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The aerodynamic loads on a plunging flat plate are computed using Mathieu functions for

different subsonic compressible Mach numbers and large range of reduced frequency (0-

15). The obtained theoretical results are validated against previous theoretical results and

simulations of the unsteady inviscid flow. The theoretical aerodynamic loads showed a

good agreement to the CFD simulations. Results indicate that for small frequencies, the

compressibility effect on the compressible aerodynamic loads is imperceptible. For high

oscillation frequencies, the total lift phase approaches zero, in contrast to the behavior of the

incompressible fluids. For a constant free stream velocity, the number of the dipole sources,

distributed along the plate surface, increases as the reduced frequency K increases.

The compressible circulatory and non-circulatory frequency response functions are presented.

The high frequency gain Khf of the circulatory lift frequency response function decreases as

the Mach number increases. The non-circulatory lift transfer function magnitude decreases

as Mach number increases. Fluid compressibility induces a phase lag between the non-

circulatory lift and the fluid motion. Finally, the reduced frequency has an insignificant

effect on the non-circulatory transfer function phase lag at high K values.
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Chapter 1

Introduction and Literature Review

1.1 Introduction and Research Motivation

Modern aviation history goes back to over a century ago when wright brothers successfully

flew the kite ”Flyer” for 12 seconds. Since these early attempts, aviation becames essential

for industry, transportation, military activities and space exploration. Research continued to

deeply understand aviation limitations to manufacture faster, larger and lower cost airplanes.

Determination of lift and moment of a lifting surface in steady, incompressible and inviscid

flow has been a topic of interest since the early years of the twentieth century for its simplicity.

The desire to eliminate the dangerous effects of flutter and dynamic stall motivated the

researchers to account for unsteadiness, for deep understanding of such unsteady phenomena.

Although the results of the incompressible aerodynamic theories played an important role

in aviation development, the need for higher speed and reliable aircraft formed a challenge

for researchers as compressibility and viscosity effects should be considered.

The compressibility extension of the unsteady, incompressible, theories is involved and can’t
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be achieved by the application of Prandtl-Glauert transformation. To account for compress-

ibility, the boundary value problem governing the fluid motion should be transformed for this

purpose. In addition to the compressibility effect that has been accounted for by researchers

in the first half of twentieth century, the effect of viscosity on unsteady aerodynamics was

attacked recently for incompressible fluids.

As illustrated in the introduction, the motivation for the present research is to examine the

compressibility effect on lifting surfaces aerodynamic loads and to grasp the impact of high

oscillation frequencies on unsteady aerodynamics. The aim of this work isn’t to develop a

new unsteady aerodynamic theory. Rather we examine the accuracy of existing theories and

investigate the effect of compressibility.

1.2 Literature Review

The theories presented in this thesis encounters a combination of free stream flow variables

and small disturbance variables. In order to eliminate confusion, the total variables are

labeled with subscript ”t”, the free stream (far-field) variables are labeled with a subscript

”o” while the remaining variables correspond to the flow disturbance. The equations pre-

sented in the following two sections corresponds to the total variables without linearization

assumptions.

1.2.1 Basic Aerodynamic Concepts

Fluid mechanics basic concepts that are heavily used in this thesis are outlined in this section.

Governing equations and potential flow vorticity will be reviewed.

2



Continuity and Momentum Equations

In the present work, compressible subsonic flow is considered with Mach number ranging

from 0.35 to 0.6 with high density variation. The general continuity equation can be written

as [1]

∂ρt
∂t

+∇ · (ρtV t) = 0 (1.1)

The equation of motion for a fluid element moving in a compressible Newtonian fluid is

referred to as momentum equation or Navier-Stokes equation and can be expressed as [1]

ρt
DV t

Dt
= ρtg −∇Po + µ∗∇2V t (1.2)

Neglecting body forces and assuming inviscid fluid (ν = 0), the equation is reduced to the

Euler equation of the form

ρt

(
∂V t

∂t
+ V t · ∇V t

)
= −∇Pt. (1.3)

Vorticity Transport in Compressible Flow

Vorticity is a core feature of fluid dynamics. It’s a measure of fluid rotationality and defined

as Ω = ∇×V t. The majority of fluid flows are vortical except for the simple potential flow

assumption (sometimes referred to as vortex free flow). The vorticity transport equation for

compressible flow is obtained by taking the curl of Navier-Stokes equation. For compressible

fluid the transport equation can be expressed in the form

DΩ

Dt
= −Ω ∇ · V t + (Ω · ∇)Vt −

∇Pt ×∇ρt
ρ2t

+∇×
(
∇ · τ
ρt

)
(1.4)

3



The first term describes the vortex stretching due to compressibility effects while the second

term on the right hand side corresponds to vortex stretching or tilting because of velocity

gradient. For a non-barotropic fluid, the third term, the pressure and density gradients, can

be considered as a source of vorticity. The last term describes the vorticity diffusion and

the spread of vorticity away from its source while moving with the flow. Flow over a solid

surface, curved shock waves and Coriolis forces are major sources of vorticity. Blandford [2]

discussed in details vorticity characteristics and its sources.

Potential Flow

Potential flow is an inviscid (µ∗ = 0) and irrotational (Ω = 0) flow. In potential flow the

velocity field can be expressed as the gradient of a scalar function φt usually called potential

function in the form V t = ∇φt. In Cartesian coordinates, the velocity components can be

expressed as

ut =
∂φt
∂x

, vt =
∂φt
∂y

, wt =
∂φt
∂z

. (1.5)

1.2.2 Kutta–Joukowski Lift Theorem

The definition of circulation played a crucial role in the development of aerodynamics lift

theory. Circulation is defined as the line integral of the flow velocity vector around a closed

curve [3]. The curve can move with the fluid and its shape can change with time. Circulation

is expressed in terms of the velocity vector as

Γ =

∮
V t · dl (1.6)

4



where dl is the line segment. It can be alternatively defined as the surface integral of vorticity

over the surface boundary by a closed curve; it’s a measure of vortex strength.

The kutta-Joukowski lift theorem relates the circulation around the airfoil to the lift gener-

ation. In potential flow, the lift is generated by superposition of free stream, doublet and

vortex. Using conformal mapping, the lift per unit span can be expressed as

L = −ρoUΓ (1.7)

The flow is irrotational every where except at the origin as the vortex center exist. Ander-

son [3] showed that the circulation around any closed curve in the flow field excluding the

airfoil origin vanishes. Also, from kelvin circulation theorem, the circulation total derivative

(material derivative) for the same fluid elements is zero assuming neglected body forces.

A physical meaning can be given to circulation by observing the flow around an airfoil. A

stationary airfoil in a stagnant fluid will have zero circulation everywhere including a curve

surrounding the airfoil surface as shown in figure 1.1a. As illustrated in figure 1.1b, immedi-

ately after starting the flow around the airfoil at t = 0+, the flow will curl around the trailing

edge from the lower surface to the upper surface with high velocity creating a point vortex.

Later in time, the created vortex at the trailing edge will convect downstream (assuming

no flow separation) and usually named as the starting vortex. The curve will stretch down-

stream to include the starting vortex and the airfoil surface. The total circulation on the

curve should remain zero as we follow the same fluid elements. A circulation with a strength

equal to the starting vortex strength but opposite sign should present and usually referred to

as bound circulation Γb = −Γst, where Γst is the starting vortex strength. Figure 1.1c shows

the steady state flow around the airfoil including the bound circulation and the starting

vortex.

5



Γ=0,t=0

(a)

Γ=0t=0+,

(b)

Γ=0,

Γb Γst

t>0

(c)

Figure 1.1: (a)A closed contour around the airfoil in a stagnant fluid resulting in a zero
total circulation. (b) Immediately after starting the flow, the flow will curl around the sharp
trailing edge from the lower surface to the upper surface. (c) The starting vortex is convected
downstream with a strength Γst balancing a bound circulation around the airfoil Γb to satisfy
the zero total circulation condition.

1.2.3 Steady, Incompressible Thin Airfoil Theory

The steady thin airfoil theory was developed by Munk and Glauert [3]. For high speed flows,

viscosity effect is confined to a thin layer around the airfoil surface, so its effect is negligible

in most steady and unsteady airfoil theories. The camber line is replaced by a sheet of

vortices [3] usually called bound vortex γb(x) as shown in figure 1.2a and 1.2b. The strength

distribution of the bound vortex γb(x) can be determined by satisfying the no-penetration

boundary condition on the airfoil surface and Kutta-condition at the trailing edge. As shown

in figure 1.2c, the kutta-condition ensures that the flow leaves smoothly of the trailing edge

using γTE = 0.

6



X

Y

(a)

X

Y

(b)

(c)

Figure 1.2: (a) Boundary layer around a flat plate showing the vorticity directions on the
upper and lower surfaces. (b) Vortex sheet representing flow over a flat plate. The vorticity
is rotating in a clockwise direction resulting in high flow speed on the upper surface and
low speed on the lower surface of the plate. (c) Flow leaving smoothly of the trailing edge
(Kutta-condition), assuming vanishing vortex strength at the trailing edge γTE = 0.

For symmetric airfoil with no camber, the bound vortex can be expressed as [3]

γb(θ) = 2αU
(1 + cos θ)

sin θ
, at x = 0→ θ = 0, x = 2b→ θ = π (1.8)

The total lift per unit span is

L = 2πρobU
2α. (1.9)

Kutta-Joukowski theorem is used in the development of Eqn. (1.9) in the case of steady flow

without separation.

7



1.2.4 Unsteady Thin Airfoil Theory

As mentioned in section (1.2.2), the steady lift is generated due to the bound circulation.

The bound circulation is formed later in time, after impulsively starting the flow, and the

starting vortex is shed away behind the airfoil. In the unsteady airfoil theory, the vortex

sheet over the airfoil (bound vortex) will be a function of position and time γb(x, t) and the

wake vorticity effect on the down-wash will be considered.

