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Existence of Pythagorean-hodograph quintic

interpolants to spatial G1 Hermite data

with prescribed arc lengths

Rida T. Farouki

Department of Mechanical and Aerospace Engineering,
University of California, Davis, CA 95616, USA

Abstract

A unique feature of polynomial Pythagorean–hodograph (PH) curves
is the ability to interpolate G1 Hermite data (end points and tangents)
with a specified total arc length. Since their construction involves the
solution of a set of non–linear equations with coefficients dependent on
the specified data, the existence of such interpolants in all instances is
non–obvious. A comprehensive analysis of the existence of solutions in
the case of spatial PH quintics with end derivatives of equal magnitude
is presented, establishing that a two–parameter family of interpolants
exists for any prescribed end points, end tangents, and total arc length.
The two free parameters may be exploited to optimize a suitable shape
measure of the interpolants, such as the elastic bending energy.

Keywords: geometric Hermite interpolation; Pythagorean–hodograph curves;
arc length constraints; existence conditions; shape optimization; polynomial roots.
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1 Introduction

The construction of spatial paths that satisfy specified boundary conditions
(end points and tangents) and precisely achieve a desired total arc length is a
fundamental problem in geometric design. Such problems may arise in robot
path planning, carbon fiber layout in composites manufacturing, computer
animation, path planning for unmanned or autonomous vehicles, and related
applications. Polynomial Pythagorean–hodograph (PH) curves are uniquely
suited to the construction of exact solutions to such problems, on account of
the polynomial dependence of arc length on the curve parameter [5].

The construction of curved paths with prescribed arc lengths satisfying
given boundary conditions has thus far received relatively little attention. A
closed–form solution to the problem of interpolating planar G1 Hermite data
under arc length constraints was developed in [6], using planar PH quintics,
and in [11] a numerical scheme was employed to solve the system of non–
linear equations that define a spatial C2 PH quintic spline interpolating a
sequence of nodal points with specified internodal arc lengths. The paper
[12] provides a closed–form solution to the problem of interpolating spatial
G1 data using rational PH curves of class 4 (degree ≤ 6) with prescribed arc
lengths. This result, however, is not representative of all rational PH space
curves — which do not, in general, admit rational arc length functions.

The focus of the present study1 is on generalizing the results of [6] from
planar to spatial PH quintics. This is a non–trivial problem, since spatial PH
curves require more sophisticated algebraic models — namely, the quaternion
or Hopf map formulations [4] — to ensure invariance under spatial rotations
[7]. A detailed analysis of the system of non–linear equations that express the
interpolation of initial/final points pi,pf and tangents ti, tf and a total arc
length S is required, to establish the existence of interpolants for all instances
of these data. Moreover, an infinitude of solutions is obtained, rather than a
finite number of distinct interpolants as in the planar case.

The problem of interpolating spatialG1 Hermite data by quintic PH space
curves of prescribed arc length can be reduced to finding the real solutions of
a system of non–linear equations, whose coefficients depend on the specified
data (end points/tangents, and total arc length), and it is not obvious a priori

that real solutions exist for all possible data sets. The analysis developed here
verifies the existence of interpolants in all instances, and also shows that they

1We focus here on solutions to the interpolation problem using single PH quintic curve
segments. However, the methods should be adaptable to ‘biarcs” (i.e., interpolants defined
by two PH curve segments that meet with a prescribed order of geometric continuity).
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comprise a two–parameter family, incorporating two free variables that may
be exploited to optimize the shape of the interpolant. In the present context,
the Hopf map representation is found to be most convenient for the existence
proof, and a key element in rendering the analysis tractable is the adoption of
a canonical form, corresponding to a particular choice of coordinate system.
For the actual construction of interpolants, the quaternion form is preferable.

The remainder of this paper is organized as follows. A brief review of the
quaternion and Hopf map representations of spatial PH curves is presented in
Section 2, and the latter is used to formulate the basic problem of achieving
a given end–point displacement subject to a prescribed total arc length. For
the case of spatial PH quintics, Section 3 develops a comprehensive analysis
of the existence of solutions to the interpolation of spatial G1 Hermite under
an arc length constraint, which is reduced to showing that one of the roots of
a biquadratic equation with data–dependent coefficients always satisfies two
data–dependent upper bounds. Section 4 exploits the results of this analysis
to formulate an algorithm to construct the interpolants, and briefly discusses
use of the free parameters they incorporate to optimize appropriate shape
measures. Finally, Section 5 summarizes the main results of this study, and
suggests avenues for further possible investigation.

It should be noted that a number of the results presented herein may prove
rather challenging as “pencil–and–paper” derivations — the Maple computer
algebra has been used in several instances to derive or verify them.

