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Sensor Network Data Fault Detection using

Hierarchical Bayesian Space-Time Modeling
Kevin Ni and Greg Pottie

Abstract

We present a new application of hierarchical Bayesian space-time (HBST) modeling: data fault detec-

tion in sensor networks primarily used in environmental monitoring situations. To show the effectiveness

of HBST modeling, we develop a rudimentary tagging system tomark data that does not fit with given

models. Using this, we compare HBST modeling against first order linear autoregressive (AR) modeling,

which is a commonly used alternative due to its simplicity. We show that while HBST is more complex,

it is much more accurate than linear AR modeling as evidencedin greatly reduced false detection rates

while maintaining similar, if not better detection rates. HBST modeling reduces false detection rates

41.5% to 96.5% when paired with our simple fault detection method. We also see that HBST modeling

is more robust to model mismatches and unmodeled dynamics than linear AR modeling.

I. I NTRODUCTION

Sensor networks in environmental monitoring have matured significantly since their inception in [1]

and [2]. With this maturity comes an increased focus on ensuring data quality for scientific use. The

detection of faulty sensors is key in maintaining data integrity throughout the sensor network. Once a

sensor is discovered to produce anomalous and likely faultydata, quick action may then be taken to

discover the cause of the fault and perhaps repair or replacea sensor. If a faulty sensor is not replaced or

repaired, then the amount of usable data over the lifetime ofa sensor deployment is reduced significantly.

Hence, reliable detection of faults is vital for maintaining data yield during a sensor network deployment.

We utilize the hierarchical Bayesian space-time (HBST) modeling found in [3] and apply it to the

problem of fault detection. While HBST modeling is much more complex than techniques such as linear

autoregressive (AR) modeling, we validate its use in fault detection by applying HBST modeling to both

simulated data and real data collected from two different experiments. While not perfect, HBST modeling

is more accurate and robust than linear AR modeling to unmodeled dynamics.
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Several previous experiments and deployments exhibited difficulties in collecting sensor data [4] [5]

[6] [7]. While creating a simple to use sensor network application, [5] reports that accurate sensor data

is difficult to obtain. As an example, the system developed in [5] was deployed in [6] with the goal

of examining the microclimate over the volume of a redwood tree. The authors discovered that there

were many data anomalies that needed to be discarded post deployment, thereby reducing the amount

of usable data. Additionally, [7] evaluates a sensor network in a volcano monitoring environment with

high data quality requirements as measured by yield and datafidelity, concluding that sensor networks

must still improve. Post deployment analysis of a wireless sensor network in [4] exposed many network

packet losses in addition to several node level data problems.

[8] uses models of real-world processes based on sensor readings to answer queries to a sensor network

for data. Using time-varying multivariate Gaussians to model data, the authors respond to a predetermined

set of query types, treating the sensor network like a database. To some extent this shields the user from

faulty sensors. However, the authors point out that more complex models should be used to detect faulty

sensors and give reliable data in the presence of faults.

The field of fault detection techniques in sensor networks has been growing as the use of sensor

networks gains traction, but none have used HBST modeling to model the expected behavior of sensor

data. Sensor network faults commonly seen in environmental monitoring situations are detailed in [9]

and [10]. [10] presents a few fault types and evaluates different approaches to detect these faults. [9] lays

out modeling issues, features and indications of sensor data faults emphasizing that modeling expected

behavior is crucial in detecting faults. Taking advantage of expected spatial and temporal correlations is

a key component of effective detection systems, but this is not easily exploited. We will apply HBST

modeling to detect faults more effectively than existing methods.

[11] discusses a cross-validation method of detecting in the presence of faults using a minimization

of multiple unspecified sensor fusion functions. This requires heavy calculations with each additional

datum. [12] uses a basic approach by dividing samples into temporal granules and co-located sensors

into spatial granules. Each granule is then expected to be measuring similar data and anything outside

of this is considered to be a fault. [13] uses linear autoregressive models to characterize data for error

correction, targeting transient “soft” failures. With these linear models, the authors develop a predictive

error correction technique using current data to decide past data. We will compare the traditional linear

autoregressive models with the new application of HBST to fault detection.

Bayesian techniques are not new in the fault detection application. In [14], Bayesian updating for the

distribution of an individual sensor’s readings using prior distributions is employed. However, the prior
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knowledge of the phenomenon that is to provide the prior distribution is not given in detail, and the

method does not explicitly take advantage of any spatial or temporal modeling. [15] uses spatio-temporal

correlations to learn contextual information statistically. This contextual information is used in a Bayesian

framework to detect faults. [16] uses Bayesian techniques to select a subset of trusted sensors with which

to compare other sensors. Assumptions on the correlation between sensors and across time are made

limiting the effectiveness of the Bayesian selection method. The limited ability of linear models in [16]

hamstring the overall method of the selection of a trusted subset of sensors.

However none of the Bayesian fault detection methods are used to directly model the data and learn the

parameters of the data model. We will show that the use of better modeling by way of HBST modeling

improves the performance of the system. We will use the modeling framework for hierarchical Bayesian

space-time models of [3] which is used to model space-time data “ubiquitous in the environmental

sciences.” This introduces better spatial and temporal modeling than has been previously utilized in this

application. To get around the issue of the complexity and computation costs involved with Bayesian

modeling, we will show how such modeling can be used in a “semi-realtime” fault detection scheme to

improve fault detection results.

In section II, we discuss some preliminaries before defining our HBST model. We define the system

setup and assumptions for which we develop our approach. We also detail how we synchronize sensor

network data for use in spatial statistics tools using a binning approach. Section III first presents the

model used in [3]. Then, we adapt this model for its new application to fault detection and detail specific

assumptions on the model structure. In section IV we discusshow we determine the parameters of this

HBST model using Bayesian estimation with Markov Chain MonteCarlo (MCMC) methods and Gibbs

sampling. Section V presents the simple fault tagging methodthat we use to compare HBST modeling

with linear AR models.

