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Abstract of the Dissertation

Front-To-End Bidirectional Heuristic Search

by

Joseph Kelly Barker

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Richard E. Korf, Chair

Bidirectional heuristic search is a well-known technique for solving pathfinding

problems. The goal in a pathfinding problem is to find paths—often of lowest

cost—between nodes in a graph. Many real-world problems, such as finding the

quickest route between two points in a map or measuring the similarity of DNA

sequences, can be modeled as pathfinding problems.

Bidirectional brute-force search does simultaneous brute-force searches forward

from the initial state and backward from the goal states, finding solutions when

both intersect. The idea of adding a heuristic to guide search is an old one, but

has not seen widespread use and is generally believed to be ineffective.

I present an intuitive explanation for the ineffectiveness of front-to-end bidi-

rectional heuristic search. Previous work has examined this topic, but mine is the

first comprehensive explanation for why most front-to-end bidirectional heuristic

search algorithms will usually be outperformed by either unidirectional heuris-

tic or bidirectional brute-force searches. However, I also provide a graph wherein

bidirectional heuristic search does outperform both other approaches, as well as

real-world problem instances from the road navigation domain. These demonstrate

that there can be no general, formal proof of the technique’s ineffectiveness.
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I tested my theory in a large number of popular search domains, confirming

its predictions. One of my experiments demonstrates that a commonly-repeated

explanation for the ineffectiveness of bidirectional heuristic search—that it spends

most of its time proving solution optimality—is in fact wrong, and that with a

strong heuristic a bidirectional heuristic search tends to find optimal solutions

very late in a search.

Finally, I introduce state-of-the-art solvers for the four-peg Towers of Hanoi

with arbitrary initial and goal states, and peg solitaire, using disk-based, bidirec-

tional algorithms. The Towers of Hanoi solver is a bidirectional brute-force solver

which, as my theory predicts, outperforms a unidirectional heuristic solver. The

peg solitaire solver is a bidirectional heuristic algorithm with novel heuristics.

While my theory demonstrates that bidirectional heuristic search is generally in-

effective, the peg solitaire domain demonstrates several caveats to my theory that

this algorithm takes advantage of.
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We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

˜ T S Eliot, Four Quartets ˜
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CHAPTER 1

Introduction

One of the fundamental realizations in the field of artificial intelligence is that

problem solving can be viewed as a search of a large space of possible solutions.

We call this abstract space a problem space [New80]. A problem space is a graph

that encodes states—configurations of the problem to be solved—and how one

state can be transformed into another. This powerful idea lets us apply very

general algorithms to very different types of problems. Problem solving becomes

a search through a space of candidate solutions to find one that solves the original

problem.

The field of heuristic search is concerned with finding algorithms that can

efficiently search these problem spaces. It considers general-purpose algorithms

that find solutions to real world problems represented as a problem space. The

primary challenge in developing these algorithms is that problem spaces are often

quite large. The problem-space graph of the well-known Rubik’s Cube puzzle, for

example, has 8!×37×(12!/2)×211 ≈ 4.3×1019 unique states [SSH09]. If a computer

were able to explore ten million nodes per second, it would take over 100,000 years

to perform a complete exploration of the Rubik’s Cube problem-space graph.

Some heuristic search approaches, known as local-search techniques, try to find

good solutions quickly without proving optimality. In this dissertation, however,

I am concerned with optimal algorithms, which are guaranteed to find the best

possible solution if one exists. To do so, these algorithms must either explore the

1



entire search space, or prove that parts of the search space need not be explored

to find and verify an optimal solution.

Heuristic search research is broadly broken down into three main categories:

game playing, constraint-satisfaction problems, and pathfinding problems. Game-

playing domains are those in which two or more players compete to win a game,

such as chess, checkers, or go. A heuristic-search algorithm for a two-or-more

player game tries to find an optimal strategy for one of the players, where a

strategy gives the best possible response that player could make to any move

their opponent might make. In a constraint-satisfaction problem, the goal is to

find a complete assignment of values to a set of variables that does not violate

some given constraints. A well-known example is the Sudoku puzzle, which is

played on a 9× 9 grid, which is further divided into nine 3× 3 subgrids. The goal

of the game is to fill the grid with the digits one through nine, subject to the

constraint that no digit may be repeated in any row, column, or 3× 3 subgrid. A

heuristic-search algorithm tries to find a state in the problem space representing

a complete assignment of values to variables that does not violate the constraints.

The final category, and the one studied in this paper, is that of pathfinding

problems. In these problems, the goal is to find a path between two states in a

problem space. Examples include the road navigation problem, where the goal is

to find a path between two points on a map, and puzzles like the Rubik’s Cube,

where the goal is to find a sequence of moves that transform a scrambled initial

state into a solved state.

Heuristic search algorithms use a number of approaches to reduce the amount

of the problem-space graph explored so that the search can be completed in a

tractable amount of time. The primary method is through the use of heuristics, or

informed guesses, which an algorithm can use to restrict search to more promising

regions and entirely avoid exploring regions that can provably not be part of a

satisfying solution. An example of a heuristic is the use of Euclidean distance in

2



the road navigation domain. The straight-line distance between two points roughly

approximates the distance of a shortest path between two points on a map, even

if the true optimal path is less direct.

Another search method, specific to pathfinding problems, is bidirectional search.

A unidirectional search explores outwards from the initial state and tries to find a

path to a goal state. A bidirectional search, however, does simultaneous searches

from the initial and goal states, looking for solution paths that are the concate-

nation of paths generated in the forward and reverse directions. A bidirectional

search has the potential to find a solution and stop faster than a unidirectional

search, thereby avoid exploring much of the problem-space graph.

The idea of combining these two techniques to form a bidirectional heuristic

search was introduced as early as 1971 with the Bidirectional Heuristic Path Al-

gorithm (BHPA) [Poh71]. Like many of the algorithms that were introduced since

then, BHPA is a front-to-end bidirectional heuristic search. Front-to-end algo-

rithms, discussed more thoroughly in Chapter 3, use the same heuristic evaluation

function that would be used in a unidirectional heuristic search, and are the most

straightforward implementation of a bidirectional heuristic search. Some bidirec-

tional heuristic algorithms use front-to-front heuristic evaluations to increase the

accuracy of the heuristic over what would be obtained in a unidirectional search.

Bidirectional algorithms using front-to-front heuristic evaluations are the state-

of-the-art in some domains, such as the 24 puzzle [FMS10].

Intuitively, one would expect front-to-end bidirectional heuristic search to be

an effective search technique. It combines two independent and effective tech-

niques for reducing search complexity: heuristics and bidirectional search. It is

also the most straightforward way of combining these techniques. Despite the in-

troduction of BHPA and several others since, however, front-to-end bidirectional

heuristic search has not proven to be very effective and is rarely used. While a 1997

result [KK97] proved the ineffectiveness of the algorithm BHPA, the question of

3



why front-to-end bidirectional heuristic search as a general approach is ineffective

has remained an open problem.

1.1 Pathfinding Problems

The goal in a pathfinding problem is to find a path—often of lowest cost—between

an initial node and a goal node in a problem-space graph. The problem-space

graph models states, which are legal configurations of the problem, and operators,

which transform one state into another. A path in the graph corresponds to a

sequence of operators that transform the initial state into a goal state.

Formally, a problem-space graph for a pathfinding problem consists of states

connected by operators. Nodes in the graph represent states while edges connecting

nodes are operators that transform one state into another. An operator between

two states is reversible if applying the operator to a state results in a different

state and applying it in reverse to the resultant state yields the original state. If

an operator is reversible then the edge representing it is undirected. If not, the

operator is a directed edge from the state to which it is applied to the state that

results. Each edge has an associated cost of applying that operator.

An instance of a pathfinding problem defines an initial state and a set of one

or more goal states. A pathfinding algorithm then tries to find a path between the

initial state and a goal state. The cost of the path is defined as a function of the

costs of its constituent edges. In most cases, the cost of a path is the sum of its

edge costs, but some domains use different functions, such as the maximum cost

of any edge on the path [DK07]. Often, the goal of a pathfinding problem is to

find an optimal solution, which is usually defined as a minimum cost path from

the initial state to a goal state.

A simple problem that can be represented as a pathfinding problem is the road

navigation problem, which is the problem of finding a route between two locations
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on a map. The problem space represents the road network as a graph: nodes in

the problem-space graph are intersections on a map that a road can occupy, and

edges are road segments connecting two adjacent intersections. A path between

two nodes in this graph corresponds to a route that a road can take between the

two corresponding locations in the actual road network. The cost associated with

each edge might be the time taken to traverse the corresponding road segment

when traveling at the speed limit. The cost of a path is the sum of these costs,

and thus a lowest-cost path between two nodes is a fastest route between two

locations on the road network.

Figure 1.1: Part of the problem-space graph for the 15-puzzle.

Less obviously, puzzle games such as the 15 puzzle can be represented as

pathfinding problems. The 15 puzzle is played on a 4 × 4 grid. Each position

on the grid is occupied by tiles numbered from 1 to 15, with one location left

empty, called the blank. A legal move is to move any tile adjacent to the blank

into the blank position, after which the blank is in the position previously occupied
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by the moved tile. The goal is to arrange the tiles in ascending numerical order

from left to right, top to bottom.

In this kind of problem, nodes in the problem-space graph represent legal

configurations of the puzzle, while edges are moves that transform one configura-

tion into another. The goal is then to find a path that connects the initial node

(corresponding to a random initial puzzle configuration) to the goal node (the

solved puzzle configuration). The sequence of edges traversed on this path in the

problem-space graph corresponds to a sequence of moves that would transform

the initial randomized puzzle into the goal configuration.

Figure 1.1 shows a small portion of the problem-space graph of the 15 puzzle.

The three states shown are unique configurations of the tiles on the board. The

double-ended arrows between them are operators that transform one state into

another, corresponding to sliding a tile into the adjacent blank position.

1.2 Dissertation Overview

This dissertation is an exploration of front-to-end bidirectional heuristic search.

Its main contribution is a theory of why front-to-end bidirectional heuristic search

will rarely be effective. This theory is an intuitive explanation which shows that

bidirectional search and heuristics in general prevent a pathfinding algorithm from

exploring the same regions of the problem-space graph. Thus, combining the two

techniques provides no improvement over using just the stronger of the two tech-

niques on a given problem domain.

In addition, I provide an example of a graph in which front-to-end bidirectional

heuristic search is effective, and show that it can produce an arbitrarily large re-

duction in search over both unidirectional heuristic search and bidirectional brute-

force search done independently. I also show that there exist real-world examples

of these pathological cases in instances of the road navigation domain. This shows
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that there cannot be a proof that front-to-end bidirectional heuristic search will

never be effective. An informal theory showing that bidirectional heuristic search

will rarely be effective is the strongest general claim that can be made.

I support this theory with extensive evidence from all of the main pathfinding

domains studied in the heuristic search literature. This data supports the claims of

my theory, demonstrating that it successfully shows why front-to-end bidirectional

heuristic search is not usually effective in most search domains.

This data also shows that my theory predicts when unidirectional heuristic

search or bidirectional brute-force search will be more effective, as well as when

pathological cases may allow a bidirectional heuristic search to outperform either

one. I empirically show that even though these pathological cases exist in practice,

the overall improvement in performance they provide is small.

In my experiments, I tested a commonly-repeated claim of why front-to-end

bidirectional heuristic search is ineffective in practice: that it tends to find an opti-

mal solution very early in search and spend most of its time proving that solution’s

optimality. My experiments refute this claim, and show that with strong heuristics

an optimal solution actually tends to be found quite late in the search. This re-

inforces the fact that previous explanations for the ineffectiveness of bidirectional

heuristic search are incomplete.

My dissertation also presents novel state-of-the-art solvers for two search do-

mains: peg solitaire and the four-peg Towers of Hanoi with arbitrary initial and

goal states. Given the weakness of the heuristic used in the Towers of Hanoi, my

theory predicts that a bidirectional brute-force search will outperform a unidirec-

tional heuristic search. Indeed, I show that a bidirectional brute-force search is

the state-of-the art solver in this domain.

My solver for peg solitaire is a front-to-end bidirectional heuristic search. While

my theory predicts that front-to-end bidirectional heuristic search is almost never
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effective, peg solitaire demonstrates some caveats to this theory. These caveats

combine to make it a search space where front-to-end bidirectional heuristic search

can improve over both unidirectional heuristic search and bidirectional brute-force

search.
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CHAPTER 2

Heuristic Search In Pathfinding

Two example domains discussed in this chapter are the 15 and 24 puzzles, which

are variants of the well-known sliding tile puzzles invented by Sam Loyd in the

1870s [Loy59]. The puzzles are played on an n×n grid. Each position on the grid

is occupied by tiles numbered from 1 to n2−1, with one location left empty, called

the blank. A legal move is to move any tile adjacent to the blank into the blank

position, after which the blank is in the position previously occupied by the moved

tile. The goal is to rearrange the tiles from a scrambled initial configuration into

a goal configuration where the tiles are in ascending order from left to right, top

to bottom. Figure 2.1 shows the goal positions in both puzzles.

Figure 2.1: Goal positions of the 15 and 24 puzzles.

It is very easy to define problem spaces for domains such as those I consider

in this dissertation. The size of the problem spaces described, however, can be

extremely large. For example, there are 25!/2 unique reachable configurations of

the 24 puzzle, equivalent to approximately 7.75∗1024 states in the problem space.
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An algorithm that explores the entire problem space to solve a problem would

take a prohibitively long time to solve it. The challenge of search algorithms is

thus to reduce the portion of the problem space that must be explored in solving

a problem.

The simplest algorithms for finding a path through a problem space are brute-

force searches. A brute-force search does a systematic exploration of the problem

space, without using any domain-specific knowledge to guide search, until a path

to a goal is found. Two simple and well-known brute-force searches are breadth-

first search and depth-first search. A brute-force algorithm to find any solution

path can terminate as soon as it finds the first path between an initial and a goal

state. To find an optimal solution, however, a brute-force search must find an

optimal solution and prove that no solution of lesser cost exists. To do so, it must

explore every possible path from the initial state whose cost is lower than the

optimal solution cost, and verify that none of them lead to a goal with a cheaper

cost than the best solution found so far.

A heuristic search uses domain specific knowledge to explore less of the prob-

lem space than a brute-force search when finding optimal solutions. It uses a

heuristic—an estimate of solution cost—to prevent an algorithm from exploring

portions of the search space that provably cannot be part of an optimal solu-

tions. Some algorithms, such as A* [HNR68], use the heuristic to queue nodes for

expansion after an optimal solution has been found, if they provably cannot be

part of an optimal solution. Others, such as IDA* [Kor85], use the heuristic to

explicitly prune nodes that cannot be part of an optimal solution. In either case,

provably suboptimal nodes are not explored. By doing so these algorithms can

solve significantly larger problems than can be addressed by a pure brute-force

approach.
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2.1 Fundamental Concepts

Because the problem spaces addressed in many search problems are far too large

to fit entirely in memory, search algorithms generally do not operate on an explic-

itly represented graph. Rather, they operate on an implicit graph, and construct

portions of the graph as they are explored. The act of representing a node of the

search graph in memory is called generating a node. Expanding a node means

to generate all of the children of a node. The performance of different search al-

gorithms is often accounted for by the number of nodes expanded or generated,

which is independent of the performance characteristics of the computer they are

run on.

I use the term state to refer to the abstract concept of a problem configuration

in a problem space. Each state is unique. A node refers to a representation of a

state as discovered during search. In general, it is possible to reach a state in a

problem-space graph via different paths. For example, if two moves in a puzzle

can be made in either order and result in the same puzzle configuration, the cor-

responding state in the problem space graph can be reached through two different

paths. The two different nodes generated at the end of each path correspond to

the same state in the problem space. When two or more nodes are generated in a

search that correspond to the same state, we call these duplicate nodes. If a search

algorithm generates a duplicate node without detecting that it is a duplicate, it

may do redundant work searching past that node.

When a node is generated, some path to that node has been found from the

initial state. The cost of a path to a node is called the g cost, and the function

g(n) gives the g cost of a path to a node n.

An optimal solution in a pathfinding problem is a path to a goal with the

lowest-possible g cost. The g cost of an optimal path is referred to as C∗.
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While the g cost gives the actual cost of a path to a node from the initial

state, a heuristic function gives an estimate of an optimal cost of a path from a

node to a goal. A heuristic function of a node n is denoted h(n), and returns the

h cost of a node. If a heuristic function never overestimates the cost of the actual

lowest-cost path to a goal node—that is, it always returns a lower bound on the

optimal path cost to a goal node—we call it an admissible heuristic [Pea84].

A simple example of an admissible heuristic comes from the road navigation

domain. If we are trying to find the shortest-distance route to a certain location,

the Euclidean distance metric provides a lower bound on the optimal cost of the

remainder of a solution. The shortest-possible path from a given node to the goal

is a straight line. Any drivable path to the goal must be at least as long as the

straight line path, and so the euclidean distance is a lower bound on the remaining

solution cost from a node. Since it never overestimates this cost, it is an admissible

heuristic.

Finally, we define the f cost of a node. Given a node n we define f(n) =

g(n) + h(n). f(n) gives the total cost of a node n. With an admissible heuristic,

f(n) never overestimates the cost of a complete path to a goal that starts with

the current path from the start to n. If f(n) is greater than the optimal solution

cost, then the current path from the start to n provably cannot be part of an

optimal solution. All admissible heuristic search algorithms use this property to

avoid generating nodes with f(n) > C∗ when finding an optimal solution.

It is important to understand that, in a complete exploration of a problem

space, the h cost of an expanded node is independent of its g cost. The g cost of a

node n is the cost of the current path from the initial state to n, while the h cost

is the estimate of the remaining cost from n to a goal. The optimal path from n

to the goal is independent of the path taken to reach n so far, and the path taken

to reach n is independent of the remainder of the path taken from n to a goal. In

a heuristic search, g and h costs will be inversely correlated because nodes with
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high f costs will not be explored. In a brute-force search which does no pruning,

however, the values are independent.

2.2 Consistent Heuristics

An admissible heuristic never overestimates the cost of an optimal path from a

node to a goal. A consistent heuristic makes a stronger guarantee. If c(m,n) is

the cost of the cheapest path from m to n, then a heuristic is consistent if, for all

m and n, h(m) <= c(m,n) + h(n) [Pea84]. In other words, the heuristic estimate

from m to a goal cannot be greater than the sum of the heuristic estimate from

n to the goal plus the cost to reach n from m. This can be seen as a form of

the triangle inequality, with h(m), c(m,n), and h(n) the lengths of three different

sides of a triangle.

A consistent heuristic is also sometimes referred to as a monotone heuristic.

This is because the f cost of the children of any node n must be at least as large

as the f cost of n. The f costs of nodes on any path from the initial state to a

goal are thus monotonically non-decreasing.

A heuristic that is consistent must be admissible, however a heuristic can be

admissible and not consistent. While many natural heuristics are consistent, work

in the literature has shown that searching with inconsistent heuristics can be

effective in practice [ZSH09].

Consistent heuristics have a particular property that is relevant to this dis-

sertation. Many algorithms, such as A*, perform search by expanding nodes in

non-decreasing order of f cost. When these kinds of searches are done with a con-

sistent heuristic, the first time a node is expanded it is guaranteed to be expanded

with its lowest-possible f cost. In other words, the first time a node is expanded

we can guarantee that we have found the lowest-cost path from the initial state

to that node. This property allows us to implement several useful improvements
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when implementing bidirectional heuristic search with a consistent heuristic. This

is discussed further in Chapter 3.

2.3 Breadth-First Heuristic Search

A simple heuristic search algorithm that forms the basis for much of my work in

this dissertation is Breadth-First Heuristic Search (BFHS) [ZH06]. BFHS performs

a breadth-first search of the problem space, starting at the initial state. While

searching, BFHS maintains a global cost cutoff. When BFHS generates a node,

it computes that node’s f cost and compares it to the cost cutoff. If the f cost

exceeds the cutoff, the node is pruned and not stored or considered again during

the remainder of that iteration of the search.

The cost cutoff can be initialized to the optimal solution cost C∗ if this is

known in advance. For example, in the 4-peg Towers of Hanoi puzzle the Frame-

Stewart Algorithm [Fra41, Ste41] gives a conjectured-optimal solution, but the

algorithm’s optimality has not been proven. Finding a provably-optimal solution

still requires a search of the problem space. In this domain, the BFHS cutoff can

be initialized to the value returned by the Frame-Stewart Algorithm. Any node

whose f cost exceeds this cutoff, and the only paths found to a goal are those with

f cost less than or equal to this initial cost cutoff. Such a search would find the

solution path returned by the Frame-Stewart Algorithm, as well as any cheaper

ones that might exist.

In general, however, the solution cost is not known in advance. In these cases,

BFHS can initialize its cost cutoff to the cost of some possibly-suboptimal solu-

tion found via a non-optimal algorithm. As BFHS is a breadth-first algorithm, it

generates paths in increasing order of g cost. As such, the first solution it finds

will be of optimal cost. However, it may expand a large number of nodes with

f(n) > C∗ in doing so, performing unnecessary work. An alternative approach to
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searching when the optimal solution cost is not known in advance is discussed in

the following subsection.

