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Sensor Network Data Fault Detection using

Hierarchical Bayesian Space-Time Modeling

Kevin Ni and Greg Pottie

Abstract

We present a new application of hierarchical Bayesian sfigee(HBST) modeling: data fault detec-
tion in sensor networks primarily used in environmental iteying situations. To show the effectiveness
of HBST modeling, we develop a rudimentary tagging systemm#&ok data that does not fit with given
models. Using this, we compare HBST modeling against fird¢olinear autoregressive (AR) modeling,
which is a commonly used alternative due to its simplicite #ow that while HBST is more complex,
it is much more accurate than linear AR modeling as evidentepeatly reduced false detection rates
while maintaining similar, if not better detection ratesB&T modeling reduces false detection rates
41.5% to 96.5% when paired with our simple fault detectiorihod. We also see that HBST modeling

is more robust to model mismatches and unmodeled dynamacslitear AR modeling.

. INTRODUCTION

Sensor networks in environmental monitoring have maturgdifstantly since their inception in [1]
and [2]. With this maturity comes an increased focus on éngullata quality for scientific use. The
detection of faulty sensors is key in maintaining data iritgghroughout the sensor network. Once a
sensor is discovered to produce anomalous and likely faldta, quick action may then be taken to
discover the cause of the fault and perhaps repair or replaamsor. If a faulty sensor is not replaced or
repaired, then the amount of usable data over the lifetimees#nsor deployment is reduced significantly.
Hence, reliable detection of faults is vital for maintamidata yield during a sensor network deployment.

We utilize the hierarchical Bayesian space-time (HBST) miadefound in [3] and apply it to the
problem of fault detection. While HBST modeling is much mooenplex than techniques such as linear
autoregressive (AR) modeling, we validate its use in faatedtion by applying HBST modeling to both
simulated data and real data collected from two differepeeinents. While not perfect, HBST modeling

is more accurate and robust than linear AR modeling to unteddgynamics.



Several previous experiments and deployments exhibitditultfes in collecting sensor data [4] [5]
[6] [7]. While creating a simple to use sensor network aggtian, [5] reports that accurate sensor data
is difficult to obtain. As an example, the system developed5ihwas deployed in [6] with the goal
of examining the microclimate over the volume of a redwoaktrThe authors discovered that there
were many data anomalies that needed to be discarded pdsyment, thereby reducing the amount
of usable data. Additionally, [7] evaluates a sensor networa volcano monitoring environment with
high data quality requirements as measured by yield and fahhty, concluding that sensor networks
must still improve. Post deployment analysis of a wirelesssenetwork in [4] exposed many network
packet losses in addition to several node level data prablem

[8] uses models of real-world processes based on sensdngead answer queries to a sensor network
for data. Using time-varying multivariate Gaussians to elathta, the authors respond to a predetermined
set of query types, treating the sensor network like a dagabEo some extent this shields the user from
faulty sensors. However, the authors point out that moreptexnmmodels should be used to detect faulty
sensors and give reliable data in the presence of faults.

The field of fault detection techniques in sensor networks heentgrowing as the use of sensor
networks gains traction, but none have used HBST modelingddefthe expected behavior of sensor
data. Sensor network faults commonly seen in environmentalitoring situations are detailed in [9]
and [10]. [10] presents a few fault types and evaluatesreiffieapproaches to detect these faults. [9] lays
out modeling issues, features and indications of senser fdalts emphasizing that modeling expected
behavior is crucial in detecting faults. Taking advantagje>pected spatial and temporal correlations is
a key component of effective detection systems, but thisoiseasily exploited. We will apply HBST
modeling to detect faults more effectively than existingtmoes.

[11] discusses a cross-validation method of detecting énpghesence of faults using a minimization
of multiple unspecified sensor fusion functions. This requineavy calculations with each additional
datum. [12] uses a basic approach by dividing samples imtgpdeal granules and co-located sensors
into spatial granules. Each granule is then expected to basurieg similar data and anything outside
of this is considered to be a fault. [13] uses linear aut@sgjve models to characterize data for error
correction, targeting transient “soft” failures. With #eelinear models, the authors develop a predictive
error correction technique using current data to decide gats. We will compare the traditional linear
autoregressive models with the new application of HBST tdt fdetection.

Bayesian techniques are not new in the fault detection egin. In [14], Bayesian updating for the

distribution of an individual sensor’s readings using pulistributions is employed. However, the prior



knowledge of the phenomenon that is to provide the prioritigion is not given in detail, and the
method does not explicitly take advantage of any spatiatmpbral modeling. [15] uses spatio-temporal
correlations to learn contextual information statistical'his contextual information is used in a Bayesian
framework to detect faults. [16] uses Bayesian techniqoekect a subset of trusted sensors with which
to compare other sensors. Assumptions on the correlatibmebe sensors and across time are made
limiting the effectiveness of the Bayesian selection méthihe limited ability of linear models in [16]
hamstring the overall method of the selection of a trustdibsuof sensors.