The unsteady, inviscid, airfoil theories are complicated, so linearization of the governing

equations and boundary conditions is applied for further simplification. Lin [4] and Miles [5]

summarized the conditions for linearization and explicitly mentioned the conditions required

for small disturbance theory to be applied. The velocity and pressure disturbances should

be small compared to the free stream conditions. For these assumptions to be applied, the

following conditions should be met

δ

c
<< 1, Kδ << 1, Mδ << 1 and KMδ << 1, (1.10)

where δ is the airfoil motion amplitude. If the first two conditions of Eqn.(1.10) are violated,

the vertical velocity over the airfoil surface will be large and the small perturbation assump-

tion isn’t fulfilled [6]. If the remaining conditionds of Eqn. (1.10) are not satisfied, the flow

will be hyper-sonic and the pressure disturbance by the airfoil will be large [7].

Incompressible Thin Airfoil Models

The unsteady thin airfoil theories were first developed for incompressible fluids by Theodorsen [8].

He developed a model of an airfoil performing oscillatory motion in an inviscid incompressible

fluid. Gulcat [9] discussed the effect of simple harmonic motion of the form Z(x, t) = Heiωt.

8



The total lift coefficient amplitude is expressed as [9]

CL(K) = −2C(K)

∫ 1

−1

√
1 + ξ

1− ξ
W ′′(ξ)dξ

U
− 2iK

∫ 1

−1

√
1− ξ2 W

′′(ξ)dξ

U
(1.11)

The second term on the right hand side of Eqn. (1.11) represents the inertia forces related

to the airfoil motion and known as apparent or added mass. Since this term is present even

in quiescent medium, it’s not affected by circulation and can be called non-circulatory lift.

It’s important to mention that some recent developments showed that non-circulatory lift

encounters some circulatory contributions [10]. Circulatory and non-circulatory lift compo-

nents will be discussed in more details in chapter 5. The first term in (1.11) is affected by

the circulation build up over the airfoil and called circulatory lift. Theodorsen [8] function,

C(k), measures the lag between the lift generation and the airfoil motion and have the form

C(K) =
H

(2)
1 (K)

H
(2)
1 (K) + iH

(2)
0 (K)

= F (K) + iG(K) (1.12)

Figure 1.3 shows the plot of Theodorsen [8] function amplitude and phase, respectively.

The function dc gain or quasi-steady gain is unity (Kdc = 1). The other end of the graph

representing the high frequency gain, Khf , is 0.5. From Theodorsen function, we can infer

that for high frequencies the aerodynamic lift is half its corresponding steady-state value.

Compressible Thin Airfoil Models

For an airfoil traveling at speeds close to the speed of sound, compressibility effects can’t

be neglected. In opposite to the incompressible flow, the small pressure disturbance caused

by the airfoil motion travels at a finite velocity equal to the speed of sound. For all the,

compressible, unsteady theories the problem is transformed into an incompressible one by

shrinking the lateral dimensions by the factor β =
√

1−M2 and increasing the oscillation

frequency by a factor (1 − M2)−1 [11]. The presence of the first and second order time
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Figure 1.3: (a) Circulatory lift coefficient (Theodorsen [8] function magnitude). (b) Cir-
culatory lift phase.

derivatives in the governing wave equation induces additional phase shift [12]. Sommerfeld

radiation condition is applied to the compressible flow problem ensuring that the waves are

traveling to infinity from the wing surface [13].

Analytical Models

The aerodynamic coefficients of pitching and plunging airfoils in subsonic compressible flow

were first calculated and tabulated by Possio [14] for certain Mach numbers. He linearized the

equations of motion for compressible flow and expressed the flow field in terms of acceleration

potential. A solution of the governing wave equation is obtained in the form of doublet

distributions over the airfoil chord. The resulting integral equation, relating the downwash

and pressure distribution over the airfoil chord (doublet intensity), is known as Possio’s

integral equation. The integral equation is complicated and a closed-form analytical solution

hasn’t been obtained yet. As an approximate solution, Possio expressed the doublet intensity

10



in a series form that had been corrected by Frazer [15] and have the form

Π(x∗) = A
′

o

√
1− x∗
1 + x∗

+
√

1− x∗2
m∑
1

A
′

mx
∗m−1 (1.13)

The coefficients are obtained by satisfying the no-penetration boundary condition at specific

locations over the airfoil chord. Possio solved for three coefficients A
′
o, A

′
1, A

′
2. His solutions

was based on three locations; leading edge, trailing edge and mid-chord point. Frazer re-

peated possio computations with higher numerical accuracy. He proposed an alternative

series solution for the doublet intensity distribution using a trigonometric series in the form

Π(x) = Ao cot

(
θ

2

)
+
∞∑
1

An sinnθ (1.14)

The advantage of the alternative form is that the lift and moment can be computed exactly

using the first three terms of the series, in opposite to Possio’s series which requires the

computation of all the terms. Efforts by Schade [16] and Dietze [17] continued to obtain a

more accurate numerical solution for Possio’s integral equation. Schade replaced the integral

equation by a set of algebraic equations with legendre function expansion and and Dietze

solved the equation iteratively.

A general three dimensional integral equation relating the downwash to the doublet intensity

was derived by Kussner [18] and have the form

Φ(x, y, z, t) =
1

4π

∫ ∫
F1

∫ x
′
=x−χ

−∞
dx
′
dχdη

(
sinσ(η)

∂

∂y
+ cosσ(η)

∂

∂z

)
Π

(
χ, η, t+ x

′−x+χ
U

+ x
′
β

c(1−β2)
−
√
x′2+(1−β2)[(y−y(η))2+(z−z(η))2]

c(1−β2)

)
√
x′2 + (1− β2)[(y − y(η))2 + (z − z(η))2]

(1.15)

where the coordinate χ is parallel to the x-axis and forms a coordinate system with the

coordinate η for a randomly located doublet on the airfoil surface. In his derivation of

Eqn.(1.15), Kussner assumed a spherical wave solution for the linearized governing equation
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and utilized the acceleration potential approach introduced by Prandtl [19]. Equation (1.15)

was simplified to Prandtl’s and Possio’s integral equations.

A Convenient form of Possio’s integral equation of infinite span can be obtained by integrat-

ing Eqn. (1.15) over τ from −∞ to ∞ and defining Π as a sinusoidally pulsating doublet.

The resulting equation will have the form[18][20]

∂Φ

∂n
= W

′′
(x, 0, t) =

√
1− β2

2π

∫ b

−b
Π(χ, t) e

iω(χ−x)
U R

(
β,

ω(x− χ)

U(1− η2)

)
dχ

x− χ

where

R(β, y) =
iπ

2
βy

∫ y

−∞
eiuH

(2)
1 (β, u)

du

|u|

(1.16)

Approximate solution of Eqn. (1.16) for small compressible Mach number is obtained by

Miles [20] by expanding the kernel function, R, and Π in powers of Mach number. Later,

Miles [12] extended his approximation to account for wide range of Mach numbers by ex-

panding the kernel function in powers of y to first order in frequency.

For an oscillating wing of finite span with a harmonically pulsating doublet Eqn.(1.15) will

be simplified to the form [21]

W ′′(x, y) =
1

4π

∫∫
L(χ, η) R(xo, yo) dχdη

where

R(xo, yo) = lim
z→0

∂2

∂z2
e−

iωxo
U

∫ xo

−∞

e
iω

(
λ−M
√
λ2+β2y2o+β

2z2
)

√
λ2 + β2y2o + β2z2

(1.17)

where ω = ω
Uβ2 , xo = x − χ and yo = y − η. Watkins [21] simplified the kernel function

of Eqn.(1.17) to a form that can be evaluated and tabulated. The kernel function integral

is separated into two parts that can be solved analytically. In his discussion regarding the

function singularities, he showed that the integral is not only singular at xo = 0, yo = 0 but

for the wake of the doublet (xo > 0). He separated his general solution into singular and
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non-singular parts and obtained formulas for some special cases (M = 0, 1).

An alternative solution using Green functions was introduced by W.Jones [11] to develop an

integral equation relating the downwash distribution to the pressure field over the wing sur-

face. He obtained the flutter derivatives of finite span wings. Jones didn’t solve the, indeed,

complicated compressible flow problem. Instead, he employed Prandtl–Glauert transforma-

tion to solve a simpler incompressible flow problem. The integral equation of the downwash

distribution was divided into two parts as follows [11]

W
′′

+ Io =
1

4π

∫∫
z→0

R
∂2

∂z2

(
1

r

)
dxdy.

Io =
1

4π

∫∫
z→0

R
∂2

∂z2

(
1− e−ixr

r

)
dxdy

(1.18)

W.Jones solved Eqn. (1.18) using three different approximations. In two approximations,

he assumed Io = 0 where the flutter derivatives didn’t show a good accuracy compared to

the exact solution by Minhinnick [22]. The third approximation used Io with accuracy up

to first order in frequency. Figure 1.4 shows the total lift derivatives, Lz and L.z computed

using the third approximation compared to Minhinnick at Mach number 0.7. The results

showed a good agreement up to a reduced frequency K = 0.4. Later, W.Jones [23] extended

the computations to account for higher frequency approximations and tabulated the flutter

derivatives at different Mach numbers. The first order approximation is accurate at low

frequency values. Increasing the frequency require increasing the order of approximation.

The wave equation governing the unsteady flow was, alternatively, solved by separating

the perturbation, velocity or acceleration, potential into two parts both satisfying the wave

equation. Timman [24], Timman and Van De Vooreen [25], Reissner [26], Haskind [27]

and Billington [28] used the velocity potential method and obtained a solution in forms of

Mathieu functions. A detailed explanation of Mathieu functions will be given in chapter 2.

The unsteady aerodynamic loads of low aspect ratio wings were calculated by Mazelsky [29].
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Figure 1.4: Total lift derivatives for M = 0.7.

The pitching and plunging motion of a rectangular and delta wings were investigated at

several Mach numbers. The author simplified the equations by neglecting the flow deriva-

tives in the stream wise direction and transformed the resulting wave equation into elliptic

coordinates facilitating the use of separation of variables and Mathieu equations. Figure 1.5

shows the magnitude and phase of the lift coefficient due to plunging for a rectangular wing.