2.3.1 BFIDA*

Breadth-First Iterative-Deepening A* (BFIDA*) is an iterative algorithm that

builds on top of BFHS to find the optimal cost cutoff [ZH06]. It performs a series

of BFHS searches with successively larger cutoffs. The first search is done with

a cutoff that is provably a lower bound on the optimal solution cost. With an

admissible heuristic this can be done by initializing the cutoff to the h cost of the

initial state. If a solution is found on the first BFHS iteration, it is optimal. If

not, the cutoff is incremented by setting it to the lowest f cost among nodes that

were generated but pruned in the completed iteration, and BFHS is repeated. This

continues until a solution is found. The first solution found must be of minimal

cost, since a solution has not been found when searching with all possible lower

cost cutoffs.

In most combinatorial domains, the number of nodes generated increases expo-

nentially with the cutoff used during search [Kor85]. This means that the majority

of work done in a BFIDA* search is done during the last iteration. Thus, even

though BFIDA* does duplicate work by exploring the same portion of the search

space in successive searches, it does not generate significantly more nodes than a

single BFHS search with cost cutoff initialized to C∗.

2.4 Disk-Based Search

In problem-space graphs with large numbers of cycles, a search algorithm can

generate very large numbers of duplicate nodes. If these duplicate nodes are not

detected, then the algorithm will perform significant amounts of duplicate work

by repeatedly regenerating the search tree beneath each duplicate node.
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Many search algorithms such as A* prevent the regeneration of duplicate nodes

by recording the nodes generated during search. Each time a node is generated, it

is looked up in the set of nodes already generated and discarded if present. This

allows the algorithm to avoid reexpanding nodes, but requires a large amount of

memory to store the set of nodes generated. If a problem space is particularly

large then this set will be too large to fit into the computer’s memory.

Disk-based search avoids this problem by using magnetic disk space to store

the set of generated nodes. The obvious way to store this set in memory is using

hash tables, which are randomly accessed. Magnetic disks, however, have very

poor random-access speed but very high sequential throughput. An effective disk-

based search does duplicate detection without requiring random access to the set

of previously-generated nodes.

The framework I use for doing disk-based search in my algorithms is Delayed

Duplicate Detection (DDD) [Kor08]. DDD is based on a breadth-first search of

the problem space, but no duplicate detection is done until an entire level of the

breadth-first search has been completed. When generating a breadth-first level,

each generated node is written to one or more files on disk. Once an entire level

of a breadth-first search is generated, duplicate detection of all of the nodes on

that level is done in an efficient manner.

The most straightforward way to do efficient duplicate detection on disk is

by storing each entire breadth-first level in a single file. The algorithm sorts the

nodes in the file using a disk-efficient sorting technique, such as merge sort. After

sorting, duplicate nodes occur next to each other in the file. It then does a simple

linear scan of the file, writing out each unique node to a separate file. This new file

contains all of the unique nodes on the new level, each of which must be expanded

when generating the next level of the breadth-first search.

There are more efficient and complicated methods for duplicate detection,

based on partitioning the nodes on a level based on some feature of the state rep-

16



resentation. Hash tables are then used to do duplicate detection within the nodes

of a partition. The details of this approach are discussed thoroughly in [Kor08].

As BFHS and BFIDA* are breadth-first algorithms, they are very easy to

implement using DDD. These approaches form the basis of my Towers of Hanoi

and peg solitaire solvers.

2.5 Pattern Databases

A pattern database [CS96] is a general technique for generating heuristics in many

domains. A pattern database tracks a partial representation of a problem state

and stores the optimal cost of solving any given configuration of that partial

representation, ignoring constraints placed upon it by the remainder of the state.

For example, a pattern database in Rubik’s Cube might record the location

and orientation of all of the corner cubies. Given a particular configuration of

corner cubies, the pattern database would store the minimum number of moves

required to put those cubies into the correct location and orientation for the goal

state. This ignores the effect of these moves on the remaining cubies: they are not

required to end up in their goal location or orientation.

Another example comes from the sliding tile puzzles. A pattern database in

this domain tracks the location of a specific set of tiles. It records the minimum

number of moves required to move those tiles into their goal location. The location

of the remaining tiles is not considered, and moves taken to move untracked tiles

are not counted.

The cost of solving a partial component of a state is clearly a lower bound on

the cost of solving the entire state. Any path from a state that solves the entire

state must solve all components of the state as well. Thus, the cost of solving

any component is a lower bound on the overall solution cost and is an admissible

heuristic.
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In some cases, it is possible to construct multiple pattern databases for a

problem and use the sum of the values returned by each as an admissible heuristic.

These are called additive pattern databases. This can be done if these pattern

databases track disjoint components of the problem, and only count moves made

by tracked components in their stored values. In other words, the value they store

for the number of moves to solve a partial component only counts moves that

affect only that component, and ignores moves that transform other parts of the

problem.

For example, figure 2.2 shows four pattern databases for the 24 puzzle. Each

pattern database tracks a disjoint set of tiles. For a given configuration of tiles,

these pattern databases return the number of moves required to move those tiles

into their correct position in the goal state. If the number of moves returned for a

given board configuration only counts moves made by tiles tracked by that pattern

database, then these pattern databases are additive.

I use pattern database heuristics in the solvers for many of the domains I

consider, where they are the state-of-the-art heuristics.

Figure 2.2: Tiles of the 24 puzzle partitioned into four pattern databases. The

blank tile is not tracked.
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CHAPTER 3

Front-To-End Bidirectional Heuristic Search

Most search algorithms are unidirectional, which means that they begin at the

initial state and search towards the goal states. A bidirectional approach, by con-

trast, searches simultaneously both forward from the initial state and backwards

from the goal states. When a node is generated in one direction that has already

been generated in the opposite direction, then the concatenation of the paths

found in both directions to that node is a solution path. By not doing a complete

search in the forward or reverse direction, a bidirectional search has the potential

to reduce the number of nodes expanded over a unidirectional search.

3.1 Bidirectional Brute-Force Search

The simplest bidirectional algorithm is one that does brute-force searches in both

directions. A bidirectional search must have an explicit representation of the goal

states to begin its reverse search. By contrast, a unidirectional search may only

define a condition that needs to be satisfied for a state to be a goal, allowing

us to test whether a state is a goal without having an explicit representation

of a goal state. A solution in a bidirectional search is found when a node that is

generated in one direction has already been generated in the previous direction: the

concatenation of the two paths to reach the intersecting node from both directions

is a path from the start to the goal. The simplest way to test whether this has

happened is by keeping an explicit record of the states generated in each direction

in memory, in a data structure that supports efficient lookups such as a hash table.
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In fact, a generated node can be checked against a subset of the nodes generated

in the opposite direction rather than all of them. The frontier of one direction

of search is all the nodes that have been generated in that direction but not

yet expanded. No path to a goal can pass through an expanded node without

passing through at least one of its children as well. Thus, to see if the path to a

newly-generated node can be concatenated with a path in the opposite direction

to generate a solution, we need only test if that node is in the opposite direction’s

search frontier.

The reverse search of a bidirectional search is done backwards from the goal

states towards the initial state, using the standard operators in reverse. Given an

operator o that generates state t when applied to state s, the reverse of o is an

operator or that yields s when applied to t. In some domains, the reverse of an

operator is also a legal operator in that domain: the 15 puzzle operators shown in

figure 1.1 can be applied in either direction. In other domains, an operator cannot

legally be reversed: for example, in a road navigation problem a one-way road can

only be driven in one direction. It is not necessary for operators in a domain to be

legally reversible for us to do a reverse search, only that given a state, we must be

able to determine the predecessors of that state in a forward search. It is sufficient

for us to search using the reverse of operators that are legal in a forward search.

Once the two frontiers intersect, a solution has been found. The first solution

found in a bidirectional brute-force search is not necessarily optimal [Hol10] and

search must continue until a solution is proved optimal. The algorithm can stop

once the sum of the minimum g costs on both frontiers is at least as large as the

cost of the best solution found so far. g costs increase with depth and any solution

found concatenates a path found in the forward and reverse directions. So, any

solution found after this point must have cost at least as high as the sum of the

minimum g costs in each direction, and thus the best solution found at that point

is optimal.
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A bidirectional brute force search has the potential to expand significantly

fewer nodes than a unidirectional brute-force search. Consider a unidirectional

brute-force search of an infinite tree where each edge in the tree has unit edge

cost. If the average branching factor of a node is b in both directions and the

depth of an optimal solution is d, then there are O(bd−1) nodes shallower than the

goal nodes. A unidirectional brute-force search of the problem space must thus

explore O(bd−1) nodes to prove that none of these shallower nodes are a goal state,

and that the path of length d found to a goal is indeed optimal.

If the branching factor b is the same in both directions, then a bidirectional

brute-force search will expand the same number of nodes in both directions to

reach a given depth. If the search balances the number of nodes it expands in

each direction, then the frontiers will meet at the midpoint, at depth d/2. At

this point a solution is found and proved optimal. Both directions of the search

expand O(bd/2−1) nodes to reach the midpoint, and so the cost of the overall search

is O(2∗bd/2−1). A bidirectional search thus expands approximately the square root

of the nodes expanded in a unidirectional brute-force search.

3.2 Bidirectional Heuristic Search

A natural modification to this approach is to do heuristic searches in both direc-

tions rather than brute-force searches. The hope is that by combining bidirectional

search with heuristic search, we can take advantage of the best characteristics of

both with an algorithm that outperforms both of them.

The oldest bidirectional heuristic search algorithm is the Bidirectional Heuris-

tic Path Algorithm (BHPA), introduced by Ira Pohl in 1971 [Poh71]. Instead of

a brute-force search, BHPA performs the heuristic search A* in both directions.

As in a bidirectional brute-force search, a solution is found when the two search
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frontiers intersect but the first solution found is not necessarily optimal. BHPA

terminates when it proves that the best solution found so far is optimal.

In Pohl’s formulation of the algorithm, this happens when the minimum f cost

of all of the nodes on one frontier is at least as high as the cost of the best solution

found so far. With an admissible heuristic, the f cost of a node n is a lower bound

on the cost of extending the current path to n to reach the goal. Any path from

the initial state to a goal state must go through both search frontiers, so if the

minimum f cost of all nodes on one frontier is at least that of the best solution

found so far, that solution is optimal. Bidirectional heuristic search algorithms

based on BHPA use this same termination condition.

The termination condition discussed previously for bidirectional brute-force

search can also be used to prove solution optimality in a bidirectional heuristic

search. However, this condition is not often mentioned in the literature. It may

be that BHPA’s termination dominates the brute-force termination condition in

practice. In a heuristic search, nodes with high f cost are not expanded and so

it is possible for nodes with low g and high h cost to remain unexpanded when

there are no nodes with low f cost remaining on a search frontier.

In BHPA, as in A*, a node is selected for expansion and its children generated.

If the expanded node has also been expanded in the opposite direction, then a

path from the initial state to a goal state is found. However, the children of that

node are still placed on an open list and will later be expanded, even though

they have already been expanded in the opposite direction. As a result, once the

two search frontiers intersect they continue searching through each other and the

same nodes will be redundantly expanded in both directions. Figure 3.1 gives an

idealized example of the effect of this in practice.

When both directions of a bidirectional heuristic search are not done in parallel,

the algorithm must decide which node to expand next among both frontiers. Pohl

proposed a cardinality principle, where the next node expanded is selected from
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Figure 3.1: An idealized representation of two frontiers in a BHPA search passing

through each other in a search from node S to node G. The light gray regions are

nodes expanded in either a forward or reverse heuristic search, and the dark gray

region are nodes expanded in both.

the smaller of the two search frontiers. The goal of this approach is to balance

both directions of search so that they meet as early as possible in the middle of

the search space.

Pohl’s BHPA was the first published bidirectional heuristic search algorithm.

While there were some initially promising results, by and large the algorithm

remained unused until a 1997 paper by Kaindl and Kainz showed that its best

case performance was only slightly better than the best case performance of uni-

directional A* [KK97] (discussed later in section 4.1). In the meantime, several

variations and improvements on this original idea were introduced.

3.3 Pruning Frontier Intersections

One of the earliest improvements in bidirectional heuristic search is the algo-

rithm BS* [Kwa89]. Kwa observed that BHPA has the potential to do significant

amounts of redundant work by allowing both directions of search to pass through

the opposing frontier, re-expanding the same nodes. BS*, like BHPA, performs A*

searches both forward from the initial state and backward from the goal states.
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However, it incorporates a number of improvements that reduce its memory usage

and prevent it from performing redundant work.

Recall that, with a consistent heuristic, when a node is expanded the lowest-

cost path to that node has been found. If a node has been expanded in two

directions, then, that means that the lowest-cost path to that node has been

found both from the initial and the goal states. The optimal path found from the

initial state to the goal states through that intersecting node is the concatenation

of these two lowest-cost paths. Thus, when a node has been expanded in both

directions an optimal path from initial to goal state through that node has been

found. The children of a node that has intersected the opposing frontier thus do

not need to be generated, and the two search frontiers do not pass through each

other.

This is the primary contribution of BS* over BHPA. When searching with

a consistent heuristic, this technique allows a bidirectional heuristic search to

prevent the expansion of many nodes.

3.4 Front-To-End Heuristic Evaluation

BHPA and many of the bidirectional heuristic searches based on it use a front-

to-end heuristic evaluation strategy. In a front-to-end heuristic evaluation, the h

cost of a node is the heuristic evaluation of the optimal solution cost from that

node to the goal states, or to the initial state in a reverse search. This is the exact

same heuristic evaluation strategy used in a unidirectional heuristic search, and

the simplest possible.
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3.5 Alternative Heuristic-Evaluation Techniques

Since the introduction of BHPA, other algorithms have been introduced that do

not use front-to-end heuristic evaluation. The most obvious alternative is a front-

to-front heuristic evaluation [SC77]. In this strategy, the heuristic value of a node

n to every node on the opposing search frontier is computed, plus the g cost of

reaching those nodes from the goal (or the start, in the reverse direction). The

heuristic value of n to the goal is thus given by hmin(n), the minimum among

all of those values. A path from the node to a goal node must past through the

opposing search frontier and then reach the goal, and so hmin(n) is an admissible

lower bound on the cost of an optimal solution from n to a goal.

A front-to-front heuristic evaluation is more accurate than a front-to-end heuris-

tic evaluation, but comes at the cost of a much more expensive heuristic evaluation.

The overhead of calculating heuristic values to each node on the opposing frontier

is quite high and as such the technique has not seen much use.

Other techniques have been introduced that use bidirectionality to increase the

strength of the heuristic. Single-Frontier Bidirectional Search (SFBDS) [FMS10]

breaks an overall pathfinding problem into subtasks of finding the shortest path

between two nodes on opposing search frontiers. Heuristic evaluation is then done

to the two nodes on the search frontiers, rather than to the initial or goal states.

Perimeter search [DN94, Man95] performs a limited form of front-to-front bidi-

rectional heuristic search. A complete search is done in the reverse direction from

the goal nodes to a fixed depth from the goals, and the perimeter of nodes gener-

ated at that depth is kept in memory. A forward heuristic search is done and the h

cost of each node is the minimum of the heuristic estimates of that node to every

node on the perimeter. This can be viewed as a limited form of a front-to-front

bidirectional heuristic search, with only a small search to a fixed depth done in

one direction.
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KKAdd [KK97] uses a bidirectional search to increase heuristic accuracy with-

out the overhead of a front-to-front heuristic evaluation. As with perimeter search,

it does a reverse search to some depth from the goal nodes and stores the perime-

ter. For every node on the perimeter, it has the optimal solution cost from that

node to a goal. For each node on the perimeter, its heuristic error is the differ-

ence between the actual optimal solution cost from that node and the heuristic

function’s estimate for that node. When searching with a consistent heuristic, the

minimum heuristic error among all frontier nodes can be added to the heuristic

function in the forward direction without losing admissibility. The proof that this

is an admissible technique is in Kaindl and Kainz’s paper. While not as accu-

rate as a front-to-front heuristic evaluation, this technique has significantly less

performance overhead.

My dissertation considers front-to-end heuristic evaluation only. While front-

to-front algorithms have been shown to be effective in some domains, front-to-end

algorithms have not. It is also the simplest formulation of a bidirectional heuristic

search.

3.6 Memory Requirements of Front-To-End Bidirectional

Heuristic Search

Unidirectional heuristic search algorithms have a wide range of memory require-

ments. Some algorithms, like A* [HNR68], store every node that they generate.

Because every node that they generate is stored in memory, these algorithms

can always detect when a newly-generated node is a duplicate of a previously-

generated node. When such a duplicate node is detected, these algorithms can

avoid doing redundant work by not expanding the same node twice. (In some

cases, a duplicate node may need to be expanded a second time if, for example, it

is found later with lower g cost). While these algorithms can avoid doing redun-
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dant work, they are memory bound. They cannot practically solve problems that

require the generation of more nodes than can fit in a machine’s memory.

Other unidirectional algorithms, like IDA* [Kor85], only store in memory the

nodes generated on a single path from the root to the most recently generated

nodes. These algorithms are not memory bound. In principle, given enough time,

they can solve any solvable pathfinding problem, so long as there is enough avail-

able memory to store the nodes on the longest path explored. However, without

using additional memory, these algorithms cannot detect most duplicate nodes

generated in a search and may do significant redundant work in finding a solu-

tion.

Bidirectional heuristic search algorithms have additional constraints beyond

unidirectional algorithms: they must be able to detect when both directions of

search have intersected. This limits the algorithms that can be implemented in

either direction, and puts constraints on the memory requirements of a bidirec-

tional heuristic search. In the two most well-known bidirectional heuristic search

algorithms, BHPA [Poh71] and BS* [Kwa89], A* searches are done in either di-

rection of search. In this case, frontier intersections can be easily tested because

both frontiers are explicitly stored in memory. However, like A*, the maximum

problem size solvable by these algorithms is limited by the amount of memory

available.

Other bidirectional heuristic search approaches have been developed that are

not memory bound. For example, Kaindl and Kainz introduced an algorithm which

they call the generic approach to bidirectional heuristic search. The algorithm does

a best-first search (such as A*) in one direction until memory is exhausted and

then, unless the optimal solution has already been found, does a linear space search

(such as IDA*) in the opposite direction. While these algorithms can in principle

solve arbitrarily large problems without memory constraints, they are still limited

in the work they can do in one direction by available memory. On increasingly
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large problems, as a greater fraction of the work is done in the non-memory-

limited direction, these algorithms will come to resemble a simple unidirectional

linear-space search in that direction.

In specific domains, it may be possible in principle to test for intersections

between two directions of a bidirectional search without explicitly representing

either search frontier in memory. For example, Fiat et al. introduced an algo-

rithm [FMS89] for solving permutation problems such as the Rubik’s Cube puzzle

bidirectionally, without storing either frontier in memory. In these domains, it is

possible to sequentially generate all nodes at a given depth from the root node

in lexicographic order. The bidirectional algorithm generates all nodes at a given

depth from the initial and goal states in lexicographic order and scans these two

levels of search in parallel as they are generated, looking for an intersection. This

is an example of a bidirectional algorithm that does not need to store either search

frontier in memory. However, it is only applicable to permutation problems.

In general, a front-to-end bidirectional heuristic search needs to store in mem-

ory the frontier of at least one direction of search. There are no general-purpose

front-to-end bidirectional heuristic search algorithms that use as little memory as

a linear-space unidirectional heuristic search algorithms.

Because of this, a front-to-end bidirectional heuristic search can only outper-

form a unidirectional heuristic search if it takes less time, expanding fewer nodes.

On sufficiently large problems, a bidirectional heuristic search algorithm will be

memory bound and unable to solve them due to insufficient available memory. A

linear-space unidirectional heuristic search may be able to solve the same prob-

lems, however. It may take a very long time to solve them, but the linear-space

algorithm will not run out of memory and will eventually terminate successfully.

The primary limitation on the effectiveness of front-to-end bidirectional heuris-

tic search algorithms are their memory requirements. Given sufficient time, in

problems without significant numbers of duplicate nodes, linear-space unidirec-
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tional heuristic searches can solve larger problems than a bidirectional heuristic

search, which will be limited by available memory. When the algorithms are not

memory constrained, the relevant question is whether a front-to-end bidirectional

heuristic search can solve problems faster than alternative algorithms.

3.7 Current State of Front-To-End Bidirectional Heuristic

Search

Since its introduction in 1971, front-to-end bidirectional heuristic search has not

seen much success as a search technique, even as related techniques have become

the state-of-the-art in other domains. The two main algorithms BHPA and BS*

are occasionally discussed in the literature, for example in [GH05, AK04]. How-

ever, no major results have been reported using these algorithms. As an example,

[GH05] conducts experiments on road navigation using BS* and finds it to be not

significantly better than other approaches considered.

The idea of front-to-end bidirectional heuristic search has repeatedly failed

to be effective in practice, despite frequent discussion in the literature. However,

there has not yet been a comprehensive discussion of why this promising technique

has not proven effective in practice. Kaindl and Kainz’s proof of the ineffectiveness

of BHPA, discussed further in section 4.1, provides a partial explanation but does

not generalize to other algorithms.

My dissertation presents the first comprehensive theory of why, despite 40 years

of study, front-to-end bidirectional heuristic search has not met with success.
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CHAPTER 4

Previous Analyses Of Bidirectional Heuristic

Search

In the more than 40 years since its introduction, front-to-end bidirectional heuris-

tic search has not been widely successful, despite many attempts to use it. The

technique’s ineffectiveness has been repeatedly observed in the literature but, while

many enhancements and modifications have been proposed, the underlying ques-

tion of why the technique does not work has remained largely unaddressed.

Two works in the literature have addressed this question directly. The first, a

1997 paper by Hermann Kaindl and Gerhard Kainz, provides a formal proof of

the ineffectiveness of BHPA [KK97]. The proof is limited to BHPA, however, and

leaves open the possibility that other front-to-end algorithms might be effective.

