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ABSTRACT

This paper demonstrates how the constraints of overnight delivery affect the
design of pickup and delivery systems° Cost depends on the number of vehicle
routes needed to pickup and deliver shipments. This number in turn depends on
the critical parts of the driver’s day: the morning delivery period~ up to the
delivery deadline, and the afternoon pickup period, after the cutoff time.
Pickup routing is the more complicated~ due to the dynamic nature of customer
calls. Models are developed to assess the workload remaining to be completed
at the cutoff time and, from this value, the number of routes required to pick
up the shipments.

My appreciation goes to Chuck ~ong of Federal Express, who was helpful in
formulating the paper’s model.



INTRODUCTION

Transportation deregulation during the 1980s stimulated many American

carriers to develop new and innovative ways to move freight. Perhaps the most

dramatic success story is Federal Express. A novel airline network structure,

integrated with a comprehensive pickup and delivery service, allowed Federal

Express to create a new market for overnight mail delivery. Today, Federal

Express continues to be the dominant carrier in the American market, though it

has been joined by a variety of competitors, ranging from the United Parcel

Service to the U.S. Post Office.

Not surprisingly, the Federal Express success story has invited study by

academicians. Chan and Ponder (1979), Chestier (1985), Emery et al (1986) 

Finnegan and Andrade (1984) reprise the Federal Express experience, focusing

on the organizational factors that led to its success. Hall (1989) examined

the route structure of overnight carriers, and showed how time zones and time

windows affect terminal location and routing strategy. More generally, the

phenomenon of the hub-and-spoke network structure has been studied by Kanafani

Ghobrial (1985) and OIKelly (1986), though the emphasis has been 

passenger networks.

To date, there has been no research on the design of pickup and delivery

(PAD) systems to support overnight carriers. ~ithout the symbiosis between

air and surface transportation, it would be impossible for overnight carriers

to provide next day service. Further, PaD comprises a significant percentage

of the cost of moving packages, and this percentage is sure to increase as

carriers follow Federal Express’s recent lead in adopting more decentralized

airline network structures. Therefore, design of the PaD system is an



important concern.

The question addressed in this paper is how the constraints of overnight

delivery affect the design of the pickup and delivery system. Of particular

interest will be the dynamic routing of pickup vehicles (i.e., calls for

pickup arrive while the vehicle is in motion). In prior work, Bertsimas and

van Ryzin (1990) developed a continuous-space model for the dynamic traveling

salesman problem. In their investigation of routing heuristics, they found

that the distance traveled per point asymptotically approaches k/V~, where p

is the time-average stop density and k is a constant (.64 for a nearest

neighbor heuristic with Euclidean metric). The authors also examined queueing

effects, measuring the mean time to respond to a call. Jaillet and Odoni

(1988) studied a form of dynamic routing where each of a set of stops has 

set probability of appearing on a given day. The objective is to construct a

fixed route of minimum expected length. Hence, the route is not adapted on

any day to reflect actual stop locations. Heuristic algorithms for dynamic

routing of cargo ships have been investigated by Psaraftis (1988), who also

provide a reasonably complete review of dynamic routing literature.

In overnight P&D, measuring queueing time is less important than

satisfying time window constraints. Specifically, when a shipment is picked

up in a day has no impact on when it is delivered. The key consideration in

P&D design is insuring that a driver’s workload does not exceed the amount of

time available in his pickup and delivery time windows. At first glance~ it

may seem that overnight P&D routing is the same as the general problem of

routing with time windows (Daganzo, 1987) or the same as dial-a-ride routing

(Daganzo, 1978; Stein, 1978). However, unlike the former, stops arrive



dynamically and most customers share a common time window. Unlike the latter,

shipments share a common destination (the vehicle terminal) and waiting time

to pickup is not the primary concern.

SYSTEM DESCRIPTION

Common carrier networks can be divided into "local area" and "wide area"

components. The Wide Area Network (WAN) transports shipments between

metropolitan regions. In the case of overnight package carriers, this is

usually accomplished by air, via a "one-terminal" topology, i.e., each

shipment is only sorted at at one intermediate air terminal between

metropolitan regions (see Hall, 1987).

