects.

The potential scale reduction factor—a diagnostic de-

signed to monitor MCMC convergence (Gelman et al.

2013)—was below 1.02 for all quantities, which is near the

asymptotic value of 1. A quantile–quantile (Q–Q)-type

diagnostic for assessing the performance of extreme value

models (Coles 2001)—shown in Fig. S.59 of the supple-

mental material—displayed good agreement between the

model and the data.

Parameter estimates for all three models (Table S.2 in

supplemental material) indicated inverse relationships

between precipitation and NPH anomaly and positive

relationships with local HUS. In the model of total wet

season precipitation, this is a straightforward result of

the estimates of the regression coefficients. In the ex-

treme value model, more negative values of the NPH

anomaly and larger values of local HUS are associated

with increases in the location and scale parameters of

the GEV distribution, leading to increased likelihood of

extreme precipitation. Estimates for the shape param-

eter are nearly uniformly positive, indicating that the

heavy-tailed form of the GEV distribution fits the

Moffett Field precipitation data best.

Posterior distributions of long-term return periods for

precipitation (from the annualized model probability of

exceedance of a specified daily rainfall amount) were

obtained by averaging over parameter uncertainty cap-

tured by the posterior simulations and climate variabil-

ity represented by the covariate values in the gamma

and GEV models. Return levels are the precipitation

values associated with specific return periods. Compar-

ing the empirical return levels with the modeled values

did not display any gross disagreements; see Fig. S.59 in

the supplemental material.

f. Selection of GCM runs

Our selection of specific GCM runs from the CMIP5

dataset was guided by the preliminary work of T. Mur-

dock et al. (2013, meeting presentation). T. Murdock

et al. (2013, meeting presentation) aimed at identifying

smaller sets of GCM runs, from the dozens of CMIP5

GCM runs, that 1) are representative of the range of

climate projections of the complete set of runs and

2) include the most variability and the least redundancy.

T. Murdock et al. (2013, meeting presentation) used a

clustering algorithm that ordered the CMIP5 AOGCMs

and (after excluding a few GCMs that performed least

well in hindcasts) produced a rank list of which the first

12 captured nearly 90% of the variability of all pro-

jections for the North American west coast. More re-

cently, their work was expanded globally over broad

regions (Cannon 2015).

We selected the seven highest-ranked GCM runs on

the list obtained by T. Murdock et al. (2013, meeting

presentation) that provided the variableswe need:CNRM-

CM5 run 1, CanESM2 run 1, ACCESS1.0 run 1, INM-

CM4.0 run 1, CSIRO Mk3.6.0 run 1, MIROC5 run 3, and

MPI-ESM-LR run 3. (Expansions of acronyms are avail-

able online at http://www.ametsoc.org/PubsAcronymList.)

Although CCSM4 run 2 ranked sixth on the list of

T. Murdock et al. (2013, meeting presentation), we could

not include it because its daily humidity values were not

available. Subsequent research published by Polade et al.

(2013) evaluated thoseAOGCMs that best reproduce the

observed teleconnections with ENSO and PDO over the

southwestern United States, indicating six preferred

GCMs. Five of our original set of seven GCMs were in-

cluded in the list by Polade et al (2013). Hence, our set

of GCMs maximizes intermodel variability and simulta-

neously includes five of the highest-performing GCMs

for representing the desired teleconnections. We chose

representative concentration pathway 8.5 (RCP8.5) for

ourAOGCMruns, reflecting our subjective evaluation of

this future pathway being more likely than the less in-

tense pathways.

The projected daily values of the NPH anomaly were

computed from the projected daily values of SLP,

according to the definitions specified in the NOAA web

page1 and in Schwing et al. (2002), and summarized

above in section 1. Daily projections of SLP and HUS at

the 850-hPa level were downloaded for RCP8.5 for the

seven GCMs selected, from the CMIP5 data portal.2

FIG. 7.Monthly box-and-whisker plot distributions and extremes

(dots) of monthly maximum daily precipitation for the observed

Moffett Field daily time series.

1 See http://www.pfeg.noaa.gov/products/PFEL/modeled/indices/

NOIx/compute.html.
2 See http://pcmdi9.llnl.gov.
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g. Bias correction of the GCM-projected covariates

The linear relationships between corresponding

quantiles of historical scenario (1976–2005) and either

midcentury (2040–69) or late-century (2070–99) GCM

projections of the covariates were used to create GCM-

adjusted inputs for the statistical model. Box plot figures

summarizing the projected changes in the covariates are

provided in Fig. S.29 of the supplemental material.