Stefan Schrödl and Stefan Edelkamp’s 2011 textbook Heuristic Search [ES12]

has a brief section that attempts to address the question more broadly. They

present an intuitive theory to explain the ineffectiveness of all such algorithms.

Unfortunately, their theory makes assumptions about which nodes are expanded

in a heuristic search that turn out to be incorrect in practice. They support their

theory with a very small amount of experimental evidence. Their core idea has

some merit and was a useful inspiration in the formulation of my theory. However,

their theory itself is not a sufficient explanation of the ineffectiveness of front-to-

end bidirectional heuristic search in general.
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4.1 Kaindl And Kainz 1997

Kaindl and Kainz [KK97] performed one of the first analyses of bidirectional

heuristic search, focusing specifically on BHPA. The then-accepted explanation

for its ineffectiveness—stated in Ira Pohl’s original paper on the topic—was that

the two frontiers of search pass by each other without intersecting. In this theory,

the two directions of search penetrate very deeply towards their respective goals

without intersecting the opposing search frontier. Until they intersect, a solution is

not found. As a result, a lot of early work on bidirectional heuristic search focused

on directing the two frontiers to encourage them to meet as early in search as

possible. Figure 4.1, taken from Pohl’s paper, graphically shows the theory of the

two search frontiers passing without intersecting until very late.

Figure 4.1: Figure from [Poh71] showing two search frontiers passing each other.

s is the start node and t is the goal node.

Kaindl and Kainz’s work showed that this theory is incorrect. The first and

primary contribution of their paper was a proof that the best case of BHPA is

identical to the best case of A*. A key point of this observation is that, while
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the algorithm checks for frontier intersections to see if a solution has been found,

both search frontiers in BHPA are allowed to pass through each other. As a result,

the order of nodes expanded in one direction of a BHPA search is the same as

an A* search in the same direction. A* terminates when a goal node is selected

for expansion, at which point there are no nodes with f cost less than C∗ on the

open list. BHPA’s termination condition is almost identical: it terminates when

there are no nodes with f cost less than C∗ on one of the open lists. BHPA does

not need to select a goal node for expansion for this to occur, however, if it has

already found a solution path before the termination condition is satisfied.

As a result, the best case for BHPA is identical to the best case for A* when

done in the cheaper of the two directions.

In the average case, both algorithms may expand some number of nodes with

f cost equal to C∗. BHPA may find an optimal solution well before its termination

condition, while A* only finds its optimal solution immediately before terminating.

If this happens, BHPA will expand no nodes with f cost equal to C∗ while A*

will. On the other hand, BHPA needs to pay the overhead cost of an additional

reverse search while A* does not. As such, Kaindl and Kainz’s proof only applies

to the best case of both algorithms, and does not apply to the expected case.

This proof showed why BHPA specifically would not expect to do any better

than a unidirectional heuristic search. However they explicitly do not consider the

case of an algorithm like BS* that prevents the two search frontiers from passing

through each other.

In addition, they conducted a number of experiments to test the conjecture

that bidirectional heuristic searches tend to find their optimal solutions very late in

search. In their experiments, they found that an optimal solutions actually tended

to be found quite early in a search, and most search time was spent proving

solution optimality. This fact has been cited a number of times as Kaindl and
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Kainz’s explanation for the ineffectiveness of bidirectional heuristic search [ES12,

FMS10, LEF12], but it is not.

In sum, Kaindl and Kainz’s paper showed that BHPA does not significantly

outperform A* in the best case of both. It does not address the expected case

of either algorithm, however, and explicitly does not consider the effectiveness of

other, related algorithms.

4.2 Schrödl And Edelkamp 2011

In Heuristic Search: Theory and Applications [ES12], Edelkamp and Schrödl have

a brief section proposing a more general theory for the ineffectiveness of bidirec-

tional heuristic search. The central claim of their argument is that in a unidi-

rectional heuristic search, the majority of the nodes are expanded at roughly the

depth of the solution midpoint. We would expect both directions of search to meet

near this solution midpoint and thus require twice the memory to store the open

lists over a unidirectional heuristic search. While it contains some good intuitions,

the overall claim of this argument is incorrect.

First, they note that the number of nodes expanded at each depth of a unidi-

rectional heuristic search tends to increase up to a certain point and then decrease

again until a goal is reached. This effect is shown in figure 4.2, taken from their

textbook, which shows the distribution of nodes expanded at each depth on a sin-

gle instance of the 15 puzzle. As they note, the number of nodes expanded tends

to increase exponentially with depth near the initial state. They also observe that

the number of nodes tends to decrease exponentially near the goal state. While

this does happen in practice, their explanation—that the accuracy of the heuristic

increases with proximity to a goal—is not correct. Rather, as I explain in Chap-

ter 5, it is because the f cost of nodes tends to increase with depth and nodes

with high f cost are not expanded in a heuristic search.
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Figure 4.2: Distribution on the number of generated nodes in A* with respect to

a given search depth. [Caption taken from Heuristic Search]

From this, they claim that we can expect the majority of nodes to be expanded

near the solution midpoint in both directions of a bidirectional heuristic search.

If both directions of search meet near this midpoint, then the size of the open

lists in both directions will be approximately the same as the maximum size of

the open list in a unidirectional heuristic search. A bidirectional heuristic search

would thus use approximately twice as much memory.

This argument is incorrect, however. As I show in Chapter 6, the majority of

nodes in a heuristic search are not expanded near the solution midpoint. Their

claim appears to be based on data from a single, non-representative instance of

the 15-puzzle. In my experiments with a much larger number of instances from

many more domains, often the vast majority of nodes are expanded at a depth

significantly less than the solution midpoint.

Furthermore, the size of the open lists at the point of intersection is irrelevant

to the performance of bidirectional heuristic search. In fact, I show that perfor-
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mance can be expected to be quite poor even if the number of nodes expanded at

the depth of solution intersection is quite small. Regardless of where the majority

of nodes are expanded in a bidirectional heuristic search, I show that it would not

be expected to perform much better than the better of unidirectional heuristic

search or bidirectional brute-force search performed independently.

As Edelkamp and Schrödl suspected, the distribution of depths of nodes ex-

panded in a heuristic search is a useful tool for explaining the ineffectiveness of

bidirectional heuristic search. This is a valuable contribution to my argument. The

rest of their argument, however, is incorrect and I provide a correct explanation

in Chapter 5.
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CHAPTER 5

Ineffectiveness Of Front-To-End Bidirectional

Heuristic Search

This chapter outlines my theory explaining the general ineffectiveness of front-to-

end bidirectional heuristic search. Chapter 6 provides empirical data that supports

this theory.

The main intuition of this theory is that, compared to a unidirectional brute

force search, unidirectional heuristic search and bidirectional brute-force search

improve performance in the same manner. Namely, they reduce the number of

nodes expanded with high g cost. Since both techniques prevent the expansion of

the same set of nodes from a unidirectional brute-force search, the performance

improvement they provide is redundant. Depending on the strength of the heuristic

in a domain, one of the two techniques will be more effective than the other. The

improvements of that technique will dominate the improvements of the other, and

so combining the two techniques provides no improvement over using the stronger

of the two individually.

The structure of my argument consists of four steps. First, I show how a

bidirectional brute-force search prevents the expansion of nodes with high g cost.

Second, I show how unidirectional heuristic search also reduces the number of

nodes expanded with high g cost. Third, I show that adding a weak heuristic to

a bidirectional brute-force search to turn it into a bidirectional heuristic search

does not reduce the number of nodes expanded. Finally, I show that with a strong

36



heuristic, adding a reverse search to a unidirectional heuristic search to make it a

bidirectional heuristic search increases the number of nodes expanded.

My theory is not a proof but rather an intuitive explanation of the ineffec-

tiveness of bidirectional heuristic search. In fact, in section 5.6, I demonstrate

a pathological case where bidirectional heuristic search does outperform each of

the other techniques. Section 6.8.3 gives examples of real problem instances where

this occurs, as well, although the performance improvement is modest. These show

that, in fact, no proof of the ineffectiveness of bidirectional heuristic search is pos-

sible without making more assumptions than my theory, or restricting it to only

certain problem spaces.

In this theory, I talk about strong and weak heuristics. These are defined by the

distribution of g costs among nodes expanded in a unidirectional heuristic search

using that heuristic. With a strong heuristic, the majority of nodes expanded in a

unidirectional heuristic search have g cost less than C∗/2. With a weak heuristic,

the majority of nodes expanded have g cost greater than C∗/2.

When there is ambiguity, in this chapter I use gf (n) to refer to the g cost of

a node when expanded in a forward search, and gr(n) for nodes expanded in a

reverse search.

5.1 Nodes Expanded In A Bidirectional Brute-Force Search

In a bidirectional brute-force search, two brute force searches are done: one forward

from the initial state towards the goal states and one in the reverse direction. The

two searches meet somewhere between the initial and goal state and the search

terminates once one direction of search has generated all nodes on the same level

as the intersecting node [Hol10]. No nodes are expanded deeper than this point

of intersection
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If a bidirectional brute-force search expands approximately the same number

of nodes with each g cost in both directions, we call it a search of a balanced

search space. Approximately the same number of nodes will be expanded in ei-

ther direction to reach a given g cost, and both directions of search intersect at

approximately the solution midpoint with cost C∗/2. Nodes deeper than this in

either direction will not be expanded, and so a balanced bidirectional brute-force

search expands no nodes with g(n) > C∗/2.

So long as both directions of search are not very unbalanced, they will meet

near the solution midpoint and few nodes will be expanded with g(n) > C∗/2.

Section 5.7.3 discusses the case of a greatly imbalanced search.

Figure 5.1 shows this property graphically. It plots the number of nodes ex-

panded at each g cost in unidirectional and bidirectional brute-force searches of

the 16-disk, four-peg Towers of Hanoi puzzle. The instance shown is the standard

instance, where all disks start and end on a single peg. The x axes show g cost in

both directions. The y axis shows the number of nodes expanded with that g cost.

The dashed lines are the distributions of g costs expanded in forward and reverse

unidirectional brute-force searches. The dark gray nodes are those expanded in a

bidirectional brute-force search. Most of the nodes expanded in the unidirectional

searches occur past the solution midpoint, with g(n) > C∗/2. The vast majority

of these nodes are not expanded in a bidirectional brute-force search.

5.2 Nodes Expanded in a Unidirectional Heuristic Search

The effect of a heuristic in a heuristic search is also to prevent the expansion of

nodes with high g cost. A heuristic search improves over a brute-force search by

preventing the expansion of nodes with higher f cost, which are also those nodes

with higher g cost.
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Figure 5.1: Unidirectional and bidirectional brute-force searches of the standard

16-disk Towers of Hanoi instance.

The f cost of a node is the sum of the g cost to reach that node and the h cost

estimating the remaining cost from that node to a goal. When using an admissible

heuristic, the h cost is a lower bound on the remaining cost of an optimal solution.

Thus, the f cost of a node n is a lower bound on the total cost of extending the

path to n to reach the goal.

If the f cost of a node n exceeds C∗, then the current path to n cannot be

extended to reach the goal without exceeding the optimal solution cost. A heuristic

search can thus prove that a solution is optimal without exploring beneath that

node. Heuristic searches use this property to prevent the expansion of nodes.

In algorithms like A*, nodes are expanded in non-decreasing order of f cost,

so nodes with an f cost greater than the optimal solution cost C∗ will not be

expanded before the optimal solution has been found. Other algorithms, like IDA*,

maintain a cost cutoff and explicitly prune nodes whose f cost exceeds this cutoff.
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In either case, a heuristic search expands fewer nodes than a brute force search

by preventing the expansion of nodes whose f cost exceeds C∗.

In complete brute force searches of a problem space, a node’s g and h costs tend

to be independent. For a given goal node, each node in the graph has a fixed h cost,

which estimates its cost to the goal. An admissible heuristic never overestimates

the cost of an optimal solution to a goal state, and so with a heuristic that returns

non-zero values h costs tend to be lower in nodes closer to goal states. The h cost

of a node is not a function of the cost of a path to that node from the initial state.

The g cost of a node, meanwhile, is a measure of the cost of a path to that

node from the initial state, and is not a function of that node’s distance from

the goal. In a brute-force search from the initial state, g costs of nodes increase

with depth. In paths that go closer toward the goal, h costs will tend to decrease

while g costs increase. In paths that go further from the goal, h costs will tend

to increase while g costs increase. Overall, the g cost of nodes does not predict

the h cost of those nodes relative to the h cost of the initial state. This is not a

formal theorem but, for example, this assumption forms the basis of an extremely

accurate predictive theory of the number of nodes generated at each depth in an

IDA* search [KRE01].

As g and h costs are independent, nodes with high g cost tend to have higher

f costs. Nodes with higher f cost are those whose expansion is prevented by a

heuristic search (as compared to a brute-force search). Thus, the nodes whose

expansion is prevented by a heuristic search tend to have high g costs.

Figure 5.2 shows this graphically with increasingly strong heuristics on a Tow-

ers of Hanoi instance. Dashed lines are unidirectional searches with heuristics

of different strengths. The algorithm used is BFHS with the cutoff set to C∗. I

used increasingly large pattern databases to strengthen the heuristic. As expected,

fewer nodes are expanded with successively stronger heuristics, and the nodes not
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expanded are those with the highest g cost. The vast majority of those nodes

whose expansion is prevented have g(n) > C∗/2.

Figure 5.2: Unidirectional heuristic searches of the standard 16-disk Towers of

Hanoi instance with heuristics of varying strengths.

5.3 Searching With Weak Heuristics

Adding a weak heuristic to a bidirectional brute-force search to produce a bidi-

rectional heuristic search does not prevent the expansion of any additional nodes.

In a bidirectional brute-force search, both directions of search intersect when

the same node is generated in both directions, with some g cost from the initial or

goal state. No nodes in either direction are expanded with greater g cost than this.

If this is a search of a balanced search space, then the two directions will meet at

the solution midpoint and no nodes will be expanded with g(n) > C∗/2. Even if

the two directions of the search space are somewhat imbalanced, both directions

will intersect near the midpoint and no nodes with high g cost will be expanded.
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Adding a heuristic to this bidirectional brute-force search presents the pos-

sibility of preventing the expansion of even more nodes. However, with a suffi-

ciently weak heuristic, the only nodes whose expansion is prevented are those with

g(n) > C∗/2. No such nodes are generated in a bidirectional brute-force search, as

these would be generated deeper than the point at which the two search frontiers

intersect. If the search space is somewhat imbalanced, a bidirectional brute-force

search will only expand nodes with g cost a little higher than C∗/2. A sufficiently

weak heuristic will not prevent the expansion of any of these nodes, either. Thus,

any nodes whose expansion would be prevented by a heuristic would not even be

generated in a bidirectional brute-force search.

Figure 5.3 graphically shows the effect of adding weak heuristics to a bidirec-

tional brute-force search. The dark gray region plots the distribution of g costs of

nodes expanded in a bidirectional brute-force search of a Towers of Hanoi instance.

The dashed lines show unidirectional heuristic searches in both directions, using

heuristics of varying strengths. The light gray regions are the forward searches.

The nodes whose expansion is prevented by the addition of a heuristic occur past

the point at which both directions of the bidirectional search intersect. Thus, they

would not be expanded in a bidirectional brute-force search, either.

5.4 Searching With Strong Heuristics

With a strong heuristic, combining forward and reverse heuristic searches to make

a bidirectional heuristic search expands more nodes than a unidirectional heuristic

search.

With a sufficiently strong heuristic, the majority of the nodes expanded in a

forward unidirectional heuristic search have gf (n) < C∗/2, because the heuristic

prevents the expansion of most nodes with gf (n) > C∗/2. A reverse heuristic

search will also have gr(n) < C∗/2.
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Figure 5.3: Bidirectional brute-force search of a Towers of Hanoi instance overlaid

with unidirectional heuristic searches of increasing strengths.

If a node is expanded with gr(n) < C∗/2 in a reverse heuristic search, then it

can only be reached with gf (n) > C∗/2 in a forward search. The converse is true

of nodes expanded with gf (n) < C∗/2 in a forward search. This is because, for

a given node n, gf (n) + gr(n) >= C∗. If the majority of the nodes in a reverse

search are expanded with gr(n) < C∗/2, then most of these nodes would not be

expanded in a forward search, which also expands most nodes with gf (n) < C∗/2.

Similarly, if the majority of nodes in a forward heuristic search are expanded with

gf (n) < C∗/2, then most of those nodes would not be expanded in a reverse

search.

If these two searches are combined to form a bidirectional heuristic search,

they will expand more nodes than a unidirectional heuristic search, because both

directions expand some number of nodes that are not expanded in the opposite

direction. The stronger the heuristic, the greater the fraction of nodes expanded
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with gf (n) < C∗/2 and gr(n) < C∗/2, and the greater the additional work of a

bidirectional heuristic search over a unidirectional heuristic search.

Figure 5.4 demonstrates this graphically. It shows the depth of nodes expanded

by heuristic searches of a 24 puzzle instance using IDA* and the pattern databases

described in [KF02] (these were shown previously in figure 2.2). The light gray

nodes are expanded in a forward search and the dark gray nodes are expanded in

a reverse search. The hashed region is expanded in both. A bidirectional heuristic

search expands the nodes in both gray regions, while a unidirectional heuristic

search expands only one gray region.

Figure 5.4: g costs of nodes expanded in forward and reverse searches on a 24

puzzle instance.
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5.5 Searching With A Medium Strength Heuristic

For a given search instance, a heuristic may be exactly strong enough that ap-

proximately half of all nodes expanded in a forward unidirectional heuristic search

have gf (n) < C∗/2. In this case, a reverse heuristic search will also expand approx-

imately half its nodes with gr(n) < C∗/2. The forward search will thus expand as

many nodes with gf (n) > C∗/2 as the reverse will expand with gr(n) < C∗/2.

In this case, if we do a bidirectional heuristic search with a breadth-first search

ordering and balance the number of nodes expanded in each direction, both di-

rections of search will meet near the solution midpoint. At this point, the forward

direction will have expanded all nodes with gf (n) < C∗/2 that would be expanded

in a forward heuristic search, and the reverse direction will have expanded all nodes

with gr(n) < C∗/2 that would be expanded in a reverse heuristic search.

This search would prevent the expansion of approximately half of the nodes of a

forward heuristic search—those with gf (n) > C∗/2—while requiring the expansion

of approximately the same number of additional nodes in the reverse direction—

those with gr(n) < C∗/2. In this case, a bidirectional heuristic search would

expand approximately the same number of nodes as a unidirectional heuristic

search.

A bidirectional heuristic search might not use a breadth-first search ordering,

however. If so, then it is possible for each direction of search to expand some

number of nodes with g cost greater than C∗/2 before it expands other nodes

with lower g cost. In particular, it would be possible for the forward direction

of a bidirectional heuristic search to expand nodes very close to a goal before it

has expanded all of the nodes that a unidirectional heuristic search would expand

(and vice versa).

Section 5.6 shows how this can result in pathological cases where a bidirectional

heuristic search can outperform a unidirectional heuristic and bidirectional brute-
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force search. Section 6.8.3 shows cases where this occurs in practice and provides

bidirectional heuristic search with a slight performance benefit. These real-world

examples occur in a domain with a medium-strength heuristic.

Figure 5.5 shows the distribution of g costs on forward and reverse heuristic

searches of a road navigation problem. 52% of nodes expanded in the forward

direction have gf (n) < C∗/2 and 53% in the reverse direction have gr(n) < C∗/2.

Because the g costs in road navigation are real-valued, the data is given as a his-

togram with 50 buckets. Due to irregularities in the search graph, the distribution

of g costs is very irregular and not symmetric. In this problem instance, both the

initial and goal nodes are near urban areas, but the optimal path between them is

a remote route with few branching paths. This explains the bimodal distribution

of this graph.

Despite this irregularity, approximately half of the nodes expanded in each

direction have g(n) < C∗/2. A bidirectional heuristic search with a breadth-first

search order would meet near the solution midpoint, expanding approximately as

many nodes as either direction of a unidirectional heuristic search.

5.6 A Pathological Counterexample

My theory does not prove that bidirectional heuristic search can never be effective,

but rather just shows why that is unlikely. It is still possible for it to outperform

both unidirectional heuristic and bidirectional brute-force search. This section

gives a concrete example of how this can happen, and section 6.8.3 shows that

these cases can occur in practice.

Figure 5.6 is a pathological graph where a bidirectional heuristic search out-

performs both unidirectional heuristic and bidirectional brute-force search. In the

forward direction, each node is labeled with its minimum g cost from the initial

state and the h cost to a goal, as well as its f cost. The f , g, and h costs in the
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Figure 5.5: g costs of nodes expanded in forward and reverse heuristic search of a

road navigation problem instance. Because g costs are real valued, data is given

as a histogram with 50 buckets.
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reverse direction are symmetrical. The graph has unit edge costs. The h cost of

two sibling nodes never differs by more than one, so the heuristic is consistent.

Often, the only nodes that have an h cost of zero in a domain are the goal

nodes. In this example, however, several other nodes have h cost of zero as well. It

is possible to construct other examples where this is not the case, but this requires

larger graphs.

Figure 5.6: A pathological graph where bidirectional heuristic search outperforms

both unidirectional heuristic and bidirectional brute-force search. Nodes are la-

beled with g-cost + h-cost = f -cost, in the forward (f) and reverse (r) direction.