Local Area Networks (LAN) transport shipments within metropolitan regions

(Hall,. i991). LANs serve both intra-regiona! and inter-regional functions,

performing pickup and delivery for the former, pickup or delivery for the

latter. In the case of overnight carriers, the LAN consists of a "Gateway"

air terminal -- which connects the WAN to the LAN -- as well as local

"stations," where Pickup and Delivery (P~D) vehicles are based.

In the pickup process, overnight carriers serve three types of customers:

regular customers, drop boxes, and call-ins. Regular customers act as

standing orders, to be visited within a prescribed time window each day. Drop

boxes are also served every day, usually at the very end of the route, after a

set pickup time.

Customers in the call-in category request pick-ups over the phone through

centralized call centers on the day that the pickup is desired. After the



request is received, the operator electronically relays information on the

shipment -- address, number of pieces, ready time, closing time, etc. -- to

the pickup/delivery station that serves the customer. A dispatcher will

determine which driver is assigned to the customer’s district, and whether or

not the driver is able to handle the call. If the assigned driver is

overloaded, the dispatcher has discretion to assign the customer to an

alternate. In either case, the dispatcher electronically transmits the

shipment information to the selected driver, who will see the call appear on a

small CRT in his van. It is up to the driver to select the stop sequence and

the routes between the stops.

Overnight carriers operate with location specific c~t-off times,

typically about 3:30 in the afternoon. To guarantee same-day pickup,

customers must call in before the cut-off time. Between the cut-off time and

the end of the workday (about 5:00), drivers serve all outstanding call-ins 

well as their regular pickups and, finally, the drop boxes. Because many

people request pickups immediately prior to the cut-off, and because there are

many regular customers, the period from 3:30 to 5:00 is usually the busiest

part of the driverrs day.

The driver does not return to his/her station entil the last pickup of

the day is completed. Upon return, shipments are transshipped onto trucks and

taken to the gateway terminal~ Local shipments (destinations within the

metropolitan region) are then separated from inte~regional shipments, and

sorted by station.

]n the morning, deliveries (both local and those arriving from outside

the region) are transported by truck from the airport back to the stations.



In the case of Federal Express, Priority Shipments, which must be delivered by

10:30 a.m., are separated from Regular Shipments, which have later delivery

times. From 8:00 until almost 10:30, drivers may work exclusively on priority

deliveries, in order to meet their deadlines. This is true even if a regular

stop is directly on the driver’s delivery route, for even a few minutes delay

could cause a priority shipment to be delivered late.

The five-hour period from 10:30 to 3:30 is the lightest of the day.

During this time, drivers make regular deliveries as well as early pickups.

However, most of the call-ins do not occur until after t:30 in the afternoon~

and few of the regular pick-up stops can be made before 3:30. In some cases,

part-time drivers are used, with shifts either ending soon after i0:30 or

beginning just before 3:30. l~owever, it can be difficult to hire quality

part-time drivers. To make good use of full-timers, it is important that

drivers be scheduled to serve both the morning and evening peaks. Counting

linehanl and station time, this means that drivers must be on duty from about

7:00 in the morning to 6:00 in the evening. Clearly, this is longer than aa

ordinary 8-hour day. Federal Express resolves this problem by scheduling

drivers for four lO-hour shifts per week, instead of the usual five 8-hour

shifts.

Beyond those mentioned already, some important system characteristics

follow:

(i) Customers may send and receive multiple pieces. Typically, pickups
will contain more pieces than deliveries. Conversely, this means
that drivers typically make more delivery stops in a day than pickup
stops.

(2) In residential areas, deliveries are much more prevalent than pickups.



(13)In the case of large companies, pickup and delivery sites may be
spread throughout a building. Because these sites are usually not
coordinated, a driver may have to visit a company several times
during a day to make all pickups.

(4) If a distributor is very large, the carrier will sometimes keep a
truck parked at the loading dock through the day, or dispatch a
special truck to pick up shipments.

(5) The time to process a pickup is much larger than the time to process
a delivery, due to time needed to fill out forms.

(6) Delivery routes can be planned in advance, whereas pickup routes must
be constantly modified as calls are received.

DESIGN ISSUES

There are many elements to the LAN design, including selecting: (1) the

number and location of stations, (2) the topology for transporting shipments

between stations, (3) the geometry of pickup and delivery routes, and (4)

cutoff and delivery times. The first two issues are discussed in Hall (199t),

and ~ill not be covered in this paper. The emphasis here is on the pickup and

delivery routes, along with the cutoff and delivery times.