Results are presented in section VI, where we apply HBST and linear AR modeling to simulated data

and real data. The results show that HBST modeling in comparison to linear AR modeling excels at

reducing false detection while maintaining good detectionrates. Further discussion about the advantages

and disadvantages of HBST modeling for use in fault detectionis in section VII. Following the conclusion

(section VIII), we include an appendix where full conditional distributions for use in the Gibbs sampler

are derived.
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II. SYSTEM MODEL AND SETUP

The sensor network system setup, context, and application significantly influences how one should

model the target phenomenon. For demonstrative purposes, we will model temperature data as this is one

of the most common measurements. We will apply our method to two sets of real world data to show

the versatility. The first set measures cold air drainage across a canyon in James Reserve, California. The

second set of data is temperature at the surface of Lake Fulmor,in the James Reserve. In both of these

scenarios, sensors are deployed in a close to linear manner,therefore the spatial dimension we will use

will consist of only one axis.

As is currently done in most sensor deployments, all sensor data is forwarded to a central fusion

center without modification. We assume that corrupted or missing data communication packets are simply

unavailable data points which have no bearing on data faults. The fusion center will perform relevant

modeling computations and make decisions regarding faultsof individual sensors.

Additionally, real world data from all sensors are not usually synchronized so the data arriving to the

fusion center cannot be easily vectorized. Most common space-time statistical tools assume that samples

occur at regularly defined time intervals in a synchronized manner so that they may be easily placed in

vectors at each time instant. In order to adapt real world data to such a scheme we “bin” the data by

time instances for each sensor.

For one sensor, examining the regularly defined time instant at time ti, we look at the interval

surrounding this which is of the sizer, wherer is the difference between time instancesti and ti+1. If

within the intervalti− r
2

andti +
r
2

there is one sensor value for this sensor then the output at time ti for

this sensor is exactly this sensor value. If there are multiple sensor values within this interval, then the

output at timeti is the mean of all these values. However, if there is no data point, then a line between

the two nearest surrounding data points is used to interpolate all values in between.

This process requires three assumptions. First, there are no large gaps in sensor data, otherwise

interpolation will fail to effectively capture data. Second, along these lines, when there is a gap in data, a

linear interpolation between data is effective and accurate. Finally, depending on the time scale between

the regular intervals, the process variation between time instances is insignificant so that interpolation is

accurate.

To show that this process is effective, we examined the energy difference between a binned data set and

the original data by calculating the area under the curve of the two sets. We tested the cold air drainage

data and from day to day. On average, the percentage difference between the areas is insignificant. For
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example, we pick one node to illustrate. Over the course of four days, the day to day difference in

area averages an insignificant 0.27%. Visually there is little difference from the original data set and the

binned set, as shown in Figure 1.
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Fig. 1. Sample data and a binned version. This figure focuses on a smallportion of the data to show that binning has no real

effect on any analysis.

III. H IERARCHICAL BAYESIAN SPACE-TIME MODEL

We first provide an overview of the method presented in [3], as the adaptation of this approach for

fault detection is the basis of our work. Wikle et. al. detaila flexible hierarchical model for space-time

data using a multi-stage approach. We use this approach as a guideline to model sensor network data

for the purposes of fault detection and make modifications to fitour needs. The flexibility, robustness,

and systematic approach of this method makes it suitable forfault detection. Also its direct application

to modeling climate data is ideal for the environmental monitoring that sensor networks perform.

In [3], the hierarchical space-time model consists of five stages of modeling. In the first stage,

a statistical measurement error model is defined. AssumingY (s, t) is the process for sensors at a

locationls and timet, then the observed (measured) dataZ(s, t) is distributed by some error distribution

P (Z(s, t)|Y (s, t), θ1) whereθ1 is a collection of parameters for the distribution. The next stage models the

processY . Based on the relevant processes of interest in [3],Y consists of several components. These

components are a site-specific meanµ(s), a large-scale temporal model with site specific parameters

M(t; β(s)), a short-time scale dynamic processX(s, t), and a zero mean random variable that models

noise γ(s, t). The specification of the joint distribution ofγ(s, t) is simplified to avoid modeling a

ST × ST covariance matrix. The hierarchical approach allows this since other modeled features of

Y (s, t) will explain the space-time structure, X(s,t).

The third stage defines these spatial structures and dynamics for theY process. In the example presented

in [3], µ is defined to be a Markov random field, andX is modeled as a one step space-time autoregressive
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moving average. We will deviate from these assumptions in our own modeling. The fourth stage defines

the prior distributions on the model parameters. The fifth stage defines hyperprior distributions on the

prior parameters of the fourth stage. With simplifications made in our modeling, we do not define any

hyperprior distributions.

[3] presents an example in which this approach is applied to monthly averaged maximum temperature

data in the midwestern United States. For the application of sensor data fault detection we make several

adjustments and deviate from the example presented. Also, because of the type of system as well as the

much smaller scale we are observing, we detail further restrictions on the data when defining our model.

Given at timet a set of observations fromS sensors,Zt is a S × 1 vector of the observations. We

begin by modeling the measurement process,Zt as simply the phenomenon process with additive noise,

ǫZ .

Zt = Yt + ǫZ

Assuming the measurementsZt(s)∀ s = 1, . . . , S are all independent and the noise is normal, then we

representZt as:

Zt|{Yt, σ
2
Z} ∼ N (Yt, σ

2
ZI) (1)

The phenomenon process can be modeled as a combination of three main components and the noise

componentǫY . This noise component requires the assumption that the noiseγ(s, t) is normal and

independent and identically distributed for allYt.

Yt = µ + Mt + Xt + ǫY

As in [3] we will assume that allYt(s) are normally distributed and conditionally independent such that:

Yt|{µ, Mt, Xt, σ
2
Y } ∼ N (µ + Mt + Xt, σ

2
Y I) (2)

The spatial structures and dynamics consist of site specific meansµ, a “long term” trendMt, and a time

dynamic processXt accounting for day to day variations.