From the figure it can be noticed that for 0 < K < 1 the compressibility effect is small,

however the compressibility have significant effect for high values of reduced frequency.

Similar to the velocity potential, the acceleration potential Φ is separated into two solutions

Φ1 + Φ2. The reduced potential Φ1 is usually referred to as ”regular or non-circulatory”

solution satisfying the normal acceleration on the airfoil. Results of aerodynamic loads for

an oscillating airfoil in compressible flow had been given by Hofsommer [30], Kussner [31]

and Timman and Van De Vooren [32]. Timman and Van De Vooren [32] obtained the

lift and moment coefficients of pitching and plunging airfoil for five Mach number values.

His computations of the regular solution was the same as mentioned before. The singular

solution was approximated by a function satisfying the wave equation and the leading edge

singularity. The results didn’t agree to to Dietze [33] solution of possio’s integral equation.
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(a) (b)

Figure 1.5: (a) Total lift coefficient amplitude due to plunging of a rectangular wing [29].
(b) Total lift phase angle due to plunging [29].

R.Timman [34] extended the solution to satisfy the reciprocity relation after the concerns

raised by Fettis [35].

In the context of the linearized theory and the corresponding assumption of negligible viscous

effects, there exist a discrepancy between the measured aerodynamic loads and the theoret-

ical counterpart. For a more accurate theoretical solution, Schwarz [36] and W. Jones [37]

proposed a method usually referred to as ”semi-empirical method”. This method features the

usage of the experimentally measured pressure distribution and the skeleton theory for esti-

mating the change of the skeleton line (chord) at every instance. The semi-empirical method

was originally applied to incompressible flow. However, with appropriate transformation,

the compressible flow solution can be estimated.

Computational Models

In the vicinity of small perturbation theory, Cole [38] introduced a mixed finite difference

scheme for transonic flow past a steady airfoil. Later, implicit scheme was developed by

Ballhaus [39] to solve the two dimensional unsteady transonic flow past a moving airfoil.

Su [40] introduced a time marching integral equation method for unsteady transonic flow
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around airfoils. His method has the advantage of capturing a moving shock wave, by con-

sidering the non-linear terms, and faster convergence. Alternatively, a point iterative finite
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Figure 1.6: Analytical results by Mazet [41] ” ◦ ” and Numerical by Bicken[42] ”−4− ”
(a)Lift coefficient due for pitching. (b) Phase angle.

difference method was given by Bicken [42]. he obtained results for a harmonically pitching

and plunging airfoil in subsonic and supersonic flows. As shown in figure 1.6, his method

showed a good agreement to the analytical results by Mazet [41] for pitching airfoil in a sub-

sonic compressible flow up to reduced frequency K = 0.2 at M = 0.5 . The lift coefficient

magnitude is comparable to the analytical results, in opposite to the phase angle, where the

phase difference between both solutions increases as frequency increase.

1.3 Approach and Objective

It is declared that for oscillating airfoil in compressible flows there are a number of vari-

ables including compressibility, Mach number, airfoil shape, wing aspect ratio, oscillation

frequency and viscosity which impact the aerodynamic loads and the flow field. The present

thesis is directed towards comprehensive understanding of selected variables. The effort will

aim to answer the following unanswered questions
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1. What is the impact of fluid compressibility and oscillation frequency on the aerody-

namic loads and phase lag?

2. What is the effect of the free stream Mach number on the total lift?

3. What is the effect of both the Mach number and oscillation frequency on the radiated

pressure waves?

4. What is the impact of compressibility on both the circulatory and non-circulatory

transfer functions?

In this thesis, the unsteady, compressible, aerodynamic theories given by Reissner and

Haskind will be revisited and evaluated numerically to assess their accuracy and validity

at high oscillation frequencies. In chapter 2, we review the Mathieu functions fundamentals.

The purpose of this review is to validate our MATLAB code and investigate the accuracy of

the function numerical computations. In chapter 3, a summary of Haskind’s and Reissner’s

theories is provided with correction to minor mistakes in their derivations and analytical

evaluation of some complicated integrals. The CFD simulations set-up and mesh motion

characteristics are provided in chapter 4. Geometry and mesh parameters are discussed with

their effect on solution accuracy. Finally, the aerodynamic loads at different Mach numbers,

M = 0.35, 0.5 and 0.6, are presented in chapter 5. The circulatory and non-circulatory

frequency response functions are also provided for plunging flat plate.
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Chapter 2

Mathieu Functions Computation

As Mathieu functions are essential in the method used by Haskind [27] and Reissner [26] for

the computations of aerodynamic loads. Mathieu functions definition and their numerical

calculation methodology will be presented in this chapter. The code will be validated against

previous results. Numerical errors and algorithm accuracy will be investigated to increase

confidence in the computed aerodynamic loads.

2.1 Introduction

Mathieu functions are associated with waves propagation and usually expressed in elliptic

cylinder coordinates. Historical background of Mathieu functions and examples of their

applications in various boundary value problems are provided in references [43, 44, 45, 46,

47]. Computation of Mathieu equations isn’t straight forward many articles investigated

the numerical computations of these functions [48, 49]. As software or library routines for

computing Mathieu equations aren’t widespread, we made a custom MATLAB Toolbox.

MATLAB software was selected for it’s accuracy and speed in matrices computations and
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it’s ability to extend the results from single-precision to double precision easily.

At this stage, it’s important to mention that there are many symbols used for expressing

Mathieu functions in literature, Gutierrez [50] summarized most of the commonly used no-

tations. In the present thesis, we employ Bibby’s [51] notations for Mathieu functions.

2.2 Mathieu Functions

Mathieu functions are expressed in the elliptic cylinder coordinates. The transformation

between the two coordinate systems have the form

x = Q cosh ξ cos ζ, y = Q sinh ξ sin ζ, z = z. (2.1)

Figure 2.1 shows both Cartesian and Elliptic coordinates. For the elliptic coordinates, ξ

ranges from 0 on the plate surface to ∞ and ζ ranges from 0 at the plate leading edge to π

at the trailing edge.

y

x
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=

ζ=πζ=0 

=ζ= π2 ζ π
6ζ

π
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53

=ζ π
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0.1
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0.4

0.6

Figure 2.1: Cartesian(x, y) and elliptic (ξ, ζ) coordinates. ζ ranges from 0 at the plate
leading edge to π at the trailing edge. ξ ranges from 0 on the plate surface to infinity at far
field.
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Mathieu equations are useful in solving the boundary value problems using separation of

variables. Consider the Helmholtz equation of the form

∇2Ψ + κ2Ψ = 0. (2.2)

Assuming a solution of the form Ψ = Ψ1(ξ) Ψ2(ζ). Substituting into Eqn.(2.2) and applying

the transformation. The resulting functions can be expressed as

d2Ψ1

dξ2
+ (∆2 − κ2Q2 cos ξ2)Ψ1 =

d2Ψ1

dξ2
+ (Λ− 2q cos 2ξ)Ψ1 = 0, (2.3)

d2Ψ2

dζ2
− (∆2 − κ2Q2 cosh ζ2)Ψ2 =

d2Ψ2

dζ2
− (Λ− 2q cosh 2ζ)Ψ2 = 0, (2.4)

where Λ is a separation constant. Equation. (2.3) is known as ”canonical Mathieu equation”

and it’s solution is usually called angular Mathieu functions. Equation. (2.5) is called ”radial

Mathieu equation” and it’s solution is known as ”radial Mathieu functions”.

2.2.1 Angular Mathieu Functions

The angular Mathieu functions can be expressed as a series expansion in the form

ce2r+p(ζ, q) =
∞∑
k=0

A2r+p
2k+p cos (2k + p)ζ where (r ≥ 0; p = 0, 1), (2.5)

se2r+p(ζ, q) =
∞∑
k=0

B2r+p
2k+p sin (2k + p)ζ where (r ≥ 0; p = 0, 1), (2.6)

where r is the function order. The evaluation of the expansion coefficients, A,B, is necessary

to define these functions. The expansion coefficients for each function satisfy a recurrence re-

lation alongside with their normalization. For ce2r, the recurrence relations can be expressed
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as follows[51]

λA2r
0 − qA2r

2 = 0,

(λ− 4)A2r
2 − q(2A2r

0 + A2r
4 ) = 0,(

λ− (2k)2
)
A2r

2k − q(A2r
2k−2 + A2r

2K+2) = 0. (k ≥ 2)

(2.7)

The recurrence relations for the remaining three functions have similar formulas, reader is

referred to Bibby [51] for further reading. The availability of powerful computing power

allowed for the evaluation of the expansion coefficients through matrix routines [52, 53],

unlike the continued fraction method that had been used before. Equation. (2.7) can be

arranged in a matrix form as



0
√

2q 0 0
√

2q 4 q 0

0 q 16 q

. . .

q (2k)2 q

. . .





√
2A2r

0

A2r
2

A2r
4

...

A2r
2k

...


= λ2k



√
2A2r

0

A2r
2

A2r
4

...

A2r
2k

...


(2.8)

From Eqn. (2.8), if any matrix dimension is N , then there exist N eigenvalues and corre-

sponding N convectors for the expansion coefficients for each function order.