The f and g costs of this graph are carefully constructed so that nodes in

the subtrees labeled B are expanded in a forward heuristic search but not in the

reverse. Nodes in the subtrees labeled A will be expanded in a reverse heuristic
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search but not in the forward direction. A bidirectional brute-force search would

expand at least some of the nodes in A and B. With the right ordering of search,

bidirectional heuristic search expands neither. The children of the nodes in A and

B follow a pattern of increasing g costs while decreasing h costs. By extending

these subtrees using this pattern and increasing the depth of an optimal solution,

we can construct graphs where bidirectional heuristic search has an arbitrarily

large performance advantage over the other two algorithms.

A forward unidirectional heuristic search of this graph expands all nodes with

f cost less than the optimal solution cost, which is six. There are 17 such nodes:

nodes a through j, the nodes in B, and the start. A reverse heuristic search also

expands only 17 nodes: nodes a through j, the nodes in A, and the goal.

A bidirectional brute-force search expands all nodes in both directions up

to depth two in both directions. At this point, an intersection is generated at

depth three. All nodes at depth two must be expanded to prove that there is

no shorter path. A bidirectional brute-force search thus expands 14 nodes: nodes

a, b, d, e, f, g, i, j, the roots of the subtrees in A and B, and the start and goal.

Bidirectional heuristic search can expand fewer nodes if it generates children

in left-to-right order and breaks f cost ties in favor of lower h cost (which is a

standard technique). Node e will be expanded in the forward direction before the

reverse, and node f will be expanded in the reverse direction before the forward.

The forward search will never expand the children of e because their f cost (seven)

exceeds C∗. The same is true of the children of f in the reverse direction.

When node e is considered for expansion in the reverse direction, it can be

discarded without expansion because it has already been expanded in the forward

direction. This is possible because we are using a consistent heuristic. (See sec-

tion 3.3). Similarly, the forward search will not expand the children of node f

because f has already been expanded in the reverse direction.
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As a result, the nodes in A and B will not be expanded in either direction.

A bidirectional heuristic search will thus expand 12 nodes: nodes a through j,

the start, and the goal. Thus, bidirectional heuristic search outperforms both

unidirectional heuristic and bidirectional brute-force search on this graph.

The nodes in A are subtrees that follow a pattern in their h values: as gr(n)

increases by one hr(n) decreases by one, and so the fr costs of each node in this

tree are equal, with fr(n) < C∗. hf (n) increases by one as gf (n) increases by one,

and so ff (n) > C∗ for every node in A. If the optimal solution depth is deep

enough, we can extend subtree A to be arbitrarily large while still requiring that

all nodes in it must be expanded in a reverse heuristic search but not a forward

heuristic search. Similarly, we can extend B into an arbitrarily large subtree whose

nodes must be expanded in a forward heuristic search.

With a large enough optimal solution depth, a bidirectional brute force search

can similarly be made to expand an arbitrarily large number of nodes in A and

B. Meanwhile, a bidirectional heuristic search need not expand either A or B

and can thus expand arbitrarily fewer nodes than either other algorithm. This

counterexample shows that no formal proof of the ineffectiveness of bidirectional

heuristic search is likely.

An intuitive example of how this might happen is a road navigation problem

finding the shortest path between the initial and goal states. Subtrees A and B

might represent cul-de-sacs or neighborhoods with no outlets. Subtree A would

represent roads that go in the direction of the initial state but never reach it due

to dead ends. In a reverse search, A would look like a promising route to the initial

state as it moves in the general direction of the start state. In the forward search,

however, A branches off from the optimal route and moves back towards the initial

state. This would look like an unpromising route, as it moves away from the goal

even as search gets very near to the goal. Similarly, B would look promising to a

forward search but not a reverse search.
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Such a pathological case is unlikely to occur often or provide much benefit in

a real search problem. This case relies on both directions of search being able to

search very close to their respective goal node before they have expanded many

other nodes. For this to happen, there must be nodes deep in search with the

same f cost as shallow nodes. However, in general, f costs of nodes in a search

space increase with depth, as the g cost increases. This is particularly true with a

consistent heuristic, which results in f costs that are monotonically non-decreasing

with depth. As such, we would expect shallower regions to generally be expanded

before deeper regions, and for neither direction of search to intersect the other

before most nodes with lower depth have been expanded.

As such, I expect pathological cases like that of figure 5.6 to be unlikely in prac-

tice, and to provide little performance benefit when they do occur. Section 6.8.3

gives evidence to support this claim.

This particular pathological case relies on specific tie-breaking behavior for

bidirectional heuristic search to outperform the other two algorithms. It is pos-

sible to construct graphs where a bidirectional heuristic search is the strongest

algorithm without relying on this implementation detail, but they require longer

optimal solution paths and are somewhat more complicated to describe. This ex-

ample graph, however, shows that the best case of bidirectional heuristic search

can be better than the best case of the other two algorithms.

5.7 Caveats

Here I identify some caveats to my theory.

5.7.1 Strengthening Heuristic Evaluation

My theory only considers front-to-end heuristic functions, where the heuristic used

in a bidirectional search is identical to the heuristic used in a unidirectional search.
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A bidirectional search can use bidirectionality to increase the accuracy of the

heuristic function used. Several examples of how to do this using a front-to-front

heuristic evaluation were previously discussed in section 3.4. By strengthening

the heuristic, the two directions of a bidirectional heuristic search can be made to

expand fewer nodes than in a unidirectional heuristic search, even when the two

frontiers do not intersect.

A related example of how a bidirectional search can reduce the number of nodes

expanded comes from my peg solitaire solver, discussed further in section 6.10.6.

Peg solitaire has a number of techniques that can be used to prove that certain

states can never be solved. Normally, one would test whether it is possible to

solve a board configuration by seeing if it is possible to reach the goal state. In

my solver, I instead test whether it is possible to reach any node on the opposing

frontier, which may be some distance away from the goal state. This allows my

solver to tighten pruning constraints, which could not be done in a unidirectional

search.

5.7.2 Improved Tie-Breaking

Kaindl and Kainz’s theorem showed that the best case of BHPA is only slightly

better than the best case of A*. Both algorithms must expand essentially the same

number of nodes with f(n) < C∗. Counting only nodes with f(n) < C∗, A* will

always expand the same number of nodes, while BHPA’s expected case can be

worse than the best case.

However, this leaves open the possibility that BHPA (and other bidirectional

heuristic search algorithms) may expand fewer nodes with f cost equal to C∗. In

other words, BHPA must expand as many nodes as A* to prove that a solution

is optimal, but it may find the optimal solution faster. In the best case, both

algorithms expand the same number of nodes to prove that a solution is optimal,
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but A* may expand many nodes that do not need to be expanded when finding

that solution.

One way in which this might happen is if a unidirectional heuristic search

has particularly bad tie-breaking properties. In other words, the algorithm may

expand a very large number of nodes with f(n) = C∗. A bidirectional search may

be able to find an optimal solution earlier, while still expanding at least as many

nodes with f(n) < C∗.

By way of analogy, consider the algorithm IDA*. IDA* does repeated iterations

of depth first searches with a cost cutoff. Any node whose f cost exceeds the cutoff

of the current iteration is pruned and not considered. If an optimal solution is

not found on a given iteration the cutoff is incremented and another iteration is

performed. To prove solution optimality, IDA* must complete every iteration of

search with cutoff less than C∗, to prove that no cheaper iteration exists. On the

last iteration, however, IDA* can terminate as soon as it finds a solution, which

it can guarantee has lowest cost.

The order of search of the last iteration of IDA* can have a huge impact on

performance. One search ordering may require IDA* to explore every node whose f

cost does not exceed the cutoff before finding a solution, while a different ordering

may immediately march down an optimal path towards a solution. An ordering

that reliably finds the optimal solution faster on the final iteration could result in

large performance improvements, even though the number of nodes expanded on

each previous iteration is identical.

A similar effect happens in my peg solitaire solver, as discussed further in

section 6.10. Due to the size of the problem space size and the large number

of duplicates, the obvious unidirectional algorithm for solving this problem is

the algorithm BFIDA*. BFIDA* has very bad tie-breaking properties, expanding

almost all nodes with f cost equal to C∗. My bidirectional algorithm, by contrast,
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is able to find an optimal solution very early in search and has essentially perfect

tie-breaking.

5.7.3 Unbalanced Directions Of Search

Finally, my theory assumes that forward and reverse searches will be roughly sym-

metrical, and that the distribution of g costs of nodes expanded in both directions

will be similar. This may not be true in all domains, however. Due to irregulari-

ties in the search graph, a unidirectional heuristic search may expand significantly

fewer nodes in one direction than another.

It is possible for a search in one direction to be significantly cheaper than

the other. This may happen if, for example, the branching factor in that direc-

tion is significantly smaller than the other direction. If one direction of search

is consistently significantly cheaper than the other then it makes sense to do a

unidirectional heuristic search in that direction only, regardless of the strength of

the heuristic. The cheaper direction may expand the majority of its nodes with

g(n) > C∗/2, but this may be dwarfed by the number of nodes expanded in the

opposite direction.

If the cheaper direction cannot be predicted in advance, however, a bidirec-

tional heuristic search may be effective even with a very strong heuristic. This is

because by keeping the number of nodes expanded in each direction balanced, a

bidirectional search will search deeper in the cheaper of the two directions. It will

thus find the majority of an optimal solution path in the cheaper of the two di-

rections. Finding the majority of an optimal path in the more expensive direction

would require expanding significantly more nodes.

This is analogous to doing simultaneous forward and reverse heuristic searches

and stopping as soon as the first one completes. Some overhead is paid for doing

a search in the direction that does not find a solution, but this prevents us from
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doing a complete search in the more expensive of the two directions. If solving an

instance in the harder direction reliably requires expanding at least twice as many

nodes as the cheaper, this can speed up search.

Again, this caveat manifests itself in peg solitaire where, due to a large im-

balance in branching factors, the reverse searches are significantly more expensive

than forward searches.
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CHAPTER 6

Empirical Studies Of Bidirectional Heuristic

Search

I conducted several experiments to substantiate my theory with empirical data. I

tested nine domains in my experiments: the 15 puzzle, the 24 puzzle, the pancake

problem, peg solitaire, Rubik’s Cube, Top Spin, the four-peg Towers of Hanoi,

pairwise sequence alignment, and road navigation. I tested each domain with the

state-of-the-art unidirectional heuristic solver in each, using the best available

heuristics.

For each domain, I conducted a number of different experiments. In all domains

I examined the distribution of g costs, computing the fraction of nodes expanded

with g(n) <= C∗/2. I tested if this accurately predicts whether unidirectional

heuristic or bidirectional brute-force search will be more effective on that domain.

For many of the solvers, I implemented bidirectional heuristic search to verify

that, indeed, it is generally an ineffective search technique. In these domains, I

identified a few problem instances where bidirectional heuristic search is effective,

but show that the performance improvement is minimal, as I predict. The one

exception is in peg solitaire, where bidirectional heuristic search reliably provides

tie-breaking improvements. And finally, I conducted experiments to find how early

in a bidirectional heuristic search an optimal solution tends to be found.
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For two of these domains, four-peg Towers of Hanoi and peg solitaire, I devel-

oped new state of the art solvers using bidirectional search. The section for those

domains describes the techniques used in those solvers and their performance.

Each domain and the results of the experiments I conducted on it are described

in a separate section. Chapter 7 synthesizes the results of these experiments and

makes overall observations.

6.1 Experiments Performed

6.1.1 g Cost Distributions Among Many Domains

My first set of experiments calculate the distribution of nodes generated with each

g cost in many instances of each problem domain. I then computed the fraction

of nodes expanded with g(n) <= C∗/2 in each search instance. For each domain,

I recorded the mean of this fraction among all problem instances, as well as the

minimum and maximum fraction of nodes expanded with g(n) <= C∗/2 on a given

instance. I only consider nodes expanded with f(n) < C∗, as these are the nodes

that must be expanded in any heuristic search. In my IDA* implementations,

I only consider the last complete search iteration, to avoid multiple counting of

nodes on different iterations.

My theory predicts that in algorithms where the majority of nodes are ex-

panded with g(n) <= C∗/2, a unidirectional heuristic search will be the state of

the art, and if the majority are expanded with g(n) >= C∗/2, then a bidirectional

brute-force search will win.

6.1.2 Bidirectional Heuristic Search Tested

The absence of a published state-of-the-art bidirectional algorithm in the literature

does not prove that one does not exist. As such, I implemented bidirectional
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heuristic search in the five domains where it is feasible and not the state of the

art: the 15 puzzle, pairwise sequence alignment, the pancake problem, Rubik’s

Cube, and road navigation. I compared the performance of my bidirectional solver

to unidirectional heuristic search, which is the predicted state of the art in these

domains. I also introduced a new bidirectional heuristic solver for peg solitaire,

which is the new state of the art.

6.1.3 Work Spent Proving Optimality

Finally, in the domains where I implemented bidirectional heuristic search, I calcu-

lated the point at which optimal solutions are found. In their experiments, Kaindl

and Kainz found that BHPA tended to find an optimal solution very early and

then spent most of its search proving optimality [KK97]. This observation is often

erroneously given in the literature as Kaindl and Kainz’s explanation for why bidi-

rectional heuristic search is ineffective [ES12, FMS10, LEF12]. These experiments

test this claim.

6.2 The 15 Puzzle

The 15 puzzle is a version of the well-known sliding tile puzzle invented by Sam

Loyd in the 1870s [Loy59]. The game is played on a 4× 4 grid. Each position on

the grid is occupied by tiles numbered from 1 to 15, with one location left empty,

called the blank. A legal move is to move any tile adjacent to the blank into the

blank position, after which the blank is in the position previously occupied by the

moved tile. The goal is to rearrange the tiles from a scrambled initial configuration

into a goal configuration where the tiles are in ascending numerical order from

left to right, top to bottom.

Figure 6.1 gives the goal position of the 15 puzzle on the left. Moves in the 15

puzzle have unit edge cost. The branching factor of nodes in the problem space
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Figure 6.1: Goal positions of the 15 and 24 puzzles.

follows a predictable pattern: all nodes have a branching factor of 4, 3, or 2, and

the branching factors of the children of a node are entirely determined by the

branching factor of the parent.

6.2.1 Search Technique Used

Figure 6.2: The two pattern databases used in the 15 puzzle

For the 15 puzzle, I use IDA* with the pattern databases (PDBs) described

in [KF02]. These are shown in figure 6.2. I also use the reflection of these pattern

databases across the diagonal, as described in the same paper. To avoid generating

some duplicate nodes, the search algorithm prevents regeneration of the parent of
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a node n as one of its children by not applying the reverse of the operator that

generated n.

6.2.2 Distribution Of g Costs

I generated 100 random instances of the 15 puzzle by making 1000 random moves

from the goal state. I solved each instance using IDA*. In these, I calculated the

fraction of nodes that are expanded with g(n) <= C∗/2. Among these instances,

the mean fraction of nodes expanded with g(n) <= C∗/2 was 93%. The instance

with the smallest fraction expands 63% of its nodes with g(n) <= C∗/2, and the

instance with the largest fraction expands 99%.

These results show that the 15 puzzle has a strong heuristic and predicts that

a unidirectional heuristic search would be the dominant algorithm. And, indeed, I

am unaware of a bidirectional heuristic search or a bidirectional brute-force search

that is the state-of-the-art on this domain.

6.2.3 Bidirectional Heuristic Search Tested

I implemented bidirectional heuristic search in the 15 puzzle to compare it to the

unidirectional heuristic search. I implemented BS* as a canonical representative

of bidirectional heuristic search, and implemented A* for unidirectional heuristic

search. A* is not the state of the art heuristic search algorithm in the 15 puzzle,

but it is the unidirectional algorithm most similar to BS*. Hence, comparing A*

to BS* makes the most direct comparison of the contribution of bidirectionality.

Using the optimal unidirectional algorithm would only improve the performance

of a unidirectional heuristic search.

I compared the two algorithms on 1,000 randomly-generated instances. Among

these, A* expanded 20% fewer nodes than BS* and took 37% less time. BS*

outperformed A* on 18% of the instances tested. In these instances, BS* expanded
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at least as many nodes with f(n) < C∗ as did A*. The performance advantage in

these instances comes from improved tie breaking, as discussed in section 5.7.2.

Overall, as predicted, unidirectional heuristic outperforms bidirectional heuristic

search.

6.2.4 Work Spent Proving Optimality

In the 1,000 instances tested using BS* the final solution was found after 90% of

the nodes in an instance had been generated, on average. Unlike in Kaindl and

Kainz’s experiments, optimal solutions tends to be found quite late in search. In

their experiments on the 15 puzzle, they used the Manhattan distance heuristic.

The pattern databases I used are a much stronger heuristic.

6.3 The 24 Puzzle

The 24 puzzle is another sliding tile puzzle, like the 15 puzzle studied in the

previous section. It is played on a 5 × 5 grid occupied by tiles numbered from 1

to 24, with one location left blank. The goal of the puzzle and the legal moves are

identical to the 15 puzzle. Figure 6.1 gives the goal position of the 24 puzzle on

the right. Moves in the 24 puzzle have unit edge cost. All nodes have a branching

factor of 2, 3, or 4. A node can be placed in one of six classes based on the location

of the blank tile on the board. All nodes in the same class have the same branching

factor, and the classes of the children of a node are entirely determined by the

class of the parent.

6.3.1 Search Technique Used

For the 24 puzzle, I use IDA* with the pattern databases (PDBs) described

in [KF02]. These are shown in figure 6.3. I also use the reflection of these pattern
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Figure 6.3: The four pattern databases used in the 24 puzzle (this image was

shown earlier in figure 2.2).

databases across the diagonal, as described in the same paper. To avoid generating

some duplicate nodes, the search algorithm prevents regeneration of the parent of

a node n as one of its children by not applying the reverse of the operator that

generated n.

6.3.2 Distribution Of g Costs

I solved the 50 24 puzzle instances described in [KF02] using IDA* and calculated

the fraction of nodes that are expanded with g(n) <= C∗/2. Among these in-

stances, the mean fraction of nodes expanded with g(n) <= C∗/2 was 96%. The

instance with the smallest fraction expands 80% of its nodes with g(n) <= C∗/2,

and the instance with the largest fraction expands almost 100%.

These results show that the 24 puzzle has a strong heuristic and predicts that a

unidirectional heuristic search will outperform a bidirectional heuristic search. The

state-of-the-art algorithm for the 24 puzzle is in fact a front-to-front bidirectional

heuristic search algorithm, Single-Frontier Bidirectional Search (SFBDS) [FMS10],

but this falls outside the scope of my theory. I am unaware of a state-of-the-art

front-to-end bidirectional heuristic search in this domain.
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The 24 puzzle search space requires too much memory to solve with BS* or

A*, so I did not perform the remaining two experiments in this domain.

6.4 Rubik’s Cube

The popular Rubik’s Cube puzzle was invented in 1974 by Erno Rubik [SSH09].

The puzzle is a 3 × 3 × 3 cube. A 3 × 3 × 1 face of the cube is made up of nine

smaller cubes, called cubies. Eight of these cubies are located on corners of the

cube, and are called corner cubies. 12 cubies are located on the edge of the cube,

between two corner cubies, and are called edge cubies. The remaining eight cubies

are called face cubies.

Each face can be independently rotated by 90, 180, or 270 degrees in a single

move, while the remainder of the cube stays fixed. Each visible face of a cubie is

colored with one of six colors. In the goal position, all nine cubie faces that make

up each face of the larger cube are all the same color. A move consists of rotating

a single face of the cube, reorienting all nine cubies on it simultaneously. The goal

of the puzzle is to take a scrambled initial state and transform it into the goal

state.

Operators in the Rubik’s Cube have unit cost, and all nodes in the problem

state have the same branching factor.

6.4.1 Search Technique Used

I solved Rubik’s cube with an IDA* solver using a PDB that tracks all eight

corner cubies and a PDB that tracks nine edge cubies. For the edge cubies, I do

multiple lookups of the edge pattern database using transformational lookups.

Because the Rubik’s Cube has 24 symmetries, it is possible to transform the cube

into a symmetric state by relabeling cubies and look up the symmetric state in

the pattern database as well, possibly giving a different heuristic estimate. I use
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Figure 6.4: A Rubik’s Cube.

this technique to do six separate transformation lookups into the edge cubie PDB.

This technique is described more fully in [FZH11].

To avoid generating duplicate nodes, I apply a number of pruning techniques.

I do not allow multiple consecutive turns of a single face, as the resulting node

can also be generated by a single turn of the same face. Two moves that rotate

opposite sides of the cube can be made in either order to generate the same state.

To avoid generating duplicate nodes in this manner, I assign a number to each

face of the cube. For each pair of opposite faces that have disjoint sets of cubies,

moves by the lower-numbered face cannot be made immediately after moves of

the higher-numbered face.

6.4.2 Distribution Of g Costs

I generated 25 random solvable Rubik’s Cube instances by making 100 random

moves from the goal state. I solved each instance using IDA*. In these, I calcu-

lated the fraction of nodes that are expanded with g(n) <= C∗/2. Among these

instances, the mean fraction of nodes expanded with g(n) <= C∗/2 was 90%. The
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instance with the smallest fraction expands 84% of its nodes with g(n) <= C∗/2,

and the instance with the largest fraction expands 98%.

These results show that the Rubik’s Cube heuristics I used are strong, and

predicts that a unidirectional heuristic search would be the dominant algorithm.

As in the 24 puzzle, the state of the art algorithm is SFBDS, a front-to-front bidi-

rectional heuristic search algorithm, which is beyond the scope of this paper. I am

unaware of a front-to-end bidirectional search in the literature that outperforms

the best unidirectional heuristic search, and so this result agrees with my theory.