We make several departures from [3] in how these spatial structures are modeled and defined in order

to decrease complexity and also to better match our system. Instead of defining a Markov random field,

in order to decrease run time, we first define the site specific meanto be a simple first order spatial

regression:

µ(s) = µ1 + µ2ls

where ls is the physical position of sensors. µ1 in this case is the overall mean of the phenomenon

andµ2 represents small corrections according to spatial trends.If there is no strong spatial trend, or the
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trend is not linear alongs thenµ2 will tend to zero and the site specific means will tend to the overall

phenomenon mean atµ1. This will make the system more robust when a linear model is not accurate.

These two parameters ofµ are modeled as independent normal random variables with fixedand

specified priors.

µ1 ∼ N (µ̄1, σ
2
µ1

) (3)

µ2 ∼ N (µ̄2, σ
2
µ2

) (4)

We model the “long term” trend as a daily harmonic with spatially varying amplitudes and phases

with an additional linear trend:

Mt(s) = (f1 + f2ls) cos(ωt) + (g1 + g2ls) sin(ωt) + h1t

whereω = 2π for a daily harmonic (whent is defined in units of days).f1,f2,g1,g2 define how the

harmonic varies spatially. We add theh1 term to account for the day to day weather trend over the

modeling window; this is different from [3] as their long term trend is annual which has no year to year

trend.

We assume all of the parameters inMt to be independent normal random variables with fixed and

specified priors.

f1 ∼ N (f̄1, σ
2
f1

) (5)

f2 ∼ N (f̄2, σ
2
f2

) (6)

g1 ∼ N (ḡ1, σ
2
g1

) (7)

g2 ∼ N (ḡ2, σ
2
g2

) (8)

h1 ∼ N (h̄1, σ
2
h1

) (9)

We model the time dynamic term as a “diagonal” vector autoregressive process:

Xt = HXt−1 + ǫX (10)

where

H = aI

giving

Xt|{Xt−1,H, σX} ∼ N (HXt−1, σ
2
XI) (11)
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We assume thata is the same for all locations and it is normally distributed:

a ∼ N (ā, σ2
a) (12)

Note that the description forXt is much simpler than in [3] in order to decrease run time and speed

convergence of the Gibbs sampler. We will discuss the simulation using Gibbs sampling in section IV.

Adding off-diagonals and allowing elements inH to vary quickly transforms equation 10 into a space-time

autoregressive moving average (STARMA) model, see [17]. Thisincreases complexity and the resultant

model is over-parameterized and sensitive to the initial conditions in our case. Using such a model also

requires us to restrict sensors to be fixed or assigned to a regularly spaced lattice position which is not

commonly true.

We specify the variances of theX, Y and Z to have an inverse gamma distribution, which is the

conjugate prior to the normal distribution:

σ2
Z ∼ Γ−1(αZ , βZ) (13)

σ2
Y ∼ Γ−1(αY , βY ) (14)

σ2
X ∼ Γ−1(αX , βX) (15)

The prior parameters of these inverse gamma distributions are fixed and specified.

IV. M ODEL SIMULATION

Once this model has been established and given the data collected over a period of time, we determine

the parameters of this model using Bayesian estimation. To do this we use Markov chain Monte Carlo

methods, and more specifically the Gibbs sampler, for stochastic simulation [18]. Instead of drawing

samples of all the parameters from one massive and difficult tocalculate joint distribution, Gibbs

sampling draws subsets of parameters conditioned on the value of the other parameters. This allows for

quicker computation and simple derivations of conditionaldistributions. The derivations of the conditional

distributions for our model for the Gibbs sampler are provided in the Appendix.

Choices need to be made for the starting point values and the length of the simulation to run. More

information on discarding and thinning sections of a Gibbs sampling run can be found in [18].

As is required when using Gibbs samplers, we tested on several real world data sets with a few initial

pilot simulations using different starting value sets. Oneof the starting value sets was the estimated means

of the parameters from exploratory analysis. Visual assessment of convergence was seen to appear by

4000 iterations for all cases. Thus for use in our algorithm, the parameters were estimated using a single
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long simulation (10000 iterations) with the estimated meanvalue starting sets. We discard the first half

of the data where the sequence is converging.

The final result of the simulation is a number of random draws foreach of the parameters as well as

the Xt andYt dynamic processes. With these, we can then apply a fault detection method.

V. FAULT DETECTION

The primary weakness of HBST modeling is that the posterior simulation of the model parameters

using MCMC techniques and Gibbs sampling is computationally expensive. Thus, we seek to minimize

the frequency that we calculate parameters by specifying a semi-realtime detection system. By having this

semi-realtime system, we can exploit the capabilities of HBST modeling while minimizing the impact

of the high computation cost. Instead of performing calculations with each new incoming data value as

is done in systems such as the ones in [16], [11], and [13], calculations are to be performed at regular

time intervals at a time scale larger than the sensing intervals.

That is, sensor data integrity audits occur much less frequently than sensor samples are taken. For

example, while the sensor data used in this paper measures the phenomenon on a scale of every 5

minutes, we will audit sensors every one day. This reflects logistical realities, in that it is unlikely for

sensor replacement to be on the sensing time scale in the environmental sensing context, e.g. a person

would likely wait for the next day to replace a sensor that failed while they were sleeping that night. Also

it is common for a sensor to temporarily report questionabledata and then return to normal [9]. Therefore,

by having the audit occur at larger intervals, a sensor that returns to normal operating conditions will not

be as frequently tagged.

To test the abilities of HBST modeling, our goal is to tag data from sensors which are believed to

be behaving outside modeled behavior. With this tagging, one can use the results in a more complex

memory based method for fault identification. For example, the rate at which a sensor is tagged may be

thresholded and identified as cooperative or non-cooperative and used in the reputation based framework

as described in [19]. Alternatively, the tag rate may be usedas a prior in a Bayesian decision method

to select a subset of trusted sensors such as in [16]. Going further, a Bayesian network [20] may be

implemented with the tagging rate influencing the probabilities. However all of these possibilities are

beyond the scope of this paper. When paired with more sophisticated fault detection methods, such as

those in [16] and [10], HBST modeling can boost performance.