2.2.2 Radial Mathieu Functions

The two solutions of radial Mathieu functions are denoted as Mc
(j)
i and Ms

(j)
i where j =

1, 2, 3 and 4 represents the function kind and ”i” the function order. Radial Mathieu functions

have many forms [54]. A suitable form for numerical computations is the product of Bessel
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functions as [51]

Mc
(j)
2r (ξ, q) =

1

εsA2r
2s

∞∑
k=0

(−1)k+rA2r
2k(q)

[
Jk−s(u1)Z

(j)
k+s(u2) + Jk+s(u1)Z

(j)
k−s(u2)

]
, (2.9)

Mc
(j)
2r+1(ξ, q) =

1

εsA
2r+1
2s+1

∞∑
k=0

(−1)k+rA2r+1
2k+1(q)

[
Jk−s(u1)Z

(j)
k+s+1(u2) + Jk+s+1(u1)Z

(j)
k−s(u2)

]
,

(2.10)

Ms
(j)
2r (ξ, q) =

1

B2r
2s

∞∑
k=1

(−1)k+rB2r
2k(q)

[
Jk−s(u1)Z

(j)
k+s(u2)− Jk+s(u1)Z

(j)
k−s(u2)

]
, (2.11)

Ms
(j)
2r+1(ξ, q) =

1

B2r+1
2s+1

∞∑
k=0

(−1)k+rB2r+1
2k+1(q)

[
Jk−s(u1)Z

(j)
k+s+1(u2)− Jk+s+1(u1)Z

(j)
k−s(u2)

]
,

(2.12)

where ε0 = 2, εs = 1, for s = 1, 2, 3, ...., u1 =
√
qeξ, u2 =

√
qe−ξ,Z1

p(u) = Jp(u), Z2
p(u) =

Yp(u), Z3
p(u) = H

(1)
p (u), Z4

p(u) = H
(2)
p (u) and A,B are the same expansion coefficients in

Eqs.(2.5),(2.6).

The choice of the parameter ”s” in Eqns.‘(2.9)-(2.12) is arbitrary[47]. According to Van

Buren [55], the choice of the parameter ”s” can affect the convergence and accuracy of the

summations. Many articles adopted different choices for this parameter [51]. The choice of

s = 0 or 1 was labeled by Bibby [51] as the ”traditional approach”. In our code we adobe the

approach given by Bibby [51], Blanch [47] and Van Buren [55]. For this approach the value

of ”s” is chosen to be the position of the maximum absolute value in the selected eigenvector

which correspond to the column number in the eigenvector matrix.

2.3 Code Validation

Before proceeding to investigate the calculation accuracy and various numerical errors, the

code for Mathieu functions is validated against previous results given by Abramowitz [56].
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Abramowitz results were calculated using the method of continued fraction. Figure. 2.2
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Figure 2.2: Even and Odd periodic Mathieu functions. (a) Even periodic Mathieu func-
tions at (q = 1) compared to data given by Abramowitz [56]. (b) Odd periodic Mathieu
functions at (q = 1) compared to data given by Abramowitz [56]. (c) Radial Mathieu func-
tion of the first kind for distinct q values and zero order compared to Abramowitz [56]. (d)
Radial Mathieu function of the second kind for distinct q values and first order compared to
Abramowitz [56].

shows the comparison between the MATLAB code and Abramowitz results. The angular

and radial Mathieu functions,of different order, are plotted against the arguments ζ and ξ,

respectively. Figures.(2.2a) and (2.2b) compares even and odd periodic Mathieu equations,

respectively, for functions order (1 - 5) at q = 1. The radial Mathieu function of the first

kind and zero order is shown in Fig. (2.2c) at four different values of q ranging from q = 0.75

to q = 1.5. In Fig. (2.2d) a calculation of radial Mathieu equations of the first order and

second kind are presented at four values of q. For all q values, our calculations are in an

excellent agreement with Abramowitz [56] and gives confidence to proceed with aerodynamic
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loads computations.

2.4 Accuracy of Computations

As Mathieu functions have no closed-form analytical solution, the summation accuracy and

numerical precision should be investigated [51]. From Eqns. (2.5)-(2.6), the angular Mathieu

functions are function of the elliptic angle ζ, q and matrix size N . Van Buren [55] defined

Subtraction error as a critical error source arising when adding two numbers of comparable

magnitudes but opposite signs. Subtraction error have the form [51, 55]

Subtraction Error = log10

∣∣∣∣ Sum+

Sum+ − Sum−

∣∣∣∣ , (2.13)

where Sum+ is the summation of all positive terms and Sum− is the summation of the neg-

ative terms absolute value. As the parameter ”q” has a significant effect on the subtraction

error, it’s important to investigate it’s effect on the equations accuracy. Selected q values

are shown in Table 2.1 at different M values.

Table 2.1: Parameter ”q” for selected values of reduced frequency,K, and Mach number,M .

M=0.35 M=0.5 M=0.6
K κ q κ q κ q
0.1 0.0399 3.977×10−4 0.0667 1.1111×10−3 0.09375 2.1972×10−3

5 1.9943 0.9943 3.3333 2.7778 4.6875 5.4932
10 3.9886 3.9772 6.6667 11.1111 9.375 21.9727
15 5.9829 8.9487 10.0 25 14.0625 49.438

Table. 2.1 shows the minimum and maximum values of ”q” encountered in the aerodynamic

loads computations and guides towards investigating Mathieu functions subtraction error in

this range. In his article, Bibby [51] showed that the maximum subtraction error will always

be associated with lowest function order. So, even and odd angular Mathieu function of zero

and first order, respectively, will be investigated.
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Figure 2.3: Subtraction error versus the elliptic angle ζ at N = 100. (a) Even angular
Mathieu function of zero order ce0(ζ, q). The subtraction error increase as q increase and
the maximum error is associated to angles 0 and π. (b) Odd angular Mathieu function of
first order se1(ζ, q). The maximum subtraction error is associated to angles 0 and π.

Figure 2.3a shows the effect of the angle ζ on subtraction error for the angular Mathieu

function of zero order ceo(ζ, q). The maximum error of 5 digits is associated with angles

0, π at q = 50. Subtraction error of the odd Mathieu function of the first order is shown in

Fig. 2.3b with maximum error at 0, π for q = 50. From the previous discussion it can be

concluded that double-precision (15 decimal digits) computations is sufficient for accurate

results.
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Figure 2.4: Plot of ce2n, n = 0, 1, ... for ζ = 0, q = 50 at different values of matrix size,N.
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Finally, the eigenvector matrix size effect on the solution accuracy is shown in figure 2.4. The

figure shows the value of the function Log10|ce2n(0, 50)| at different function orders using four

eigenvector matrix sizes for comparison. The values of q = 50 is used as it corresponds to

the highest values of subtraction error. As shown in Figure the function value is independent

of the matrix size for N = 20 and higher. A matrix size of N = 20 will be used for the lift

and moments calculations.
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Chapter 3

Theoretical Modeling of Compressible

Unsteady Aerodynamics

The problem of oscillating, two-dimensional, airfoil in subsonic flow using Mathieu functions

had been solved by Reissner [26] and Haskind [27]. Both formulations are identical for non-

circulatory lift. In the case of circulatory lift, each author used a different solution form for

the governing equation. In this chapter, both derivations will be summarized with minor

corrections. Analytical solution of the integral equations is also provided. As the notations

used in both derivations are different, we employ Reissner’s notations.

3.1 Equations of Motion and Boundary Conditions

A plane two-dimensional lifting surface with equation of the form z = H(x, t) is placed

in a uniform flow with a mean velocity component U in positive X-direction as shown in

figure 3.1. The presence of the lifting surface caused the velocity field to disturb from U to

(U +u,w). The density will disturb from ρo to (ρo+ρ) and the pressure from Po to (Po+p).
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Figure 3.1: Diagram showing the plate orientation, free stream direction and the oscillatory
plunging motion.

The linearized momentum and continuity equations will be expressed as

∂u

∂t
+ U

∂u

∂x
= − ∂

∂x

(
p

ρo

)
(3.1)

∂w

∂t
+ U

∂w

∂x
= − ∂

∂z

(
p

ρo

)
(3.2)

∂ρ

∂t
+ U

∂ρ

∂x
= −ρo

(
∂u

∂x
+
∂w

∂z

)
(3.3)

Introducing the perturbation velocity potential φ, where u = ∂φ
∂x

, w = ∂φ
∂z

. Expressing the

perturbation pressure in terms of the velocity potential by combining equations (3.1) and

(3.2) in the form

p = −ρo
(
∂φ

∂t
+ U

∂φ

∂x

)
(3.4)

The governing convective wave equation is obtained by combining equations (3.4) and (3.3)
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and is expressed as

∂2φ

∂x2
+
∂2φ

∂z2
− 1

a2

(
∂

∂t
+ U

∂

∂x

)2

φ = 0, (3.5)

The boundary conditions on the plane separating the upper and lower surfaces of the plate

are as follows

|x| ≤ b, z = 0,
∂φ

∂z
=
∂H

∂t
+ U

∂H

∂x
, (3.6)

x = b, z = 0,
∂φ

∂x
finite, (3.7)

x > b, z = 0,
∂φ

∂t
+ U

∂φ

∂x
= 0, (3.8)

x < b, φ = 0. (3.9)

Eq. (3.8) and (3.9) indicate a vortex sheet trails behind the plate. By considering the problem

geometry and nature, a symmetry condition for the perturbation potential can be obtained

as φ(x,−z, t) = −φ(x,+z, t) which concludes that the perturbation potential is an odd

function of z. Simplifying the governing equation and boundary conditions by introducing

non-dimensional coordinate system of the form X = x
b

and Z =
√

1−M2 z
b
.

Applying simple harmonic motion to the lifting surface by setting

φ = ei(ωt+µx)ψ, (3.10)

where µ = KM2

1−M2 . The variable eiµx and the constant µ are introduced to eliminate the

first spatial derivative in equation (3.5). Substituting Eqn.(3.10) and the non-dimensional

variables into Eqn. (3.5), then the governing equation will have the form

∂2ψ

∂X2
+
∂2ψ

∂Z2
+ κ2ψ = 0. (3.11)
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Equation. (3.11) and its corresponding boundary conditions is the famous exterior boundary

value problem. Sommerfield radiation conditions is usually added to the exterior boundary

value problems for uniqueness of the solution and have the form

lim
r→∞

√
r

[
∂φ

∂r
+ iκφ

]
= 0, lim

r→∞

∣∣√rφ∣∣ < const. (3.12)

Solution in the form of Mathieu equations will be appropriate by transforming the Cartesian

coordinates (X,Z) into elliptic coordinates (ξ, ζ) as follows

X = Q cosh ξ cos ζ, Z = Q sinh ξ sin ζ (3.13)

where 0 ≤ ξ ≤ ∞ , 0 ≤ ζ ≤ 2π and Q = 1.