A clear tradeoff exists between the cost of operating the P~D fleet, the

quality of service provided and the number of customers attracted based on the

service quality. If cutoff times were shifted from 3:30 to 2:00, for

instance, drivers would have a longer time interval to serve the end-of-day

shipments, and would not have to duplicate routes covered earlier in the day,

before all of the calls are received. However, this cost saving would not be

appealing if a large portion of the customers shifted to a competitor who

offers more responsive service.

The approach taken in this paper is to model the cost for the two

critical parts of the day -- the morning delivery period, up until the



delivery deadline, and the afternoon pickup period, surrounding the cutoff.

The paper will assume that pickups are not mixed with deliveries during these

periods, and that only priority shipments are delivered before the delivery

deadline. Further, the paper will assume that large customers, that merit

dedicated routes, are not incorporated in the pickup/delivery system.

Finally, the paper will assume that drop boxes, because they are served last,

can be scheduled independently of other pickups.

The major system cost components inchde: (1) Driver wages and benefits,

(2) Vehicle ownership and inserance, (3) Vehicle maintenance, and (4) 

Given a fixed daily shift length, the first cost is a linear function of the

number of vehicle routes, whereas the fourth cost is a linear function of the

number of miles traveled. The second and third costs depend on a combination

of number of vehicle routes and miles traveled. Recognizing that overnight

carriers use ordinary vans (not expensive trucks) for P~D, wages and benefits

are the dominant cost, and the number of routes is the key factor that

determines total P~D cost. Therefore, the question of how to design the P~D

system can be phrased in the following way:

How can the number of routes be minimized while meeting service
constraints? and

How does the number of routes depend on changes in the service constraint?

101h~ING WOIt~OtJ}

This section develops an approximate model to estimate the number of

vehicle routes required to deliver priority shipments. The model will assume



that delivery routes meet the objective of minimizing miles traveled, and that

only priority shipments are delivered before the priority deadline. In doing

so, the number of delivery routes will be minimized. The following symbols

will be used:

Wd =

Nd =

PH =
Cpd =

sd =

vd =

B =

size of time window available for deliveries

minimum number of routes needed for deliveries

spatial mean density for delivery stops

coefficient of variation of the spatial mean density,
for delivery stops.

mean time to make a delivery stop (not counting mileage)

mean vehicle velocity during deliveries

area of entire service region among all routes.

The average time required to.make a single delivery stop can be expressed as:

t d = sd + d(Pd,Cpd)/Vd, (1)

where.:

d(Pd,Cpd) = mean distance between route stops, given Pd and Cpd.

Although P~D routing involves multiple vehicles, it seems more

appropriate to estimate d(Pd,Cpd) from traveling-salesman (TS) models than

vehicle-routing (VR) models. There are two reasons for this: (I) vehicle

districts are traversed multiple times during the day, without returning to



the station~ and (2) line-haul can occur outside the time window. Each factor

reduces the significance of line-haul cost relative to local cost. Unlike VR

models, TS models do not include line-haul cost.

Borrowing from TS results, for a homogeneous stop density (i.e., Cpd = O)

and Euclidean metric, Stein (1978) estimated that d(Pd,Opd) to asymptotically

approaches .75/4 Pd" More recently, Johnson (1988) has revised the estimate

to °72/4 Pd" Both values are somewhat larger than what the VR model predicts:

¯ 57/4 Pd (see Daganzo, 1984; Hall, 1990). For the reasons cited above,

Johnson’s coefficient will be adopted in this paper.

If stop density is randomly distributed across space, with probability

density f(p), the mean separation for the Euclidean metric would be:

For example, if stop density is distributed according to a gamma (a,~)

distribution (i.e., Pd = ~/~’ Cpd = I/~fa), d@d,Cpd) equals:

r_l~+.5
r- e~dr[1/eldr[1/c +.5]

d(~d,Cpd) = [.72] r ~)~ = [.72¢~d] " , (3)
d]

where r( ) is the gamma function° Eq. 3 is calculated for several values of 

below:

a 1 2 3 4 5 6



As can be predicted from Jensen’s inequality, E(~fp) < ~/E~}), meaning that

route length is shorter when stop density is not homogeneous. However, the

coef~!icient of variation must be quite large (.6 or more), before the

stochastic solution differs appreciably from the deterministic solution.