We use a simplistic thresholding technique based upon nearby sensors for detection. Consider a single

data point for sensors. For sensorss + 1 and s − 1 we calculate 95% confidence intervals of the time
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dynamic termX(si±1, t) using the variance,̂σ2
X . We denotê to be the sample mean across all samples

from the simulated posterior parameters. We add these to thesite specific mean and estimated long term

trend for sensors. Effectively, we assume that time dynamicXt for sensors, which is without any spatial

effects as those are carried inMt andµ, is similar for surrounding sensors. This bounds the space time

dynamic performance of each sensor by the adjacent sensor’sworst case performance, then adds these

bounds to the site specific mean and long term trend. In this way, sensors is assumed, at worst, to report

location adjusted values of its neighboring sensors. We will see how this assumption holds in the results.

That is, if we consider sensors at locationls at a particular time timet, we define the lower bound

and upper bounds of the expected time dynamic term to be:

Xl(s, t) = min(X̂(s − 1, t) − 2σ̂X , X̂(s + 1, t) − 2σ̂X)

Xu(s, t) = max(X̂(s − 1, t) + 2σ̂X , X̂(s + 1, t) + 2σ̂X)

Then we use the estimated terms forµ1, µ2, f1, f2, g1, g2, andh1 to calculate:

µ̃(s) = µ̂1 + µ̂2ls

M̃t(s) = (f̂1 + f̂2ls)cos(ωt) + (ĝ1 + ĝ2ls)sin(ωt) + ĥ1t

Finally, the lower and upper bounds are:

Zl(s, t) = µ̃(s) + M̃t(s) + Xl(s, t) − 2(σ̂Y + σ̂Z)

Zu(s, t) = µ̃(s) + M̃t(s) + Xu(s, t) + 2(σ̂Y + σ̂Z)

We extend the bounds using the estimated standard deviations of the phenomenon and measurement

processes,(σ̂Y + σ̂Z), because we compare to measured dataZ(s, t). If Z(s, t), the actual measurement

from sensors at time t, exceeds these bounds, then it is marked as faulty.

In our results we compare this approach to modeling with an analogous method without HBST

modeling. The basis of the analogous method is using first orderlinear autoregressive (AR) models

over a window of the previous data. Examples of linear AR modeling in fault detection can be seen

in [16] and [13], where both use first order linear models. Also[12] and [21] smooth data using a

moving average window resulting in an expected mean, which is a less complex operation than the linear

modeling done in the previously mentioned works.

For the comparison modeling technique, we create bounds similar to the HBST modeling case. The

estimate of the standard deviation is derived from the linear AR model for each individual sensor. For
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sensors, two surrounding sensors’ readings and standard deviations are used to provide a lower and

upper bound. Similar tagging is used to identify readings that exceed these bounds.

When using the conventional method, a decision must be made on the size of the window used to

calculate the linear model. This window size, as discussed in[16] affects the quality of the fit to the

data. For simplicity, we fix this window size to 25 samples because after trial and error this produces

the best results in most cases for our simulated data set.

In interpreting the results, we use two measurement metrics: detection rate, and false detection rate.

We expect that better modeling will decrease the false detection rate since a well modeled system will

have less anomalies. Detection rates are expected to remainsimilar because questionable data should still

be outside of the range of any reasonable model.

This simplistic way of bounding data by neighboring sensors’worst case performances has an additional

drawback in the cases of edge sensors. Sensors on the edge are only influenced by one other sensor, greatly

reducing the bounds. So it is expected that edge sensors have ahigher false detection rate than non-edge

sensors. However, as we will see in the results, since HBST modeling adjusts for spatial differences and

trends, edge false detection is reduced significantly in comparison to AR modeling.

VI. RESULTS

To show the applicability of HBST modeling to multiple situations, we demonstrate our method using

three separate data sets. One data set is artificially generated and used as a toy example to illustrate

under ideal conditions the performance of our system. The second data set is the cold air drainage data

set from sensors that have been deployed at James Reserve in California. The last set of data is from

a series of buoys deployed at Lake Fulmor, also at James Reserve. For this last set of data, we use the

temperature measurements that are at the surface of the water.

A. Simulated Data

We use simulated data to show the expected results from both HBST and AR modeling. Spatial

structure is well defined and matches very well to the assumptions made in our fault tagging scheme.

Simulated data also highlights some of the limitations of oursimple tagging scheme for nodes on the

edge of the sensing field. We show results from data with no faults as well as injected faults to show the

best performance of each system.

The simulated data consists of a daily diurnal long term trend, as well as an extra harmonic that

was not modeled by the HBST model we defined in section III. Spatial structure was generated using a
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TABLE I

FALSE DETECTION RATES FOR SIMULATED DATA WITH NO FAULTS

HBST Linear AR

Including Edge Nodes 0.2079 0.2784

Excluding Edge Nodes 0.0014 0.0041

Just Edge Nodes 0.6210 0.8270

similar model to that of section III, by including a spatial trend on the site specific mean and harmonic

parameters. Parameters were fixed to rough estimates derivedfrom actual data. We generated simulated

data for six sensors all equally spaced. A sample from three sensors over three days is in figure 2. We
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Simulated data from three of six sensors (sensors 1, 3, and 6)

Fig. 2. Simulated data. A sample of three days from three sensors.

apply the fault tagging techniques described in section V toget a baseline for expectations. We average

the tag rates for each sensor over three days, and present theoverall false detection rates in table I. Also,

we show the false detection rate for just the edge cases to show the increased tag rate for edge cases.

As noted before, the edge cases show much higher false detection rates.

Examining the results of table I, edge nodes have a much lower false detection rate using HBST

modeling than linear AR modeling. This is expected because the HBST modeling approach is capable

of modeling and correcting for spatial trends. Overall, in all cases the HBST modeling approach shows

significant reductions in false detections. When including edge nodes, HBST modeling gives a 25.3%

improvement over linear AR. More significantly, when edge nodes are excluded, HBST modeling gives

a 64.9% improvement over linear AR.