6.4.3 Bidirectional Heuristic Search Tested

I implemented a BS* solver for Rubik’s Cube and compared its performance to an

A* solver. I compared the two algorithms on 1,000 randomly-generated instances

created by making 16 random moves. Instances requiring more than 16 moves to

solve require too much memory to be solved by either algorithm.

Among these instances, A* expanded 15% fewer nodes than BS* and took 74%

less time. BS* outperformed A* on 29% of the instances tested. In these instances,

BS* expanded at least as many nodes with f(n) < C∗ as did A*. The performance

advantage in these instances comes from improved tie breaking. Overall, as pre-

dicted, unidirectional heuristic search outperforms bidirectional heuristic search.

6.4.4 Work Spent Proving Optimality

In the 1,000 instances tested using BS* the final solution was found after 96% of

the nodes in an instance had been generated, on average. Optimal solutions tend

to be found quite late in my bidirectional heuristic searches of Rubik’s Cube.

65



6.5 Top Spin

Ferdinand Lammertink developed the Top Spin puzzle in 1989 [Lam89]. The puz-

zle consists of a circular track filled with numbered tokens. The tokens can be

simultaneously rotated around the track while maintaining the same order. On

the track is a turnstile that holds some number of tokens. The turnstile can be

rotated by 180 degrees, reversing the order of the tokens that are in the turnstile

while leaving the remaining tokens in the same order. A single move in Top Spin

consists of moving the tokens by any distance on the track followed by a single

rotation of the turnstile. The goal is to take some random initial ordering of tokens

and reorder them in ascending numerical order.

The number of tokens in a Top Spin puzzle can be varied to make the problem

easier or harder, and the turnstile can be resized to hold different numbers of

tokens. The 18-4 puzzle shown in figure 6.5 has 18 tokens and a turnstile that

reverses the order of four tokens.

All operators in Top Spin have unit cost, and all nodes have the same branching

factor.

6.5.1 Search Technique Used

I solved Top Spin using IDA*. The instances I solved had 21 tokens and a turn-

stile of size four, and so I used three seven-token, additive PDBs. By relabeling

tiles I used these databases to do three separate lookups, taking the max. These

techniques for doing PDB lookups in Top Spin are described in [YCH08]. To avoid

generating some duplicate nodes, the search algorithm prevents regeneration of

the parent of a node n by not rotating the turnstile twice in a row with the same

set of tokens. Moves affecting disjoint sets of tiles can also be applied in either

order to generate the same node. To prevent the generation of duplicate nodes

through this method, the solver does not allow consecutive moves that affect dis-
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Figure 6.5: The 18-4 Top Spin puzzle

joint sets of tokens when the index of the first token moved by the first move is

greater than the index of the first token moved by the second move.

6.5.2 Distribution Of g Costs

I solved 20 randomly generated instances of Top Spin with 21 tokens and a four-

token tray. In these, I calculated the fraction of nodes that are expanded with

g(n) <= C∗/2. Among these instances, the mean fraction of nodes expanded with

g(n) <= C∗/2 was 98%. The instance with the smallest fraction expands 86% of

its nodes with g(n) <= C∗/2, and the instance with the largest fraction expands

almost 100%.

These results show that the Top Spin heuristics I used are strong, and predicts

that a unidirectional heuristic search would be the dominant algorithm. And,

indeed, I am unaware of a state-of-the-art bidirectional heuristic search algorithm

in this domain.
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Top Spin instances require too much memory to be solved with BS*, so I did

not implement the remaining two experiments.

6.6 Pancake Problem

The pancake problem is a very simple combinatorial problem and the subject of

the only academic paper written by Bill Gates [GP79]. We are given a stack of n

pancakes, all of different sizes. The goal is to rearrange the pancakes in order of

descending size with the largest pancake on the bottom. A legal operation is to

flip the top k pancakes, reversing their order on the top of the stack. Each flip of

any number of pancakes counts as a single move, and the objective is to produce

a sorted stack in the minimum number of moves possible. Figure 6.6 shows an

example initial and goal state for the pancake problem with six pancakes.

All operators in the pancake problem have unit edge cost, and every node

in the problem space has the same branching factor, which is one less than the

number of pancakes in the search instance. (There is no point in flipping the single

topmost pancake.)

Figure 6.6: A random pancake stack and its sorted goal state.
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6.6.1 Search Technique Used

My solver for the pancake problem uses IDA* with the gap heuristic [Hel10].

The gap heuristic considers cases in the current stack where two pancakes are

adjacent that are not adjacent in the goal stack. Each such case requires at least

one flip to fix, and so the algorithm returns the total number of such cases in the

current stack. To avoid generating duplicate nodes, the search algorithm prevents

regeneration of the parent of a node by not flipping the top k pancakes twice in a

row.

6.6.2 Distribution Of g Costs

I solved 60 random instances of the pancake problem with 80 pancakes using IDA*.

Among these instances, the mean fraction of nodes expanded with g(n) <= C∗/2

was 57%. The instance with the smallest fraction expands 49% of its nodes with

g(n) <= C∗/2, and the instance with the largest fraction expands 66%.

As an interesting observation, the gap heuristic for the pancake problem is

extremely strong: in all instances I tested very few nodes expanded had f(n) <

C∗, and often none did. The gap heuristic is thus very strong, and so we would

expect the vast majority of nodes to be expanded with low g cost. However, in my

experiments, a small majority of nodes were in fact expanded with g(n) <= C∗/2.

This is because the gap heuristic is almost perfect. With a perfect heuristic

a search algorithm is able to expand only the nodes on a single optimal solution

path to a goal. The mean g cost of expanded nodes would thus be C∗/2. While

the gap heuristic is not perfect, it is close enough that the distribution of g costs

of nodes expanded is almost flat.

The pancake problem heuristic is very strong, despite the deceptively small

fraction of nodes expanded with g(n) <= C∗/2. As my theory predicts, unidirec-

tional heuristic search is the state of the art in the pancake problem [Hel10].
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6.6.3 Bidirectional Heuristic Search Tested

I implemented and tested BS* and A* on the pancake problem and compared

them to each other. I compared them on 1,000 randomly-generated instances with

50 pancakes, the hardest solvable within my memory limitations. While the gap

heuristic is very strong, it is not perfect and some number of nodes are expanded

that are not on the optimal solution path.

Among these instances, A* expanded 11% fewer nodes than BS* and took

32% less time. BS* outperformed A* on 16% of the instances tested. In these

instances, BS* expanded at least as many nodes with f(n) < C∗ as did A*.

The performance advantage in these instances comes from improved tie breaking.

Overall, as predicted, unidirectional heuristic outperforms bidirectional heuristic

search.

6.6.4 Work Spent Proving Optimality

In the 1,000 instances tested using BS* the final solution was found after 86%

of the nodes in an instance had been generated, on average. Optimal solutions

tend to be found quite late in my bidirectional heuristic searches of the pancake

problem.

6.7 Pairwise Sequence Alignment

Pairwise sequence alignment is typically applied to the problem of determining

the similarity of two strands of DNA or of two proteins. In this dissertation I

considered only DNA sequences. A DNA molecule consists of a very large number

of small molecules, known as nucleotides connected to a backbone structure. There

are four types of nucleotides which are represented typographically by the letters

A, C, T, and G. A DNA sequence is thus represented by a very long string of those
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characters. One application is to determine the evolutionary similarity between

two strands of DNA (which may be subsequences of larger DNA molecules).

The problem defines three operations that can be used to transform one strand

into another. A nucleotide on a sequence can be substituted by replacing it by a

different nucleotide. One or more nucleotides can be deleted, in which case they

are removed from the sequence entirely and the nucleotides immediately preceding

and succeeding the gap become adjacent. And finally, an arbitrary sequence of

nucleotides can be inserted between two adjacent nucleotides on a sequence. Each

of these operations correspond to biologically plausible mechanisms by which DNA

sequences can mutate or recombine.

Applying each operation incurs a cost, and the goal is to find the lowest-cost

set of operations that can be used to transform one of the two sequences into the

other. This gives an estimate of the two strings’ similarity. A substitution of one

nucleotide with another incurs a fixed cost. Inserting or deleting a nucleotide sub-

sequence incurs a cost that is proportional to the length of the given subsequence.

In my solver I add an additional fixed cost for opening a new gap or inserting a

subsequence. This is known as an affine gap cost, and reflects the fact that it is

biologically more plausible to have a few long insertions or deletions than many

short ones. Inserting a subsequence into another sequence is equivalent to deleting

that subsequence from the latter sequence, and so has the same associated cost.

Pairwise sequence alignment is modeled as a pathfinding problem by placing

one sequence on the X axis of a grid and the other on the Y axis. I call these

sequences SX and SY , respectively. The goal is to find the lowest-cost path from

the top-left corner of the grid, representing the start of both sequences, to the

bottom-right corner, representing the end of both sequences. Each entry on the

grid maps to a single nucleotide each from SX and SY . The path can move from one

position in the grid to an adjacent position, either immediately right, downward,

or diagonally down-right.
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Any path taken through this grid corresponds to a sequence of operations that

will transform one sequence into the other. A single move to an (x, y) position

in the grid from an adjacent position corresponds to one of the three possible

operations. A diagonal move means that the nucleotide at index x in SX is sub-

stituted with the nucleotide at index y in SY , and vice versa. If these are the

same nucleotides then they are not changed. A horizontal move corresponds to

the insertion of the nucleotide at index x into SX , or equivalently the insertion of

a gap into SY . A vertical move is the insertion of the nucleotide at index y into

SY , or the insertion of a gap into SX .

Figure 6.7: A path through a sequence-alignment grid, and the corresponding

alignment. The “ ” character represents a gap inserted in the sequence.

The scoring function in pairwise sequence alignment is unusual in that it

allows for negative edge costs. While there are several well-accepted cost func-

tions for protein alignment problems, such as the PAM and BLOSUM matri-

ces [DS78, HH92], there does not appear to be an accepted standard for DNA

sequence alignment. There appears to be a consensus that aligned nucleotides

(i.e., a subsitution of one nucleotide for the same one) should be given a positive

score, and that all other substitutions, insertions, and deletions should be given

negative scores. Unlike most other domains, then, the goal is to maximize the
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score of a path. Because there is no consensus opinion on a reasonable scoring

matrix, I used a custom scoring function in my code. The cost of substitutions is

given in table 6.1, and is taken from the BLASTN aligner as described in [SGA91].

I could not find accepted values for gap costs, and so used a cost of -20 to open a

gap and -8 to continue a gap by one nucleotide.

A C T G

A 5 -4 -4 -4

C -4 5 -4 -4

T -4 -4 5 -4

G -4 -4 -4 5

Table 6.1: The cost of substituting one nucleutide with another in my sequence

alignment solver.

Sequence alignment does not have unit costs for operators, however all operator

costs are integer. In addition, the domain has the unusual property that there are

both positive and negative edge costs. As a result, the g cost of a child node can

be lower or higher than the cost of the parent, whereas in most studied domains

g costs of children cannot be lower than that of their parent. However, because

the heuristic used by my algorithm is consistent, it is still the case that the f

cost of a child can be no greater than the f cost of its parent. (Remember that,

unlike other domains, the goal in sequence alignment is to maximize the cost of a

solution.)

As the problem space in pairwise sequence alignment is a grid, the structure of

the graph is very regular. Nodes at the edge of the grid (corresponding to the end

of one or both sequences) have a branching factor of two. All other nodes have a

branching factor of three.
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6.7.1 Search Techniques Used

My solver for pairwise sequence alignment is LBD-Align, an algorithm specifically

designed for this domain [Dav01]. LBD-Align is based on dynamic programming.

It organizes the dynamic programming matrix with the top left of the matrix

corresponding to the beginning of both sequences, or the origin, and the bottom

right corresponding to the end of both, or the goal. It fills in the matrix by

exploring successive diagonal levels that are perpendicular to the main diagonal

extending from the origin to the goal.

Unlike in standard dynamic programming, LBD-Align uses a heuristic to avoid

filling in matrix values that provably cannot be part of an optimal alignment. It

first generates a cost cutoff by using a cheap search to find a suboptimal solution.

During search, it does heuristic evaluations of the first and last cells filled in a

diagonal. If their f cost exceeds the cutoff, their children are not filled on the

next level. The first and last nodes of a diagonal tend to have the highest f costs,

and many children reached through these nodes cannot be reached through any

other nodes on that level. This technique means that LBD-Align explores a small

number of provably-suboptimal nodes, but this is more than made up for by the

time savings of only doing a small number of heuristic evaluations.

To the best of my knowledge, LBD-Align is the state-of-the art solver for

optimal pairwise alignment. I use the heuristic suggested in [Dav01], which returns

the minimum gap size required to align the remainder of the two sequences and

assumes that any remaining nucleotides can be aligned optimally.

I designed and implemented a bidirectional heuristic search for pairwise se-

quence alignment based on LBD-Align, as well. In this algorithm, LBD-Align is

run both forward from the initial state and backwards from the goal state. An

entire level is filled in at a time. At each point, the algorithm fills the next level in

the direction that has the fewest filled cells on its most-recently-filled level. When
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both directions fill the same level from different directions, all possible solutions

can be found. For each cell in the level the costs to reach that cell from both

directions are merged, and the best-cost cell gives the optimal solution cost.

6.7.2 Distribution Of g Costs

I generated test instances by constructing a sequence of random nucleotides, and

then created two test sequences as “descendants” of that sequence by randomly

perturbing it using substitutions, gaps, and deletions. Using this technique I gen-

erated 100 random sequence pairs of approximately 500,000 nucleotides each.

LBD-Align is based on dynamic programming, and so does not search nodes

in order of their f or g cost, but rather in order of increasing depth from the

initial state. A bidirectional brute-force search of the problem space would not

meet when expanding nodes with g costs of C∗/2, but rather at half the depth of

an alignment. As such, I compute the fraction of nodes expanded with half the

depth of an optimal solution, rather than with g(n) <= C∗/2.

Among these instances, the mean fraction of nodes expanded with less than

half the solution depth was 57%. The instance with the smallest fraction expands

51% of its nodes at less than half the solution depth, and the instance with the

largest fraction expands 60%.

While not as strong as the other heuristics I considered, the sequence alignment

heuristic is strong enough that my theory predicts a unidirectional heuristic search

would dominate. And indeed, so far as I know, unidirectional LBD-Align is the

strongest search algorithm for pairwise sequence alignment.

6.7.3 Bidirectional Heuristic Search Tested

I compared LBD-Align to my bidirectional LBD-Align implementation on the

same 100 random instances discussed in the previous section. Among these in-
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stances, LBD-Align expanded 9% fewer nodes than bidirectional LBD-Align and

took 11% less time. Bidirectional LBD-Align did not outperform unidirectional

on any instances.

6.7.4 Work Spent Proving Optimality

Because my bidirectional LBD-Align algorithm uses a breadth-first search order,

the last nodes generated in either direction are those on the single intersecting

level. The optimal solution is found on this level, after all other levels of search

have been completely generated. The problem instances I tested had on the order

of 1,000,000 levels, so the optimal solution is found after the vast majority of

nodes have been generated: over 99% of all the nodes in each problem instance I

tested.

6.8 Road Navigation

Road navigation is the problem of finding routes between two points on a map.

It is perhaps the most well-known pathfinding problem, encountered by many

people on a daily basis when they use GPS to find the quickest driving route. In

road navigation, a map is represented by a problem-space graph by modeling road

intersections as nodes and road segments connecting those intersections as edges

connecting nodes. Depending on the specific optimization goal, edge costs can

represent different real-world properties. My experiments solved the problem of

finding the fastest route between two points on a map (as opposed to, for example,

the shortest). As such, the cost of an edge is the time taken to traverse that road

segment while driving at the speed limit.

More complex implementations of road navigation can incorporate other goals

into their costs, such as a preference for not driving down undeveloped roads or

modeling the costs of making turns. I chose a very simple model for my work,
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Figure 6.8: Example pathfinding problem showing the route between two points

on a map. Graphics are from OpenStreetMap [Ope15] and route is generated by

GraphHopper [Gra15].

where we assume that a road can always travel at the speed limit on a road and

that turns are free. Figure 6.8 is an example of a real road route found by a

pathfinding algorithm.

Like sequence alignment, road navigation does not have unit operator costs.

Unlike all of the other domains I studied, operator costs are non integer and very

few operators in the problem space have identical edge costs. As a result, there are

a very large number of unique f and g costs encountered in a search of the problem

space: very few nodes have duplicate costs. The most notable implication of this

is that no algorithm in this domain has the benefit of improved tie-breaking, since

only a very small number of nodes will have f cost equal to C∗.

Unlike the other domains I study, the structure of the road navigation problem-

space graph is very irregular. The graphs of all of the other domains considered

are very regular: most nodes have the same branching factor, or there is a small
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number of unique branching factors whose distribution in the graph follow regular

patterns. Additionally, in the case of sequence alignment even though there are

non-unit edge costs, edges with the same costs do not tend to be clustered in the

search graph. In road navigation, however, the branching factor of nodes does not

follow a simple pattern, as the graph models a road network. Also, values of edge

costs in the graph tend to be clustered. For example, regions of the graph that

represent a city will tend to have many edges with low cost in close proximity,

while rural regions will tend to have edges with higher g cost.

Finally, the problem-space graph for road navigation is quite small and is

explicitly represented. The entire map of California can be represented with half

a gigabyte of RAM. All of the other domains studied are represented implicitly

and generated as the algorithm explores it.

6.8.1 Search Technique Used

For the road navigation problem I used the GraphHopper solver [Gra15], an

open-source routing engine for OpenStreetMap data [Ope15]. The state-of-the-

art solvers for road navigation preprocess the graph using an expensive technique

known as contraction hierarchies [GSS08] and then uses a bidirectional form of

Dijkstra’s algorithm [Dij59] on the preprocessed graph. Since my interest is in

general-purpose heuristic search algorithms, I instead use GraphHopper’s A* im-

plementation. I use the Euclidean distance heuristic.

6.8.2 Distribution Of g Costs

I generated test instances by picking two random latitude/longitude points in a

map of California and picking the closest nodes in the graph to those points. Some

of these problem instances may be unsolvable because there is no connecting route
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between the two points (for example, if only one of the points is on an island). I

discarded any unsolvable pairs of points, and constructed 500 solvable instances.

Among these instances, the mean fraction of nodes expanded with g(n) <=

C∗/2 was 53%. The instance with the smallest fraction expands 4% of its nodes

with g(n) <= C∗/2, and the instance with the largest fraction expands 96%.

The distribution of g costs has high variance, which is due to the irregularity of

the road navigation search graph. Road navigation is unique among the domains I

studied in having a very irregular search graph: different regions of the map have

very different densities of nodes. The high variance of g cost distributions is due

to this irregularity.

In instances where a small fraction of nodes are expanded with low g cost,

the initial state is found in a remote, rural area of the map and the goal is found

in a dense area (such as a city). In a brute force search of the problem space,

vanishingly few nodes would be expanded near the initial state and an extremely

large number near the goal. Many of those expanded near the goal are very close to

the goal state and would have f costs close to optimal. Even though the heuristic

prevents the expansion of some large number of nodes near the goal, there are

so many more nodes near the goal state that a heuristic search still expands the

majority of its nodes with high g cost.

The converse is true for instances where a huge fraction of nodes are expanded

with low g cost. These problem instances have a initial state in a city and a goal

state in a remote area. The number of nodes expanded with very low g cost in

a brute force search is very large, and adding a heuristic ensures that the vast

majority of nodes expanded in a unidirectional heuristic search have low g cost.

I verified that this is the correct explanation by performing reverse searches

on problem instances with extremal values. For those instances where the vast

majority of nodes expanded had low g cost, the vast majority of nodes expanded
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in a reverse search had high g cost. The same held for reverse searches on instances

where the majority of nodes expanded had high g cost.

Figure 6.9: Nodes expanded in a forward A* search of a road navigation instance.

The start state is the topmost location marker.

Figures 6.9 and 6.10 show this graphically. These images show nodes expanded

in forward and reverse A* searches of a road navigation instance. The initial state

in the problem instance is in the middle of a city and the goal state is in a remote

rural area. The forward search expands significantly more nodes than the reverse

search, and 90% of the nodes it expands have g(n) < C∗/2. This is because it

explores most of the city in the its search but there exist few nodes to explore

near the goal state. The reverse search expands significantly fewer nodes, and

only 43% of the nodes it expands have g(n) < C∗/2. This is because there are few
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Figure 6.10: Nodes expanded in a reverse A* search of a road navigation instance.

The start state is the topmost location marker.
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nodes to search near the goal state, and by the time the search gets close to the

initial state the heuristic is accurate enough that the search expands few nodes

off of the optimal path.

Because of this potential for asymmetric search difficulty, I would expect a

unidirectional heuristic search to be more effective in one direction than the other.

Since slightly more than half of the nodes expanded have g cost less than C∗/2, my

theory predicts that unidirectional heuristic search will outperform bidirectional

brute-force search. However, because the heuristic is only of medium strength and

a unidirectional heuristic search may perform better in one direction of search

than the other, a bidirectional heuristic search may be at least somewhat effective

(see section 5.7.3).

6.8.3 Bidirectional Search Algorithms Tested

I compared A* to a bidirectional implementation of the brute-force Dijkstra’s

algorithm [Dij59] on all 500 instances described previously. Because the majority

of nodes are expanded with g(n) <= C∗/2, A* outperforms Dijkstra’s algorithm.