As another example, if stop density has a uniform distribution over [a,b]

@ = (a+b)/2, Cpd = (b-a)/~f3(b+a)), ) is defi nedby:

a/(b-a) 0 .25 .50 ~75 1.00 1.50

Cpd .58 .51 .46 .42 .38 .36

_%~_~:_%_~!.~ 9~ °~ .9~ ~9 ~
.72/4 ~d

Again, distance is nearly identical to the homogeneous case, except when Cpd

is quite large (.5 or higher).

Taking all factors into account:

Nd = (PdB)[Sd + (k/~/pd)/Vd ] / Wd, (4)

where k is a multiplier specific to the travel metric and probability

distribution for p. Eq. 4 specifies the minimum number of routes needed to

meet mean daily delivery demand. In addition, some safety margin may be



needed to allow for daily variations in workload and stop times. The issue of

setting the safety margin will not be addressed in this paper.

PICKUP WO~LO~

The number of routes required for the afternoon pickups depends on the

set of call-in customers remaining to be picked up at the afternoon cutoff

time, as well as the set of regular customers. This set does not constitute a

uniformly random sample of stops, for it depends on the pickup strategy

employed prior to the cutoff. If, for instance, a driver chooses to

concentrate on a small section of his pickup region, the spatial distribution

of stops remaining at the cutoff will be altered, both in mean and variance.

Hence, the key to minimizing the number of routes is to effectively route

vehicles prior to the cutoff, so that the remaining work is minimized.

The pickup strategy differs from the delivery strategy in that the route

must be updated as new calls arrive. In addition, sections of the service

region may be covered multiple times to serve newly arriving calls. In these

respects, routing pickup vehicles is more complicated than routing delivery

vehicles. Therefore, the remainder of the paper is divided into parts, and

addresses the following issues in order:

(I) Routing the pickup vehicle between the cutoff time and the end of
the pickup time window.

(2) Routing the pickup vehicle prior to the cutoff time, for a
homogeneous stop density.

(3) Routing the pickup vehicle prior to the cutoff time, for a
stop density that is not homogeneous.



For the sake of simplicity, the paper will assume (realistically) that regular

customers can be picked up any time between the cutoff and the end of the

workday.

Routing After the Cutoff Time

Once the cutoff is reached, no new calls are allowed and vehicle routing

becomes static. Let the following values pertain to the set of stops

remaining to be picked up at the cutoff time:

V = size of time window available for pickups
P

N = minimum number of routes needed for pickups
P

pp = spatial mean density for pickup stops

s = mean time to make a pickup stop
P

Vp = mean vehicle velocity_ during pickups.

Then the minimum number of vehicles needed is defined by:

Np : @pA)[Sp / Wp,

where k is a multiplier specific to the distance metric and density

distribution.

Pickup Strategy Prior to Cutoff Time: Homogeneous Case

In this section, the stop density of arriving calls is assumed to be

homogeneous across space and each stop is assumed to comprise a single



shipment. Under these conditions, there is no reason to favor one stop type

over another, or one region over another. Any imbalance in service would

cause the mean distance between stops to increase; hence, service rate would

decline. Therefore, each vehicle will cover its district in a cyclic path,

picking up all new shipments in the path’s vicinity as it passes by.

Let:

2(t) = district-wide arrival rate of call-in pickups at time 

h(t) = cumulative calls to have arrived by time t in a district

~(t) = cumulative stops picked up by time t in a district

A = size of pickup vehicle district (a portion of the entire
service region).

At any time t, the number of outstanding calls waiting to be served equals

A(t)-~t), so the spatial mean stop density 

= . (6)

Due to the cyclic nature of the vehicle path, the outstanding calls are never

uniformly distributed across space. If the system reaches equilibrium, the

stop density will vary from O, in the section of the district just served~ up

to 2p, in the section visited next. Therefore, an approximation for the time

to serve a stop is:

tp = mean time to serve a pickup stop

Sp + k/~/Vp = Sp + k/~l~-(~):~D]7~/Vp 



where k ~ .72 for a Euclidean traveling salesman tour. Dividing k by the

factor of ~ yields a coefficient of .51. This value is somewhat less than

the coefficient of .64 obtained by Bertsimas & Yam Ryzin (1990) for a nearest

neighbor dynamic traveling salesman tour. These two coefficients can be

viewed as lower and upper bounds on the true optimum, the former being based

on the idealized assumption that a dynamic route can be served as efficiently

as a static route; the latter being based on a non-optimal heuristic.