There is generally a possibility that adjusting each

covariate separately to account for projected climate

change is inadequate; perhaps the relationship between

the variables is projected to change, in addition to the

values of the variables themselves. To account for this

possibility, we compared the joint distribution of the

(marginally) quantile-mapped historical data with that

of the GCM scenario projections (see the supplemental

material). The two joint distributions were sufficiently

similar such that adjusting NPH anomaly and HUS

separately was deemed to be adequate.

h. Model results

Using the two models of extreme precipitation (high

daily rainfall at Moffett Field or low winter totals of Sierra

Nevada precipitation) and the posterior samples of their

parameters, we calculated the long-term daily pre-

cipitation return levels up to return periods of 100 years

using the fitted GEV and gamma distribution functions.

These calculations were repeated using several predictor

datasets: one consisting of the reanalysis data used in fitting

the model and one for each of the datasets adjusted

according to the selected GCM projections. The term

predictor is used here to refer to the inference of pre-

cipitation (the predictand) from a covariate (the pre-

dictor), even though predictor and predictand values are

simultaneous in time. To get a sense of the relative im-

portance of the two predictors in the precipitation pro-

jections, we generated two more return-level datasets

leaving one of the predictors, NPH or HUS, fixed at the

reanalysis values used in model fitting.

The posterior predictive distributions obtained for

intense daily precipitation are displayed in Fig. 8, for the

midcentury (2040–69) and late-century (2070–99) time

horizons, on the top and bottom panels, respectively. To

aid readability of a figure with multiple lines, we plot the

relative exceedance probabilities—that is, the exceed-

ance probabilities divided by the corresponding proba-

bility for reanalysis (historical) values. The seven GCM

runs studied are color coded. The solid lines represent

the posterior medians, while the dashed color-coded

lines represent associated 25th and 75th percentiles.

Figure 8 (left) shows the case where only the NPH

anomaly was adjusted, while the HUS distribution was

held equal to historical. In this case, the projected dis-

tributions do not deviate from the historical distribution

(black line) for either the midcentury or late-century

period. Figure 8 (center) shows the case where only

HUS was adjusted, while the NPH anomaly distribu-

tion was held equal to historical. In this case, all GCMs

project a rise in precipitation return levels, with a

much larger departure from the historical distribution,

especially for the late-century horizon. Figure 8 (right)

shows the case where both covariates were adjusted. In

this case, all GCMs project increased precipitation re-

turn levels, and the departures from historical are large.

Two of the GCMs, CSIRO Mk3.6.0 and CanESM2,

project posterior median increases in the exceedance

probability of the current 100-yr (estimated to be

102mmday21, the upper limit of the x axis in Fig. 8)

event by factors of about 3–4 for the midcentury period

and 7–8 for the late-century period. These two GCMs

project median increases in the 100-yr event by about

50% for the mid-twenty-first-century period and above

70% for the late twenty-first-century period (shown in

Fig. S.43 of the supplemental material).

Using the same combinations of time period (mid-

century and late century) and leaving predictors fixed at

their reanalysis values (adjust only NPH, adjust only

HUS, and adjust both) that were used in the return-level

calculations, we calculated the GCM predictions of sea-

sonal total precipitation via Eq. (6). The distributions of

these predictions are shown as box-and-whisker plots in

Fig. 9. For the midcentury period, when only NPH is

adjusted, the MIROC5 and MPI project slight decreases

while CanESM2 and CSIRO Mk3.6.0 project increases;

averaging the different GCMs into one distribution gives

projections with little shift in either direction for mid-

century and a slight upward trend for late century. For the

late-century period, when only NPH is adjusted, more

GCMs project increases, but they remain moderate in

magnitude. In contrast, adjusting only HUS gives unani-

mous increases in precipitation for all GCMs, of consid-

erable magnitude, especially for the late-century period.

The HUS adjustment also results in precipitation distri-

butions with large variability compared to the reanalysis

distribution. Adjusting both variables gives projections of

increased seasonal total precipitation and increased var-

iability, primarily as a result of the HUS adjustment.

The return periods of up to 100 years for low values of

winter Sierra Nevada precipitation totals according to

the gamma regression model [Eqs. (7)–(10)] are shown

in Fig. 10. The covariate datasets corresponding to each

of the GCM runs are color coded with the solid lines

representing the posterior median and the dashed lines

representing the 25th and 75th percentiles. All GCMs

project decreases in the probability of low Sierra Nevada
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winter precipitation totals, a result that is driven mostly

by their projected increases in the HUS covariate.