2 Spatial Pythagorean-hodograph curves

The quaternion and Hopf map forms [4, 7] are alternative (equivalent) models
for the construction of spatial PH curves. The former generates a Pythagorean
hodograph r′(ξ) from a quaternion2 polynomial

A(ξ) = u(ξ) + v(ξ) i+ p(ξ) j+ q(ξ)k (1)

and its conjugate A∗(ξ) = u(ξ)−v(ξ) i−p(ξ) j−q(ξ)k through the product3

r′(ξ) = A(ξ) iA∗(ξ) = [ u2(ξ) + v2(ξ)− p2(ξ)− q2(ξ) ] i

+ 2 [ u(ξ)q(ξ) + v(ξ)p(ξ) ] j + 2 [ v(ξ)q(ξ)− u(ξ)p(ξ) ]k , (2)

2Calligraphic characters such as A are used to denote quaternions, their scalar (real)
and vector (imaginary) parts being denoted by scal(A) and vect(A). Bold symbols denote
either complex numbers or vectors in R

3 — the meaning should be clear from the context.
3Note that products of the form A iA∗ always generate pure vector quaternions.
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and the latter generates a Pythagorean hodograph from complex polynomials

α(ξ) = u(ξ) + i v(ξ) , β(ξ) = q(ξ) + i p(ξ) (3)

through the expression

r′(ξ) = (|α(ξ)|2 − |β(ξ)|2, 2Re(α(ξ)β(ξ)), 2 Im(α(ξ)β(ξ))) . (4)

The parametric speed (i.e., the derivative ds/dξ of arc length s with respect
to the curve parameter ξ) is defined in these two representations by

σ(ξ) = |r′(ξ)| = |A(ξ)|2 = |α(ξ)|2 + |β(ξ)|2 .
The equivalence of (2) and (4) is seen by taking A(ξ) = α(ξ)+kβ(ξ), where
the imaginary unit i is identified with the quaternion basis element i.

Since the PH curve r(ξ) is obtained by integration of (2) or (4), the initial
point r(0) = pi may always be freely specified as the integration constant. It
is advantageous to simultaneously use both of the representations (2) and (4)
— the Hopf map form yields a simpler expression of the arc length constraint
in the existence proof, but the quaternion form is somewhat more convenient
in formulating an algorithm to construct the interpolants.

We wish to study the existence of spatial PH curves r(ξ), ξ ∈ [ 0, 1 ] with
given initial and final points pi,pf and unit tangents ti, tf and specified total
arc length S > |∆p |, where ∆p = pf −pi. To define a true space curve, the
given data must not be coplanar, i.e., it must satisfy the condition

(ti × tf) ·∆p 6= 0 . (5)

The planar case of this problem has been previously addressed in [6].
Setting ∆p = (∆x,∆y,∆z) and invoking the Hopf map form defined by

(3)–(4), satisfaction of the end–point displacement yields the real equation
∫

1

0

|α(ξ)|2 − |β(ξ)|2 dξ = ∆x , (6)

together with the complex equation
∫

1

0

2α(ξ)β(ξ) dξ = ∆y + i∆z , (7)

while satisfaction of the specified arc length yields the real equation
∫

1

0

|α(ξ)|2 + |β(ξ)|2 dξ = S . (8)

Equations (6) and (8) may be combined to obtain the simpler conditions
∫

1

0

|α(ξ)|2 dξ = 1

2
(S +∆x) and

∫

1

0

|β(ξ)|2 dξ = 1

2
(S −∆x) . (9)
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3 Existence of PH quintic interpolants

We focus henceforth on the case of spatial PH quintics, generated by complex
quadratic polynomials specified in Bernstein form as

α(ξ) = α0(1− ξ)2 +α12(1− ξ)ξ +α2ξ
2 ,

β(ξ) = β0(1− ξ)2 + β12(1− ξ)ξ + β2ξ
2 . (10)

Equation (7) then reduces to

6α0β0
+ 3α0β1

+ 3α1β0
+α0β2

+α2β0

+ 4α1β1 + 3α1β2 + 3α2β1 + 6α2β2 = 30 (∆y + i∆z) ,

while equations (9) become

6 |α0|2 + 6Re(α0α1) + 2Re(α0α2)

+ 4 |α1|2 + 6Re(α1α2) + 6 |α2|2 = 15 (S +∆x) ,

6 |β
0
|2 + 6Re(β

0
β

1
) + 2Re(β

0
β

2
)

+ 4 |β1|2 + 6Re(β1β2) + 6 |β2|2 = 15 (S −∆x) .

To facilitate the analysis, we adopt a canonical form coordinate system4 in
which (∆x,∆y,∆z) = (1, 0, 0). Then by straightforward but rather laborious
calculations, the preceding equations can be re–formulated as

[ 4α1 + 3 (α0 +α2) ] [ 4β1
+ 3 (β

0
+ β

2
) ]

= 5 [α0β2
+α2β0

− 3 (α0β0
+α2β2

) ] , (11)

| 4α1 + 3 (α0 +α2) |2
= 5 [ 12 (S + 1)− 2 (|α0|2 + |α2|2)− |α0 −α2|2 ] , (12)

| 4β
1
+ 3 (β

0
+ β

2
) |2

= 5 [ 12 (S − 1)− 2 (|β0|2 + |β2|2)− |β0 − β2|2 ] . (13)

Note that these equations depend on the specified arc length S, and they are
also inter–dependent. In order for equations (12) and (13) to admit solutions,
we must have

2 (|α0|2 + |α2|2) + |α0 −α2|2 ≤ 12 (S + 1) , (14)

2 (|β0|2 + |β2|2) + |β0 − β2|2 ≤ 12 (S − 1) . (15)