A* expands 221,404,936 solving all instances, while Dijkstra expands 353,964,832.

A* performs better in 369 instances, while bidirectional Dijkstra performs better

in the remaining 131.

I also implemented BS* and compared it against A* on the same 500 instances.

Among these instances, BS* expanded 9% fewer nodes than A* and took 5% less

time. BS* outperformed A* on 57% of the instances tested. In other words, BS*

outperforms A* by a small margin.

As noted previously, A* searches in road navigation can be much cheaper in

one direction than the other. To account for this, I also compared BS* to an A*

search in the cheaper of the two directions for each instance. When this is done,

the cheaper A* expands 20% fewer nodes that BS* on average, and takes 27% less
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time. BS* beats A* only 19% of the time. This confirms that the major advantage

of BS* over A* is due to the imbalance of search difficulty in both directions, as

discussed in section 5.7.3.

Of all of these instances, BS* outperforms both A* and bidirectional Dijkstra

on 77, or 15% of all instances tested. In particular, it expands fewer nodes with

f(n) < C∗, so the performance advantage is not just from improved tie-breaking.

Rather, these are examples of pathological cases of the form discussed in sec-

tion 5.6. The road navigation heuristic is of medium strength, which is where I

predicted these types of pathological cases might occur. There are relatively few

of them overall, however, and on average BS* only expanded 8% fewer nodes than

the strongest of the two other algorithms, a relatively small improvement.

6.8.4 Work Spent Proving Optimality

In the 1,000 instances tested using BS* the final solution was found after 42% of

the nodes in an instance had been generated, on average. This is much earlier,

on average, than the optimal solutions were found in the other domains I tested.

The heuristic used in this domain is also weaker than that of the other domains

studied.

6.9 Four-Peg Towers of Hanoi

The Towers of Hanoi puzzle is played with n disks of different sizes, which are

distributed across some number of pegs. In this dissertation I consider the four-

peg variant. In the standard version of this problem, all disks start off stacked on

a single peg (in descending order of size with the largest on the bottom) and the

goal is to move them all to some other single peg. Only one disk may be moved at

a time, from the top of the stack on one peg to another peg, with the constraint

that a larger disk cannot be placed on top of a smaller disc.
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The standard, three-peg version of this peg has a provably-optimal constructive

solution. There is a constructive solution to the four-peg version known as the

Frame-Stewart Algorithm [Fra41, Ste41] which has been shown to be optimal up

to 31 disks [Kor08], however its optimality in general has not been proven. As

such, search is currently the only way to prove solution optimality for a given

number of disks.

With the standard initial and goal states, all disks start on the first peg and end

on the last peg. At the halfway point of an optimal solution to the standard prob-

lem, all disks but the largest are distributed across the middle two pegs [Hin97]

and the largest disk remains on the first peg. The largest disk is then moved to the

last peg, and the labels of the first peg and the last peg are swapped. Reversing

the sequence of moves that reached the middle state will place the smaller disks

back on top of the largest disc.

Because the form of the middle state of an optimal solution is known, searching

with the standard initial and goal states can be done much more quickly. We can

generate all possible midpoint states where all but the largest disk are distributed

across the middle two pegs and the largest disk is on the initial peg, and define

those as our goal states. Then a search can be done from the initial state to the set

of middle states, rather than to the goal state of the original problem. This cuts

the search depth in half and dramatically reduces the work in finding an optimal

solution.

6.9.1 Arbitrary Start And Goal States

The standard problem instance of the four-peg Towers Of Hanoi has been solved

for up to 31 disks [Kor08]. In my dissertation, however, I consider the general case

of the Towers of Hanoi where disks in the initial and goal states are distributed
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arbitrarily across any of the four pegs, subject to the restriction that no disk can

be on top of a smaller one.

One implication of this general case is that I consider a significantly larger

number of problem instances, rather than the single problem instance of the stan-

dard games. This allows for a much larger number of test instances.

A second, more subtle implication is that in this version of the problem it is

not possible to search to a set of known middle states, as previously discussed.

Since we cannot search to a known midpoint state, we must complete a search

to full depth to find a solution to a problem instance. This greatly reduces the

maximum number of disks in a tractably-solvable problem instance.

Finally, reverse searches in the standard problem instance are significantly

more expensive than forward searches. Reverse searches are done backwards from

the set of candidate middle states towards the goal state. For a given number of

disks d, there are 2d−1 candidate middle states, in which all but the largest disk

are distributed across the middle two pegs. With even 21 disks a reverse search is

seeded with over a million goal states. The number of nodes expanded with depth

increases exponentially, making the reverse search far more expensive than the

forward search.

This makes a bidirectional search pointless, despite the weakness of the heuris-

tic, as a forward search is so much cheaper than a reverse serach (see section 5.7.3).

This was the observation that first led me to consider the general four-peg Towers

of Hanoi case. In the general case, however, a problem instance is not symmet-

ric and we cannot search to a set of candidate middle states. This means that a

bidirectional search is a viable strategy.
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6.9.2 Search Techniques Used

I implemented two algorithms for Towers of Hanoi, a unidirectional heuristic

search and a bidirectional brute-force search.

My unidirectional solver is based on Korf’s solver from [Kor08]. That solver

uses BFHS with delayed-duplicate detection (described in sections 2.3 and 2.4,

respectively) to solve the standard problem instance with disks of varying sizes.

Because there is a presumed-optimal solution given by the Frame-Stewart conjec-

ture, BFHS can be run with the cost of this presumed-optimal solution as its cost

cutoff. In theory, we could run BFHS with a cutoff of one less than the presumed-

optimal solution cost to simply verify that there exist no cheaper solutions. Using

the actual cost allows us to find the Frame-Stewart solution as well, though, and

verifying the correctness of our implementation.

The solver uses two PDBs as a heuristic. The databases track two disjoint sets

of disks. As these sets are disjoint and only one disk moves at a time, the heuristic

values returned by these two databases can be added together to make a stronger

admissible heuristic.

I modified this solver for the general case with arbitrary start and goal states.

Because the goal state differs with each instance, the same PDB cannot be reused.

As an initial step, then, my solver generates instance-specific PDBs. The cost of

this step is included in my timing numbers for solving a given instance. Since the

Frame-Stewart conjecture cannot be used to give a conjectured-optimal solution

for a given instance in advance, we cannot use the cost of such a solution as the

cutoff for BFHS. Instead, I first find the cost of an optimal solution using my

bidirectional algorithm and then provide this cost to BFHS as its cutoff. This

means that my unidirectional solver is an idealized one that knows the cost of

an optimal solution in advance. A real solver would not have this advantage and

would thus perform worse.
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I use bidirectional breadth-first search as my brute-force bidirectional solver.

Disk-based breadth-first searches are performed from the initial and goal states

towards a point of solution intersection. As this is a brute-force search, it does

not require a preparatory step to generate PDBs. In addition, since breadth-first

search does not use a cost cutoff, the solver does not need to know the cost of an

optimal solution in advance.

6.9.3 Distribution Of g Costs

I solved 100 randomly generated instances of the four-peg Towers of Hanoi with

20 disks. I calculated the fraction of nodes expanded with g(n) <= C∗/2 using my

unidirectional solver with two pattern databases tracking 15 disks and five disks,

respectively. This solver requires knowing the optimal solution cost in advance,

which I found by first solving each instance with my bidirectional brute-force

solver.

Among these instances, the mean fraction of nodes expanded with g(n) <=

C∗/2 was 31%. The instance with the smallest fraction expands 13% of its nodes

with g(n) <= C∗/2, and the instance with the largest fraction expands almost

59%.

The heuristic I used for this domain is quite weak, and as such I expect a

bidirectional brute-force search to outperform the a unidirectional heuristic search

on this domain. The following section shows that this is the case.

The four-peg Towers of Hanoi domain has many duplicate states and, with

many disks, has very large search spaces. Solving these instances requires the

use of disk-based techniques to store nodes for duplicate detection. While there

is some discussion in the literature of how to do best-first searches using disk-

based techniques [Kor08], to my knowledge this discussion remains theoretical
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and no such algorithms have actually been implemented. As such, I only compare

a unidirectional heuristic search and a bidirectional brute-force search.

6.9.4 Bidirectional Brute-Force Search Tested

I compared my unidirectional heuristic solver against my bidirectional brute-force

solver on many random instances with 20 and 21 disks. Because the heuristic for

this domain is quite weak, I predicted that a bidirectional brute-force search will

outperform a unidirectional heuristic search.

The heuristic search solver must construct a new PDB for each instance. While

I found that the savings of the heuristic function outweighs the cost of generating

the PDB, this introduces a degree of freedom: the size of the PDB to generate for

a given instance.

For N=21 disks, I solved 10 random instances with both algorithms. I consid-

ered three different PDB sizes for the heuristic search. The weakest PDB config-

uration partitions the disks into two sets of disks, one of size 15 and one of size

6; the strongest partitions them into sets of size 17 and 4. I solved each instance

with my unidirectional heuristic solver using each PDB configuration, as well as

with my bidirectional brute-force solver.

The results are given in table 6.2. The first row gives the time and number of

nodes required to build the PDB, which applies only to unidirectional searches and

does not vary by instance. The remaining rows are the nodes and times required

by each solver for each instance, including PDB creation. The best performance

overall is bolded (always bidirectional search), and the best unidirectional search

is underlined. Times are in seconds and node counts are in billions.

Note that the average time per node expanded is not constant across each

problem instance. In particular, in larger problem instances fewer nodes are ex-

panded per second. This is because these solvers use disk storage, which introduces
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some level of unpredictability in timing numbers. In smaller problem instances,

the files generated may be quite small, and so the operating system may never

in fact write these files to disk. In larger problems, the files are larger and actual

disk access is required.

Additional factors affect timing numbers of node expansions of the two algo-

rithms. The bidirectional search has to test for frontier intersections while the

unidirectional algorithm does not. Conversely, the unidirectional algorithm does

pattern-database lookups for its heuristic while the bidirectional solver does not.

Because of all of these differences in overhead, my comparison of these algorithms

is based on wall-clock time rather than number of nodes expanded.

Bidir. Unidir. 15/6 Unidir. 16/5 Unidir. 17/4

Time Nodes Time Nodes Time Nodes Time Nodes

PDB N/A 83s 1 328s 4 1,380s 17

Instance 1 3,707s 60 51,186s 291 20,770s 174 8,315s 97

2 125s 4 202s 6 411s 5 1,445s 17

3 1,299s 34 9,385s 116 3,338s 65 1,858s 36

4 300s 13 461s 17 474s 9 1,461s 20

5 589s 19 1,223s 36 1,057s 27 1,650s 31

6 7,283s 88 88,349s 430 50,967s 300 24,261s 174

7 158s 6 272s 9 466s 9 1,415s 18

8 4,104s 66 60,981s 331 26,803s 208 7,660s 96

9 414s 17 869s 30 693s 22 1,539s 24

10 445s 17 2,168s 47 1,022s 28 1,577s 24

Table 6.2: Instances of 21-disk Towers of Hanoi. Node counts are in billions.

Bidirectional brute-force search outperformed the best unidirectional heuristic

search by an average factor of 1.5-3. In some instances, like number three, unidirec-

tional is faster when ignoring PDB creation; when counted, however, bidirectional
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brute-force search is always fastest. If bidirectional brute-force search is compared

to each unidirectional search independently, rather than against the strongest of

the three for a given instance, the relative performance is often much stronger,

sometimes by over an order of magnitude. As one would expect, the weaker heuris-

tic does relatively worse on harder instances and the stronger heuristic does rela-

tively worse on easier instances (due to PDB creation cost). We cannot know the

difficulty of an instance in advance, and thus do not have the luxury of guaran-

teeing we will always use the best PDB.

In addition, I solved 100 random instances with 20 disks. For the unidirectional

search, I selected the heuristic by solving the first 10 instances with different

PDBs and finding the configuration with the best overall performance. This was a

partitioning into two PDBs of 15 and 5 disks. I then solved all 100 instances using

this strongest configuration, as well as with my bidirectional brute-force solver.

Table 6.3 summarizes these results. The first two columns give the solution time

for each algorithm, and the third gives the relative slowdown of unidirectional

heuristic search over bidirectional brute-force search. The first row gives PDB

creation time, the second gives the mean solution time over all 100 instances, and

the third and fourth give the values for the instances with the worst and best

relative performance of bidirectional brute-force search. All times are in seconds.

Again, bidirectional brute-force search outperforms unidirectional heuristic search

in all instances, by an average factor of 3.65.

Bidir. Unidir. 15/5 Unidir. Slowdown

PDB Generation N/A 83s N/A

Mean Results 217s 793s 3.65

Best for BiDir. 347s 3939s 11.35

Worst for BiDir. 85s 126s 1.48

Table 6.3: Timing results on 100 instances of 20-disk Towers of Hanoi.
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6.9.5 New State-Of-The-Art Algorithm

Based on the results of my experiments in section 6.9.3, we would expect a bidi-

rectional brute-force search to outperform a unidirectional heuristic search. My

experiments confirmed this expectation. Even with an idealized implementation of

unidirectional heuristic search, bidirectional brute-force search outperforms it by

over a factor of three. These results reinforce the predictions made by my theory.

These are the first conducted in this domain with arbitrary initial and goal states,

and the bidirectional brute-force solver I introduce is the state of the art approach

for solving these types of instances.

6.10 Peg Solitaire

Peg solitaire is a simple puzzle game. I introduced the state-of-the-art solver for

this domain in a 2012 paper [BK12b], which involves many novel techniques. The

solver that I implemented in my experiments is much more involved than the

others described in this chapter, and this section is correspondingly much longer.

Peg solitaire is a one-player puzzle played on a board which has a number of

holes, some of which are occupied by pegs. Any peg can jump over an adjacent

peg to land in an empty hole, and the jumped-over peg is removed from the board.

The objective of the game is to make a sequence of jumps that leave the board

in a specified goal configuration. While not required, the initial position generally

has a single empty hole and the goal board has a single peg remaining, often left

in the initially-empty hole.

While peg solitaire can be played on a number of different board types, I con-

sider only games played on a rectangular grid. On these, pegs can jump vertically

or horizontally, but not diagonally. Figure 6.11 shows solvable opening states on

the four primary boards studied in this paper.
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The most basic question in peg solitaire is whether there exists any sequence

of jumps that transforms the initial state into a goal state. In my work, however,

I consider the optimization problem, where consecutive jumps by the same peg

count as a single move and we try to find the fewest number of moves required to

generate a goal state. To disambiguate, I use the word “move” to apply exclusively

to one or more single jumps by the same peg.

Figure 6.11 shows examples of solvable states on the four boards studied in my

work: the English, French, Diamond(5), and Wiegleb boards. In an initial state for

the English board, having the center hole empty is a solvable state. In the three

remaining boards, though, the puzzle cannot be solved if only the center hole is

empty in the initial state.

Figure 6.11: Solvable initial states on the English (top left), French (top right),

Diamond(5) (bottom left), and Wiegleb boards (bottom right).
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6.10.1 Previous Work

Most of the previous work on computational search in peg solitaire has been done

by George Bell, using both brute-force and heuristic techniques. [Bel07] introduces

a heuristic that he uses in unidirectional heuristic search, which he used on the

English board. [Bel12] gives Bell’s timing numbers for a bidirectional brute-force

solver on the French and Diamond(5) boards, where his heuristic is not effective.

To the best of my knowledge, these are the previous states of the art on this

domain.

6.10.2 Domain-Specific Techniques

This section describes several domain-specific techniques that are used in my

solver. I did not discover these ideas, but understanding them is crucial to under-

standing the techniques I developed and so I introduce them here.

6.10.2.1 Pruning Constraints

There are a number of techniques used by my solver that can prove that certain

board positions can never be solved. If a search algorithm encounters a board that

violates one of these pruning constraints, it can ignore that board as provably

unsolvable without doing any further work. [Bea85] and [Bel12] describe three

techniques used to prove certain board states unsolvable that I use in my solver.

The first of these is the concept of position classes. Every board configuration

can be put into one of a set of position classes, and every child has the same

class as its parent. Thus, if the initial and goal states are of different classes, a

problem instance can be discarded as unsolvable without performing any search.

My implementation of position classes is taken from the description in [Bel12],

and is not my own original contribution.
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Figure 6.12: Labels of cells used to define position classes on the English board.

To define a position class, we label each hole with the numbers one through six.

The numbers one through three are assigned such that each hole in a diagonal from

the top-right to the bottom-left is labeled with the same number, with numbers

written in ascending order from left to right (starting over at one after a three).

The numbers four through six are assigned to the same holes, but assigned such

that each hole in a diagonal from the top-left to the bottom-right is labeled with

the same number, with numbers written in ascending order from left to right

(starting over at four after a six). Each hole is thus labeled with two numbers.

Figure 6.12 gives an example of this labeling on the English Board.

Any jump removes pegs from two holes and puts a peg in a third. Under these

two labelings, the three holes affected are labeled with one each of the numbers

one, two, and three, and one each of the numbers four, five, and six. These are the

only two labelings (ignoring renumbering) for which every possible jump affects

holes labeled with three different numbers.

Given a particular board, T is the total number of pegs on that board, and

Ni is total the number of pegs occupying holes labeled i. A jump in peg solitaire
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removes one peg from the board, decreasing T by one. For each of N1, N2, and

N3, a jump either increases or decreases the number of pegs with that label by

one as a peg is placed or removed in a hole with that label, respectively. Similarly,

a jump either increments or decrements the values N4, N5, and N6 by one. Thus,

for each label i, the value T − Ni has the same even-odd parity before and after

a jump is made.

A position class is described by the parity of each T −Ni. All boards for which

these values are identical are in the same position class. As a jump does not change

the parity of any of these values, a jump does not change a board’s position class.

My solver tests if the initial and goal states are in the same position class and if

not, knows that the initial state is not solvable without needing to search.

Figure 6.13: Pagoda values for the French board

A pagoda function can be used to prune certain states as unsolvable. To de-

fine one, each hole on the board is assigned a number subject to the following

constraints: for any three horizontally- or vertically-adjacent holes with values x,

y, and z we have that x ≤ y + z and z ≤ y + x. The pagoda value of a board

state is given by the sum of the values of every occupied hole. Since a single jump

removes pegs from two adjacent holes and places a peg in a third consecutive hole,

a board’s pagoda value can only stay the same or decrease after a jump is made.
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Figure 6.14: Example Merson regions on the Wiegleb board.

Thus, if we reach a state whose pagoda value is less than that of the goal, we know

the state is a dead end and we cannot reach the goal. Figure 6.13 gives values for

an effective pagoda function on the French board.

All pegs on a board are classified into four distinct types. A peg’s type is

defined by the parity of the row and column that it appears in, so any 2 × 2

square would contain one peg of each type. Since a jump moves a peg either two

holes horizontally or vertically, the type of a peg never changes during a game.

Thus, the number of pegs of a given type never increases and if a state has less

of one peg type than the goal state does, then that state is unsolvable. Also note

that pegs can only jump other pegs of certain types. In particular, peg types are

divided into two classes: pegs that have both row and column of the same parity,

and pegs that do not. Pegs in one class can only jump pegs in the opposite class.

This fact is used by my solver’s heuristic function.
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6.10.2.2 Merson Regions

A Merson region is a region on a peg solitaire board that allows us to put a

lower bound on the number of moves required to solve a board configuration. A

Merson region is a contiguous region of the board which has the property that, if

all holes in that region are occupied, a peg in that region can only be captured

by a jump that originates in that same region. In other words, pegs in a fully-

occupied Merson region cannot be captured by jumps made by pegs from outside

that region. If a Merson region is fully occupied in the current state and not in the

goal state, then a new move (rather than the continuation of a move) is required

to remove a peg from that region. This property is used in my solver’s heuristic.

Figure 6.14 gives examples of Merson regions on the Wiegleb board.

6.10.3 Breadth-First Search By Jumps

One contribution I used in my solver is a novel method for representing levels in

BFIDA* searches of peg solitaire. This technique is used by my unidirectional and

bidirectional solvers and significantly improves duplicate detection.

The traditional implementation of BFIDA* does a breadth-first search, where

all nodes on a level have the same g cost. In peg solitaire, however, this presents

some problems. Nodes on a level are the result of a completed move from a node

on the previous level. Generating all successors to a node thus involves a sec-

ondary search of all legal jump sequences, adding complexity. In addition, doing a

secondary search of moves on different states may result in duplicate intermediate

states. Detecting and pruning these duplicates is non-trivial. In addition, moves

of different lengths remove different numbers of pegs. Thus, not all nodes on the

same level of search have the same number of pegs and duplicate states appear at

different levels of search. We must then either store multiple levels of the problem

space for duplicate detection or pay the cost of additional, duplicate work.
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In my solvers, however, each level consists of all nodes reachable by performing

a single jump from some node on the preceding level. Generation of children is

trivial and quick: the successors to a node on the next level are simply all nodes

reachable by a single jump. In addition, all nodes at the same depth now have

the same number of pegs, so my solver can trivially detect all duplicates by only

looking at nodes on the current level.

The downside is that this involves additional bookkeeping complexity. Since

not all nodes on the same level have been generated by the same number of moves,

we need to store with each node its associated g cost. In addition, we need to store

the identity of the last peg moved so that the solver can determine whether a jump

made by a peg starts a new move. This imposes a small additional space overhead.

Finally, care must be taken when deciding when to prune a node, since it may

be possible to extend the move that generated a node and reduce its h cost. We

cannot prune a node until the move that generated it is complete.

