
UCLA
UCLA Electronic Theses and Dissertations

Title
Studies of Adaptive and Fixed Schedules in Factual and Perceptual Learning

Permalink
https://escholarship.org/uc/item/5j25613n

Author
Mettler, Everett William

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5j25613n
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Studies of

Adaptive and Fixed

Schedules in Factual

and Perceptual Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Psychology

by

Everett William Mettler

2014



c© Copyright by

Everett William Mettler

2014



Abstract of the Dissertation

Studies of

Adaptive and Fixed

Schedules in Factual

and Perceptual Learning

by

Everett William Mettler

Doctor of Philosophy in Psychology

University of California, Los Angeles, 2014

Professor Philip J. Kellman, Chair

What conditions make learning efficient? Do adaptive methods – that use learner perfor-

mance to arrange learning events – offer ways of improving learning? In this dissertation,

I address these questions experimentally in human subjects across domains of factual and

perceptual learning. Six experiments focus on methods of scheduling the order of presenta-

tion of items during a learning session with the goal of improving long-term retention. We

introduce a method of determining spacing schedules using an adaptive, computer-based al-

gorithm. Space between presentations is dynamically calculated as a function of a learner’s

response history and reaction time. This work is based on the spacing effect in memory:

when learning a set of facts, scheduling time between repeated presentations or practice has

been shown to improve learning. Larger gaps between presentations of an item contribute to

increases in the strength of that item in memory. The primary experimental manipulation in

these studies is a comparison between fixed schedules of practice and adaptive schedules of

practice. Three crucial issues are tested. First, the effects of spacing in adaptive, computer-

based schedules are compared to predetermined schedules that have fixed intervals of spacing.
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Second, adaptive schedules are compared to schedules that are completely randomized, and

the difference between schedules with and without dropout is compared. Finally, the benefits

of adaptive scheduling are assessed using perceptual category learning. Results of the first

set of experiments showed that an adaptive scheduling algorithm produced greater learning

gains than fixed schedules, when the total number of presentations was limited. These gains

were measurable after a one-week delay. Further, when fixed condition schedules were closely

matched to adaptive scheduling in overall item spacing characteristics, adaptive schedules

still outperformed them in terms of learning gains at immediate and delayed tests. Results

of the second set of experiments, where learning was allowed to continue until learners met

learning criteria, showed adaptive scheduling comparing favorably with random presentation

schedules. Adaptive schedules where items were dropped after learning criteria were met

produced greater learning efficiency (learning gains per trials invested), better than random

presentation schedules with or without dropout These efficiency gains were maintained at a

delayed test. In a final set of experiments, adaptive schedules increased learning efficiency

during perceptual category learning reliably more than random schedules as well as sched-

ules that were adaptive but included some initial blocking or massing of category exemplars.

Adaptive scheduling also improved the fluency gains of students learning 3D chemical struc-

ture in an introductory community college chemistry course. The results in this thesis relate

to state-of-the-art computer adaptive methods of teaching, as well as contemporary mod-

els of learning, memory, perception, categorization and human performance. These studies

contribute to research in learning and memory, are of broad interest to educators who are

concerned about student learning, and inform attempts to connect models of cognition with

technology-based tools.
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0.1 Introduction

Purpose Scheduling spacing in learning has proven to be a highly successful, domain-

independent strategy for increasing the efficiency and durability of learning. By ‘spacing’,

researchers have typically meant the degree to which time or trials intervene between re-

peated presentations of an item. In short, relatively large gaps between presentations of an

item contribute to increases in the strength of that item in memory. In contrast, excessive

repetition of an item across small gaps appears to contribute much less to learning. There

are also upper limits to the duration of spacing gaps, such that forgetting ensues if gaps are

excessively long. The psychological and biological underpinnings of the spacing effect are

still being researched, but in most empirical studies the effects of spacing have been found

to be robust; effects are seen across numerous learning domains, in a variety of experimental

and real-world contexts, across a wide range of temporal gaps, and across different learners.

Here we focus on methods of utilizing spacing effects in order to improve learning. The

purpose of this project is threefold. First we hope to assess the benefit of computer-adaptive

techniques that dynamically adjust spacing as a function of learners’ ongoing knowledge

acquisition. Second, the experiments are designed to provide a window into the general

conditions and mechanisms that support successful learning and remembering. Third, we

hope to apply the results of research to alternate learning domains using strategies that

target the kinds of knowledge representations underlying real-world educational curricula.
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CHAPTER 1

The Science of Learning and the Scheduling of Practice

1.1 Introduction

What does it mean to say that some method or procedure enhances learning? Why does

the human mind benefit from some schedules of instruction or organization of material more

so than others? When the mind benefits from strategies designed to increase learning, to

what extent do those strategies directly target known mechanisms of mind? To what can

we attribute gains in knowledge? These and other deep questions form the background

for much research in learning and memory and for the specific research questions asked in

this thesis. Here we isolate one effect from the extensive research literature in memory and

learning — the spacing effect — and attempt to apply it using a novel, adaptive method

of manipulating spacing during instruction. First we situate our research within related

areas of investigation in the learning sciences. Next we review the spacing effect and discuss

possible explanations of the advantages of spacing in memory. We then describe common

proposals for utilizing spacing effects to enhance learning. We present an adaptive algorithm

for scheduling presentations, one that uses ongoing indications of performance during learning

to vary spacing, and we describe a series of experiments that investigate the differences

between adaptive and fixed spacing schedules across a variety of conditions and learning

materials.
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1.1.1 Definitions of Learning