However none of the Bayesian fault detection methods are tesdirectly model the data and learn the
parameters of the data model. We will show that the use oébatbdeling by way of HBST modeling
improves the performance of the system. We will use the niglétamework for hierarchical Bayesian
space-time models of [3] which is used to model space-tima tabiquitous in the environmental
sciences.” This introduces better spatial and temporal limggéhan has been previously utilized in this
application. To get around the issue of the complexity anchmaation costs involved with Bayesian
modeling, we will show how such modeling can be used in a “semaltime” fault detection scheme to
improve fault detection results.

In section Il, we discuss some preliminaries before definimgBST model. We define the system
setup and assumptions for which we develop our approach.|¥gedatail how we synchronize sensor
network data for use in spatial statistics tools using a ibtprapproach. Section Il first presents the
model used in [3]. Then, we adapt this model for its new appboao fault detection and detail specific
assumptions on the model structure. In section IV we disboss we determine the parameters of this
HBST model using Bayesian estimation with Markov Chain Mo@&lo (MCMC) methods and Gibbs
sampling. Section V presents the simple fault tagging methat we use to compare HBST modeling
with linear AR models.

Results are presented in section VI, where we apply HBST aneddliAR modeling to simulated data
and real data. The results show that HBST modeling in compatisdinear AR modeling excels at
reducing false detection while maintaining good detectees. Further discussion about the advantages
and disadvantages of HBST modeling for use in fault deteésigm section VII. Following the conclusion
(section VIII), we include an appendix where full conditerlistributions for use in the Gibbs sampler

are derived.



Il. SYSTEM MODEL AND SETUP

The sensor network system setup, context, and applicatgnifisantly influences how one should
model the target phenomenon. For demonstrative purposesilivmodel temperature data as this is one
of the most common measurements. We will apply our methodavtogets of real world data to show
the versatility. The first set measures cold air drainage a@asanyon in James Reserve, California. The
second set of data is temperature at the surface of Lake Fuimthre James Reserve. In both of these
scenarios, sensors are deployed in a close to linear maheeefore the spatial dimension we will use
will consist of only one axis.

As is currently done in most sensor deployments, all senataet & forwarded to a central fusion
center without modification. We assume that corrupted orimgsgata communication packets are simply
unavailable data points which have no bearing on data fatlie fusion center will perform relevant
modeling computations and make decisions regarding fafilisdividual sensors.

Additionally, real world data from all sensors are not usuaynchronized so the data arriving to the
fusion center cannot be easily vectorized. Most commonesfiate statistical tools assume that samples
occur at regularly defined time intervals in a synchronizesimea so that they may be easily placed in
vectors at each time instant. In order to adapt real world datsuch a scheme we “bin” the data by
time instances for each sensor.

For one sensor, examining the regularly defined time instartinge ¢;, we look at the interval
surrounding this which is of the size wherer is the difference between time instanceandt;, ;. If
within the intervalt; — 5 andt; + 5 there is one sensor value for this sensor then the outpunatttifor
this sensor is exactly this sensor value. If there are malsgnsor values within this interval, then the
output at timet; is the mean of all these values. However, if there is no datat,pinen a line between
the two nearest surrounding data points is used to intepala values in between.

This process requires three assumptions. First, there arearge haps in sensor data, otherwise
interpolation will fail to effectively capture data. Secoradong these lines, when there is a gap in data, a
linear interpolation between data is effective and aceurainally, depending on the time scale between
the regular intervals, the process variation between tmstances is insignificant so that interpolation is
accurate.

To show that this process is effective, we examined the grdiffgrence between a binned data set and
the original data by calculating the area under the curvdeftivo sets. We tested the cold air drainage

data and from day to day. On average, the percentage diffierieetween the areas is insignificant. For



example, we pick one node to illustrate. Over the course aof fiays, the day to day difference in
area averages an insignificant 0.27%. Visually there i€ ldtfference from the original data set and the

binned set, as shown in Figure 1.

A sample from a binned data set compared to original dataset
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Fig. 1. Sample data and a bhinned version. This figure focuses on aontidin of the data to show that binning has no real

effect on any analysis.

I11. HIERARCHICAL BAYESIAN SPACE-TIME MODEL

We first provide an overview of the method presented in [3],hesddaptation of this approach for
fault detection is the basis of our work. Wikle et. al. detaiflexible hierarchical model for space-time
data using a multi-stage approach. We use this approach aglelige to model sensor network data
for the purposes of fault detection and make modifications touitneeds. The flexibility, robustness,
and systematic approach of this method makes it suitabléafdt detection. Also its direct application
to modeling climate data is ideal for the environmental rtammg that sensor networks perform.

In [3], the hierarchical space-time model consists of fivages of modeling. In the first stage,
a statistical measurement error model is defined. Assurliifgt) is the process for senser at a
locationl, and timet, then the observed (measured) d&ta, ¢) is distributed by some error distribution
P(Z(s,t)|Y (s,t),01) wheref; is a collection of parameters for the distribution. The néxge models the
processY . Based on the relevant processes of interest in}3fonsists of several components. These
components are a site-specific meafs), a large-scale temporal model with site specific parameters
M (t; B(s)), a short-time scale dynamic proce&ss,t), and a zero mean random variable that models
noise y(s,t). The specification of the joint distribution of(s,t) is simplified to avoid modeling a
ST x ST covariance matrix. The hierarchical approach allows thigesiother modeled features of
Y (s,t) will explain the space-time structure, X(s,t).