At the cost of some additional bookkeeping space, however, we can now guar-

antee that all duplicate nodes will occur at the same level of search. This greatly

simplifies duplicate detection.

6.10.4 Improved Heuristic

I developed an improved heuristic for peg solitaire. Importantly, it is a consistent

heuristic. It is composed of three component functions: hc(n), ht(n), and hm(n).

The first component, hc(n) counts the number of corner holes that are occupied

in the current state but not the goal. Figure 6.15 labels corners using a “C” on

the French board. Each such corner hole must be vacated to find a solution. Since

pegs in those holes cannot be captured, they can only be removed from their hole

with a move starting at that hole. Thus, hc(n) is a lower bound on the optimal
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Figure 6.15: Corners on the French board.

solution cost. Note that hc(n) counts the number of moves required to remove

pegs from certain holes, not to remove them from the board entirely.

ht(n) counts the number of moves required to remove pegs of certain types (see

section 6.10.2.1) from the board. There are a maximum number of pegs of each

type that can be removed from the board in a single move. For example, consider

the peg type that can only occupy even-parity rows and columns on the English

board. As shown in figure 6.16, a maximum of four such pegs can be removed by

a single move. A total of 12 even-row, even-column pegs can be on the board at

the same time: four in the holes jumped over in figure 6.16, and eight in the eight

corner holes. Since a maximum of four such pegs can be removed in a single move,

removing all twelve from the board would require at least three separate moves.

For each peg type, ht(n) computes the minimum number of moves needed to

remove excess pegs of that type. It returns the maximum of those values. Since

moves that vacate corner holes will also capture pegs, this conflicts with hc(n).

To ensure that these functions are independent, I calculate ht(n) based only on

peg types that cannot be captured by a move originating in a corner.
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Figure 6.16: A move that removes four even-row, even-column parity pegs on the

English board, shaded gray, the largest number removable in one move.

hm(n) counts the number of Merson regions (see section 6.10.2.2) that are

fully occupied in the current state but not the goal. By definition, if every hole

in a Merson region is occupied, the only way to remove a peg from that region

is with a new move made by a peg from the same region. If a Merson region is

fully occupied in the current state and not the goal, then one move is required to

vacate that region in a solution path to the goal. hm(n) defines Merson regions

on the board (excluding corners) and returns the number of regions filled in the

current state but not the goal.

ht(n) and hm(n) can count moves made by the same peg, as a move vacating a

Merson region might take pegs of any type. As such, h(n) cannot return the sum

of both values and must use the maximum of both. A peg moved from a corner

hole, however, will not remove a peg tracked by ht(n) or hm(n), and so the value

of hc(n) can be added to the value returned by these two functions. Thus, my

complete heuristic function is h(n) = hc(n) + max(ht(n), hm(n)).
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This heuristic builds upon and improves the heuristic introduced by Bell

in [Bel07]. It is also a consistent heuristic. Any move changing the value of hc(n)

does not change the value of the other two functions. A single move can affect

both ht(n) and hm(n), but I take the max of both. A move can reduce the value

returned by each of these components by at most one, so h(n) never changes by

more than one for a given move. Thus, h(n) is monotone and consistent.

6.10.5 Bidirectional BFIDA*

I developed a novel bidirectional heuristic search algorithm based on BFIDA*. It

performs two independent BFIDA* searches, one forward from the initial state

and one backward from the goal. I define my peg solitaire instances as a pair of a

single initial state and a single goal state, but in a problem domain with multiple

goal states the reverse search would be seeded with all of them. Since BFIDA*

expands its nodes in a breadth-first order, it is particularly easy to implement

using disk-based search techniques. My implementation uses delayed-duplicate

detection (DDD, described in section 2.4) to allow it to solve the largest problem

instances.

Both directions of search have an independent cutoff. The algorithm does

iterations of BFIDA* in one direction at a time, completing an iteration in one

direction before starting a new iteration in either direction. After an iteration is

completed in one direction, the cutoff for that direction is increased. To keep work

in each direction balanced, I choose whether to perform a forward or backward

iteration next based on which direction had the fewest number of nodes expanded

on the previous iteration.

As we do an iteration of BFIDA* with a given cutoff, we maintain a frontier

of all nodes which have been expanded but had a child pruned for exceeding

that cutoff. Coming from the opposite direction, we cannot reach the goal (or
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initial) state without passing through this frontier. Since we are searching with

a consistent heuristic, we can guarantee that we have found an optimal path to

a node once it is expanded. By keeping only expanded nodes on the frontier, we

guarantee that we have found the optimal path to every node on the frontier.

The frontier is stored on a level-by-level basis: each level of the frontier contains

only nodes with the same number of pegs. To eliminate duplicate states on disk

using DDD we efficiently sort each breadth-first layer on disk and then do a linear

scan to detect duplicates. When expanding nodes, any node that has had a child

pruned for exceeding the cost cutoff is written to a sorted file of nodes, containing

only nodes from that breadth-first level. It would be possible to implement the

hash-based duplicate detection technique discussed in section 2.4, instead, but I

did not do so.

During search, we check each node selected for expansion against the opposing

frontier. If the frontiers intersect, we have a candidate solution and we keep track

of the lowest-cost solution found so far. Finding intersections between the frontiers

can be efficiently done, even on disk. The current level of the breadth-first search

is stored in a sorted file of nodes, and any nodes on the opposing frontier with the

same number of pegs are also stored in a single sorted file. The file encoding the

opposite search frontier is scanned in parallel with the file encoding the current

breadth-first level, advancing each as appropriate and looking for duplicate nodes.

Looking for intersections with the opposing search frontier thus only requires one

additional file read per breadth-first level.

In addition, following from the ideas of BS* discussed in section 3.3, we need

not explore the children of any node that has intersected the opposing frontier.

Since our heuristic is consistent and we have expanded the same node from both

directions, we must have an optimal path from the initial state to the goal state

through this node. Thus, we cannot improve upon this solution by exploring chil-

dren beneath it.
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The fact that frontier intersections provide us with candidate solutions leads

to one of the main benefits of this algorithm. If we are searching for a single

optimal solution we can stop searching once we prove that the best solution found

so far is optimal. Any time we expand a node that also exists on the opposite

frontier we have a candidate solution, and, since this is the intersection of two

searches coming from opposite directions, its cost will likely exceed the current f

cutoff. In all of my experiments, I found an optimal solution on an iteration with

a smaller-than-optimal cost cutoff. As soon as we start an iteration whose cutoff

is the cost of the best solution found so far, we can stop as that solution has been

proved optimal. This avoids performing the last BFIDA* search iteration.

Unidirectional BFIDA* has the disadvantage that it expands a large number

of nodes with f(n) = C∗ [ZH06]. A search algorithm must expand all nodes with

f(n) < C∗ to prove that that there are no paths cheaper than the optimal solution

past through those nodes. However, it does not need to expand any nodes with

f(n) = C∗ after it has found an optimal solution. Because BFHS is a breadth-first

algorithm, it expands nodes in increasing order of g cost, and so does not find

an optimal solution until it has generated all nodes with g(n) < C∗ on its last

iteration. At this point, it has generated almost all nodes with f(n) = C∗.

By potentially avoiding the last iteration of BFIDA*, my bidirectional algo-

rithm expands no nodes with f(n) = C∗, and has best-case tie-breaking proper-

ties. This is the caveat to my theory identified in section 5.7.2, and in peg solitaire

allows my bidirectional heuristic search to be effective.

6.10.6 Bidirectional Constraint Propagation

In my bidirectional solver, I leverage the fact that the frontiers do not pass through

each other to improve its ability to prune unsolvable states. As described in sec-

tion 6.10.2.1, pagoda values and counts of pegs of a certain type are properties of
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a puzzle that can never increase during play. This allows us to prove that certain

states are unsolvable. For example, if the pagoda value of a state is less than that

of the goal, then that state cannot be solved.

My bidirectional algorithm increases the pruning capability of these techniques

by considering the pagoda and peg-type values of all states on the search frontiers,

rather than just those of the initial and goal states. In forward search, any path

from a node to the goal must pass through the reverse search frontier. Thus,

the pagoda value of the current node must be at least as great as the minimum

pagoda value of all nodes on the reverse frontier. This value may be higher than

the pagoda value of the goal state by itself. The same technique can be used for

peg-type constraints, as well.

When searching in reverse, we keep track of the minimum pagoda value and

peg type counts of all nodes added to the final frontier. These minimum values are

stored and used in forward search to prune unsolvable states. The same is done

for nodes added to the search frontier in forward search.

Any node that violates any of these constraints cannot be part of a solution.

These nodes can be discarded as soon as they are found to violate a constraint,

and do not need to be stored on the search frontiers.

6.10.7 Distribution Of g Costs

I computed the fraction of nodes expanded with g(n) <= C∗/2 on the 35 solvable

instances of the English, French, and Diamond(5) boards. Among these instances,

the mean fraction of nodes expanded with g(n) <= C∗/2 was 6%. The instance

with the smallest fraction expands 2% of its nodes with g(n) <= C∗/2, and the

instance with the largest fraction expands 14%.

These numbers show that my peg solitaire heuristic is extremely weak, meaning

we would predict that a bidirectional brute-force search will win. However, as I
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show in the next section, my bidirectional heuristic search algorithm is in fact the

state of the art. Section 6.10.9 discusses why this is the case.

6.10.8 Bidirectional Heuristic Search Tested

I compared my bidirectional heuristic search solver to the previous state of the art

solvers, as well as my own implementation of a unidirectional heuristic search. My

bidirectional heuristic solver is described in the previous section, and the previous

state-of-the-art solvers are described in section 6.10.1. I also implemented unidi-

rectional BFIDA* using my improved heuristic and doing breadth-first searches

by jumps.

Tables 6.4, 6.5, and 6.6 summarize the results of these experiments on the

English, French, and Diamond(5) boards. Each row is an instance on that board.

The first column is the location of the empty hole in the initial state and the

second column is the location of the final peg in the goal state. Peg locations are

given as row/column coordinates on the smallest box that encloses the board,

starting at (0, 0) in the top-left corner. For example, (3, 3) is the center-most hole

on the English and French boards.

All experiments were run on a 3.33 GHz Intel Xeon with 48 GB of RAM. I

find the same minimum path length as Bell in all cases.

Bell graciously provided me with his solver, which I used to regenerate his

results on my machine. Recall that these results represent the state of the art

on minimal-length peg solitaire solutions. The column labeled “Bell (2012)” in

tables 6.5 and 6.6 shows the timing results of the brute-force bidirectional search

algorithm used in [Bel12]. This was previously the strongest solver on these

boards. Note that this column has two numbers for each instance on the Dia-

mond(5) board. The first gives the timing numbers of the default algorithm. The

second number, in parentheses, gives the timing numbers with stronger pagoda
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Start End Bell BFIDA* BD-BFIDA* BD-BFIDA*

hole peg (2007) (no tightening)

Time Time Nodes Time Nodes Time Nodes

(3, 3) (3, 3) 46.6s † 3.0s 4.07 2.9s 3.90 4.0s 5.55

(0, 3) (3, 3) 49.8s † 3.5s 4.79 5.2s 6.90 7.8s 10.79

(0, 3) (0, 3) 49.3s 27.6s 32.83 3.2s 4.41 4.5s 6.44

(0, 3) (6, 3) 51.9s 27.7s 32.83 3.2s 4.41 4.5s 6.44

(3, 3) (0, 3) 9.2s 7.0s 9.57 0.3s 0.50 0.4s 0.59

(2, 3) (2, 3) 4.9s 12.5s 16.28 1.3s 1.84 1.9s 2.70

(0, 2) (3, 2) 6.8s 5.0s 6.78 0.3s 0.38 0.3s 0.38

(0, 2) (3, 2) 8.2s 6.7s 9.10 0.5s 0.73 0.5s 0.73

(1, 3) (4, 3) 8.1s 5.4s 7.21 1.4s 1.65 1.4s 1.66

(1, 3) (1, 3) 452.4s † 39.6s 45.90 52.2s 62.68 55.0s 68.13

(2, 3) (5, 3) 80.2s † 5.0s 6.78 6.4s 8.78 6.3s 8.93

(0, 2) (3, 5) 107.7s † 6.7s 9.10 12.0s 16.46 13.0s 18.41

(0, 2) (0, 2) 17.5s 13.3s 18.06 1.9s 2.73 1.9s 2.74

(2, 3) (2, 0) 29.6s 19.8s 26.13 1.6s 2.21 1.5s 2.24

(0, 2) (6, 2) 17.8s 13.3s 18.06 1.9s 2.73 1.9s 2.75

(1, 3) (4, 0) 31.7s 20.9s 27.46 1.8s 2.57 1.8s 2.72

(2, 2) (2, 2) 5.0s 4.0s 5.54 1.4s 1.98 1.4s 1.98

(1, 2) (3, 3) 2.6s 2.3s 3.24 1.4s 1.69 1.3s 1.69

(1, 2) (1, 2) 43.5s 16.1s 21.05 1.1s 1.54 1.0s 1.54

(2, 2) (2, 5) 128.7s 49.3s 59.95 3.9s 5.56 3.7s 5.56

(1, 2) (4, 5) 43.2s 16.1s 21.05 1.1s 1.54 1.0s 1.54

Total: 00:19:53 00:05:05 00:01:45 00:01:55

Table 6.4: Timing values and numbers of nodes expanded for all solvable instances

on the English board. Node counts are given in millions.
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Start End Bell BFIDA* BD-BFIDA* BD-BFIDA*

hole peg (2012) (no tightening)

Time Time Nodes Time Nodes Time Nodes

(0, 2) (0, 4) 9,804s 174s 191.08 16s 16.80 15s 17.46

(0, 2) (3, 1) 5,515s 92s 100.95 7s 8.11 7s 8.11

(0, 2) (3, 4) 3,825s 85s 92.11 5s 5.42 5s 5.43

(0, 2) (6, 4) 9,908s 173s 191.08 15s 16.86 16s 17.49

(2, 3) (4, 0) 7,530s 1,959s 1,744.32 363s 354.75 370s 386.90

(2, 3) (1, 3) 4,033s 562s 521.45 107s 109.43 105s 109.62

(2, 3) (4, 3) 2,410s 542s 495.58 80s 82.30 79s 83.00

(1, 3) (2, 0) 5,666s 384s 396.32 22s 25.32 23s 27.13

(1, 3) (5, 3) 3,125s 102s 106.49 5s 5.84 5s 5.84

(1, 3) (2, 3) 2,031s 96s 100.43 5s 5.40 5s 5.41

Total: 14:57:27 01:09:29 00:10:25 00:10:30

Table 6.5: Timing values and numbers of nodes expanded for all solvable instances

on the French board. Node counts are given in millions.
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Start End Bell BFIDA* BD-BFIDA* BD-BFIDA*

hole peg (2012) (no tightening)

Time Time Nodes Time Nodes Time Nodes

(1, 3) (1, 5) 8,855s 3,013s 2,445.92 63s 61.57 484s 469.85

(703s)

(4, 6) (1, 5) 8,585s 6,202s 4,864.44 272s 250.68 1,064s 1,009.64

(1,215s)

(1, 3) (4, 2) 8,585s 414s 356.47 74s 72.23 164s 151.10

(1,272s)

(4, 6) (4, 2) 1,282s 472s 395.24 73s 70.59 72s 70.59

(1,268s)

Total: 07:35:07 02:48:21 00:08:02 00:29:44

(01:14:16)

Table 6.6: Timing values and numbers of nodes expanded for all solvable instances

on the Diamond(5) board. Node counts are given in millions. Parenthesized timing

numbers are for Bell’s solver with Bell’s manually found pruning constraints.

108



constraints. In his work, Bell manually found that one could derive stronger, ad-

missible pagoda constraints than simply using the pagoda constraints of the start

and goal states. This is analogous to the stronger constraints derived through my

technique described in section 6.10.6.

The column labeled “Bell (2007)” in table 6.4 shows the timing results of the

BFIDA* algorithm of [Bel07]. This solver is most effective on the English board,

and so I only show results there. I have not generated results for the other boards,

but according to Bell they do not improve on a brute-force search. His solver only

performs a single iteration of BFIDA* at a time, so the numbers given are for the

final iteration with the optimal cost cutoff. A complete run would require slightly

more time for the initial iterations.

The column labeled “BFIDA*” gives the numbers for time spent and nodes

expanded by my implementation of unidirectional BFIDA*. As mentioned earlier,

with a sufficiently weak heuristic, unidirectional BFIDA* can find an optimal

solution on an iteration with a cutoff less than the optimal solution cost. And,

indeed, this occurs in five instances. These instances are marked with a dagger.

Ignoring these cases, my BFIDA* solver compares favorably to Bell’s and generates

comparable or slightly faster results in most cases.

My heuristic results in significantly better performance than the heuristic given

in [Bel07] on the French and Diamond(5) boards. While the previous heuris-

tics barely improve upon brute-force search, my implementation can easily solve

all of these instances using simple unidirectional BFIDA*. In the case of the

French board, my unidirectional BFIDA* implementation is often over an order-

of-magnitude faster than the previously-optimal solver. On the Diamond(5) board,

my solver does not benefit from Bell’s manually-derived tightened constraints, but

still comfortably beats his default solver.

The column labeled “BD-BFIDA*” gives the numbers for time spent and nodes

expanded by my bidirectional BFIDA* algorithm. These are my strongest results.
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In all cases, my solver was able to find an optimal solution on an iteration before

the last. My solver is significantly faster than the previous state-of-the-art, gener-

ally beating it by one or two orders of magnitude. In the most extreme example,

the third problem of the French board, my solver is able to reduce the solution

time from over an hour down to five seconds of run time. While some of this im-

provement is due to the improved heuristic, my bidirectional solver is itself able

to significantly improve over my own unidirectional approach, often by an order

of magnitude.

As noted previously, my unidirectional solver occasionally finds optimal solu-

tions before the last iteration (on those instances marked with a dagger). Signif-

icantly, unidirectional search was only able to outperform my bidirectional ap-

proach in these cases, due to the overhead in the latter of additional iterations of

backward search. This emphasizes that the main value of my algorithm is from

improved tie breaking by avoiding performing the last iteration of a BFIDA*

search.

The column labeled “BD-BFIDA* (no tightening)” gives the numbers for time

spent and nodes expanded by bidirectional BFIDA*, but without propagation

of pagoda and peg-type constraints. That is, I only place constraints on nodes

using the pagoda and peg-type values of the initial and goal states, not values

calculated from the search frontiers. In most problem instances this technique

does not affect search much, producing only modest reductions in node counts at

the cost of slightly more expensive node expansions. On three of the Diamond(5)

instances, however, this technique was able to find the tighter constraints that

Bell enforces manually. This dramatically speeds up run time. Since the technique

usually has little negative impact and has the capacity to dramatically improve

performance, I believe that it should be used in general.

Finally, I solved all instances of the Wiegleb board, pictured in figure 6.14.

Bell’s bidirectional brute-force solver took three months to solve all 35 solvable
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instances on this board. My solver, meanwhile, took just a week and a half. I

benefited strongly from disk-based techniques on this problem: on larger instances

my solver uses up to a terabyte of disk storage. These instances could not be solved

by an in-memory solver.

6.10.9 Why Is Bidirectional Heuristic Search Effective?

The solver I introduced for peg solitaire is in fact a bidirectional heuristic search

algorithm. This is despite the predictions in Chapter 5 that bidirectional heuristic

search will rarely outperform both unidirectional heuristic search or bidirectional

brute-force search. There is an obvious question as to why this happens.

The reason is that the peg solitaire domain illustrates two of the caveats dis-

cussed in section 5.7. The first is that forward and reverse searches in peg solitaire

are not balanced. Reverse searches are significantly more expensive than forward

searches. This is because, on an orthogonal board, there are a maximum of four

moves that can be made on a board with a single hole, as in the starting state.

There are a much larger number of moves that can be made that leave only a

single peg left on the board, as in the goal state. Because of this, the branching

factor of nodes near the goal state is significantly higher than those of nodes near

the start state, and a reverse search is more expensive.

On the English board, reverse unidirectional BFIDA* searches expand on av-

erage 47 times as many nodes as forward searches to solve a problem instance.

Figure 6.17 shows the distribution of g costs of nodes expanded in one solvable

instance on the English board.

Because of the very large disparity in search costs of forward and reverse

searches, we would not expect a bidirectional search to be effective. In figure 6.17,

the reverse search expands as many nodes with g(n) <= 7 as the forward search

expands in total. In other words, a balanced bidirectional search of this problem
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Figure 6.17: Distribution of g costs of nodes expanded in forward and reverse

searches of a peg solitaire instance. The instance shown is the first instance of

table 6.4, with an optimal solution depth of 18.
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instance would meet very near the goal state and could only possibly prevent the

expansion of a very small number of nodes over a forward search. This would come

at the expense of significant bookkeeping overhead.

Bidirectionality helps in peg solitaire for two reasons, however. The first is

that it allows us to implement the constraint-tightening techniques discussed in

section 6.10.6. On the instances of the Diamond(5) board, in particular, these

techniques result in significant performance improvements. These techniques can-

not be implemented in a unidirectional solver. These techniques are very similar

to the idea of a front-to-front heuristic evaluation and arguably fall outside the

scope of my theory. However, another factor contributes to the effectiveness of

bidirectional heuristic search in this domain.

Secondly, and more significantly, bidirectionality improves the tie-breaking per-

formance of my algorithm. Peg solitaire problem spaces can be very large and have

many duplicates; this is why my solver uses disk-based techniques. The specific

algorithm I used as the basis of my solver, BFIDA*, has very bad tie-breaking

properties: it expands virtually all nodes in a search graph with f cost equal to

C∗ [ZH06]. These nodes are all expanded in the last BFIDA* iteration.