Eq. 7 translates into a service rate of:

1
,(t) = ................ - ........ (8)

Sp + k/g2LZ(%):~)(%)J/~/vp--- -" ~ -" "~-’ "

t
= I (9)

0

In reality, prior to reaching equilibrium the stop density in the

vicinity of the vehicle will be less that 2~, and cam be approximated by:

p’ = stop density in area to be served next

(T’/T)~, (1o)

where:

T’ = length of time since area to be served next was last served

T = spatial average time since area was last served.



Initially, when the vehicle begins its route, T’ is zero everywhere (hence

Tr/T = i). But as the vehicle proceeds the distribution of T’ approaches 

uniform [O,2T] distribution, with the maximum in the area to be served next

(the minimum in the area served last). Hence, Eq. 8 can initially

overestimate p(t) by as much as 41%. However, because the initial service

rate is very small, this error does not have a significant lasting impact on

~(t).

Using Eq. 8~ Figure 1 shows the evolution of fl(t) for two arrival curves,

one stationary, and the other non- stationary. The non- stationary case

reflects actual arrival patterns, which sees peaking immediately prior to the

cutoff. In both figures, #(t) (slope of ~(t)) begins small~ but increases 

A(t)-~(t) grows. This is because the driving time per stop declines as 

stop density increases. Put another way, drivers are busy throughout the

period; even when the arrival rate is low. It is the driver productivity --

not idleness -- that improves as density increases and distance between stops

declines.

For the stationary case, equilibrium behavior can be analyzed to measure

the impact of system attributes on performance. Equilibrium exists when the

service rate equals the arrival rate:

A = ~ = 1
A < 1/Sp ,............... , (11)

Sp + k/~/Vp

P = equilibrium stop density

k/v ~ 2
: ] , < (12)



As time progresses, p approaches p from below. The time required to reach

equilibrium, r 0, must be at least as large as the minimum time required to
N

accumulate a queue size of ph:

7"0

where,

#min = the minimum service rate as p approaches zero
1 (14)

The approximation for #min is based on the average distance between two

r~domly selected points in a square of size h. As Eq. 13 suggests, the time

to reach equilibrium is longest when Sp, p and t are large, and I is small.

This can be seen by compa~ng Fig. 2, for which I/l << Sp, to Fig. I, for

which I/A is close to Sp.

In addition to the call-in customers, regular customers instantaneously

become available for pickup at the cutoff, combining to a mean stop density of

Pp = P + Pr’ where Pr is the density of regular customer stops. Then the time

required to serve all outstanding work at the cutoff is approximately:

Tr : A[(p+pr)S p + k’4(p-~pr)/Vp] (15)

&t the cutoff, the probability distribution for p varies uniformly between Pr

and Pr + 2po If Pr=O, with the Euclidean metric, k’ is approximately .94×.72,



as shown earlier. For larger values of Pr’ k’ increases toward .72, due to a

decline in the coefficient of variation in p. For the sake of simplicity, we

will assume that k’ ~ (.97)(.72) = .70 in our analysis.

T cannot exceed the size of the time window, ~ o Substituting Eq. 12
r p

t

for p in Eq. 15, district size is limited by:

Wp _> Tr

1 > -- + a’r + (- 7

(16a)

(16b)

where: A’ = h~Sp

a = pr/~Wp

7 = v2~s2~/k2P P
= arrival rate per unit area = A/A.

A’ can be interpreted as the district size, normalized relative to the size of

a region that would generate one call in the time Sp. Eq. 16 was solved

numerically for h’ as a function of ~ and 7. Results are shown in Figure 3.

In no case can h’ exceed mmx{l,I/a}, which is the limit of h’ as 7 ~ ~. These

limits are only attained when driving time is negligible relative to stop

time. As 7 declines, driving time becomes a more significant factor, which

causes district size to decline.