4Arbitrary given curve data pi,pf , ti, tf , S can be mapped to canonical form through
a scaling/rotation transformation.
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Moreover, for equations (12) and (13) to be consistent with equation (11),
we must also have

|α0β2
+α2β0

− 3 (α0β0
+α2β2

) |2

= [ 12 (S + 1)− 2 (|α0|2 + |α2|2)− |α0 −α2|2 ]
· [ 12 (S − 1)− 2 (|β0|2 + |β2|2)− |β0 − β2|2 ] . (16)

Equations (11)–(13) may be interpreted as determining α1,β1 in terms of
α0,β0

and α2,β2
when the latter are specified in terms of certain free (real)

parameters, as elaborated below. Equations (12) and (13) identify α1,β1 as
lying on circles in the complex plane, when conditions (14)–(15) are satisfied.
If either α1 or β1

is chosen as a point on the appropriate circle, and condition
(16) is satisfied, the other may be uniquely determined from (11).

The end tangents ti and tf are specified in terms of polar and azimuthal
angles (θi, φi) and (θf , φf) relative to the x–axis as

ti = (cos θi, sin θi cos φi, sin θi sinφi) ,

tf = (cos θf , sin θf cosφf , sin θf sinφf) , (17)

where θi, θf ∈ [ 0, π ] and φi, φf ∈ [ 0, 2π). With ∆p = (1, 0, 0) the condition
(5) for the given data to be non–planar then becomes

sin θi sin θf sin∆φ 6= 0 , (18)

with ∆φ = φf − φi, i.e., θi and θf must not be equal to 0 or π, and φi and φf
must not differ by an integer multiple of π.

To ensure that symmetric data yields symmetric interpolants, we assume
end derivatives of equal magnitude, i.e., |r′(0)| = |r′(1)| = w2 with w 6= 0.
In order to match the end tangents (α0,β0) and (α2,β2) must satisfy

|α0|2 − |β0|2
|α0|2 + |β

0
|2 = cos θi ,

2α0β0

|α0|2 + |β
0
|2 = sin θi exp(iφi) ,

|α2|2 − |β
2
|2

|α2|2 + |β
2
|2 = cos θf ,

2α2β2

|α2|2 + |β
2
|2 = sin θf exp(iφf) ,

and consequently one can verify that they must be of the form

α0 = w ci exp(iφi) exp(iψ0) , β
0
= w si exp(iψ0) , (19)

α2 = w cf exp(iφf) exp(iψ2) , β
2
= w sf exp(iψ2) , (20)
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where ψ0, ψ2 are free parameters,5 and for brevity we write

(ci, si) = (cos 1

2
θi, sin

1

2
θi) and (cf , sf) = (cos 1

2
θf , sin

1

2
θf ) . (21)

Note that 0 < ci, si, cf , sf < 1 to satisfy the non–planar data condition (18).
Setting ∆ψ = ψ2 − ψ0, the inequalities (14)–(15) yield

w2 ≤ k1 :=
12(S + 1)

f
, w2 ≤ k2 :=

12(S − 1)

g
, (22)

where we define

f := 3(c2i + c2f )− 2 cicf cos(∆φ +∆ψ) , (23)

g := 3(s2i + s2f )− 2 sisf cos∆ψ . (24)

Note that k1 may be smaller than or larger than k2, depending on the values
of S, θi, θf ,∆φ,∆ψ.

Lemma 1. For 1 < S <∞ and non–planar data satisfying (18), the bounds

(22) on w2 are both positive and finite.

Proof : For 1 < S <∞, the numerators in the expressions (22) for k1, k2 are
positive and finite. Recalling that 0 < ci, si, cf , sf < 1 for non–planar data,
the denominators are also seen to be positive and finite by re–writing them:

f = 2 (c2i + c2f ) + (ci − cf)
2 + 2 cicf [ 1− cos(∆φ+∆ψ) ] > 0 , (25)

g = 2 (s2i + s2f ) + (si − sf)
2 + 2 sisf [ 1− cos∆ψ ] > 0 . (26)

Hence the bounds k1, k2 on w2 are positive and finite.

Now substituting from (19) and (20), the condition (16) may be reduced
to the biquadratic equation

p(w2) := c2w
4 + c1w

2 + c0 = 0 (27)

in w, with coefficients expressed (after considerable simplification) as

c2 := 2 (c2i s
2

f + s2i c
2

f )− 4 cisicfsf cos∆φ , (28)

c1 := 6 [ (S − 1)cicf cos(∆φ+∆ψ) + (S + 1)sisf cos∆ψ − 3S ]

+ 9 (c2i − s2i + c2f − s2f ) , (29)

c0 := 36 (S2 − 1) . (30)
5The parameters ψ0 and ψ2 determine the orientation of normal–plane vectors of the

Euler–Rodrigues frame [3] at the curve end points, and they also influence the curve shape.
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Remark 1. The above analysis may be seen to generalize the planar problem
treated in [6] as follows. For planar data, using a coordinate system in which
the curve lies within the (x, y) plane corresponds to azimuthal tangent angles
φi = φf = 0 in (17), so ∆φ = 0. Furthermore, we set ψ0 = ψ2 = 0 and thus
∆ψ = 0, since the complex representation of planar PH curves does not incur
the free angular parameters ψ0, ψ2. One can then verify that the coefficients
(28)–(30) of equation (27) are identical to the coefficients of the analogous
biquadratic equation in Proposition 2 of [6].