4. Conclusions

We have identified a simple climatic index that is more

strongly associated with precipitation over California than

the traditional climate indices used for forecasting pre-

cipitation. This index is the sea level pressure (SLP)

anomaly at the climatological location of the North Pacific

high (NPH), which is approximately 358N, 1308W. The

NPH is a component of the NOI, and the results are

consistent with the basis of the NOI, proposed by Schwing

et al. (2002) as a tool to relate the impacts of tropical and

extratropical events along the eastern boundary of the

North Pacific. Using the NCEP–NCAR reanalysis

December–March average precipitation data for 1948–

2014, we showed in section 2 that theNPHwinter anomaly

is strongly correlated with winter seasonal precipitation

totals throughout California, including the Sierra Nevada

slopes—a principal source of water to California’s Central

Valley agriculture and major California cities. The corre-

lations were stronger than any of the traditional ENSO

indices, such as MEI, SOI, and Niño-3, which are statisti-

cally significant only over Southern California. We also

showed in section 2 that the NPH winter anomaly is

strongly correlated with the Palmer drought severity index

(PDSI) and with the annual 5-day maximum precipitation

in the supplemental material.

Using the case study of NASAAmesResearch Center

in the southern San Francisco Bay, we developed two

statistical models, one for precipitation extremes and

the other for total winter precipitation, to be used for

obtaining projected precipitation for future time hori-

zons, based on GCM projections of NPH and atmo-

spheric specific humidity (HUS) at the 850-hPa level.

We used the two statistical models in conjunction with

CMIP5 projections of NPH and 850-hPa HUS for the

Moffett Field case example. The first statistical model

represents extreme daily precipitation in the form of a

generalized extreme value (GEV) distribution whose

parameters are functions of the two covariates, NPH

and HUS. In this model, all GCM runs studied project

increased precipitation values for fixed return periods,

with large departures from historical values, explained

FIG. 8. GEV model exceedance probabilities for intense Moffett Field daily precipitation. Solid lines are posterior medians, and dotted

lines span the pointwise 25th and 75th percentiles.
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principally by the projected increases in HUS. The

second statistical model uses a robust linear model with

7 degrees of freedom to represent wet season pre-

cipitation totals, where the location parameter is a linear

function of the two covariates, NPH andHUS. TheHUS

projections again dominate future changes in wet season

precipitation, leading to increased average precipitation

for all GCM runs, accompanied by increased variability.

FIG. 9. Distributions of simulated andobserveddaily precipitation time series. The reanalysis (green) andobservations (orange) box-and-whisker

plots are repeated in each panel, for comparison to the model statistics. The reanalysis median is indicated by the horizontal green line.
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Future development may target similar statistical re-

lationships at other locations using local data, particu-

larly for estimates of extreme precipitation.

A third statistical model represents extremely low

winter precipitation totals, in the form of a gamma dis-

tribution. We applied this model to the western Sierra

Nevada precipitation indices and used the model to

obtain projections of meteorologically dry years con-

sistent with the GCM runs studied. We found a future

tendency toward decrease in the probability of ex-

tremely low winter precipitation totals resulting mostly

from the projected increase in HUS, with a small con-

tribution fromNPH changes. This result may be affected

by the relatively small number of GCM runs used (al-

though these were picked based on their ability to rep-

resent theCMIP5models) and by possible nonstationarity

of the empirically defined relationship between the NPH

anomaly and California winter precipitation low ex-

tremes. We briefly compare this result with independent

CMIP5-based studies that used different methodologies.

Berg and Hall (2015), examining 34 different GCMs run

under RCP8.5 (as in our paper), found that for the mid-

century period (2021–60) only 2 GCMs project increased

frequency of extremely dry California winters (where dry

is defined as below the 5th percentile) and that for the

end-of-century period (2061–2100) only 10 GCMs do so.

While ensemble means appear to indicate an increase in

both extremely wet and extremely dry years, only 3 out of

34 GCMs actually yield both [see Table 2 of Berg and

Hall (2015)]. Of the 19 GCMs that project increased

frequency of extremely wet winters in 2061–2100, only 3

GCMs also project increased frequency of extremely dry

winters. The key influence of atmosphere–ocean coupling

on projected precipitation variability was studied by

Yoon et al. (2015). Gao et al. (2015) showed that

although a robust poleward shift of the subtropical jet in

the North Pacific basin is expected, this will not signifi-

cantly affect the dynamical effect on wintertime atmo-

spheric rivers and suggested that thismay be explained by

the large intermodel uncertainties in the projections of

FIG. 10. Return periods of up to 100 years for low values of winter Sierra Nevada pre-

cipitation totals according to the gamma regression model [Eqs. (7)–(10)]. The covariate

datasets corresponding to each of the GCM runs are color coded with the solid lines repre-

senting the posterior median and the dashed lines representing the 25th and 75th percentiles.