The third stage defines these spatial structures and dynamniteft” process. In the example presented

in [3], i is defined to be a Markov random field, aAdis modeled as a one step space-time autoregressive



moving average. We will deviate from these assumptions moain modeling. The fourth stage defines
the prior distributions on the model parameters. The fifth estdgfines hyperprior distributions on the
prior parameters of the fourth stage. With simplificationsdm& our modeling, we do not define any
hyperprior distributions.

[3] presents an example in which this approach is applieddathly averaged maximum temperature
data in the midwestern United States. For the applicatioren$ar data fault detection we make several
adjustments and deviate from the example presented. Atsimuse of the type of system as well as the
much smaller scale we are observing, we detail furtherictisins on the data when defining our model.

Given at timet a set of observations frorf sensors,Z; is a S x 1 vector of the observations. We

begin by modeling the measurement procégsas simply the phenomenon process with additive noise,

€7.
Zi =Y+ ez
Assuming the measurements(s) Vs = 1,...,S are all independent and the noise is normal, then we
represent; as:
Zi|{Yr, 0} ~ N (Y2, 031) (1)

The phenomenon process can be modeled as a combination efrttai@ components and the noise
componentey. This noise component requires the assumption that the ngise) is normal and

independent and identically distributed for &jl.
Yi=p+ M + Xy + ey
As in [3] we will assume that alt;(s) are normally distributed and conditionally independerthsthat:
Yil{, My, Xy, 08} ~ N (n+ My + X, 031) (2)

The spatial structures and dynamics consist of site specifemseg a “long term” trendM;, and a time
dynamic process(; accounting for day to day variations.

We make several departures from [3] in how these spatiattsires are modeled and defined in order
to decrease complexity and also to better match our systestedd of defining a Markov random field,
in order to decrease run time, we first define the site specific ned® a simple first order spatial
regression:

p(s) = pa + pals

wherel, is the physical position of sensar p in this case is the overall mean of the phenomenon

and u» represents small corrections according to spatial treifidsere is no strong spatial trend, or the



trend is not linear along then o will tend to zero and the site specific means will tend to theraiVe
phenomenon mean at. This will make the system more robust when a linear model tsagourate.
These two parameters of are modeled as independent normal random variables with fxet

specified priors.

w1~ N (@, 0,2“) (3)
2 ~ N(/I2a 0-,121,2) (4)

We model the “long term” trend as a daily harmonic with sgtisarying amplitudes and phases

with an additional linear trend:
My(s) = (f1 + fals) cos(wt) + (g1 + g2ls) sin(wt) + hyt

wherew = 2z for a daily harmonic (when is defined in units of days)fi,f2,91,92 define how the
harmonic varies spatially. We add tltg term to account for the day to day weather trend over the
modeling window; this is different from [3] as their long tertrend is annual which has no year to year
trend.

We assume all of the parameters ity to be independent normal random variables with fixed and

specified priors.

fu~ N(fr,07,) ®)
fo~ N(f2,0%,) 6)
g1~ N(g1,07) (7)
g2 ~ N(ga,0,) (8)
hi ~ N (hy,07) ©)

We model the time dynamic term as a “diagonal” vector aut@sgjve process:
X;=HX; 1 +ex (20)

where

giving
Xi{Xi_1,H,ox} ~NHX;_1,0%1) (11)



We assume that is the same for all locations and it is normally distributed:
a ~ Na, 02) (12)

Note that the description foX; is much simpler than in [3] in order to decrease run time arektdp
convergence of the Gibbs sampler. We will discuss the sitimlausing Gibbs sampling in section IV.
Adding off-diagonals and allowing elementskhto vary quickly transforms equation 10 into a space-time
autoregressive moving average (STARMA) model, see [17]. THueases complexity and the resultant
model is over-parameterized and sensitive to the initiald@ons in our case. Using such a model also
requires us to restrict sensors to be fixed or assigned to darbgapaced lattice position which is not
commonly true.

We specify the variances of th&, Y and Z to have an inverse gamma distribution, which is the

conjugate prior to the normal distribution:

oy ~ T az, Bz) (13)
oy ~ T Hay, By) (14)
o% ~ T !(ax, Bx) (15)

The prior parameters of these inverse gamma distributiomsibeed and specified.

IV. M ODEL SIMULATION

Once this model has been established and given the datatedllever a period of time, we determine
the parameters of this model using Bayesian estimation.olthid we use Markov chain Monte Carlo
methods, and more specifically the Gibbs sampler, for stéichasnulation [18]. Instead of drawing
samples of all the parameters from one massive and difficultaioulate joint distribution, Gibbs
sampling draws subsets of parameters conditioned on thee wdlthe other parameters. This allows for
quicker computation and simple derivations of conditiatiatributions. The derivations of the conditional
distributions for our model for the Gibbs sampler are predidn the Appendix.

Choices need to be made for the starting point values ancetiggH of the simulation to run. More
information on discarding and thinning sections of a Giblsigling run can be found in [18].