The resulting differential equation (3.11) will have the form

∂2ψ

∂ξ2
+
∂2ψ

∂ζ2
+ κ2

(
cosh2 ξ − cos2 ζ

)
ψ = 0. (3.14)

The function ψ can be separated as

ψ = ψ1 + ψ2 (3.15)

where ψ1 and ψ2 are associated with the non-circulatory and the circulatory lift components,

respectively. Using Eqn. (3.15), the boundary conditions in terms of elliptic coordinates will

be expresses as

ξ = 0,
1

sin ζ

∂ψ1

∂ζ
= g (ζ) ,

∂ψ2

∂ξ
= 0, (3.16)

ξ = 0, lim
ξ→0

[
1

sin ζ

(
∂ψ1

∂ξ
+
∂ψ2

∂ξ

)]
finite, (3.17)

ζ = 0, π, ψ1 = 0, iνψ2 +
1

sinh ξ

∂ψ2

∂ξ
= 0, (3.18)
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where

g(ζ) =
Ue−iµ cos ζ

√
1−M2

[
ikH +

∂H

∂x

]
, ν =

K

1−M2
(3.19)

The pressure amplitude over the airfoil surface have the form

pa = −ρoU
b
eiµ cos ζ

(
iνψ(0, ζ)− 1

sin ζ

∂ψ(0, ζ)

∂ζ

)
. (3.20)

(3.21)

3.2 Solution in The Form of Mathieu Functions

A solution of Eqn. (3.14) and its associated boundary conditions can be obtained by sepa-

ration of variables as explained in chapter 2. Expressing ψ as the product of two functions

F (ξ)G(ζ) and using (3.14), the resulting two equations will have the form

d2G

dζ2
+
[
(λ2 − 2q)− 2q cos 2ζ

]
G = 0, (3.22)

d2F

dξ2
−
[
(λ2 − 2q)− 2q cosh 2ξ

]
F = 0, (3.23)

where λ is a separation constant. The function G is Sturm-Liouville equation which is

periodic with period 2π and its solution is the angular Mathieu functions. The solution of

the function F (ξ) is chosen to be the Radial (or modified) Mathieu functions of the forth

kind, as its asymptotic expansion satisfies the wave (radiation) condition at infinity [50].

Haskind [27] and Reissner [26] used different normalization of the Mathieu functions expan-

sion coefficients. In order to compare both solutions, the normalization is eliminated in the

present thesis for both angular and radial Mathieu functions. Therefore, the equations to be

mentioned in the subsequent two sections are reformulated from this perspective.
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Form the above equations, the solution may be combined and described in a series form as

follows

ψ =
∞∑
m=0

amcem(ζ)Mc(4)m (ξ) +
∞∑
m=0

bmsem(ζ)Ms(4)m (ξ), (3.24)

where am and bm are two constants to be determined by the application of boundary condi-

tions and the plate motion.

3.3 Non-Circulatory Flow Component

The noncirculatory flow component indicated as ψ1 can be expressed as

ψ1 =
∞∑
m=1

bmsem(ζ)Ms(4)m (ξ). (3.25)

Substituting boundary condition Eqn. (3.16) into Eqn. (3.25) and using orthogonality rela-

tions, the coefficient bm will be

bm =

∫ π
0

sin ζ g(ζ)sem(ζ) dζ∫ π
0
Ms

′(4)
m (0) [sem(ζ)]2dζ

∗ (3.26)

The pressure amplitude at the airfoil corresponding to the noncirculatory lift pa
(1) can be

obtained by substituting Eq. (3.20) into Eqn. (3.25) and will be in the form

pa
(1) = −ρoU

b
eiµ cos ζ

[
iν

∞∑
m=1

bmsem(ζ)Msm(0)− 1

sin ζ

∞∑
m=1

bmse
′

m(ζ)Msm(0)

]
(3.27)

∗This equation is a reformulation of Eq. (72) in [26] without normalization.
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Integrating the pressure distribution (3.27) over the plate chord, the non-circulatory lift

amplitude L
(1)

is

L
(1)

= 2b

∫ π

0

pa
(1) sin ζ dζ

= −2ρoU
∞∑
m=1

bmMsm(0)

∫ π

0

eiµ cos ζ
[
iν sin ζ sem(ζ)− se′m(ζ)

]
dζ ∗

(3.28)

The moment about the mid-chord point can be expressed as

M
(1)

(0) = −2ρoUb
∞∑
m=0

bmMs(4)m (0)

∫ π

0

cos ζeiµ cos ζ [iν sin ζ sem(ζ)− se′m(ζ)] dζ (3.29)

Evaluating the coefficient bm depends on the type of airfoil motion.

3.3.1 Plunging Motion

For an airfoil performing plunging motion of the form H(x) = h, Eqn. (3.26) can have a

closed form expression using Eqn. (3.19) and expressed as

bmh =
iUkhIm√

1−M2 Ms
(4)′
m (0)

∫ π
0

[sem(ζ)]2 dζ
(3.30)

where

Im =

∫ π

0

e−iµ cos ζ sin ζ sem(ζ) dζ =
π

µ

∞∑
n=1

Bmn n(−1)n in+1Jn(µ)† (3.31)

∗This equation corresponds to Eqn.(58) in [26]. The author performed the summation inside the integral
over n and it should be over m. The summation over n is applied to the expansion coefficients of angular
Mathieu equation in a following step.

†This integral calculation is a correction to Eq.(73) in [26]. Detailed derivation in the appendix A
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3.3.2 Pitching motion

The pitching motion of an airfoil about its mid-chord point is

H(x) = α

(
x+

b

iK

)
∗ (3.32)

The coefficient bmα will be expressed as

bmα =
Uαb

∫ π
0

(iK cos ζ + b + 1)e−iµ cos ζsem(ζ) dζ
√

1−M2Ms
′(4)
m (ζ)

∫ π
0

[sem(ζ)]2 dζ
(3.33)

Haskind [27] expressed the coefficient bm in terms of the vertical velocity amplitude instead of

the displacement amplitude. As Reissner [26] and Haskind formulation of the non-circulatory

lift are identical, Reissner’s formulation only is presented.

3.4 Circulatory Flow component

The function representing the circulatory component ψ2 have the form

ψ2 =
∞∑
m=0

amcem(ζ)Mcm(ξ) (3.34)

Introducing function W (x, z), connected to the function ψ2 as follows

∂ψ2

∂X
+ iνψ2 =

∂W

∂Z
(3.35)

∗This equation is a correction to Reissner’s [26] form, Eqn.(70). He ignored the free stream velocity
component.
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Satisfying the differential equation ∇2W +κ2W = 0 and radiation condition at infinity. The

boundary condition Eqn. (3.16) for ψ2 and W can be expressed as

Z = 0, |X| ≤ 1,
∂2W

∂X2
+ κ2W = 0 (3.36)

Reissner [26] expressed the solution of Eqn. (3.36) as

Z = 0, |X| ≤ 1, W (X, 0) = A cosκX +B
sinκX

κ
(3.37)

Two equations relating the coefficients A and B are required to solve the circulatory lift

problem. The first of which can be obtained by applying the remaining boundary conditions

for W (X,Z) and integrating from −∞→ X. The equation will have the form

A

[
e−iν(κ sinκ− iν cosκ) + (κ2 − ν2)

∞∑
m=0

αmcem(π)

∫ ∞
0

e−iν cosh ξMc(4)m (ξ) sinh ξ

]

+B

[
e−iν(cosκ+

iν

κ
sinκ) + (κ2 − ν2)

∞∑
m=0

βmcem(π)

∫ ∞
0

e−iν cosh ξMc(4)m (ξ) sinh ξ

] ∗ (3.38)

where

αm =

∫ π
0

cosκ cos ζcem(ζ)dζ∫ π
0
Mc

(4)
m (0)[cem(ζ)]2dζ

, βm =

∫ π
0
κ−1 sinκ cos ζcem(ζ)dζ∫ π
0
Mc

(4)
m (0)[cem(ζ)]2dζ

(3.39)

The circulatory lift amplitude can be expressed as

L
(2)|Reissner = −2ρoU

[
A

∞∑
m=1

αm

∫ π

0

eiµ cos ζcem(ζ)dζ +B

∞∑
m=1

βm

∫ π

0

eiµ cos ζcem(ζ)dζ

]
(3.40)

∗Analytical solution of the infinite integral can be found in Appendix B
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The circulatory pitching moment, about mid-chord point, for plunging motion is

M
(2)|Reissner = −2ρoUb(A

∞∑
m=1

αm

∫ π

0

eiµ cos ζcem(ζ) cos ζdζ

+B
∞∑
m=1

βm

∫ π

0

eiµ cos ζcem(ζ) cos ζdζ)

(3.41)

On the other hand, Haskind [27] obtained an expression for W (X,Z) in an integral form by

excluding the sources on the airfoil chord

W (x, z) =

∫ +1

−1
γ(s)H

(2)
0 (κr)ds, r2 = (X − s)2 + Z2 (3.42)

where γ(s) is expressed as summation of angular and radial Mathieu equations. Equa-

tion (3.42) satisfies boundary conditions and radiation principle at infinity. His solution of

Eqn. (3.36) have the form

W (X, 0) = AeiκX +Be−iκX . (3.43)

Using Eq. (3.42) and satisfying boundary conditions on the plane of symmetry and radiation

principle at infinity, Haskind [27] obtained an alternative expression to Eq. (3.38) of the form

A

(
C+ +

i ei(κ−ν)

κ− ν

)
+B

(
C− −

i e−i(κ+ν)

κ+ ν

)
= 0 ∗

where

c± =
1

2i

∞∑
m=0

Mc
′(4)
m (0) α

(m)
±

∫ π

0

f(cos ζ) cem(ζ) dζ, α
(m)
± =

∫ π
0
e±iκ cos ζcem(ζ)dζ

Mc
(4)
m (0)

∫ π
0

[cem(ζ)dζ]

†

and f(cos ζ) = e−iν cos ζ
∫ 1−cos ζ

∞
e−iνξH

(2)
0 (κξ) dξ ‡

(3.44)
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The circulatory lift amplitude have the form

L
(2)|Haskind = 2ρoU

∞∑
m=0

∫ π

0

e−iµ cos ζ
[
Aαm+ +Bαm−

]
dζ (3.45)

A second equation relating A and B was obtained by satisfying trailing edge finite velocity.