To test detection capabilities, one day was selected to havefaults injected, and we tested the detection

of each fault independently. We inject two types of common faults as defined in [10] and [9] at arbitrary
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locations. In figure 3 we show three sensors, two with faults, and one with no faults. One sensor has a

“stuck-at” fault injected, and the other has outliers.
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Fig. 3. Simulated data with injected faults.

The results for HBST modeling and linear AR modeling are shown in Figure 4. Outlier detection

worked perfectly for both Linear AR modeling and HBST modeling. However, The HBST modeling

showed a 95.9% lower false detection in comparison to linearAR modeling. One reason the HBST

modeling false detection is so low is because the time dynamic uncertainty is elevated in the presence

of faults, and outliers seem to affect this variance more than other faults.

Fig. 4. Fault detection rates for simulated data with injected faults

For the case of the stuck at fault, detection was almost equalfor both cases. Although the linear AR

modeling performed slightly better, the HBST modeling approach only missed one sample, which is

insignificant. More significant is that HBST modeling has a 36.8%lower false detection than linear AR

modeling does.

The simulated data results show that HBST modeling is superiorin reducing false detection rates in

all cases. Detection capability remains virtually the same. Simulated data provides us with a baseline of
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expected performance, and shows how the spatial modeling ofHBST models is important in the edge

nodes for reduction of the false detection rate.

B. Cold Air Drainage Data

Using real world data from a deployment, we examine how HBST modeling affects detection. First

we examine the case where data does not exhibit any apparent errors. We examine the false detection

rate of six sensors over the course of five days. Figure 5 shows data from the first three sensors starting

on September 17, 2005. For the overall results, we look over the course of the 5 days in figure 5 and
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Fig. 5. Data from three deployed sensors

average the day to day tag rate.

The results are summarized in figure 6. HBST modeling gives a 42.7% lower false detection rate than

linear AR modeling. Also, as expected, the edge nodes have a much higher false detection rate than the

rest of the nodes. The edge cases have a false detection rate of53.5% and 71.3% for the HBST modeling

and linear AR modeling respectively. The HBST modeling is capable of reducing false detection for edge

nodes due to the use of spatial means. When we exclude these values, the performance of the HBST

modeling outperforms the linear AR modeling by 63.6%.

Deeper examination of the results shows that the HBST modeling tags data predominantly during

the peak of the day, where the data is highly variable and dynamic. This is likely due to unmodeled

phenomena. While our method is robust to unmodeled dynamicsthat are spatially correlated, these

dynamics are not well correlated.

One possible cause of this is the passage of sunflecks where thesensor may be exposed to sun and

shade alternatively due to the forest coverage, wind, clouds, and passage of time during the day; this

causes temperature readings to rise and fall in unexpected ways. These sunflecks are highly dynamic
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Fig. 6. False detection rates for cold air drainage data in the absence of faults

and very difficult to model accurately. More information regarding models of sunflecks and sunlight

penetration through a forest canopy can be found in [22] and [23]. So, it is more likely for our modeling

to fail in this dynamic period.

If one were to include a model for dynamics such as sunflecks, this would undoubtedly increase the

performance of the fault detection system. However, this requires much more sophistication and will likely

greatly increase the computation costs of the model. This is because each sensor node is different and

will have different dynamics associated with them. Also, inorder to model these dynamics, information

regarding the forest canopy distance from the ground and thecoverage the canopy provides given the

time of day and the day of the year must be obtained through more detailed measurements.

Looking across the days, we see that day 4 does not exhibit these highly variable peak temperatures,

and the high temperature of the day is significantly lower thanthe other days. This suggests that the day

may have been overcast or even rainy when sunflecks may not haveexisted.

If we examine only this day, then the overall false detectionrate is greatly reduced when using HBST

modeling. HBST modeling gives a 70.6% improvement over linear AR modeling. Linear AR modeling

does not improve much since there are many correlated dynamics that are not modeled. HBST modeling is

robust to unmodeled dynamics that are spatially correlated. It may be prudent to include prior knowledge

in the form of daily weather patterns. If a day was noted to be overcast, then any judgments on sensor

reliability may be given more weight than decisions on otherdays.

We now examine some examples of real data with questionable data that is assumed to be faulty. Figure

7(a) shows data from three sensors for one day, Sept. 25, 2005,with one sensor giving likely faulty

data, with high noise and readings distant from other sensors. The other two sensors that are physically

located around this sensor are also shown. Figure 7(b) shows data from three neighboring sensors on

Sept. 16, 2005 where two independent neighboring sensors exhibit outliers at the same instant. There
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(b) Data with an outlier

Fig. 7. Two examples of faults in real data

is no conclusive reason for why this happened, but it is important to tag such an anomaly. We test the

detection rate for each fault with six sensors to model and examine the results summarized in figure 8.

For the case of the faulty sensor in figure 7(a), both HBST modeling and linear AR modeling detect the

Fig. 8. Detection and false detection rates for cold air drainage data in the presence of faults

fault very well, exceeding 95% detection. However, the false detection rate for HBST modeling is 49.7%

lower than linear AR modeling. For the case of the outlier fault in figure 7(b), HBST modeling detects

the outliers perfectly while the linear AR modeling completely misses the outliers. The false detection

rate is significantly lower for HBST modeling as well, giving a 96.5% lower rate.

These results show that HBST modeling is a significant improvement over linear AR modeling in
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both accuracy and robustness. False detection rates are 42.7% to 96.5% lower using HBST modeling in

comparison to linear AR modeling. As we will see in the next set of data, this gain is not limited to one

specific deployment.