As is required when using Gibbs samplers, we tested on deeaavorld data sets with a few initial
pilot simulations using different starting value sets. @hthe starting value sets was the estimated means
of the parameters from exploratory analysis. Visual assest of convergence was seen to appear by

4000 iterations for all cases. Thus for use in our algorithme, garameters were estimated using a single



long simulation (10000 iterations) with the estimated mealue starting sets. We discard the first half
of the data where the sequence is converging.
The final result of the simulation is a number of random drawsefioh of the parameters as well as

the X; andY; dynamic processes. With these, we can then apply a faulttitmiemethod.

V. FAULT DETECTION

The primary weakness of HBST modeling is that the posterioukition of the model parameters
using MCMC techniques and Gibbs sampling is computatigratpensive. Thus, we seek to minimize
the frequency that we calculate parameters by specifyirea-gealtime detection system. By having this
semi-realtime system, we can exploit the capabilities ofSHiBnodeling while minimizing the impact
of the high computation cost. Instead of performing calooies with each new incoming data value as
is done in systems such as the ones in [16], [11], and [13futations are to be performed at regular
time intervals at a time scale larger than the sensing iaterv

That is, sensor data integrity audits occur much less frefyuéman sensor samples are taken. For
example, while the sensor data used in this paper measugephgtnomenon on a scale of every 5
minutes, we will audit sensors every one day. This reflectsstimgil realities, in that it is unlikely for
sensor replacement to be on the sensing time scale in theoemental sensing context, e.g. a person
would likely wait for the next day to replace a sensor thdethiwhile they were sleeping that night. Also
it is common for a sensor to temporarily report questiondiaka and then return to normal [9]. Therefore,
by having the audit occur at larger intervals, a sensor #tarms to normal operating conditions will not
be as frequently tagged.

To test the abilities of HBST modeling, our goal is to tag datanf sensors which are believed to
be behaving outside modeled behavior. With this tagging cen use the results in a more complex
memory based method for fault identification. For example,rtite at which a sensor is tagged may be
thresholded and identified as cooperative or non-cooperatid used in the reputation based framework
as described in [19]. Alternatively, the tag rate may be us®é prior in a Bayesian decision method
to select a subset of trusted sensors such as in [16]. Goitigefu a Bayesian network [20] may be
implemented with the tagging rate influencing the probaédit However all of these possibilities are
beyond the scope of this paper. When paired with more sopdiist! fault detection methods, such as
those in [16] and [10], HBST modeling can boost performance.

We use a simplistic thresholding technique based upon yestsors for detection. Consider a single

data point for sensos. For sensors + 1 ands — 1 we calculate 95% confidence intervals of the time
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dynamic termX (s;+1,t) using the variances%. We denote to be the sample mean across all samples
from the simulated posterior parameters. We add these tsitthaspecific mean and estimated long term
trend for sensos. Effectively, we assume that time dynamig for sensors, which is without any spatial
effects as those are carried M; and ., is similar for surrounding sensors. This bounds the spaxe ti
dynamic performance of each sensor by the adjacent sengor& case performance, then adds these
bounds to the site specific mean and long term trend. In this semsors is assumed, at worst, to report
location adjusted values of its neighboring sensors. Wese# how this assumption holds in the results.
That is, if we consider sensarat location/; at a particular time time, we define the lower bound

and upper bounds of the expected time dynamic term to be:
X)(s,t) = min(X (s — 1,t) — 26x, X (s + 1,t) — 26x)
Xu(s,t) = max(X (s — 1,t) + 26x, X (s + 1,t) + 26x)
Then we use the estimated terms far, uo, f1, f2, 91, g2, andh; to calculate:
[(s) = fin + figls
Mi(s) = (fi + fals)cos(wt) + (G1 + Gols)sin(wt) + hat
Finally, the lower and upper bounds are:
Zi(s,t) = i(s) + My(s) + Xu(s,t) = 2(6y + 62)
Zu(s,t) = Ji(s) + My(s) + Xu(s,t) + 2(6y + 67)

We extend the bounds using the estimated standard dewdatibthe phenomenon and measurement
processes(dy + dz), because we compare to measured data t). If Z(s,t), the actual measurement
from sensors at timet, exceeds these bounds, then it is marked as faulty.

In our results we compare this approach to modeling with aalogous method without HBST
modeling. The basis of the analogous method is using first didear autoregressive (AR) models
over a window of the previous data. Examples of linear AR miadein fault detection can be seen
in [16] and [13], where both use first order linear models. AJ$8] and [21] smooth data using a
moving average window resulting in an expected mean, whichless complex operation than the linear
modeling done in the previously mentioned works.

For the comparison modeling technique, we create boundiasitn the HBST modeling case. The

estimate of the standard deviation is derived from the & model for each individual sensor. For
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sensors, two surrounding sensors’ readings and standard dev&a@me used to provide a lower and
upper bound. Similar tagging is used to identify readings$ éxaeed these bounds.

When using the conventional method, a decision must be madde size of the window used to
calculate the linear model. This window size, as discusseld 6ih affects the quality of the fit to the
data. For simplicity, we fix this window size to 25 samples lseaafter trial and error this produces
the best results in most cases for our simulated data set.

In interpreting the results, we use two measurement metietection rate, and false detection rate.
We expect that better modeling will decrease the false tetecate since a well modeled system will
have less anomalies. Detection rates are expected to ranzilar because questionable data should still
be outside of the range of any reasonable model.