Clearly, c0 is positive when S > 1. Moreover, using equations (22)–(24),
the coefficient c1 can be re–formulated as

c1 = − 36 (S2 − 1)

[

1

k1
+

1

k2

]

. (31)

Hence, by Lemma 1, c1 is always negative for non–planar data. Finally, we
can also ascertain the sign of the coefficient c2 as follows.

Lemma 2. For non–planar data satisfying (18), c2 is always positive.

Proof : To verify that c2 is always positive when condition (18) holds, we
re–write it as

c2 = 2 (cisf − cfsi)
2 + 4 cisicfsf (1− cos∆φ) . (32)

Since 0 ≤ ci, si, cf , sf ≤ 1 for θi, θf ∈ [ 0, π ], this expression is evidently non–
negative, and c2 = 0 if and only if cisf−cfsi = 0 and 4 cisicfsf(1−cos∆φ) = 0.
Now from (21) we have cisf − cfsi = sin 1

2
(θf −θi) and 4 cisicfsf = sin θi sin θf .

Therefore, the first condition implies that θf = θi, and the second then implies
that either sin θi = sin θf = 0 or cos∆φ = 1 (i.e., sin∆φ = 0), which violate
the non–planar condition (18). Thus, the expression (32) vanishes only when
θi, θf ,∆φ define planar data, and is otherwise always positive.

Hence, when condition (18) is satisfied, the coefficients c2, c1, c0 exhibit
two sign changes, and by Descartes’ Law of Signs [15] the number of positive
real roots w2 of (27) is zero or two. To guarantee that an interpolant exists,6

this equation must have a positive root w2 that satisfies the inequalities (22).
Note that if w2

1
and w2

2
are the roots of (27), they must satisfy

w2

1
+ w2

2
=

36(S2 − 1)

c2

[

1

k1
+

1

k2

]

and w2

1
w2

2
=

36(S2 − 1)

c2
, (33)

6Note that the inequalities (22) and equation (27) depend only on the differences ∆φ
and ∆ψ, and not individually on φi, φf and ψ0, ψ2.
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and hence the harmonic mean of w2

1
and w2

2
is equal to that of k1 and k2, i.e.,

1

w2

1

+
1

w2

2

=
1

k1
+

1

k2
. (34)

To determine the nature of the roots w2

1
and w2

2
, and their locations relative

to k1 and k2, we need the following result.

Lemma 3. For non–planar data satisfying (18), 4 c2 − fg is non–positive.

Proof : Using the Maple function extrema and considering ci, si, cf , sf as
fixed symbols, the maximum values of 4 c2 − fg with respect to ∆φ and ∆ψ
were determined. Since extrema can only work on algebraic expressions, this
was accomplished by treating cos∆φ, sin∆φ, cos∆ψ, sin∆ψ as four variables
subject to the constraints cos2∆φ+ sin2∆φ = 1 and cos2∆ψ+ sin2∆ψ = 1.
The extrema function returns max(e1, e2, e3, e4, e5, e6) where e1, . . . , e4 can
be expressed, with corresponding ∆φ,∆ψ values, as the factored forms

e1 = − (cisf + sicf − 3 cisi − 3 cfsf )
2 , (∆φ,∆ψ) = (0, 0) ,

e2 = − (cisf − sicf − 3 cisi + 3 cfsf )
2 , (∆φ,∆ψ) = (π, 0) ,

e3 = − (cisf + sicf + 3 cisi + 3 cfsf )
2 , (∆φ,∆ψ) = (0, π) ,

e4 = − (cisf − sicf + 3 cisi − 3 cfsf )
2 , (∆φ,∆ψ) = (π, π) .

The remaining two cases are specified by e5 = 0 together with

cos∆φ =
9 (c2i s

2

f + s2i c
2

f )− 8

18 cisicfsf
, cos∆ψ =

9 (s2i + s2f )− 8

6 sisf
, (35)

and e6 = 8 (c2f − c2i )
2 together with

cos∆φ =
(c2f − c2i )

2 + 7 (c2i s
2

f + s2i c
2

f )− 8

18 cisicfsf
, cos∆ψ =

8 + s2i + s2f
6 sisf

. (36)

The corresponding values for sin∆φ and sin∆ψ are indeterminate in sign.
Note that e1, e3 vanish when

sin 1

2
(θi + θf ) = ± 3

2
(sin θi + sin θf ) . (37)

On the other hand e2, e4 vanish when

sin 1

2
(θf − θi) = ± 3

2
(sin θi − sin θf ) , (38)
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and in particular when θi = θf , but these instances with ∆φ = π correspond
to degenerate cases, violating the non–planarity condition (18).