All GCMs project decreases in the probability of low Sierra Nevada winter precipitation totals,

a result that is driven mostly by their projected increases in the HUS covariate.
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wintertime circulation over the eastern North Pacific

among the CMIP5 models.

While meteorological drought may tend to become

less frequent, studies have shown that projected rising

temperatures are expected to have a dominant effect in

increasing the frequency and severity of hydrological

and agricultural droughts in California (e.g., Cook et al.

2015), a tendency already identified in the historical

record (Williams et al. 2015).

The major findings of this work can be summarized as

follows. The monthly NPH anomaly is a strong explan-

atory variable for year-to-year precipitation variability

in Northern California under current climatic condi-

tions, including total water-year precipitation as well as

risk of extremely intense precipitation. In this paper we

use the term prediction to refer to estimating pre-

cipitation (the predictand) from a climate covariate (the

predictor), such as a climate index, or atmospheric

moisture. In this sense, predictor and predictand are si-

multaneous in time. When the NPH anomaly is used in

conjunction with HUS at 850hPa, statistical models can

use these two predictors to obtain future projections of

precipitation totals and risk of intense precipitation.

Under current climatic conditions, HUS and NPH are

sufficiently well correlated such that NPH alone is suf-

ficient to use as a predictor for precipitation. Under fu-

ture climatic conditions, the projected overall higher

HUS levels require that both HUS (850hPa) and NPH be

used as predictors for precipitation in statistical models.

FutureGCM-based projections indicate a dominant role for

HUS over NPH in the changes projected for precipitation.

All GCM projections studied indicate increased average

and increased interannual variability of winter total pre-

cipitation. All GCM projections also indicated increased

daily precipitation intensity for fixed return periods, with

large departures from historical conditions. Two of the

GCMs, CSIRO Mk3.6.0 and CanESM2, project median

increases in the 100-yr daily precipitation event by about

50%for themid-twenty-first-century period andabove 70%

for the late twenty-first-century period.

A principal finding of this work is that, if future research

leads to accurate season-to-season forecasts of NPH

monthly anomaly (whether obtained statistically or via

dynamical models), theymay be used to statistically derive

forecasts of total winter precipitation. The NPH may

have a better relationship with precipitation than the

ENSO indices because, in addition to tropical forcing, it

also receives influence from internal midlatitude variabil-

ity. However, the question remains whether this internal

midlatitude variability may or may not be forecastable.

Such a forecasting model would bring great benefit to

planning activities related to precipitation and concerning

drought and flooding risks. For example, many water

supply reservoirs in California capture snowmelt in

spring for supply later in summer. Under current opera-

tions, some reservoir storage is set aside for future floods

over the course of the wet seasons—the flood control

volume varying by month—and excess runoff is released

downstream (e.g., Willis et al. 2011). A statistical tool

relating NPH anomaly to precipitation indices, calibrated

to specific locations corresponding to reservoir water-

sheds, may allow reservoir operators additional insight,

on a year-to-year basis, on whether some of the flood

storage could be utilized for water supply storage. This

additional insight could be of great value in coming de-

cades, where operators must make the most from a po-

tentially more variable precipitation season, as well as

declining snowpack and greater peaks in runoff in wet

years (Hanak and Lund 2012; Fissekis 2008; Brekke et al.

2009). On this basis, we suggest that there may be a po-

tential role for forecasts of NPH strength, such as

that obtained by NOAA’s National Weather Service

Climate Forecast System, version 2 (CFSv2; Saha et al.

2014), for example, to anticipate both high- and low-

precipitation winters. Developing research into statistical

forecasting of strong positive and negative NPH anom-

alies appears urgent and should include the investigation

of the persistence of NPH anomalies over time and typ-

ical sequences of NPH evolution from season to season,

the investigation of climatic precursors that may typically

precede the development of extreme positive or negative

NPH anomalies, and the investigation of any significant

lagged correlations. This work demonstrates that ad-

vancements in forecasts of NPH are expected to have

significant benefits for water resources, agriculture, en-

ergy, insurance, drought preparedness, and flood risk

management in California.
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