This simplistic way of bounding data by neighboring sensm@’st case performances has an additional
drawback in the cases of edge sensors. Sensors on the edgdydrdloenced by one other sensor, greatly
reducing the bounds. So it is expected that edge sensors Haghex false detection rate than non-edge
sensors. However, as we will see in the results, since HBSTelimgdadjusts for spatial differences and

trends, edge false detection is reduced significantly in @ispn to AR modeling.

VI. RESULTS

To show the applicability of HBST modeling to multiple siticats, we demonstrate our method using
three separate data sets. One data set is artificially gedesstd used as a toy example to illustrate
under ideal conditions the performance of our system. Thensedata set is the cold air drainage data
set from sensors that have been deployed at James Resenadiforita. The last set of data is from
a series of buoys deployed at Lake Fulmor, also at James Resenvéhis last set of data, we use the

temperature measurements that are at the surface of the wate

A. Smulated Data

We use simulated data to show the expected results from b8BTHand AR modeling. Spatial
structure is well defined and matches very well to the assemptmade in our fault tagging scheme.
Simulated data also highlights some of the limitations of sianple tagging scheme for nodes on the
edge of the sensing field. We show results from data with nddaad well as injected faults to show the
best performance of each system.

The simulated data consists of a daily diurnal long term treasdwell as an extra harmonic that

was not modeled by the HBST model we defined in section lll. Spstiiacture was generated using a
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TABLE |

FALSE DETECTION RATES FOR SIMULATED DATA WITH NO FAULTS

HBST | Linear AR

Including Edge Nodes 0.2079 0.2784

Excluding Edge Nodes 0.0014 0.0041

Just Edge Nodes | 0.6210 0.8270

similar model to that of section lll, by including a spatieénid on the site specific mean and harmonic
parameters. Parameters were fixed to rough estimates déroradactual data. We generated simulated

data for six sensors all equally spaced. A sample from theee@s over three days is in figure 2. We

Simulated data from three of six sensors (sensors 1, 3, and 6)
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Fig. 2. Simulated data. A sample of three days from three sensors.

apply the fault tagging techniques described in section gdba baseline for expectations. We average
the tag rates for each sensor over three days, and presemtdfradl false detection rates in table I. Also,
we show the false detection rate for just the edge cases tw #i@increased tag rate for edge cases.
As noted before, the edge cases show much higher false ideteates.

Examining the results of table I, edge nodes have a much loalee fdetection rate using HBST
modeling than linear AR modeling. This is expected becauseHBST modeling approach is capable
of modeling and correcting for spatial trends. Overall, lincases the HBST modeling approach shows
significant reductions in false detections. When includidgesnodes, HBST modeling gives a 25.3%
improvement over linear AR. More significantly, when edge emdre excluded, HBST modeling gives
a 64.9% improvement over linear AR.

To test detection capabilities, one day was selected to faalts injected, and we tested the detection

of each fault independently. We inject two types of commaritfaas defined in [10] and [9] at arbitrary
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locations. In figure 3 we show three sensors, two with faulisl @ane with no faults. One sensor has a

“stuck-at” fault injected, and the other has outliers.

Simulated data from three of six sensors with faults injected in two
T
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Fig. 3. Simulated data with injected faults.

The results for HBST modeling and linear AR modeling are showrigure 4. Outlier detection
worked perfectly for both Linear AR modeling and HBST modelittpwever, The HBST modeling
showed a 95.9% lower false detection in comparison to ligarmodeling. One reason the HBST
modeling false detection is so low is because the time dymamcertainty is elevated in the presence

of faults, and outliers seem to affect this variance mora thiher faults.

W HBST
08

Linear AR

0.6

04

I

Outlier Detection  Outlier False Stuck-at Stuck-at False
Detection Detection Detection

Fig. 4. Fault detection rates for simulated data with injected faults

For the case of the stuck at fault, detection was almost efgudloth cases. Although the linear AR
modeling performed slightly better, the HBST modeling apgio only missed one sample, which is
insignificant. More significant is that HBST modeling has a 3618%ser false detection than linear AR
modeling does.

The simulated data results show that HBST modeling is supérioeducing false detection rates in

all cases. Detection capability remains virtually the sa8imulated data provides us with a baseline of



14

expected performance, and shows how the spatial modelitdB&T models is important in the edge

nodes for reduction of the false detection rate.

B. Cold Air Drainage Data

Using real world data from a deployment, we examine how HBSTeting affects detection. First
we examine the case where data does not exhibit any apparerd.eMe examine the false detection
rate of six sensors over the course of five days. Figure 5 shatesftbm the first three sensors starting

on September 17, 2005. For the overall results, we look owercturse of the 5 days in figure 5 and

Cold Air Drainage data from three sensors
T T T

temperature (°C)

time (days)

Fig. 5. Data from three deployed sensors

average the day to day tag rate.

The results are summarized in figure 6. HBST modeling gives &4 hwer false detection rate than
linear AR modeling. Also, as expected, the edge nodes havech mgher false detection rate than the
rest of the nodes. The edge cases have a false detection &8e586 and 71.3% for the HBST modeling
and linear AR modeling respectively. The HBST modeling is bépaf reducing false detection for edge
nodes due to the use of spatial means. When we exclude thksssvthe performance of the HBST
modeling outperforms the linear AR modeling by 63.6%.