C. Lake Fulmor Data

To show our method can be adapted to multiple types of deployments, we present results from a second

set of real data. We use temperature data collected at the surface from sensors deployed on buoys at

Lake Fulmor in James Reserve between August 28th and September 1st, 2006. Figure 9 shows data from

three of the five sensors used in this test. Nodes 2 and 3 display likely outliers at the beginning, while

node 3 shows aberrant behavior starting at approximately day 2.65. This fault at the end of the data set

is due to the battery failing on this particular node.
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Fig. 9. Data from three buoys at lake Fulmor

Figure 10 presents a summary of the results. We initially exclude the faults from modeling to test the

case where faults are not present. The results are similar to the results of the cold air drainage data set

of section VI-B. HBST modeling reduces false detections by 44.4%.

The linear AR modeling method is unable to capture the fault atthe beginning of the data set because

the fault occurs during the delay before being able to tag data that linear AR models must have when

starting up. The HBST modeling does correctly identify this outlier. Focusing on the fault for node 3 at

the end of the data, we see that HBST modeling outperforms linear AR modeling as expected. HBST

modeling has a 41.5% lower false detection rate while havinga slight 3% advantage in detection.

These results show that the new application of hierarchical Bayesian space-time modeling can produce

similar, if not better, detection rates of faults, while greatly reducing the false detections which are caused

by poor modeling.
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Fig. 10. Detection and false detection for Lake Fulmor data

VII. D ISCUSSION

While the performance of our fault detection method has roomfor improvement, the overall perfor-

mance of the HBST modeling is much better than the case of standard linear AR models. However,

there are trade-offs in accuracy, robustness, and computation where the linear AR modeling may have

an advantage. There are different opportunities where each method may be used.

The first advantage of of linear AR models is that they are very simple. They are simple to understand

and there are few parameters to determine given the data. On the other hand, the HBST model is much

more complex with many more parameters for which we have to solve. It requires the use of posterior

simulation techniques such as the Gibbs sampler used here, which in turn requires the derivation of full

conditional posterior distributions.

A direct consequence of this is the computational cost. Oncea window size is determined, linear AR

modeling is computationally much cheaper than the HBST modeling as discussed in section V. LetI be

the number of iterations used in Gibbs sampling, and letW be the size of the moving window for linear

AR modeling. Asymptotically the performance for the HBST modeling is O(ITS3) FLOPs while the

linear AR modeling performance isO(W 3TS) FLOPs. However this is not descriptive because the HBST

method has much more complex calculations that are performed many more times. For the computer we

used, to model and process one day’s worth of data for six sensors, the conventional method takes less

than a half second, while the HBST modeling takes roughly seven to eight minutes.

The issue of window size selection in linear AR modeling may limit its computational advantage. The

selection of a good window requires either good prior knowledge or retrospective analysis after acquiring

a big data set. In section V, we performed several trials to determine the best window size to use for

our data. Trial and error or other more systematic methods will increase the overall cost of linear AR
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modeling.

One usually minor disadvantage to linear AR modeling, as we have presented here, is that linear AR

modeling requires at leastW samples available before it can begin to work. Thus there is a delay before

linear AR modeling begins tagging data. This is usually not a big deal as data from a prior day is available

to begin modeling. However in the case of the Lake Fulmor data, there is no data prior to the outliers

seen, and as such linear AR modeling is unable to detect this fault.

The difference in accuracy of modeling can be seen in our results. Overall, the HBST modeling

outperforms the linear AR modeling method. It has lower false detection rates which suggests better

modeling capabilities. The linear AR modeling outperformedin the simulated data with injected “stuck-

at” and noise faults. This is likely due to the fact that HBST modeling also models uncertainty more

than the linear AR modeling. If the data exhibits higher variability throughout the day, thenσ2
X will

be higher because there is less certainty. This results in larger confidence intervals and lower detection

rates. However, this type of uncertainty is not captured in linear AR modeling, and is apparent by the

significant increase in false detection rate with real data.

Also contributing to the lack of accuracy for linear AR modeling is the fact that spatial structure is

not used in modeling expected behavior. The only spatial relationship assumed is in our rudimentary

tagging method. This lack of spatial modeling is most apparent in the edge cases where only one other

sensor influences the tagging of an edge sensor. The HBST method is able to compensate for this and

the standard linear AR modeling more than doubles the false detection rate in the edge cases.

HBST modeling is much more robust than linear AR modeling. Linear AR modeling is simple, but

if data does not fit there is no correction made. However, if themodel structure we assumed forµ or

Mt is not accurate, the time-dynamic term,Xt will compensate for any difference between the assumed

structure and the real data. The variability may increase inXt as a result, but this will be captured in

the σ2
X term.

It may be more useful for one to use linear AR modeling as a quick way of estimating parameters

for priors in the HBST modeling. Also, HBST modeling may not be necessary in cases where sensor

deployment is dense since there is likely to be less spatial variation. However, once priors are estimated

or given then HBST modeling may be utilized to monitor the network. If the network is also sparsely

deployed, then spatial structure is more important to estimate and utilize in fault detection. This is where

HBST modeling holds the advantage.
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VIII. C ONCLUSION

We have presented a new approach to fault detection by modifying the existing hierarchical Bayesian

space-time modeling technique of [3]. While it is much more complex than the first order linear AR

modeling method, the results show that additional modelinggreatly increases the performance of a fault

detection system. It reduces the false detection significantly while maintaining detection ability. In some

cases, it is more capable in detecting outliers. While we have paired our modeling with a simple fault

tagging system, more complex systems that include historical behavior, as discussed previously, may

produce bigger gains than we have seen with our simple system. We will develop such an algorithm to

maximize the potential of this modeling for the future.

There are cases where our models break down, as in the case of the peak temperatures during the

day time. In both linear AR modeling and HBST modeling, humansmust be involved when there are

unmodeled dynamics to identify whether or not the data is truly faulty. Additionally, linear AR modeling

may require human involvement in the selection of window sizes. In the future, better modeling will be

utilized in these cases to increase the performance.

APPENDIX

APPENDIX: DERIVATIONS OF FULL CONDITIONAL PROBABILITY DISTRIBUTIONS

It is computationally efficient to use a Gibbs sampler to obtain draws from the joint posterior distri-

bution. With the conditional independence assumptions afforded by the hierarchical model structure, we

can easily derive the conditional distributions needed in the Gibbs sampler.