∗ A minus sign is omitted from the exponential term in the second bracket in Haskind [27] original
formulation.

† This expression is reformulated to cancel normalization.
‡ Analytical solution of the infinite integral in the Appendix C
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Chapter 4

Computational Simulation

In this chapter, we illustrate the computational set-up used in investigating the effect of

compressibility on the aerodynamic loads using Navier-Stokes simulations to support the

theoretical results. The computations were implemented using the software package ANSYS

FLUENT 20.1. As viscosity effect is beyond the scope of the present study, inviscid flow

model have been considered. For the compressible inviscid flow model, FLUENT solves Euler

equations and ideal gas low is used for coupling between momentum and energy equations.

Note that aerodynamic theories developed in chapter 3 assumes a potential barotropic fluid

where the vorticity is zero and the density is a function of pressure only. Hence, the baroclinic

term 1
ρ2o
∇po×∇ρo in the vorticity equation 1.4 vanishes. However, the inviscid flow model in

ANSYS FLUENT assumes non-barotropic fluid. This inconsistency is believed to result in

a phase difference between theoretical and computational aerodynamic loads. Nevertheless,

the inviscid model is sufficient to validate and support the theoretical results.
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4.1 Computational Grid

The flat plate have a chord length of 1m and a thickness of 10−4 c. The theories assumes a

zero thickness plate but a thickness was added to avoid the existence of high aspect ratio cells

in the far field region. The present work involves high Mach numbers and high frequencies,

so the leading and the trailing edges were carefully designed as shown in figure 4.1 to avoid

the existence of supersonic flow near the plate edges.

(a) (b)

Figure 4.1: (a) mesh elements around the upper surface, lower surface and near the wake
region. (b) Near trailing edge mesh illustrating mesh orthogonality and quality.

A two dimensional structured O-grid is generated using ICEM CFD package. The compu-

tational domain is divided into three zones (rings) as illustrated in figure 4.2. The inner

ring( red), surrounding the plate, has a radius of 5 c. The mesh in this region is dense to

capture the flow characteristics and the pressure waves traveling to the far field. The first

cell height was set to 10−6 c with expansion ratio 1.1. A total number of 320 mesh elements

were utilized on both the upper and lower surfaces of the plate and 180 cell elements around

both the leading and trailing edges.

To maintain a high quality mesh near the flat plate surface during motion, the inner ring

and the flat plate move as a rigid body performing plunging motion using a user defined
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Figure 4.2: Two dimensional O-grid mesh showing the complete computational domain.
Outer zone (blue) is stationary and the pressure far field defiled at the outer boundary.
Intermediate zone (green) deforms to absorb the plate motion. Inner zone (red) moved as a
rigid body.

function (UDF). The outer ring (blue) has a far field (outer) radius of 12.5 c and an inner

radius of 9 c. This ring is stationary to insure an accurate implementation of the outer

boundary condition. The intermediate ring (green) has a main role in absorbing the motion

of the inner ring. Remeshing and deforming techniques are used for the intermediate zone

to accurately deform and to avoid bad elements quality.

4.2 Solver Set-Up

Regarding the solver set-up, the pressure far field boundary condition was selected for the

outer boundary. The density based solver was considered for compressible flow with implicit

formulation. As mentioned in the chapter introduction, the inviscid flow model was adopted
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for all the simulations. Green-Gauss Node Based (GGNB) scheme was selected spatial gra-

dient discretization. Despite its computational cost, the GGNB scheme provide the highest

accuracy for variables gradient computations. Second order implicit scheme for the transient

formulation was designated. A total number of 300 time steps per cycle was maintained for

all computations ensuring a converged solution for all variables. To obtain a faster solution

convergence, a steady-state solution was used to initialize the transient solution.
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Chapter 5

Results

The aerodynamic loads and the frequency response functions of a flat plate performing

plunging motions in compressible flow are presented in this chapter for three Mach number

values; M = 0.35, 0.5 and 0.6.

5.1 Validation

Before proceeding to determine the compressible aerodynamic loads, the theoretical results

and the CFD simulations need to be validated. The normalized plunging lift magnitude at

M = 0.5 corresponding to Haskind [27], Reissner [26] and CFD simulations are compared

to the previously given results by Timman [32] and Amiet [57]. As shown in figure 5.1, the

CFD results shows and excellent agreement to the analytical results by Timman for the entire

presented frequency range. The difference between all the compared results tend to decrease

as the reduced frequency increase. From the figure it can be noticed that in opposition to

Timman’s and Amiet’s lift computations, Reissner’s and Haskind’s results encounter spurious

rapid oscillations. The cause of these oscillations isn’t, yet, fully understood.
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Figure 5.1: Normalized total plunging lift magnitude by Haskind [27], Reissner [26] and
CFD simulations compared to previous results by Timman [32] and Amiet [57]. The results
were computed at M = 0.5. The present theoretical and computational results shows a good
agreement to the previous counterparts.

5.2 Total Lift

The plate is plunging harmonically with amplitude H = 2 × 10−3 and positive direction

upward. The normalized lift and phase angle corresponding to Haskind’s [27] and Reiss-

ner’s [26] formulations are shown in figure 5.2 in comparison to the compressible lift by

Theodorsen [8]. The general subsonic, compressible, Theodorsen lift function is obtained

by employing the famous Prandtl-Glauert transformation. Intuitively, as the Mach number

increase, the lift magnitude decrease. For small frequencies, the lift and phase approach

Theodorsen incompressible lift and phase. Hence, the compressibility has an imperceptible

effect on the aerodynamic loads for low frequency values. Interestingly, this discovery sup-

ports the conclusion of an earlier effort by Mazelsky [29]. He computed the aerodynamic

loads for oscillating rectangular and delta winds in compressible flow for a wide range of

reduced frequencies. The lift and phase are independent of the reduced frequency for high

frequency values.

The CFD lift amplitude and phase shows a good agreement to the theoretical counter-

part. The present findings are critical in flutter analysis [58, 59], design of gas turbine
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Figure 5.2: Theoretical results of the Normalized total lift LH and phase due to plunging
at different Mach numbers are compared to computational and incompressible results. The
computational results supports the theoretical results and showing a reduction in amplitude
and phase lag with increasing Mach number. (a) and (b) Plunging at M = 0.35. (c) and (d)
Plunging at M = 0.5. (e) and (f) Plunging at M = 0.6.
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blades [60, 61] and high flexible wings. Theodorsen [8] compressible analysis can’t,correctly,

predict the significant phase difference between the aerodynamic loads and the plate motion.

These findings supports our discussion in chapter 1, that Prandtl-Glauert transformation is

insufficient for extending the unsteady incompressible theories to account for compressibility

effects. Hence, it’s recommended to use Haskind’s [27] and Reissner’s [26] models for a better

estimation of aerodynamic loads and flutter boundary in compressible flow.

H = 0, Ḣ > 0 H = 10−3m, Ḣ = 0 H = 0, Ḣ < 0 H = −10−3m, Ḣ > 0

Figure 5.3: Pressure contours of a harmonically plunging plate at M = 0.5 and K = 3.
The plate forms a single dipole source with wavelength λa

2b
= 2.

H = 0, Ḣ > 0 H = 10−3m, Ḣ = 0 H = 0, Ḣ < 0 H = −10−3m, Ḣ > 0

Figure 5.4: Pressure contours of a harmonically plunging plate at M = 0.5 and K = 9.
Three dipole sources are present along the plate surface.

H = 0, Ḣ > 0 H = 10−3m, Ḣ = 0 H = 0, Ḣ < 0 H = −10−3m, Ḣ > 0

Figure 5.5: Pressure contours of a harmonically plunging plate at M = 0.5 and K = 15. A
total number of five dipole sources are present along the plate surface with short wavelength.

Figures 5.3 - 5.5 show the contours of the traveling pressure waves around the flat plate at

selected oscillation cycle times at M = 0.5. As shown in figure 5.3, the plate forms a single
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dipole source radiating pressure waves of wave length λa
2b
≈ 2. This result agrees to the

classical aerodynamic noise theory where the plate surface forms a dipole source if its chord

is small compared to the wavelength [62, 63]. Figures 5.4 and 5.5 clearly show that as the

oscillation frequency increase, the wave length decrease and the number of dipole sources

distributed along the plate surface increase.

Interestingly, it can be inferred from the previous results and discussion that as the number of

dipole sources, distributed along the plate chord, increase (wave length decrease), the phase

difference between the aerodynamic loads and the plate motion decrease. In the context of

the aerodynamics noise theory, it’s convenient to split the domain of oscillation frequency

into three sections. In the first section, the wave length is large and the fluid around the

airfoil is considered incompressible. For the second section, where plate acts as a single

dipole source and the phase difference is significant. Finally, the third section have a small

phase lag and the plate utilizes multiple dipole sources. Based on the simulation results of

the three Mach numbers, It’s important to mention that as M increase, the upper frequency

limit of the first two sections decrease and the lower limit of the third section increase.

Before proceeding to investigate the compressible circulatory and non-circulatory frequency

response, it’s important to discuss some recent developments concerning this classification.