Deeper examination of the results shows that the HBST maygletigs data predominantly during
the peak of the day, where the data is highly variable and mymaThis is likely due to unmodeled
phenomena. While our method is robust to unmodeled dynathias are spatially correlated, these
dynamics are not well correlated.

One possible cause of this is the passage of sunflecks whesetiser may be exposed to sun and
shade alternatively due to the forest coverage, wind, dpadd passage of time during the day; this

causes temperature readings to rise and fall in unexpectgs.\Whese sunflecks are highly dynamic
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Fig. 6. False detection rates for cold air drainage data in the absencaltsf fa

and very difficult to model accurately. More information redjag models of sunflecks and sunlight
penetration through a forest canopy can be found in [22] @84 [So, it is more likely for our modeling
to fail in this dynamic period.

If one were to include a model for dynamics such as sunfleclis vtbuld undoubtedly increase the
performance of the fault detection system. However, thgsiires much more sophistication and will likely
greatly increase the computation costs of the model. Thiséause each sensor node is different and
will have different dynamics associated with them. Alsopmder to model these dynamics, information
regarding the forest canopy distance from the ground anccdlerage the canopy provides given the
time of day and the day of the year must be obtained througle retailed measurements.

Looking across the days, we see that day 4 does not exhibi thighly variable peak temperatures,
and the high temperature of the day is significantly lower thenother days. This suggests that the day
may have been overcast or even rainy when sunflecks may noteliésted.

If we examine only this day, then the overall false detectate is greatly reduced when using HBST
modeling. HBST modeling gives a 70.6% improvement over lifs& modeling. Linear AR modeling
does not improve much since there are many correlated dgsdht are not modeled. HBST modeling is
robust to unmodeled dynamics that are spatially correldtaday be prudent to include prior knowledge
in the form of daily weather patterns. If a day was noted to bereast, then any judgments on sensor
reliability may be given more weight than decisions on ottiays.

We now examine some examples of real data with questionaltdetbat is assumed to be faulty. Figure
7(a) shows data from three sensors for one day, Sept. 25, 20dbone sensor giving likely faulty
data, with high noise and readings distant from other senJdre other two sensors that are physically
located around this sensor are also shown. Figure 7(b) shatesfibm three neighboring sensors on

Sept. 16, 2005 where two independent neighboring sensoibiterhtliers at the same instant. There
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Fig. 7. Two examples of faults in real data

is no conclusive reason for why this happened, but it is ifngmdrto tag such an anomaly. We test the
detection rate for each fault with six sensors to model araiméxe the results summarized in figure 8.

For the case of the faulty sensor in figure 7(a), both HBST mndedind linear AR modeling detect the

1 W HBST
08
06 Linear AR
04 S
0.2

0 , I

Outlier Outlier False  Noisy Fault Noisy Fault
Detection Rate Detection Rate Detection Rate False

Detection Rate
Fig. 8. Detection and false detection rates for cold air drainage data in ¢éserre of faults

fault very well, exceeding 95% detection. However, thedalstection rate for HBST modeling is 49.7%
lower than linear AR modeling. For the case of the outliedtfaufigure 7(b), HBST modeling detects
the outliers perfectly while the linear AR modeling complgtmisses the outliers. The false detection
rate is significantly lower for HBST modeling as well, giving 6.89% lower rate.

These results show that HBST modeling is a significant improweroger linear AR modeling in
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both accuracy and robustness. False detection rates ait% 48.96.5% lower using HBST modeling in
comparison to linear AR modeling. As we will see in the nextafedata, this gain is not limited to one

specific deployment.

C. Lake Fulmor Data

To show our method can be adapted to multiple types of deoysnwe present results from a second
set of real data. We use temperature data collected at tfi@ceuirom sensors deployed on buoys at
Lake Fulmor in James Reserve between August 28th and Septestb20Q6. Figure 9 shows data from
three of the five sensors used in this test. Nodes 2 and 3 difigi&dy outliers at the beginning, while
node 3 shows aberrant behavior starting at approximatgh2d@b. This fault at the end of the data set

is due to the battery failing on this particular node.

Lake Fulmor data
T

temperature (°C)
[ N N
©o o -
= ;

[N
)
T

[
3

Fig. 9. Data from three buoys at lake Fulmor

Figure 10 presents a summary of the results. We initially welthe faults from modeling to test the
case where faults are not present. The results are simildretoesults of the cold air drainage data set
of section VI-B. HBST modeling reduces false detections byl%#

The linear AR modeling method is unable to capture the faulh@tbeginning of the data set because
the fault occurs during the delay before being able to tag dzt linear AR models must have when
starting up. The HBST modeling does correctly identify thislieu Focusing on the fault for node 3 at
the end of the data, we see that HBST modeling outperformariA®R modeling as expected. HBST
modeling has a 41.5% lower false detection rate while hawirslight 3% advantage in detection.