The case e5 is singular, corresponding to a double root for equation (27),
and the expressions for cos∆φ and cos∆ψ are only valid over restricted
ranges of θi and θf . In this case, we have c2 = 16/9 and g = 8/3, but the
expression for f contains irreducible radical terms in ci, si, cf , sf . It can be
verified that 4 c2 − fg vanishes only for the values

(ci, si) = (cf , sf) = (3/5, 4/5) , (39)

(ci, si) = (cf , sf) = (4/5, 3/5) , (40)

(ci, si) = (3/5, 4/5) , (cf , sf) = (4/5, 3/5) , (41)

(ci, si) = (4/5, 3/5) , (cf , sf) = (3/5, 4/5) , (42)

provided that sin∆φ and sin∆ψ are of the same sign. Finally, e6 identifies
an invalid extremum arising from the fact that, although ci, si, cf , sf must be
greater than 0 and less than 1 for satisfaction of the non–planarity condition
(18), they are treated as unconstrained quantities in the computation. Since,
in this case, the expression for cos∆ψ in (36) yields

cos∆ψ =
8 + s2i + s2f

6 sisf
>

4

3
,

which is impossible, the case e6 is discarded. In summary, since e1, e2, e3, e4, e5
are always non–positive for non–planar data, and e6 is invalid, the quantity
4 c2 − fg is always non–positive.

The preceding Lemma will now be used to analyze the roots of equation
(27), and their relationship with the bounds k1 and k2 defined in (22).

Proposition 1. For non–planar data θi, θf , φi, φf , S satisfying (18) and each

value of the parameter ∆ψ, the equation (27) has in general two positive real

roots w2 of which only the smaller root satisfies the inequalities (22).

Proof : By “in general” we mean that none of the singular conditions causing
the quantities e1, e2, e3, e4, e5 in Lemma 3 to vanish are satisfied. Specifically,

• e1, e3: when (∆φ,∆ψ) = (0, 0) or (0, π) condition (37) does not hold;

• e2, e4: when (∆φ,∆ψ) = (π, 0) or (π, π) condition (38) does not hold;

• e5: ∆φ and ∆ψ do not satisfy (35) together with the values (39)–(42).

9



Under these restrictions, the quantity 4 c2 − fg is always negative.
As noted above, the signs of the coefficients (28)–(30) indicate that the

biquadratic equation (27) has either zero or two positive real roots. Since a
direct evaluation of the discriminant proves rather cumbersome, we invoke
an indirect argument to verify that the latter case always holds.

Noting from (25) and (26) that f 6= 0 and g 6= 0 for non–planar data,
and using (22), (23)–(24), and (31), we obtain the expressions

p(k1) =
36(S + 1)2

f 2
(4 c2 − fg) , p(k2) =

36(S − 1)2

g2
(4 c2 − fg) ,

for (27) evaluated at w2 = k1 and w
2 = k2. Thus, p(k1) and p(k2) must both

be negative, since 4 c2−fg is negative. Since p(0) = c0 > 0 and p(w2) > 0 as
w2 → ∞, and k1 and k2 are both positive, this implies that (27) must have
two positive real roots, which satisfy the conditions (34).

Consider now how the roots w2

1
and w2

2
are situated relative to the bounds

k1, k2 defined by (22). We assume, without loss of generality, that w2

1
< w2

2
,

so the graph of p(w2) is positive for 0 < w2 < w2

1
, negative for w2

1
< w2 < w2

2
,

and positive for w2

2
< w2 < ∞ (see Figure 1). Then, since p(k1) and p(k2)

are negative, k1 and k2 must lie between w2

1
and w2

2
, i.e., w2

1
must be less than

both k1 and k2, while w
2

2
must be greater than both k1 and k2, as indicated

in Figure 1. Hence, w2

1
satisfies the bounds (22) but w2

2
does not.

w2

k1 k2

p(w2)

w2
1

w2
2

Figure 1: Schematic graph of the function (27), illustrating the location of
its roots w2

1
and w2

2
in relation to the two points k1 and k2 defined by (22)

— note that k1 may be either less than or greater than k2.

The upshot of the preceding analysis is that, to achieve a prescribed arc
length S in the interpolation of G1 Hermite data by spatial PH quintics, the
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common end derivative magnitude w2 = |r′(0)| = |r′(1)| must be determined
as the smaller root of the equation (27), with coefficients (28)–(30) dependent
on S, the angular variables θi, θf , φi, φf that specify end tangents consistent
with the non–planarity condition (18), and the difference ∆ψ = ψ2 − ψ0 of
the free parameters ψ0 and ψ2 in expressions (19) and (20).

We summarize the outcome of all the preceding discussions as follows.

Theorem 1. For any S > 1 and end tangent data θi, θf , φi, φf satisfying the

non–planar condition (18), the canonical–form G1 spatial PH quintic Hermite

interpolation problem with end point displacement ∆p = (1, 0, 0) admits a

two–parameter family of solutions with precise arc lengths S, dependent on
the angular variables ψ0, ψ2 introduced in (19)–(20).

Note that this result also encompasses, as a limiting case, the degenerate
instances in which equation (27) possesses a double root, corresponding to
the coincidences 4 c2 − fg = 0 and w2

1
= w2

2
= k1 = k2.

4 Algorithm and computed examples

Having established the existence of solutions for arbitrary non–planar data,
we now consider their construction. In this context, it is convenient to employ
the quaternion form (2), since this allows us to exploit existing methodology
[8, 9] for Hermite interpolation by spatial PH quintics.