Figure 4 illustrates the relationship between h and the parameters Pr and

I for the following class of problems:



Wp = 1.5 hours Vp = 20 miles/hour Sp = .05 hours k = .72

Level curves are show for values of A ranging from 1.0 square-miles to 2.2

square-miles. The solid lines are the equilibrium results (derived from

Figure 3). The dashed lines account for how much time elapsed between the

start of the pickup period and the cutoff time, and are based on Eq. 8 (the

longer this elapsed time, the closer the result is to equilibrium). As

predicted by Eq. 13, the equilibrium result is accurate when the time

preceding the cutoff exceeds T0. Specifically, Eq. 13 predicts the following:

r o =: 2.0 hours when:

A (mi2) 1.0 1.2 1.4 i.6 1.8 2.0 2.2

J cust/mi2- hr 16.0 13.2 11.2 9.7 8.6 7.7 6.9

r o = 5.0 hours when:

h (mi2) 1.0 1.2 1.4 1.6 1.8 2.0 2.2

/ cust/mi2-hr 17.5 14.5 12.3 10.7 9.5 8.5 7.7

Note that these values roughly match the points where the equilibrium curves

diverge from the dashed lines.

As a final comparison, Figure 5 demonstrates the relationship between

district size and the percentage of customers that are call-in (the remainder

are regular, with a combined density of to/ + Pr = 40 customers/mile2).

Because call-ins can be served before the cutoff, the allowable district size

enlarges as the percentage increases. This is something of a paradox, for it



is inherently more efficient to serve customers when they all arrive at once.

In fact, the vehicle miles traveled during pickup are minimized when 100% of

the customers are regular. Nevertheless, as the figure shows, spreading the

calls over a longer period effectively increases vehicle capacity, even if

vehicles have to travel over longer routes.

NON-HOMOGENEOUS STSP DENSITY

With non-homogeneous density, it may be desirable to favor one part of a

district over another, either to increase the service rate or to achieve a

more favorable stop distribution at the cutoff. In the first two parts of

this section, all call-in stops are identical in stop time and each stop

generates exactly one shipment, but stop density varies over space. In the

third part, the stops are allowed to generate multiple calls in a day.

Identical Stops/Varying Density

As already demonstrated, the time required to serve a set of stops is

insensitive to the coefficient of variation of the stop density. Hence, a

reasonable heuristic for routing vehicles is to maximize the rate at which

stops are served, without regard to the effect on spatial distribution.

To maximize service rate, the vehicle should ideally always serve the

location with the largest density of outstanding stops. As a practical

matter, separation between regions may prevent the vehicle from fulfilling

this goal. However, ignoring the separations allows for an approximate

solution that provides some insight into optimal routing. Let:



p(x,y,t) = stop density/time of arriving calls, at location (x,y),
and time t.

A(t) = f p(x,y,t)dxdy.
x,y

q(×,y) = p(×,y,t)/A(t)

By assumption, q(x,y) will be time invariant.

The density of outstanding stops at any location (x,y) depends 

p(x,y,t) and the length of time since the iocation was last served.

Therefore, the location with the largest density of outstanding stops is not

necessarily the location where q(x,y) is largest. If the vehicle were 

spend all of its time in a single region, the density of outstanding stops

could fall below that in other regions, with smaller values of q(x,y).

Rather, the vehicle should distribute its effort in a manner that equalizes

the density of outstanding stops in its vicinity. If the density is not

equalized, then the vehicle-could spend more time in the area with the highest

density of outstanding stops until densities are equalized.

Suppose that the arrival pattern is stationary, and that the system

reaches steady-state. Then the cycle time between vehicle visits to any

location (x,y) must be proportional to q(x,y). Over this cycle, the 

density must vary between O, just after the visit, to 2p, at the time of the

visit, where p is the spatially invariant mean density of outstanding stops.

The refore:

I)~ :, # = .............. ,

Sp + k/24 -/Vp
A < l/sp (17)



Eq. 17 is identical to Eq. 11, the equilibrium condition for homogeneous stop

density. The inference here is that variations in spatial stop density should

not affect the pickup workload, provided that the driver adopts a location

specific cycle time, adjusted according to q(x,y).

A Discretized Case

Suppose now that a vehicle district has just two parts, one with a low

stop density and the other with a high stop density. Further, suppose that

calls do not arrive continuously over time, but at discrete time points.