These results show that the new application of hierarchiegeBian space-time modeling can produce
similar, if not better, detection rates of faults, while aftg reducing the false detections which are caused

by poor modeling.
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Fig. 10. Detection and false detection for Lake Fulmor data

VIl. DISCUSSION

While the performance of our fault detection method has rdommprovement, the overall perfor-
mance of the HBST modeling is much better than the case of atdrithear AR models. However,
there are trade-offs in accuracy, robustness, and conutahere the linear AR modeling may have
an advantage. There are different opportunities where eathat may be used.

The first advantage of of linear AR models is that they are vanpka. They are simple to understand
and there are few parameters to determine given the datah@athher hand, the HBST model is much
more complex with many more parameters for which we have leesdt requires the use of posterior
simulation techniques such as the Gibbs sampler used hhieh w turn requires the derivation of full
conditional posterior distributions.

A direct consequence of this is the computational cost. Gnaéndow size is determined, linear AR
modeling is computationally much cheaper than the HBST niioglels discussed in section V. LEtbe
the number of iterations used in Gibbs sampling, andifebe the size of the moving window for linear
AR modeling. Asymptotically the performance for the HBST naliag is O(I7'S%) FLOPs while the
linear AR modeling performance @(W?3T'S) FLOPs. However this is not descriptive because the HBST
method has much more complex calculations that are perfbmany more times. For the computer we
used, to model and process one day’s worth of data for sixosgnthe conventional method takes less
than a half second, while the HBST modeling takes roughly rséwesight minutes.

The issue of window size selection in linear AR modeling mayitlits computational advantage. The
selection of a good window requires either good prior knolgkor retrospective analysis after acquiring
a big data set. In section V, we performed several trials terdéne the best window size to use for

our data. Trial and error or other more systematic methodisingrease the overall cost of linear AR
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modeling.

One usually minor disadvantage to linear AR modeling, as axelpresented here, is that linear AR
modeling requires at lea$t’ samples available before it can begin to work. Thus there islaydefore
linear AR modeling begins tagging data. This is usually nogadieal as data from a prior day is available
to begin modeling. However in the case of the Lake Fulmor datxetis no data prior to the outliers
seen, and as such linear AR modeling is unable to detectahis f

The difference in accuracy of modeling can be seen in our tesGlverall, the HBST modeling
outperforms the linear AR modeling method. It has lowerdadietection rates which suggests better
modeling capabilities. The linear AR modeling outperfornedhe simulated data with injected “stuck-
at” and noise faults. This is likely due to the fact that HBST mloty also models uncertainty more
than the linear AR modeling. If the data exhibits higher ahility throughout the day, then? will
be higher because there is less certainty. This results gedaronfidence intervals and lower detection
rates. However, this type of uncertainty is not capturednedr AR modeling, and is apparent by the
significant increase in false detection rate with real data.

Also contributing to the lack of accuracy for linear AR mddglis the fact that spatial structure is
not used in modeling expected behavior. The only spatiatioglship assumed is in our rudimentary
tagging method. This lack of spatial modeling is most apdarethe edge cases where only one other
sensor influences the tagging of an edge sensor. The HBST meitaidlei to compensate for this and
the standard linear AR modeling more than doubles the fatéection rate in the edge cases.

HBST modeling is much more robust than linear AR modeling. &m&R modeling is simple, but
if data does not fit there is no correction made. However, ifrtiaalel structure we assumed faror
M; is not accurate, the time-dynamic teris; will compensate for any difference between the assumed
structure and the real data. The variability may increas&’iras a result, but this will be captured in
the 0% term.

It may be more useful for one to use linear AR modeling as akguiay of estimating parameters
for priors in the HBST modeling. Also, HBST modeling may not btecessary in cases where sensor
deployment is dense since there is likely to be less spadidgton. However, once priors are estimated
or given then HBST modeling may be utilized to monitor the reaty If the network is also sparsely
deployed, then spatial structure is more important to egénand utilize in fault detection. This is where

HBST modeling holds the advantage.
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VIIl. CONCLUSION

We have presented a new approach to fault detection by migithe existing hierarchical Bayesian
space-time modeling technique of [3]. While it is much momnplex than the first order linear AR
modeling method, the results show that additional moddjireatly increases the performance of a fault
detection system. It reduces the false detection significavitile maintaining detection ability. In some
cases, it is more capable in detecting outliers. While weehaaired our modeling with a simple fault
tagging system, more complex systems that include histobehavior, as discussed previously, may
produce bigger gains than we have seen with our simple systmwill develop such an algorithm to
maximize the potential of this modeling for the future.

There are cases where our models break down, as in the case pedk temperatures during the
day time. In both linear AR modeling and HBST modeling, humamsst be involved when there are
unmodeled dynamics to identify whether or not the data iy fiaulty. Additionally, linear AR modeling
may require human involvement in the selection of windovesian the future, better modeling will be

utilized in these cases to increase the performance.

APPENDIX
APPENDIX: DERIVATIONS OF FULL CONDITIONAL PROBABILITY DISTRIBUTIONS

It is computationally efficient to use a Gibbs sampler to abttiaws from the joint posterior distri-
bution. With the conditional independence assumptionsrdéfd by the hierarchical model structure, we
can easily derive the conditional distributions needechin Gibbs sampler.