The complex polynomials (3) define a quaternion polynomial

A(ξ) = A0(1− ξ)2 +A12(1− ξ)ξ +A2ξ
2

asA(ξ) = α(ξ)+kβ(ξ). Identifying the imaginary unit i with the quaternion
element i, and writing exp(γ i) = cos γ + sin γ i for any real γ, interpolation
of the end tangents ti, tf yields coefficients A0 = α0 + kβ

0
, A2 = α2 + kβ

2

obtained from (19)–(20) as

A0 = w [ ci exp(φi i) + si k ] exp(ψ0 i) , (43)

A2 = w [ cf exp(φf i) + sf k ] exp(ψ2 i) , (44)

where ψ0, ψ2 are free parameters, and to satisfy the arc length constraint the
value of w is determined7 by the smaller root w2 of the biquadratic equation

7Although the sign of w is immaterial, we conventionally choose w > 0.
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(27) with coefficients (28)–(30). In terms of A0,A2 and the known quantities
∆p, ti, tf , w

2 we define the vector

d = 120∆p− 15w2(ti + tf) + 5 (A0 iA∗

2
+A2 iA∗

0
) , (45)

and set d = |d|. Then the coefficient A1 is determined through interpolation
of the end–point displacement ∆p by [8, 9] the expression

A1 = −3

4
(A0 +A2) +

√
d

4

d i + d

| d i + d | exp(ψ1 i) , (46)

where ψ1 is a free parameter. Once A0,A1,A2 are known, the control points
p0, . . . ,p5 in the Bézier representation

r(ξ) =

5
∑

i=0

pi

(

5

i

)

(1− ξ)5−iξi

of r(ξ) may be obtained [5] with integration constant p0 = pi as

p1 = p0 +
1

5
A0 iA∗

0
,

p2 = p1 +
1

10
(A0 iA∗

1
+A1 iA∗

0
) ,

p3 = p2 +
1

30
(A0 iA∗

2
+ 4A1 iA∗

1
+A2 iA∗

0
) ,

p4 = p3 +
1

10
(A1 iA∗

2
+A2 iA∗

1
) ,

p5 = p4 +
1

5
A2 iA∗

2
. (47)

As previously noted [5, p. 600] the various termsAr iAs for r, s ∈ { 0, 1, 2 }
in (47) depend only on the differences ψr−ψs of the free parameters ψ0, ψ1, ψ2.
Thus, we can set ψ1 = 0 in (46) without loss of generality. Note also that the
vector d defined by (45) and its magnitude d depend only on the difference
ψ0−ψ2. However, it is clear from the first term on the right in (46) that A1,
and hence the interpolant r(ξ), depend individually on ψ0 and ψ2.

Hence, the problem of matching end points pi,pf and tangents ti, tf in
conjunction with a prescribed arc length S admits a two–parameter family
of solutions, dependent upon the free variables ψ0, ψ2. This outcome may be
compared with the standard C1 Hermite interpolation problem of matching
end points pi,pf and derivatives di = r′(0), df = r′(1), with unconstrained
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arc length, in which the solutions also constitute a two–parameter family [9]
dependent on free variables ψ0, ψ2 associated with A0,A2.

This coincidence in the number of degrees of freedom is not unexpected.
In passing from the C1 Hermite problem to the G1 Hermite problem with an
arc length constraint, one degree of freedom is lost by the a priori imposition
of a given arc length, but one degree of freedom is gained from the assumption
of equal–magnitude end derivatives, |r′(0)| = |r′(1)|. However, the existence
of interpolants to any given data in the former problem was obvious from the
availability of a closed–form solution expression, while in the latter problem
the analysis of Section 3 is necessary to establish the existence of a derivative
magnitude w2 = |r′(0)| = |r′(1)| consistent with the specified arc length S.

We summarize the preceding results with the following algorithm outline.
For brevity, this algorithm only considers solutions for user–specified values
of the free parameters ψ0, ψ2. It may be exploited as a basic function, called
by a procedure to optimize the shape of r(ξ) with respect to these parameters.

Algorithm

input: initial and final points pi, pf and unit tangents ti, tf satisfying
condition (5) with ∆p = pf − pi, and desired total arc length S > |∆p|

1. identify the spatial rotation R and scale factor f = |∆p|−1

that map ∆p to the canonical displacement (1, 0, 0);

2. apply R to ti, tf and ∆p, and multiply S and ∆p by f ;

3. determine polar and azimuthal angles (θi, φi) and (θf , φf)
of the transformed tangents;

4. compute the coefficients of equation (27) specified by the
expressions (21) and (28)–(30) for chosen ψ0, ψ2 values;

5. compute the smaller root w2 of equation (27), and take w
to be its positive square root;

6. with the chosen ψ0, ψ2 values compute the quaternions
A0,A2 defined by (43)–(44);

7. compute the quaternion A1 defined by (45)–(46) with ψ1 = 0;

8. compute the Bézier control points of r(ξ) from (47);
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9. apply the inverse spatial rotation R−1 and scaling f−1 to
restore the curve r(ξ) to its original size and orientation.

output: spatial PH quintic r(ξ) satisfying r(0) = pi, r(1) = pf ,
and r′(0) = |r′(0)| ti, r′(1) = |r′(1)| tf with total arc length S.