Initially, suppose that calls arrive at just two time points, with the

second time point interpreted as the cutoff time. After the cutoff~ the

driver must complete one cycle through the entire region to serve all

outstanding calls. The question to answer is how should the driver allocate

his effort prior to the cutoff?

Let:

Ai = area of region i (each region is part of a vehicle’s district)

Pi = stop density in region i~ based on arrivals at l’st time point

lj = arrival multiplier, time point j (I 1 = i by definition)

tj = time separation between the jth and j+l’st time points

Sj = size of region served between the j’th and j+l’st time points.

First, suppose that the vehicle allocates its entire effort, prior to the

cutoff, to a single region, without completing the region. Further suppose~



without loss of generality, that Region 1 is selected.

would satisfy:

Then the area served

tl tl/h
Slp i = ........ ~ SI - (18)

Sp + k/~/Vp % + k/~/Vp

The time required to serve all remaining work after the cutoff would be:

t~! ---- S1(pl]2)(Sp + k/4~-~/Vp) + (Ai-Si)[p~(l+~2)][Sp + k/4p1-(l%]2)/Vp]

+ A2p2(l+~2)[Sp + k/~/Vp] (19)

Substituting Eq. 18 for SI in Eq. 19:

t2 : [Alpl(l+12)[Sp + k/~/Vp] + A2p2(l+12)[Sp + k/~/Vp]]

s;-+ k/~ tvl~[drn7 - dsT]]
- ....... ;7; <7 7c’7 ......J

The first component of Eq. 20 equals the total time to process all work, if

all routing were performed after the cutoff.

reduction due to routing prior to the cutoff.

p~ -~, can the work reduction equal tl,

The second term is the work

Only when 12 : O, or when

the actual time available.

Otherwise, the work reduction is less than tl, the difference arising from the

lower productivity when serving only a portion of the total calls that

eventually arrive in SI.

The work reduction in Eq. 20 is largest when pl is maximized, meaning



that the vehicle should serve the region with the largest stop density. Doing

this will minimize t2 or, if t2 is a fixed time window, allow the total

district size (At+A2) to be maximized. Maximizing district size fulfills the

objective of minimizing the number of routes. (If it were possible to

complete an entire region prior to the cutoff, then that region should also

clearly be the one with the larger density.)

To carry the discrete case further, a vehicle can be routed within its

district by traveling from region to region, with the objective of minimizing

outstanding work at the cutoff time.

a) = quantity of outstanding work, at cutoff time tj
I ^ k/4~ p]

= iF~iAiPi= [Sp + v , (21)

where,
^

#i = outstanding stop density in region i

I = number of regions.

The outstanding stop density is defined by the routing sequence prior to the

cutoff time, which can be viewed as a sequence of time periods, each of which

represents a single cycle through a region. Each cycle has duration:

tj = hiPi[S p + k/vf~i~/Vp] + T{i(j-l),i} (22)

where, T{i(j-l),i} = time to travel from region visited in previous period,
i(j-l), to region 



The optimization problem could be formulated and solved as a dynamic program,

though it seems that a reasonable heuristic would be to "select the region

with the largest outstanding stop density" next (perhaps modified to reflect

distances between regions).

Non-Identical Stops

Stops can differ according to the number of pieces shipped and according

to the likelihood that a stop would generate more than one calt during a day.

The stop time, Sp, is composed of an access/egress time, a time greeting the

customer, and a time processing the pieces.

Sp yp + ~.n ,

where:.

v = access/egress time + greeting time
P

= time to process a piece

n = number of pieces shipped.

As indicated in the prior sections, the goal prior to the cutoff time should

be to maximize driver productivity. Eq. 20 provides a framework for measuring

productivity. That is, the productivity is the proportionate reduction in

work after the cutoff, due to work completed prior to the cutoff.

Productivity losses stem from two sources: (I) added distance between stops,

due to a lower stop density, and (2) repetition of stops due to multiple



calls. Put another way, prior to the cutoff, the driver is only fully

productive during: (A) access/egress/greeting at stops that only generate 

single call per day, and (B) processing individual pieces.

Taking these factors into consideration, hybrid routing strategies might

include:

(I) Favoring calls that contain many.pieces, to increase the
proportion of time spent proeesslng pieces.

(2) Skipping stops that are likely to generate multiple calls,
to prevent the access/egress and driving time from being
wasted.