Many of the derivations are similar to those detailed in thpeandix of [3] with some minor changes.
Here we detail the derivations for the conditional disttibos which have changed due to the modeling
differences we make. The distributions that are unchangseidgdrom notation) from [3] are(X;|- ),
plokl), p(ot]-), andp(al-).

The derivations make use of Bayes rule:

p(B|A)p(A)
p(B)
o p(BlA)p(A)

p(AlB) =

Also, as in [3], a “completing the squares” method is exte#lgi used in the derivations which we

reproduce here. For a parameter veeipif the full conditional distribution is:

p(0]) exp(—%[@TAQ — 2B0))
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then, after completing the square
6] ~N(A7IBT A7

A p(Yil-)

From Bayes rule, we start with:
p(Yal") o p(Zi]Yy, 07) p(Yelp, Me, X, o)
Using the distributions foZ; andY; as defined in equations 1 and 2 respectively, we get:

zﬂ%)uem{—g?a—mﬂ@—nn

xexp{ — —5 (Y — [+ M+ X])"

2012,
x(Yy — [+ My + X4]) }
Define B = u + M; + X;.
1
p(Yy|) o exp{ - F(ZtTZt —Z1Y, =Y Z + YY)
z

1
—W(Y}TYZ -Y,"B-B"Y; + B"B)}
e

We drop the terms that do not involig as they can be extracted as constants for normalization.

1 1 1
Y| — Y (14 1Y,
p( t‘) X eXp{ 9 't (0'% +0'§2/ ) t
A zr e L pryyy
o2t T o
1, 01 1
o exp{— (Y (gI‘FgI)YZ

1 1
(=2 + — BNy,
(U% t + 012/ ) t)}

Thus:

1 1 1 1
Vil ~ NI+ D) (524 + 5B,
0z Oy 0z Oy
1 1
—I+ It 16
(z1+ 207 (16)

forallt=1,...,T.



B. p(u1, p2l-)

Define the design matrix for all sensorss = 1,...,.5 with positionsi; to be:
P=1|1 I
And define
231
ML =
K2
such thaty = Puy,. Also define
o? 0
Y= "
o,

22

(17)

Furthermore, defingi;, = [;1 /12]”. From the formulations of the distributions fas, o, andY; from

equations 3, 4, and 2 respectively:

T
p(pcl) o ppcli, e, o o0,) [ p(Yelw, My, Xy, 07)
t=1
1 e )
ocexp (= 5 (up = )" 3, (pr = L))

L T
x exp ( — WZ(Yt — (Pur + M, + X;))"

Y t=1

x(Yy — (Pur + M + Xt)))

1

1 _
o exp(— 5(#%(23#1 + 2 ZPTP)NL)
Y t=1

T
_ 1
—2(ui St + = > (Vi — My — X3)TP)py)

This gives:

(18)
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C. p(fl), p(gl), and p(h|-)

These derivations follow closely to [3] with some changesdocoaamodatéeh;. First we definef;, =

[f1 f2]¥, and similarly defingy, = [g1 go]*. Then we can writél/; as:
M; = P f1, cos(wt) + Pgr, cos(wt) + hqt1

whereP is the design matrix defined in equation 17.
Let fr = [f1 f2]" andgL, = [g1 g2]". Also, defineX; = [0}, o7 T and¥, =[5 o2 T,
We first derivep(fz|):

T
p(fel) o p(frlfr,y) H (Yelp, Xt fr, 9o, b, 0%)
o eXP(—g(fL — )" (- fu)

(1 + P fr cos(wt)

M'ﬂ

X exp (
+Pygr, sin(wt) + hltl + X)) Y - (w

+P f1, cos(wt) + Pgp sin(wt) 4+ ht1 + Xt)])

1 1 &
X exp ( - f(f{(zf + — E cos(wt)*PTP)
2 oy 15

.
> (V= (p

X0)"P cos(wi)) 1))

XfrL— Q(fLTEEI +

S =

_l’_

+Pygr sin(wt) + ht1

This gives:

1
2
Oy

frl- ~ N((E;le ZCos(wt)zPr‘FP)_l(f_LTEJT1

t=1

T
1
+EZ — (u+ Pgpsin(wt) 4+ hitT + X;))7T
t=1

xP cos(wt))T (Zf + = Zcos wt)’PTP)~ )
23

Similarly for p(gr|-) we have:
1

T
U% Zsm wt)?PTP)"Y(g LTEQ_I

t=1

grl- ~ N(

1 T
+£Z 4 P fr cos(wt) + htT + X;)) T
t=1
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T
xPsin(wt)T, (£, + %Z sin(wt)?PTP) )
t=1
And finally for p(hy|-) we have:

Ml ~ N((5+

2
Uhl UY

Where S is the number of sensors.

D. p(al)
Recall:
HX;, ;1 = alX;,
= aXy
Then:

1 1 & 1
x eXP(*Q(Cﬁ(JT ZXt—lthl + =)
X t=1 a
1 & T a
—Q(UTZXt Xi-1+ —)a))
X t=1 a
Thus we have that:
T
al o~ N X X+ )
ok = 2
1 & a
x(U—QZXt Xio1+ —)
X t=1 a
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