Remark 2. For given ψ0, ψ2 values the algorithm involves — besides rational
arithmetic — only trigonometric function evaluations and (real) square root
extractions, and is therefore amenable to exact implementation in a symbolic
computation system accommodating these functions. For brevity, we present
below only examples computed in floating–point arithmetic — note also that
the shape optimization process generally requires a numerical solution.

To characterize the shape quality of the interpolant r(ξ), we consider the
“bending energy” — i.e., the integral of the square of the curvature κ with
respect to arc length s,

E =

∫ S

0

κ2 ds . (48)

E is proportional the strain energy stored in an initially–straight thin elastic
rod that is bent into the curve shape. Curves minimizing E, subject to given
geometrical constraints, are generally considered to be of “optimum” shape.
For a parametric space curve r(ξ), the curvature is defined [13] by

κ(ξ) =
| r′(ξ)× r′′(ξ) |

| r′(ξ) |3 ,

The integral (48) may be simplified by noting that every spatial PH curve
satisfies [10] the relation

|r′(ξ)× r′′(ξ)|2 = σ2(ξ) ρ(ξ) ,

where the polynomial ρ(ξ) may be expressed in terms of the Hopf map form
(4) as

ρ(ξ) = 4 |α(ξ)β′(ξ)−α′(ξ)β(ξ) |2 .
Since ds = σ(ξ) dξ, the expression (48) reduces to

E = 4

∫

1

0

|α(ξ)β′(ξ)−α′(ξ)β(ξ) |2
σ3(ξ)

dξ . (49)

For PH quintics, the integrand has a quartic numerator, and the cube of the
parametric speed as denominator. By computing the roots of σ(ξ), which is
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also quartic, the integral admits a closed–form reduction by partial–fraction
decomposition of the rational integrand. Alternatively, an adaptive numerical
quadrature — such as the Simpson rule [14] — yields rapid convergence to
machine precision, since the integrand is non–negative.

It should be noted that imposition of a specified arc length S on the curve
r(ξ) plays an important role in the minimization of (48). Curves minimizing
E under given boundary conditions, but without constraining the arc length,
need not be finite [1], since loops of length S ∼ 2πr and curvature κ ∼ 1/r
satisfy E → 0 as r → ∞. The present construction eliminates this concern.8

The integral (49) has a rather complicated dependence on the parameters
ψ0 and ψ2, and determining its derivatives with respect to them is clearly a
non–trivial task. The use of optimization techniques that do not depend on
derivative information [2] may therefore be preferable.

Some simpler methods for identifying values for the free parameters ψ0, ψ2

so as to generate C1 PH quintic Hermite interpolants with good shape quality
were proposed in [9]. Since the imposition of an arc length constraint amounts
to fixing a common end derivative magnitude through the solution of equation
(27), these methods should also be applicable in the present context.

Example 1. For the data

S = 1.25 , (θi, φi) = (0.65 π,−0.25 π) , (θf , φf) = (0.25 π, 0.25 π) ,

together with parameter values ψ0 = 1.00 π and ψ2 = 0.00 π, the smaller root
of (27) yields the value

w = 0.928517 .

The corresponding coefficients of the complex polynomials (10) are

α0 = −0.343052 + 0.343052 i , β
0
= −0.791691 + 0.000000 i ,

α1 = −0.197648 + 2.031303 i , β
1
= 0.305611− 0.235042 i ,

α2 = 0.606583 + 0.606583 i , β2 = 0.355328 + 0.000000 i ,

and the quaternion coefficients Ai = αi + kβi are

A0 = −0.343052 + 0.343052 i+ 0.000000 j− 0.791691k ,

A1 = −0.197648 + 2.031303 i− 0.235042 j+ 0.305611k ,

A2 = 0.606583 + 0.606583 i+ 0.000000 j+ 0.355328k .

8Since, for given G1 Hermite data, the equation (27) and coefficients (28)–(30) establish
a unique relation between the derivative magnitude w2 and total arc length S, this is also
true for C1 PH quintic Hermite interpolants that have equal end derivative magnitudes.
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The curve control points are determined from (47) as

p0 = (0.000000, 0.000000, 0.000000) ,

p1 = (−0.078281, 0.108636,−0.108636) ,

p2 = (0.123038, 0.102837,−0.425427) ,

p3 = (0.677340,−0.080730,−0.296160) ,

p4 = (0.878075,−0.086214,−0.086214) ,

p5 = (1.000000, 0.000000, 0.000000) .

Figure 2 shows the resulting interpolant: the curve end tangents and total arc
length, computed in double–precision arithmetic, agree with the prescribed
data to an accuracy of ∼ 10−15. For the specified end points, end tangents,
and ψ0, ψ2 values, Figure 2 also illustrates the interpolants for the sequence of
arc lengths S = 1.1, 1.2, 1.3, 1.4, 1.5 — the corresponding w values are found
to be 0.597709, 0.835205, 1.011615, 1.156157, 1.280351.

Figure 2: Left: a quintic PH curve satisfying the data specified in Example 1.
Right: instances of this curve with given arc lengths S = 1.1, 1.2, 1.3, 1.4, 1.5.

This example is also used to illustrate the sensitivity of the interpolants
to the free parameters ψ0, ψ2. Figure 3 shows the families of curves obtained
for ψ0 = k π/4, k = 0, . . . , 7 with ψ2 = 0, and for ψ0 = 0 with ψ2 = k π/4,
k = 0, . . . , 7. The influence of ψ0, ψ2 on the curve shape is clearly apparent.