Because the piece processing time tends to be a small percentage of the total,

the first strategy is really not very practical. Further, it conflicts with

the second objective, because stops that generate many pieces are also likely

to generate many calls. Therefore, the first possibility will not be

considered.

The second strategy might be implemented by transferring some customers

from the call-in category to the regular category; that is, by waiting until

the cutoff time before visiting them. in terms of the models presented, the

net effect will be to reduce ~ and increase Pr" The question, then, is

whether such a change increases or decreases the quantity of work remaining to

be completed at the cutoff.

For any pickup system, this question can be addressed by constructing a

trade-off curve, as in Figure 4. Let:

t O = length of pickup period preceding cutoff



rate at which selected class of customers generates calls

stop density for selected customer class.

If the selected class is moved from the call-in category to the regular
,)

category, 2 will decrease by ~0 and Pr will increase by PO" However, for the

change to be contemplated, pO/~O < to; otherwise, the customer class would not

be generating multiple calls, on average.

To determine whether a transfer reduces the workload, the ratio pO/~ can

be compared against the marginal rate of substitution between Pr and 2, as

defined by the level curves for district size. Specifically, a transfer will

result in marginal work reduction when:

po/’20 <-(v~p/c~,~) (Polio < to) (24)

For example, the following data is taken from Figure 4 with Pr = I0:

t o_ = 2,0 hrs, t o = 5,0 hrs,

] A -op/o] ] A -op/o 
19 1,2 1,8 16 1,2 4,8

t5 !,4 1,6 I3 1,4 3,9

].2 1,6 1,5 11 1,6 3,2

10 1,8 1,2 9 1,8 2,6

8 2.0 .6 7.5 2.0 1.5

6.5 2.2 .4 6.0 2.2 1.0



To interpret the data, transferring stops from the call-in category to the

regular category is most attractive when ~ is large, in which case the vehicle

has a heavy workload prior to the cutoff. On the other hand, if ~ is small, a

transfer may be unattractive -- even if it means saving repeated stops. For

instance, if ~ is 6.5, po/~o can be as small as I/5 t o (i.e., each stop

generates 5 calls prior to the cutoff) and it would still be preferable to

serve the stops as call-ins.

As a caveat, the preceding analysis assumes that each call generates

exactly one vehicle visit. In fact, if the cycle time between pickups is

sufficiently long, multiple calls might be made between visits. Hence, the

marginal rate of substitution will overestimate the benefit of shifting

customers from the call-in to the regular category in extreme cases.

CONCLUSIONS

This paper has demonstrated how the constraints of overnight delivery

affect the design of pickup and delivery systems. For such systems, cost

depends on the number of vehicle routes needed to pickup and deliver the

shipments. This number of routes depends on the critical parts of the

driver’s day: the morning delivery period, up to the delivery deadline, and

the afternoon pickup period, after the cutoff time. Of the two, pickup

routing is the more complicated, due to the dynamic nature of customer calls.

In pickup routing, the goal is to minimize the workload of outstanding calls

at the cutoff time. Meeting this goal depends on how regions are sequenced

for pickup prior to the cutoff. A reasonable heuristic seems to be the



"highest stop density next" rule.

Although the paper did not yield a routing algorithm, it did provide

approximate models that can be used to estimate the effect of changes in

customer base on cost. In particular, the pickup model can be compared to the

delivery model to identify the dominant period of the day. Even though pickup

routing is less efficient (due to dynamic calls), and even though it takes

longer to process a pickup than a delivery (Sp > Sd), it is not necessarily

dominant. Mainly, this is because pickup stops tend to generate more pieces

than delivery stops. Put another way, delivery routes tend to contain more

stops than pickup routes.

8ne application of the models may be to adjust delivery and cutoff times

to attain a balanced workload. Another application would be to measure the

change in cost due to changes in service standards. Unfortunately, these

analyses are not straight-forward because any change in service standards will

surely affect the demand pattern. Sensitivity analysis, combined with some

form of demand modeling, is needed to answer these strategic questions.

Finally, the models presented do no account for all of the phenomena

presented at the end of the "system description" section. Excluded factors

include (I) generation of calls at different locations within a building and

(2) design of special routes dedicated to serving large customers. These

topics could be the basis for future research.
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Figure 4.
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