Many of the derivations are similar to those detailed in the appendix of [3] with some minor changes.

Here we detail the derivations for the conditional distributions which have changed due to the modeling

differences we make. The distributions that are unchanged (aside from notation) from [3] arep(Xt|· ),

p(σ2
X |· ), p(σ2

Y |· ), andp(σ2
Z |· ).

The derivations make use of Bayes rule:

p(A|B) =
p(B|A)p(A)

p(B)

∝ p(B|A)p(A)

Also, as in [3], a “completing the squares” method is extensively used in the derivations which we

reproduce here. For a parameter vectorθ, if the full conditional distribution is:

p(θ|· ) ∝ exp(−
1

2
[θT Aθ − 2Bθ])
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then, after completing the square

θ|· ∼ N (A−1BT , A−1)

A. p(Yt|· )

From Bayes rule, we start with:

p(Yt|·) ∝ p(Zt|Yt, σ
2
Z) p(Yt|µ, Mt, Xt, σ

2
Y )

Using the distributions forZt andYt as defined in equations 1 and 2 respectively, we get:

p(Yt|·) ∝ exp { −
1

2σ2
Z

(Zt − Yt)
T (Zt − Yt)}

× exp { −
1

2σ2
Y

(Yt − [µ + Mt + Xt])
T

×(Yt − [µ + Mt + Xt])}

DefineB = µ + Mt + Xt.

p(Yt|·) ∝ exp { −
1

2σ2
Z

(ZT
t Zt − ZT

t Yt − Y T
t Zt + Y T

t Yt)

−
1

2σ2
Y

(Y T
t Yt − Y T

t B − BT Yt + BT B)}

We drop the terms that do not involveYt as they can be extracted as constants for normalization.

p(Yt|·) ∝ exp { −
1

2
Y T

t (
1

σ2
Z

I +
1

σ2
Y

I)Yt

+(
1

σ2
Z

ZT
t +

1

σ2
Y

BT )Yt}

∝ exp { −
1

2
(Y T

t (
1

σ2
Z

I +
1

σ2
Y

I)Yt

−2(
1

σ2
Z

ZT
t +

1

σ2
Y

BT )Yt)}

Thus:

Yt|· ∼ N ((
1

σ2
Z

I +
1

σ2
Y

I)−1(
1

σ2
Z

ZT
t +

1

σ2
Y

BT )T ,

(
1

σ2
Z

I +
1

σ2
Y

I)−1) (16)

for all t = 1, . . . , T .



22

B. p(µ1, µ2|·)

Define the design matrix for all sensorss, s = 1, . . . , S with positionsls to be:

P =




...
...

1 ls
...

...




(17)

And define

µL =




µ1

µ2




such thatµ = PµL. Also define

Σµ =




σ2
µ1

0

0 σ2
µ2




Furthermore, definēµL = [µ̄1 µ̄2]
T . From the formulations of the distributions forµ1, µ2, andYt from

equations 3, 4, and 2 respectively:

p(µL|·) ∝ p(µL|µ̄1, µ̄2, σ
2
µ1

, σ2
µ2

)
T∏

t=1

p(Yt|µ, Mt, Xt, σ
2
y)

∝ exp ( −
1

2
(µL − µ̄L)T Σ−1

µ (µL − µ̄L))

× exp ( −
1

2σ2
Y

T∑

t=1

(Yt − (PµL + Mt + Xt))
T

×(Yt − (PµL + Mt + Xt)))

∝ exp ( −
1

2
(µT

L(Σ−1
µ +

1

σ2
Y

T∑

t=1

P
T
P)µL)

−2(µT
LΣ−1

µ +
1

σ2
Y

T∑

t=1

(Yt − Mt − Xt)
T
P)µL)

This gives:

µL|· ∼ N ((Σ−1
µ +

T

σ2
Y

P
T
P)−1(µT

LΣ−1
µ

+
1

σ2
Y

T∑

t=1

(Yt − Mt − Xt)
T
P),

(Σ−1
µ +

T

σ2
Y

P
T
P)−1) (18)
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C. p(f |·), p(g|·), and p(h|·)

These derivations follow closely to [3] with some changes to accommodateh1. First we definefL =

[f1 f2]
T , and similarly definegL = [g1 g2]

T . Then we can writeMt as:

Mt = PfL cos(ωt) + PgL cos(ωt) + h1t~1

whereP is the design matrix defined in equation 17.

Let f̄L = [f̄1 f̄2]
T and ḡL = [ḡ1 ḡ2]

T . Also, defineΣf = [σ2
f1

σ2
f2

]I andΣg = [σ2
g1

σ2
g2

]I.

We first derivep(fL|·):

p(fL|·) ∝ p(fL|f̄L, Σf )
T∏

t=1

p(Yt|µ, Xt, fL, gL, h1, σ
2
Y )

∝ exp(−
1

2
(fL − f̄L)T Σ−1

f (fL − f̄L))

× exp
(
−

1

2σ2
Y

T∑

t=1

[Yt − (µ + PfL cos(ωt)

+PgL sin(ωt) + h1t~1 + Xt)]
T [Yt − (µ

+PfL cos(ωt) + PgL sin(ωt) + h1t~1 + Xt)]
)

∝ exp
(
−

1

2
(fT

L (Σ−1

f +
1

σ2
Y

T∑

t=1

cos(ωt)2PT
P)

×fL − 2(f̄L
T
Σ−1

f +
1

σ2
Y

T∑

t=1

(Yt − (µ

+PgL sin(ωt) + h1t~1 + Xt))
T
P cos(ωt))fL)

)

This gives:

fL|· ∼ N
(
(Σ−1

f +
1

σ2
Y

T∑

t=1

cos(ωt)2PT
P)−1(f̄L

T
Σ−1

f

+
1

σ2
Y

T∑

t=1

(Yt − (µ + PgL sin(ωt) + h1t~1 + Xt))
T

×P cos(ωt))T , (Σ−1

f +
1

2

T∑

t=1

cos(ωt)2PT
P)−1

)