The classification of the unsteady aerodynamic lift into circulatory and non-circulatory com-

ponents was introduced by Theodorsen [8]. Since then, this classification was used by the

pioneers in their research and was extended to account for compressibility and viscosity ef-

fects [26, 27, 64, 65, 66]. The non-circulatory component designate the force required to

move (accelerate) the airfoil and its surrounding air and corresponds to flow without cir-

culation. To satisfy the Kutta condition at the trailing edge, circulatory component was

added. Taha [10], intensively discussed this classification and pointed out that the circu-

latory lift isn’t lift due to circulation and showed a phase lag between the development of

the circulatory lift and circulation in the case of potential flow. He showed the deficiency of
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Theodorsen function to represent a real dynamical system. Taha also manifested that the

non-circulatory component encounters some circulation due to viscosity resulting in a phase

difference between CFD computations and Theodorsen predictions.

5.3 Compressible Circulatory Lift Frequency Response

Function

The transfer function defined as the ratio of the circulatory lift to the quasi-steady lift is

usually declared as circulatory lift frequency response function. As the simulation results are

expressed as a time history of the total lift, we adopt the procedure followed by Taha [66]

in determining the viscous lift frequency response function. Taha extended the unsteady

inviscid aerodynamic theory to account for viscosity and showed that viscosity induces a

higher phase lag compared to Theodorsen’s [8] estimation. Fourier transform is utilized to

express the total lift in a complex form L̂H . Using Reissner’s [26] prediction of the non-

circulatory lift (3.28), the circulatory lift is obtained by subtracting the non-circulatory lift

from the total lift. In the case of plunging motion, the quasi-steady lift have the form

LQS = 2πiρoU
2bKHeiωt. Finally, the resulting circulatory lift is divided by the quasi-steady

lift to obtain the compressible frequency response function Cv(K) = LC,H/LQS.

Figure 5.6 shows the compressible circulatory lift frequency response for two different Mach

numbers, M = 0.35 and M = 0.6 using Reissner’s [26] and Haskind’s [27] formulations.

Figure 5.6 also shows the general Theodorsen [8] lift frequency response function and CFD

results for comparison. The frequency response function magnitude decrease as M increase

and K increase. In other words, the high frequency gain Khf decrease as M increase. The

CFD results agree to the theoretical results in magnitude and phase and shows a significant

phase difference compared to Theodorsen results.
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Figure 5.6: (Solid lines) Theoretical circulatory frequency response function compared to
Theodorsen [8] and CFD results at different Mach numbers. The high frequency gain and
phase lag are notably different from Theodorsen prediction.

5.4 Compressible Non-Circulatory Frequency Response

Function

According to the unsteady, inviscid, incompressible aerodynamic theory, the noncirculatory

loads responds instantaneously to the airfoil motion with a constant 90o phase difference.

In the context of the present research, it would be interesting to study the effect of com-

pressibility on the non-circulatory lift. As stated by Theodorsen [8], the non-circulatory

loads in the case of plunging motion can be expressed as LNC,H = πρb2Ḧ. Figure 5.7 shows

a time history of Reissner’s [26], compressible, lift computation compared to Theodorsen,

incompressible, counterpart. As shown in the figure, compressibility triggers a phase lag

(dynamics) between the lift generation and the airfoil motion compared to Theodorsen’s lift.
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Figure 5.7: Comparison between Theodorsen [8] non-circulatory lift and Reissner compu-
tations. The lift is normalized by the maximum lift. This cycle is computed at M = 0.5 and
K = 3.

Figure 5.8 shows a the non-circulatory, compressible, transfer function at different Mach

numbers. As Reissner and Haskind formulations regarding the non-circulatory loads are

identical, Reissner [26] results are only presented. Similar to circulatory frequency response

function , the magnitude of non-circulatory frequency function decrease as M increase. The

phase lag is remarkable at low reduced frequencies. It’s interesting to notice that The phase

lag is almost independent of k for k > 10 regardless of the Mach number value.
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Figure 5.8: Compressible non-circulatory frequency response function and phase at differ-
ent Mach numbers using Reissner [26] formation. The magnitude of the transfer function
decrease as M increase.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The present thesis provided some fundamental understanding of the unsteady loads in com-

pressible flow. The literature review in chapter 1 showed that deep understanding of the

aerodynamic loads in unsteady compressible flow isn’t well established. Reissner and Haskind

provided unsteady, compressible, models that can distinguish between the circulatory and

the non-circulatory contributions. From the results presented in chapter 5, we have the

following conclusions

1. The total lift magnitude decreases as the Mach number increases. The compressibility

effect is trivial for small frequency values. However, the compressibility effect is signif-

icant at high frequencies. Contrary to incompressible aerodynamic theories, the total

lift phase approaches zero for large reduced frequency.

2. Using Prandtl-Glauert transformation to generalize the unsteady, incompressible, the-

ories fails to capture the significant phase difference between the aerodynamic loads
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and the plate motion.

3. Radiating pressure waves of wavelength larger than the plate chord, the oscillating

plate acts as a single dipole source and encounters a remarkable phase lag. As the

frequency increases, the number of dipole sources, distributed along the plate chord,

increase and the associated phase lead decreases.

4. The circulatory lift frequency response function magnitude decreases, and its dc gain

increases as M increases. The function magnitude is independent of k for high reduced

frequency values.

5. The non-circulatory lift transfer function encounters a notable phase lag at high K

values.

6.2 Future Work

The fundamental concepts and ideas discussed in this thesis can assist to form a basis for

future research. It would be interesting to extend the two-dimensional theory to consider the

span wise effects. Capturing the amount of energy radiated to infinity using conservation of

energy principle can improve the understanding of the pressure waves nature.

Viscosity will, definitely, induce additional phase lag. So, extending the theory to account

for viscosity can estimate a more accurate flutter boundary and allows for investigating the

free stream turbulence on the aerodynamic loads. Finally, it’s important to investigate the

impact of different degrees of motion on the aerodynamic loads.
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[9] Ülgen Gülçat. Fundamentals of modern unsteady aerodynamics. Springer, Cham,
Switzerland, 2021.

[10] Haitham E Taha and Amir S Rezaei. On the dynamics of unsteady lift and circulation
and the circulatory-non-circulatory classification. In AIAA Scitech 2019 Forum, page
1853, 2019.

[11] WP Jones. Oscillating wings in compressible subsonic flow. Technical Report R.M 2855,
British Aeronautical Research Council, London,England, October 1951.

[12] John W Miles. Quasi-stationary airfoil theory in subsonic compressible flow. Quarterly
of Applied Mathematics, 8(4):351–358, 1951.

52



[13] A.I. Van De Vooren. Unsteady airfoil theory. In Advances in Applied Mechanics, vol-
ume 5, pages 35–89. Elsevier, 1958.

[14] Camillo Possio. L’azione aerodinamica sul profilo oscillante in un fluido compressibile
a velocita iposonora. L’aerotecnica, 18(4):441–458, 1938.

[15] R.A Frazer and Sylvia W. Skan. Possio’s subsonic derivative theory and its application
to flexural-torsional wing flutter parts 1. Technical Report 2553, ARC-RM, London,
England, 1951.

[16] Th Schade. Numerical solution of the possio integral equation of the oscillating aerofoil
in a two-dtiensional subsonic flow. part iv-numerical part. reps. and translations no.
846. British MAP V61kenrode, 1947.

[17] Dietze. The air forces for the harmonically oscillating aerofoil in a compressible medium
at subsonic speeds: Two-dimensional problem. ARC, 10(219), 1946.

[18] Kussner H.G. General airfoil theory. Technical Report 979, NACA, 1941.

[19] L. Prandtl. General considerations on the flow of compressible fluids. Technical Report
805, NACA, 1936.

[20] John W Miles. A note on a solution of possio’s integral equation for an oscillating airfoil
in subsonic flow. Quarterly of Applied Mathematics, 7(2):213–216, 1949.

[21] Charles E Watkins, Harry L Runyan, and Donald S Woolston. On the kernel function
of the integral equation relating the lift and downwash distributions of oscillating finite
wings in subsonic flow, volume 1234. National Advisory Committee for Aeronautics,
1954.

[22] IT Minhinnick. Subsonic aerodynamic flutter derivatives for wings and control surfaces
(compressible and incompressible flow. Technical Report 87, British R.A.E, 1950.

[23] W Prichard Jones. The oscillating aerofoil in subsonic flow. Technical Report R.M
2921, Aeronautical Research Council, 1953.

[24] Reinier Timman. Beschouwingen over de luchtkrachten op trillende vliegtuigvleugels.
PhD thesis, Technische Hogeschool te Delft, Delft, Netherlands, 1946.

[25] Reinier Timman and Adriaan Isak Van de Vooren. Theory of the Oscillating Wing with
Aerodynamically Balanced Control Surface in a Two-Dimensional, Subsonic, Compress-
ible Flow. Nationaal Luchtvaartlaboratorium, 1949.

[26] Eric Reissner. On the application of mathieu functions in the theory of subsonic com-
pressible flow past oscillating airfoils. Technical Report 2363, NACA, Washington,USA,
May 1951.

[27] MD Haskind. Oscillations of a wing in a subsonic gas flow. prikl. mat. i mekh. moskow
xi, 1, 129–146 (1947). Russian Air Material Command and Brown Univ. Translation
A9-T, 22.

53



[28] A.E Billington. Harmonic oscillations of an aerofoil in subsonic flow. Technical Report
A 65, Australian Aeronautical Research Lab, Australia, 1949.

[29] Bernard Mazelsky. Theoretical aerodynamic properties of vanishing aspect ratio har-
monically oscillating rigid airfoils in a compressible medium. Journal of the Aeronautical
Sciences, 23(7):639–652, 1956.

[30] DJ Hofsommer. Systematic representation of aerodynamic coefficients of an oscillating
aerofoil in two-dimensional incompressible flow. Technical Report F 61, NLL, 1950.

[31] HG Küssner. A general method for solving problems of the unsteady lifting surface
theory in the subsonic range. Journal of the Aeronautical Sciences, 21(1):17–26, 1954.