The benefit of my bidirectional approach is that it can find an optimal solution

before the last iteration. It can then terminate the last iteration without expanding

nodes, thereby not expanding any nodes with f cost equal to C∗. My solver never

finds a solution while doing a reverse search. In fact, the highest cutoff ever used

in a reverse search is usually significantly lower than the optimal solution cost.

The benefit of this reverse search, rather, is that it searches deep enough that the

two frontiers can intersect and find the optimal solution before the last iteration

of search.

As confirmation that improved tie breaking is the main benefit provided by my

bidirectional algorithm, consider the five instances in table 6.4 where my unidi-

rectional BFIDA* solver found an optimal solution on an iteration before the last.
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These numbers are marked with a dagger. In these cases the unidirectional solver

terminates without completing the last iteration and expands no nodes with f

cost equal to C∗. And in four of these five cases, where the unidirectional solver

has best-case tie breaking, it outperforms my bidirectional solver.

The lone exception is the first instance, where my bidirectional solver still out-

performs the unidirectional search. In this case, the constraint-tightening tech-

niques of section 6.10.6 allow the bidirectional solver to win. When these are

turned off, as shown in the last column, my unidirectional solver wins.

This makes it clear that there are two primary benefits of my solver: strength-

ening the domain-specific pruning constraints and improving tie breaking behav-

ior, caveats discussed in section 5.7. Otherwise, due to the very unbalanced dif-

ficulty of searches in either direction, we would expect a unidirectional heuristic

search to be most effective in this domain.
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CHAPTER 7

Synthesis Of Results

This chapter summarizes the experimental results of the previous section and

provides high-level analysis.

7.1 g Cost Distributions Among Many Domains

For every domain studied in Chapter 6, I generated the distribution of nodes ex-

panded with g(n) <= C∗/2. The intent of this experiment is to test the predictions

of my theory about whether the strength of the heuristic predicts the effectiveness

of unidirectional heuristic search compared to bidirectional brute-force search.

Table 7.1 summarizes these experiments. Each column shows the fraction of

nodes expanded with g(n) <= C∗/2, except for sequence alignment, where it

shows the fraction of nodes expanded more shallowly than the depth of the solution

midpoint. The first column is the mean fraction among all instances, and the last

two are the value for the instances with the minimum and maximum fractions.

7.1.1 Domains with Weak Heuristics

In peg solitaire and Towers of Hanoi, a mean of 6% and 31% of the nodes ex-

panded have shallower depth than the midpoint, respectively; as such, a bidirec-

tional brute-force search should outperform a unidirectional heuristic search. As

I showed in section 6.9, bidirectional brute-force search does indeed outperform a

unidirectional heuristic search on the four-peg Towers of Hanoi.
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Domain Mean Min Max

Top Spin 0.98 0.86 1.00

24 puzzle 0.96 0.80 1.00

15 puzzle 0.93 0.63 0.99

Rubik’s Cube 0.90 0.84 0.98

Sequence Alignment 0.61 0.53 0.66

Pancake problem 0.57 0.49 0.66

Vehicle Navigation 0.53 0.04 0.96

Towers of Hanoi 0.31 0.13 0.59

Peg solitaire 0.06 0.02 0.14

Table 7.1: Fraction of nodes expanded with with g(n) <= C∗/2 for many instances

of several search domains.

In peg solitaire, however, my state-of-the-art solver is in fact a bidirectional

heuristic search algorithm. This is because peg solitaire is an unusual domain and

illustrates several of the caveats of my theory. In particular, forward searches in

peg solitaire are significantly cheaper than reverse searches, and because of the

very large number of duplicates in the domain, the preferred algorithm to solve it,

BFIDA*, has very bad tie-breaking behavior. Because of these issues it turns out

that a bidirectional heuristic search is effective in this domain. This was discussed

thoroughly in section 6.10.9.

7.1.2 Domains with Strong Heuristics

In all of the remaining domains the majority of nodes expanded have g(n) <=

C∗/2, so I expect unidirectional heuristic search to outperform a bidirectional

brute-force or heuristic search. And, indeed, I am unaware of a front-to-end bidi-
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rectional search in the literature that outperforms the best unidirectional search

on these domains.

The one exception is in road navigation, where only a small majority of nodes

have g(n) <= C∗/2 and front-to-end bidirectional heuristic search has a small per-

formance advantage over A* search done in the forward direction. However, the

performance of both algorithms are roughly equivalent, as we would expect given

the strength of the heuristic. In this domain, bidirectional heuristic search outper-

forms both unidirectional heuristic search and bidirectional brute-force search in

15% of the instances I tested, and provided an 8% reduction in nodes expanded.

These are examples of the pathological examples discussed in section 5.6. As pre-

dicted, these cases are uncommon and provide minimal performance improvement.

7.2 Bidirectional Heuristic Search Tested

In the domains where it was feasible, I implemented bidirectional heuristic search

and compared its performance to unidirectional heuristic search. The results of

these experiments are summarized in table 7.2. Column two shows the mean

reduction in nodes expanded by unidirectional heuristic search over bidirectional

heuristic search. Column three shows the mean reduction in time of unidirectional

search. Column four shows the percentage of the instances in which bidirectional

heuristic search outperforms unidirectional heuristic search.

In road navigation, A* searches can be done cheaper in one direction than the

other, as discussed previously. To account for this, I also compared BS* to an A*

search in the cheaper of the two directions for each instance. This data is shown

in the row labeled “Road Navigation (Best A*)”.

As predicted, in the first four domains, where a strong majority of nodes are

expanded with g(n) <= C∗/2, a unidirectional heuristic search outperforms a

bidirectional heuristic search. In the case of road navigation, where only approx-
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Domain Unidir. Node Unidir. Time Bidir.

Reduction Reduction Wins

15 Puzzle 20% 37% 18%

Road Navigation (Best A*) 20% 27% 19%

Rubik’s Cube 15% 74% 29%

Pancake Problem 11% 32% 16%

Sequence Alignment 9% 11% 0%

Vehicle Navigation -9% -5% 57%

Peg Solitaire -90% -92% 89%

Table 7.2: Unidirectional heuristic search vs bidirectional heuristic search in six

domains.

imately half of nodes are expanded with g(n) <= C∗/2, BS* provides a small

reduction in time and nodes expanded over A*. However, when BS* is compared

to an A* search in the cheaper of the two directions, A* outperforms it on most

instances.

In the case of peg solitaire, bidirectional heuristic search outperforms unidirec-

tional heuristic search because of its improved tie breaking properties and ability

to automatically improve pruning constraints.

On most of the domains, bidirectional heuristic search is the stronger algorithm

on some instances. In the 15 puzzle, the pancake problem, peg solitaire, and the

Rubik’s Cube, this only happens because of tie breaking. Bidirectional heuristic

search expands at least as many nodes with f(n) < C∗ as does unidirectional

heuristic search. In other words, bidirectional heuristic search only expands fewer

nodes by not expanding some nodes whose f cost is equal to C∗; this is the caveat

identified in section 5.7. In peg solitaire, this happens reliably and provides a large

performance improvement. In the other domains, there are not many of these cases

and they do not significantly help BS*’s performance.
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In the case of road navigation, BS* outperforms A* in both directions 19% of

the time. Among these cases, there are many instances in which BS* actually out-

performs both A* and a bidirectional brute-force algorithm. These are pathological

cases, and were discussed in section 6.8.3.

These results conform overall to the predictions of my theory. When the heuris-

tic is particularly strong, unidirectional heuristic search unambiguously outper-

forms bidirectional heuristic search. With a medium-strength heuristic in road

navigation, there are a few pathological cases that provide marginal benefit,

but overall bidirectional heuristic search is comparable to unidirectional heuristic

search.

The only clear exception to my theory is peg solitaire, where bidirectional

heuristic search strongly outperforms unidirectional heuristic search. This is be-

cause the bidirectional algorithm provides reliably better tie-breaking behavior.

7.3 Work Spent Proving Optimality

In the domains where I implemented bidirectional heuristic search, I calculated the

point at which optimal solutions are found. In their experiments, Kaindl and Kainz

found that BHPA tended to find an optimal solution very early and then spent

most of its search proving optimality [KK97]. They tested BS* on instances of the

15 puzzle, finding that the optimal solution was found on average after 22.4% of

the nodes in an instance has been generated. This observation is often erroneously

given in the literature as Kaindl and Kainz’s explanation for why bidirectional

heuristic search is ineffective [ES12, FMS10, LEF12]. These experiments test this

claim.

In my experiments with bidirectional heuristic search with strong heuristics,

however, I found that an optimal solution was actually found quite late: on aver-

age after 90% of the nodes had been generated in the 15 puzzle, after 86% had
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been generated in the pancake problem, after 96% had been generated in Rubik’s

Cube, and after 99% had been generated in sequence alignment. This is the exact

opposite of Kaindl and Kainz’s observation.

In road navigation, where the heuristic is not strong (only approximately 50%

of nodes are expanded with g(n) <= C∗/2), an optimal solution is found much

earlier, after approximately 42% of all nodes have been generated. There is very

high variance in this number, however. At the earliest, the solution was found

after 11% of nodes had been generated and at the latest after 90% had.

These results make sense. The heuristics I used in my experiments are much

stronger than those used by Kaindl and Kainz. In their experiments on the 15

puzzle, they used the Manhattan distance heuristic, while my searches on the

15 puzzle used much stronger PDB heuristics. The heuristics used in the other

domains I tested are similarly strong. The effect of a heuristic is to prevent the

expansion of nodes with high g cost, and there are thus fewer opportunities for

frontier intersections. When a weaker heuristic is used, such as in the road nav-

igation problem, there are more nodes expanded with high g cost and the two

frontiers have more opportunities to intersect.

This shows that Kaindl and Kainz’s observations of when an optimal solution

is found in bidirectional heuristic search do not explain the algorithm’s ineffec-

tiveness.

This result also reinforces the expectation that pathological cases such as the

one in figure 5.6 will rarely occur in practice. If both frontiers tend to not interact

until very late in search, then frontier intersections will usually not be able to

prevent the expansion of many nodes in either direction. When they do occur,

it will be in domains like road navigation where the heuristic is not particularly

strong.
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7.4 Confirmation of Explanatory Theory

The prediction of my theory is that bidirectional heuristic search will rarely be

useful. This is borne out by my experiments. Of the 3,635 problem instances I

tested in section 7.2, bidirectional heuristic search outperformed unidirectional

heuristic search only 767 times, and outperformed unidirectional heuristic search

in the cheaper of the two directions only 124 times. The node reduction afforded

by bidirectional heuristic search in these instances is also quite small.

As predicted, there are very few instances in which bidirectional heuristic

search expands fewer nodes with f(n) < C∗ than a unidirectional heuristic or

bidirectional brute-force search. This happens in 77 of the 3,635 instances I tested

in section 7.2, and only reduces the number of nodes expanded by approximately

8%.

When bidirectional heuristic search does outperform the other algorithms, it

is usually due to improved tie breaking and, except in the case of peg solitaire,

this is not predictable and provides only minor improvements.

There are a few instances in road navigation where bidirectional heuristic

search provides benefit beyond just tie breaking. As my theory predicts, these

occur in domains with a medium strength heuristic and do not provide a significant

performance improvement.

My theory predicts that when a heuristic is strong and a strong majority

of nodes are expanded with g cost less than C∗/2, then a unidirectional heuristic

search is the preferred algorithm. This is borne out by my experiments. Conversely,

it predicts that when a heuristic is weak and a majority of nodes are expanded with

g cost greater than C∗/2, then a bidirectional brute force search will dominate.

This is also borne out by my experiments.
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CHAPTER 8

Miscellaneous Observations

In the course of my research on bidirectional heuristic search, I made two other

interesting observations. While these have both been tangentially mentioned in

the literature, no paper has dealt with them directly.

8.1 Inconsistency of 15 Puzzle PDBs

In developing my bidirectional solver for the 15 puzzle, I observed that the stan-

dard additive PDBs used in this domain are inconsistent. This is because the

standard technique with these PDBs is to not store the location of the blank tile,

which loses information. When generating a PDB for a given set of tracked tiles

it is possible for the same configuration of tiles to occur multiple times but with

the blank in a different location—this may result in different heuristic estimates

for the same configuration of tracked tiles. The standard practice is to save space

by “compressing” away the blank: ignoring the blank, mapping all such config-

urations to a single entry in the PDB, and storing the minimum heuristic value

among them.

As a result of this loss of information, two adjacent states in the problem space

can map to PDB entries whose value differs by more than one. This makes the

heuristic inconsistent. Thus, it cannot be used as a heuristic in a bidirectional

search if we want to prevent the two search frontiers from passing through each

other.
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The fact that compressed PDBs are inconsistent has been noted in the litera-

ture [FKM07, KF02]. It has also been briefly noted in the literature that the 15

puzzle heuristic is inconsistent [BK10]. However, it appears that this fact is not

widely known. For example, [FZH11] deals with the topic of searching with incon-

sistent heuristics and uses the 15 puzzle as one of its test domains. It overlooks

the fact that the existing PDBs are inconsistent and in their experiments they

additionally compress the PDBs in an attempt to make them inconsistent.

As my experiments require a consistent heuristic, I avoided this problem by

using PDBs that do not compress away the location of the blank. This greatly

increases the memory requirements of the PDBs but reduces the overall node

expansions in a given search.

8.2 Search Imbalance In The 24 Puzzle

In my experiments I conducted forward and reverse searches on the 24 puzzle. For

the same problem instances, the time required to solve the same instance could

be dramatically harder in one direction than the other. In one problem instance,

a reverse search is over two orders of magnitude slower than a forward search.

This property has been observed before in the literature, albeit indirectly.

Dual search is a search technique in which permutation problems can be solved

by searching in both the standard problem space and a “dual” problem space

where variables and values are transposed. It was observed that searches in this

dual space are often significantly different in cost than searches in the original

space [ZFH08]. It was later discovered that the dual search formulation is in effect

a reverse search in the original problem space [FMS10], and so this result implies

that forward and reverse searches are of different difficulty. However, this connec-

tion has not been explicitly made. More importantly, I conducted experiments to

try to determine why there is such a great imbalance in search.
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I eliminated several potential explanations of the cause of this imbalance. The

most obvious explanation, which is not covered by the data in [ZFH08], is that it is

simply due to chance. The algorithm used, IDA*, finds an optimal solution in the

last of several iterations of depth-first search. If it is lucky, it can find an optimal

solution very early in this iteration. One possibility is that forward and reverse

searches were finding solutions at different points in this last iteration, and the

imbalance observed is simply random variation due to tie-breaking. I eliminated

that possibility by requiring both directions of search to find all optimal solutions.

Doing so requires that the last search iteration be completed, and eliminates the

effect of tie-breaking. The search imbalance remains even in this case, showing

that random variation does not explain the difference.

The second possibility is that the imbalance is due to different brute-force

branching factors in the forward and reverse directions. This could result in a

much larger brute-force search tree in one direction and hence require more work.

I accounted for this possibility by considering only problem instances where the

blank is in the same location in both the initial and goal states. In these cases,

the forward and reverse branching factors are identical. Considering only these

cases, the difference in search difficulty remains, and so this does not explain the

imbalance.

The only remaining possibility is that the heuristics used are stronger in one

direction than the other. One possible reason for this is due to different interactions

of tiles tracked in the forward and reverse pattern databases. The heuristic used

in the 24 puzzle consists of four pattern databases, each of which tracks tiles that

end up in a set of locations in the goal state. The configuration of these pattern

databases used for the standard goal state is shown in figure 6.3. The final locations

of tiles tracked in the forward databases are the same as the final locations of tiles

tracked in the reverse databases. However, the specific tiles tracked are different.

Consider a forward and reverse pattern database that track tiles which end up in
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the same locations in their respective goals. For a given problem instance, because

these databases track different tiles, the interactions of those tiles will be different.

As a result, the distribution of h costs returned by these pattern databases

is different in the forward direction than the reverse. In one direction of search,

a pattern database may return many high values deep in search, allowing us to

prune nodes. In the reverse direction, these high values may be returned early in

search, where they will be added to low g costs and not allow us to prune many

nodes. As a result, the heuristic can allow us to prune more nodes in one direction

than the other, explaining the imbalance of search difficulty.

Given that one direction of search is often significantly cheaper than the other,

and that which direction is cheaper is not predictable, it is tempting to ask if we

can leverage these properties to create a faster solver than a simple unidirectional

search. One such approach is suggested in section 5.7.3: we could do forward and

reverse searches on the same problem instance in parallel and terminate when the

faster of the two searches finds a solution. This incurs a penalty of doing twice as

much work as the cheapest direction of search would do by itself. However, if the

more expensive of the two searches takes more than twice as long as the cheaper on

average, then this approach will do less work than a simple unidirectional search.

This is because the cheaper of the two directions cannot be predicted in ad-

vance, and so over a large number of instances the work done by a simple unidi-

rectional search will be the average of the work done independently by forward

and reverse searches of the same instance. If the cheaper of the two directions is

less than half of the average cost, then this simple bidirectional approach will be

faster than a unidirectional search.

In the 24 puzzle, however, the average number of nodes expanded by a simple

unidirectional heuristic search is fewer than would be expanded in this proposed

bidirectional search. In the 100 instances I tested, a unidirectional heuristic search

expands 7.4 × 1013 nodes, while the bidirectional approach would expand 9.9 ×
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1013, or 33% more. If both directions of search were balanced, this bidirectional

technique would expand exactly twice as many nodes as a unidirectional heuristic

search. Unfortunately, while the two directions or search are greatly unbalanced,

they are not unbalanced enough for this technique to be effective.
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CHAPTER 9

Conclusions And Future Work

9.1 Summary of Contributions

I presented an intuitive theory explaining the ineffectiveness of front-to-end bidi-

rectional heuristic search. I showed that both unidirectional heuristic search and

bidirectional brute-force search provide the same improvement over a unidirec-

tional brute-force search: they prevent the expansion of nodes with high g cost.

With a weak heuristic, a bidirectional heuristic search expands no fewer nodes

than a bidirectional brute-force search. With a strong heuristic, a bidirectional

heuristic search expands more nodes than a unidirectional heuristic search.

I also showed that there can be no general proof that bidirectional heuristic

will never be effective, by showing that there exist pathological cases where it

outperforms both unidirectional heuristic and bidirectional brute-force search. The

best that can be hoped for is an intuitive theory, like the one I provide, or a

proof that it can only be effective in restricted circumstances. I also showed that

such pathological cases do occur in practice, finding real-world examples in the

road navigation domain. However, bidirectional heuristic search only shows a very

modest performance improvement in these cases.

I implemented a new state-of-the-art solver for the general form of the four-peg

Towers of Hanoi, with arbitrary initial and goal states. I found that, as my theory

predicts, a bidirectional brute-force search outperforms a unidirectional heuristic

search in this domain.
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I also implemented a new state-of-the-art solver for peg solitaire, which uses

a bidirectional heuristic search. The peg solitaire domain illustrates two caveats

of my theory that make bidirectional heuristic search effective. There is a very

large imbalance in the cost of doing forward and reverse searches, and due to the

large size of the search space and large number of duplicate states, a unidirectional

solver will have very bad tie-breaking behavior. However, my solver uses bidirec-

tional search to achieve best-case tie-breaking, and can significantly outperform a

unidirectional heuristic search.

Finally, I made two miscellaneous observations relevant to bidirectional heuris-

tic search. I found that the standard pattern databases used in the 24 puzzle are

inconsistent. While this has been noted in the literature before, it appears to not

be widely known and has been overlooked in papers. I also found that forward

and reverse searches of the 24 puzzle tend to have very different costs. A previous

result in the literature noted this effect using a different search algorithm, but did

not describe it in terms of forward and reverse searches. In addition, I conducted

the first experiments to explain this behavior, determining that it is due to an

imbalance in the values returned by heuristics in both directions.

9.2 Ideas For Future Work

The counterexample shown in section 5.6 shows that a general proof of the in-

effectiveness of front-to-end bidirectional heuristic search is unlikely. However, it

may be possible to prove its ineffectiveness in more restricted cases. For example,

maybe front-to-end bidirectional heuristic search can only be effective on graphs

that have certain properties. It may then be possible to prove the technique is

ineffective on domains that lack this property.

My explanatory theory explains the ineffectiveness of front-to-end bidirectional

heuristic search by classifying heuristics as “weak” or “strong”. This classification
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relies on the average number of nodes expanded with g cost less than C∗/2 in large

numbers of unidirectional heuristic searches of a problem domain. To classify a

heuristic requires implementing a heuristic search in a domain and running a

very large number of tests, which is impractical if trying to determine whether

unidirectional heuristic search or bidirectional brute-force search should be used.

It would be useful to develop methods to predict which of these two techniques

will be more effective without having to actually implement both algorithms.

9.3 Conclusion

Front-to-end bidirectional heuristic search has had a long and influential history.

While never itself a very effective algorithm, its introduction in 1971 led directly

to the development of many other important algorithms that are still in use today.

The fact that it is still discussed is a testament to the simplicity and power of the

idea.

This simplicity belies its ineffectiveness, as it seems intuitively obvious that

combining two powerful techniques should only improve over either individually.

Yet this intuition is wrong, and the work in this dissertation helps contribute to

an understanding of why this is so.

While use of the technique has never taken off, neither has it faded from

awareness. I hope that the work of this dissertation helps future researchers focus

their work on more productive avenues.
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