Similarly for p(gL|·) we have:

gL|· ∼ N
(
(Σ−1

g +
1

σ2
Y

T∑

t=1

sin(ωt)2PT
P)−1(ḡL

T Σ−1
g

+
1

σ2
Y

T∑

t=1

(Yt − (µ + PfL cos(ωt) + h1t~1 + Xt))
T
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×P sin(ωt))T , (Σ−1
g +

1

2

T∑

t=1

sin(ωt)2PT
P)−1

)

And finally for p(h1|·) we have:

h1|· ∼ N
(
(

1

σ2
h1

+
S

σ2
Y

T∑

t=1

t2)−1(
h̄1

σ2
h1

+
1

σ2
Y

T∑

t=1

(Yt

−(µ + PfL cos(ωt) + PgL sin(ωt) + Xt))
T~1t)

, (
1

σ2
h1

+
S

σ2
Y

T∑

t=1

t2)−1
)

WhereS is the number of sensors.

D. p(a|·)

Recall:

HXt−1 = aIXt−1

= aXt−1

Then:

p(a|·) ∝ p(a|ā, σ2
a)

T∏

t=1

p(Xt|Xt−1, a, σ2
X)

∝ exp(−
1

2σ2
a

(a − ā)2) exp(−
1

2σ2
X

×
T∑

t=1

(Xt − aXt−1)
T (Xt − aXt−1))

∝ exp(−
1

2
(a2(

1

σ2
X

T∑

t=1

XT
t−1Xt−1 +

1

σ2
a

)

−2(
1

σ2
X

T∑

t=1

XT
t Xt−1 +

ā

σ2
a

)a))

Thus we have that:

a|· ∼ N
(
(

1

σ2
X

T∑

t=1

XT
t−1Xt−1 +

1

σ2
a

)−1

×(
1

σ2
X

T∑

t=1

XT
t Xt−1 +

ā

σ2
a

)

, (
1

σ2
X

T∑

t=1

XT
t−1Xt−1 +

1

σ2
a

)−1
)



25

ACKNOWLEDGMENTS

This material is based upon work supported by the NSF under award #CNS-0520006. Any opinions,

findings and conclusions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the NSF.

REFERENCES

[1] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Communications of the ACM, vol. 43, no. 5, pp.

51–58, May 2000.

[2] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting theworld with wireless sensor networks,” inProc.

International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2001), Jun. 2001.

[3] C. K. Wikle, L. M. Berliner, and N. Cressie, “Hierarchical bayesian space-time models,”Environmental and Ecological

Statistics, vol. 5, no. 2, pp. 117–154, Feb. 1998.

[4] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons from a sensor network expedition,” inProc. of the 1st

European Workshop on Sensor Networks (EWSN), Jan. 2004.

[5] P. Buonadonna, D. Gay, J. M. Hellerstein, W. Hong, and S. Madden, “Task: Sensor network in a box,” Intel Research

Berkeley, Tech. Rep. IRB-TR-04-021, Jan. 2005.

[6] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and

W. Hong, “A macroscope in the redwoods,” inProc. 3rd international conference on Embedded networked sensor systems

(SenSys ’05), 2005.

[7] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity and yield in a volcano monitoring sensor

network,” in 7th USENIX Symposium on Operating System Design and Implementation, Nov. 2006.

[8] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong, “Model-driven data acquisition in sensor

networks,” inProc. of Very Large Databases, 2004.

[9] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi, G. Pottie, M. Hansen, , and M. Srivastava,

“Sensor network data fault types,”ACM Transactions on Sensor Networks, submitted for publication 2008.

[10] A. Sharma, L. Golubchik, and R. Govindan, “On the prevalence of sensor faults in real-world deployments,” inIEEE

Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Jun. 2007.

[11] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, “On-line fault detection of sensor measurements,” inProc.

of IEEE Sensors, 2003.

[12] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom, “Declarative support for sensor data cleaning,” in4th

International Conference on Pervasive Computing, 2006.

[13] S. Mukhopadhyay, D. Panigrahi, and S. Dey, “Model based error correction for wireless sensor networks,” inProc. Sensor

and Ad Hoc Communications and Networks SECON 2004., Oct 2004, pp. 575–584.

[14] E. Elnahrawy and B. Nath, “Cleaning and querying noisy sensors,” in Proc. of International Workshop on Wireless Sensor

Networks and Applications (WSNA), 2003.

[15] ——, “Context aware sensors,” inProc. of the First European Workshop on Wireless Sensor Networks (EWSN 2004), Jan.

2004.

[16] K. Ni and G. Pottie, “Bayesian selection of non-faulty sensors,” inIEEE International Symposium on Information Theory,

Jun. 2007.



26

[17] N. A. C. Cressie,Statistics for Spatial Data. Wiley-Interscience, 1993.

[18] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin,Bayesian Data Analysis, 2nd ed. Chapman & Hall/CRC, 2004.

[19] S. Ganeriwal and M. B. Srivastava, “Reputation-based framework for high integrity sensor networks,” inACM workshop

on Security in Ad-hoc & Sensor Networks (SASN) 2004, Oct. 2004.

[20] D. Heckerman, “A tutorial on learning with bayesian networks,” Microsoft Research, Tech. Rep. MSR-TR-95-06, Mar.

1995.

[21] M. Mourad and J.-L. Bertrand-Krajewski, “A method for automatic validation of long time series of data in urban

hydrology,” Water Science & Technology, vol. 45, no. 4–5, pp. 263–270, 2002.

[22] W. Smith, A. K. Knapp, and W. A. Reiners, “Penumbral effects on sunlight penetration in plant communities,”Ecology,

vol. 70, no. 6, pp. 1603–1609, 1989.

[23] J. Ross, M. Sulev, and P. Saarelaid, “Statistical treatment of the par variability and its application to willow coppice,”

Agricultural and Forest Meteorology, vol. 91, no. 1-2, pp. 1–21, 1998.