[32] R Timman, AI Van de Vooren, and JH Greidanus. Aerodynamic coefficients of an
oscillating airfoil in two-dimensional subsonic flow. Journal of the Aeronautical Sciences,
18(12):797–802, 1951.
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Appendix A

Derivation of Coefficient Im in Eqn. 3.31

Im =

∫ π

0

e−iµ cos ζ sin ζ sem(ζ) dζ =
1

2

∞∑
n=1

Bmn

∫ π

0

e−iµ cos ζ [cos (n− 1)ζ − cos (n+ 1)ζ]

=
π

2

∞∑
n=1

Bmn

[
−i(n+1)Jn−1(−µ)− i(n+1)Jn+1(−µ)

]
=
π

2

∞∑
n=1

Bmn i(n+1)

[
2n

µ
Jn(−µ)

]
=
π

µ

∞∑
n=1

n (−1)n i(n+1)Jn(µ)

(A.1)
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Appendix B

Analytical Solution of The Infinite Integral in Eqn. 3.38

The solution of the integral
∫∞
0
e−iν cosh ζMc

(4)
m (ζ) sinh ζ dζ will Begin by expressing

Radial mathieu equation of the forth kind in terms of hankel function of the second kind.

The integral will then have the form

∫ ∞
0

e−iν cosh ξMc(4)m (ξ) sinh ξ dξ =
∞∑
r=0

(−1)rA(n)
r

∫ ∞
0

e−iν cosh ξH(2)
r (2
√
q cosh ξ) sinh ξ dξ

(B.1)

Changing the variables to be expressed as u = cosh ξ, du = − sinh ξ dξ. Equation B.1 will

be as follows

∫ ∞
0

e−iν cosh ξMc(4)m (ξ) sinh ξ dξ = −
∞∑
r=0

(−1)rA(n)
r

∫ ∞
0

e−iν uH(2)
r (2
√
q u) du (B.2)

Hankel function can be expressed as a linear summation of bessel functions as

H(2)
r = Jr(z)− i Yr(z) (B.3)
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where

Jr(z) =
(z

2

)r ∞∑
k=0

(−1)k

(
z2

4

)k
k! Γ(r + k + 1)

(B.4)

Yr(z) = −(z/2)−r

π

r−1∑
k=0

(r − k − 1)!

k!

(
z2

4

)k
+

2

π
ln (

z

2
) Jr(z)

−(z/2)r

π

∞∑
k=0

[ψ(k + 1) + ψ(r + k + 1)]

(
−z2
4

)k
k! (r + k)!

(B.5)

Substituting Eqns.[ B.3-B.5] into Eqn. B.2 and for simplicity the resulting terms will be

referred to as I1, I2, I3 and I4 respectively.

I1 =

∫ ∞
0

e−iνu

[
(
√
qu)r

∞∑
k=0

(−1)k
(qu2)k

k! Γ(r + k + 1)!

]
du

= (
√
q)r

∞∑
k=0

(−1)k
(
√
q)2k

k! Γr + k + 1

∫ ∞
0

e−iνuur+2kdu

= (
√
q)r

∞∑
k=0

(−1)k
(
√
q)2kΓ(r + 2k + 1)

k! Γ(r + k + 1) (iν)(r+2k+1)

(B.6)

I2 =

∫ ∞
0

e−iνu

[
(
√
qu)−r

π

r−1∑
k=0

(r − k − 1)! (qu2)2

k!

]
du

=
(
√
q)−r

π

r−1∑
k=0

(r − k − 1)!

k!
(q)k

∫ ∞
0

e−iνuu2k−r

=
(
√
q)−r

π

r−1∑
k=0

(
√
q)2k(r − k − 1)! Γ(2k − r + 1)

k! (iν)(2k−r+1)

(B.7)
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where r > 1. Convergence limit for Eqn. B.7 is |iν| > |√q|.

I3 =
2

π

∫ ∞
0

e−iνu ln (
√
qu)

[
(
√
qu)r

∞∑
k=0

(−1)k(qu2)k

k!Γ(r + k + 1)

]
du

=
2(
√
q)r

π

∞∑
k=0

(−1)k(
√
q)2k

k! Γ(r + k + 1)

∫ ∞
0

e−iνu ln (
√
qu) u(r+2k)

=
2(
√
q)r

π

∞∑
k=0

(−1)k(
√
q)2k

k! Γ(r + k + 1)

[
ln (
√
q)Γ(r + 2k + 1)

(iν)(r+2k+1)
+

∫ ∞
0

e−iνu ln (u) u(r+2k)du

] (B.8)

Introducing a change of variables to the infinite integral in the form

let R = iνu, u = −iR
ν
, du = − i

ν
dR (B.9)

Using Eqn. B.9

∫ ∞
0

e−iνu ln (u) u(r+2k)du =

(
−i
ν

)(r+2k)+1 ∫ ∞
0

e−R ln

(
R

iν

)
R(r+2k) dR

=

(
−i
ν

)(r+2k+1) [
Γ
′
(r + 2k + 1)− ln

(
−i
ν

)
Γ(r + 2k + 1)

] (B.10)

where Γ
′

is the derivative of Gamma function. Substituting Eqn. B.10 into Eqn. B.8, I3 will

be in the form

I3 =
2(
√
q)r

π

∞∑
k=0

(−1)k
(
√
q)2kΓ(r + 2k + 1)

k! Γ(r + k + 1)[
ln (
√
q)

(iν)r+2k+1
+

(
−i
ν

)(r+2k+1)(
ψ(r + 2k + 1)− ln

(
−i
ν

))] (B.11)

I4 =

∫ ∞
0

(
√
q u)r

π
e−iνu

∞∑
k=0

(−qu2)k

k! (r + k)!
[ψ(k + 1) + ψ(r + k + 1)]

=
∞∑
k=0

−
(
√
q)(r+2k) Γ(r + 2k + 1)

π k! (r + q)! (iν)(r+2k+1)
[ψ(k + 1) + ψ(r + k + 1)]

(B.12)
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Substituting Eqns. B.6,B.7,B.8 and B.12 into Eqn. B.1, the infinite integral will have the

form

∫ ∞
0

e−iν cosh ξMc(4)m (ξ) sinh ξ dξ = −
∞∑
r=0

(−1)rA(n)
r [I1 − i(I2 + I3 − I4)] (B.13)
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Appendix C

Analytical solution on Infinite integral in Eqn. 3.44.

For simplicity cos ζ in Eqn. 3.44 will be replaced by x.

f(x) = e−iνx
∫ 1−x

∞
e−iνξH

(2)
0 (κξ) dξ (C.1)

expressing H
(2)
o (z) as a linear combination of Bessel functions in the form H

(2)
o (z) = Jo(z)−

i Yo(z) where

Jo(z) =
∞∑
m=0

(−1)m(z/2)2m

m! Γ(m+ 1)

Yo(z) = − 1

π

n−1∑
m=0

(−m− 1)!

m!

(
z2

4

)m
+

2

π
Jo(z) ln (z/2)− 2

π

∞∑
m=0

(
−z2
4

)
m! m!

ψ(m+ 1)

(C.2)

The first summation of Yo(z) vanishes as the function order is zero (n = 0). Changing the

variables of Eqn. C.1 as follows

κξ = z, dξ =
dz

κ
, , ξ = 1− x→ z = ν(1− x), ξ =∞→ z =∞ (C.3)

Substituting Eqns. C.2 and C.3 into Eqn. C.1 and labeling the resulting term as L1, L2 and
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L3, then

L1 =

∫ ∞
κ(1−x)

e−
iνz
κ

∞∑
m=0

(−1)m (z/2)2m

m! Γ(m+ 1)
=

∞∑
m=0

(−1)m (0.5)2m

m! Γ(m+ 1)

∫ ∞
κ(1−x)

e−
iνz
κ z2m dz

=
∞∑
m=0

(−1)m(0.5)2m Γ(2m+ 1, ν(1− x))

m! Γ(m+ 1) ( iν
κ

)(2m+1)

(C.4)

L2 =
2

π κ

∫ ∞
κ(1−x)

e(
−iνz
κ

)

∞∑
m=0

(−1)m (0.5)2m

m! Γ(m+ 1)
ln
(z

2

)
dz

=
2

π κ

∞∑
m=0

(−1)m (0.5)2m

m! Γ(m+ 1)

[
− ln (2)

∫ ∞
κ(1−x)

e
−iν
κ
zz2mdz +

∫ ∞
κ(1−x)

e
−iν
κ
zz2m ln (z)dz

] (C.5)

Applying appropriate change of variables and with the aid of Leibniz integral rule, the second

integral of Eqn. C.5 can be expressed as

∫ ∞
κ(1−x)

e
−iν
κ
zz2m ln (z)dz =

( κ
iν

)(2m+1)
[

1

2

d

dm
Γ(2m+ 1, iν(1− x)) + ln

( κ
iν

)
Γ(2m+ 1, iν(1− x))

]
(C.6)

Substituting Eqn. C.6 into Eqn. C.5, L2 have the form

L2 =
2

π κ

∞∑
m=0

(−1)m (0.5)2m

m! Γ(m+ 1)
×[

− ln (2)

(
iν

κ

)(−2m−1)

+
( κ
iν

)(2m+1)
(

1

2

d

dm
Γ(2m+ 1, iν(1− x)) + ln

( κ
iν

)
Γ(2m+ 1, iν(1− x))

)]
(C.7)

where

d

dm
Γ(2m+1, iν(1−x)) = 2×

[
Γ(2m+ 1, iν(1− x)) ln (iν(1− x)) +G 3 0

2 3

(
1, 1

0, 0, (2m+1)

∣∣∣iν(1− x)
)]

(C.8)
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L3 =
2

π

∞∑
m=0

ψ(m+ 1) (−0.25)m

(m!)2

∫ ∞
κ(1−x)

e
−iν
κ

zz2mdz =
2

π

∞∑
m=0

ψ(m+ 1) (−0.25)mΓ(2m+ 1, ν(1− x)

(m!)2 (ν/κ)(2m+1)

(C.9)

Finally, from Eqns. C.1, C.4, C.7 and C.9 the function f(x) can be expressed as

f(x) = e−iνx
∫ 1−x

∞
e−iνξH

(2)
0 (κξ) dξ =

−1

κ
e−iνx [L1 − i (L2 − L3)] (C.10)
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