Example 2. For the data

S = 1.50 , (θi, φi) = (−0.25 π,−0.25 π) , (θf , φf) = (0.25 π,−0.25 π) ,

solutions were computed for a dense sampling of parameter values (ψ0, ψ2) ∈
[ 0, 2π)× [ 0, 2π). The minimum energy solution with E ≈ 10.475, shown in
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Figure 3: The curve in Example 1 with arc length S = 1.25, using different
values of the parameters ψ0, ψ2. Left: the curves obtained with ψ0 = k π/4,
0 ≤ k ≤ 7 and ψ2 = 0. Right: curves with ψ0 = 0 and ψ2 = k π/4, 0 ≤ k ≤ 7.

Figure 4, was observed at (ψ0, ψ2) ≈ (0.14 π, 0.86 π) corresponding to w ≈
1.8512. However, a maximum energy E ≈ 2697.7 was also observed among
the solutions, at (ψ0, ψ2) ≈ (1.47 π, 0.69 π) corresponding to w ≈ 2.3329. The
minimum–energy solution exhibits the modest extremum curvature κmax ≈
3.805, but κmax ≈ 1016.2 for the maximum–energy case.

It should be noted that the quantity w, which specifies the magnitude of
the end derivatives, is not the primary determinant of the bending energy E
and shape of the interpolant. In the present case, this quantity was found to
vary over the quite modest range 1.6635 <∼ w <∼ 2.3525, and the extremes of
this range do not identify the minimum and maximum energy interpolants.
The angular parameters ψ0, ψ2 appear to have the strongest influence on the
interpolant shapes. Analogous parameters occur [8, 9] in the problem of C1

Hermite interpolation by spatial PH quintics, which differs from the present
context in that (i) magnitudes (not just directions) are specified for the end
derivatives; and (ii) there is no constraint on the arc length. Some practical
rules for selecting these angular parameters were proposed in [9].

Although all choices of the ψ0, ψ2 parameter values yield formally correct
interpolants to the prescribed end points, end tangents, and arc length, this
example illustrates their strong influence on the interpolant shape, and the
importance of determining them through an optimization scheme, to ensure
solutions of desirable shape. A comprehensive analysis of the dependence of
the curve shape on ψ0 and ψ2, in order to gain greater insight and develop
more deterministic methods for their selection, is clearly desirable. However,
this is a non–trivial problem, beyond the scope of the present study.

Finally, we make use of this example to illustrate the fact that, although
the existence proof depends only on the difference ∆ψ = ψ2 − ψ0 of the free
parameters ψ0 and ψ2, the interpolant shape depends on them individually.
Figure 4 illustrates the solutions obtained with (ψ0, ψ2) = (0.2 π, 1.0 π) and
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(ψ0, ψ2) = (0.4 π, 1.2 π). Although both cases correspond to ∆ψ = 0.8 π, the
resulting interpolants are seen to be distinct.

Figure 4: Left: a quintic PH curve satisfying the data specified in Example 2.
Right: comparison of two PH quintic interpolants constructed with the same
end points, tangents, and arc lengths (as defined in Example 2) using different
individual ψ0, ψ2 values that have the same difference ∆ψ = ψ2 − ψ0.

5 Closure

The distinctive algebraic structures of Pythagorean–hodograph curves permit
exact constructions of spatial paths that satisfy given boundary constraints
and possess prescribed arc lengths. The present study addresses the existence
of PH quintic interpolants with specified (non–planar) end point and tangent
data, and a desired total arc length. Because of the non–linear nature of the
construction, the existence of solutions for arbitrary consistent data sets is
non–obvious. Nevertheless, it was established that solutions do exist for any
data, and in fact they always constitute a two–parameter family.

Under the assumption of equal–magnitude end derivatives (which ensures
that symmetric data yields symmetric interpolants), the question of existence
was reduced to determining whether or not a certain biquadratic equation
with data–dependent coefficients always admits a positive real root satisfying
certain data–dependent bounds. It was possible to address this affirmatively,
based on certain inequality and sign arguments, without the need to explicitly
solve the equation. In fact, the interpolants are seen to depend on two free
angular parameters, which may be exploited for shape optimization.

The practical consequences of the analysis presented herein are as follows:
(i) the arc–length–constrained G1 PH quintic Hermite interpolation problem
can be tackled with confidence in the knowledge that solutions exist for any
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given data; (ii) the results essentially provide a simple method to determine
the end–derivative magnitude that achieves the prescribed arc length — once
determined, existing methodology for constructing PH quintic interploants
can be exploited; and (iii) the dependence of the interpolants upon two free
variables, which can be used as shape parameters, has been established.

The focus of this study has been to establish the existence of interpolants
to G1 Hermite data with prescribed arc lengths. Because of their non–linear
influence on the final curve shape, a systematic analysis of the role of the two
free parameters ψ0, ψ2 is a non–trivial task, that is best deferred to a separate
in–depth study. On a practical level, numerical optimization schemes can be
used to identify the ψ0, ψ2 values that minimize the bending energy, although
this can be rather computation–intensive.
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