To talk about methods of improving learning, we must first ask, what is learning? In psychol-

ogy, learning has been addressed in many ways. A summary by Hovland (1951) condenses

half a century of attempts at definition. Hovland says: “It is desirable to include the trend of

improvement in performance that comes about as a result of practice and to exclude changes

in performance due to fatigue, sensory adaptation, and drugs, changes due to physical de-

velopment (maturation) and artifacts in measurement, such as changes in rapport between

subject and experimenter.” Here ‘performance’ is defined broadly and the implication of

‘practice’ is perhaps too narrow: learning need not necessarily be deliberate nor the condi-

tions of acquisition explicitly organized for learning to occur effectively (Reber, 1993). In

humans, it seems almost no mental faculty or sensory mode is beyond the influence of this

type of change. Learning can describe changes that may be affect single faculties of learning,

such as how learning in perception changes the way information is extracted from the envi-

ronment (i.e., perceptual learning - Gibson, 1969), and learning can be specific to a single

sensory mode (e.g., visual learning). In addition to these definitions in psychology (and in

addition to pedagogical and epistemological definitions not considered here) learning is also

an abstract form of information processing as investigated in fields such as computer science

and statistics (e.g., learning theory, see Valiant, 1984; Chomsky, 1975; or machine learning,

see Duda & Hart 1973).

1.1.2 Goals of Learning and Metaphors of Mind

In order to explore the relative benefits of manipulations to the schedule of learning presen-

tations, we adopt a set of modest learning goals. One goal of instruction is to maximize the

quality and amount of information that a learner acquires. Another goal is to maximize the

rate at which information is acquired. Finally, a third goal is to ensure that information is

retained - maintained across useful periods of time. Thus, we conceptualize memory as a

process by which information is attained, and where performance can be measured. Further
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those improvements must be weighed against their long-term durability or retention. We rec-

ognize that these goals are only some of many potential goals, and that they require adopting

the metaphor of ‘mind as container’, a metaphor that has often been used to criticize tra-

ditional instruction (Scardamalia & Bereiter, 1992; Lakoff & Johnson, 1980). Memorization

of basic factual knowledge is sometimes considered a secondary goal to higher-order compre-

hension and conceptual understanding (Bransford, Brown & Cocking, 2000, Brown, Collins

& Duguid, 1989). Despite these issues, learning of basic facts can still be an important part

of instruction, and can be the starting point for the investigation of the learning of complex

information. Investigations into more fundamental learning mechanisms are likely to pro-

vide the building blocks of a complete theory of human memory. Of course, debates over

interpretations of learning will not simply disappear. Grappling with the diverse effects that

higher-order learning and comprehension might have on rote memorization strategies is an

important topic. Chapter 4 attempts to connect ideas about the scheduling of practice of

facts to the scheduling of learning in complex material. Future researchers may explore even

wider connections.

1.1.3 Human memory

Humans are able to store relatively complex pieces of information such as facts, images,

experiences or self-generated thoughts - all or any of which we may refer to as memories.

Further, we are able to retrieve those pieces of information from a vast database of personally

held knowledge, often with seemingly little effort, and in little time. Though by no means

perfect, human memory storage is very often precise, rapid, effortless, and long lasting.

Modern research has taken pains to explain that memory does not resemble the processes

of storage and retrieval familiar to electronic information processing devices like computers

and recorders, there is no doubt that, in the main, human memory has many of the same

characteristics that make mechanical analogues so remarkable. That humans are able to

store and retrieve any information at all is of enormous consequence to the functioning of

the species, as distinct from organisms that do not possess memory abilities. More vexing is
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that we are far from understanding how the brain achieves its feats of information storage.

1.2 Models of Memory

To briefly review some theories of memory, there have been a range of approaches, from

early and persistent attempts to describe the nature of learning as associative processes

(Hebb, 1949; Thorndike, 1913; Hull, 1943), to researchers investigating the fundamental

units of computation underlying complex mnemonic behavior (Landauer, 1975; Marr, 1970;

Valiant, 2005), to modelers of memory attempting to delineate the law-like relations gov-

erning memory (Estes, 1950; Bush & Mosteller, 1955; Eich, 1982; Raaijmakers & Shiffrin,

1981). Theoretically and practically, the attraction of building a durable theory of memory

has been strong - even researchers known for contributions in other fields have not been

immune to the allure of investigating models of memory (Rock & Ceraso, 1964; Rumelhart,

1967; Simon, 1966; 1974). Memory has been central to the project of constructing unified

theories of brain function (Anderson & Lebiere, 1998), and the practical implications have

been large. Understanding memory processes would provide potential for relief for victims of

brain and health maladies, as well as relief for the less serious travails of those with average

memory, or even, the common student.

In this thesis we concentrate our efforts on discussing one heavily researched area, the

‘spacing effect’, in depth.

1.3 Spacing and Memory

1.3.1 The Spacing Effect

One longstanding finding in memory is that scheduling time or trials between re-presentations

of an item increases memory for that item, relative to a schedule that has very short spaces or

no space between trials. This effect, called the ‘spacing effect’, has been researched since early

memory experiments by Ebbinghaus (1885/1913) and has been replicated and examined in
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considerable depth by researchers since Ebbinghaus’s time. There are actually three related

effects of spacing, summarized by Crowder (1976): effects of repetition, distribution and lag.

In this thesis we refer mainly to those spacing effects that describe the benefit of large ‘lags’

of an item across time, which we will continue to refer to as ‘space’ between presentations.

To summarize again, the most useful spacing effect for our purposes is that which describes

greater benefits to memory when the space between two practices of an item is increased.

The most basic example of the spacing effect in action is when a paired-associate (e.g.,

an english and foreign language word pair, henceforth called an ‘item’) is presented in a

sequence of other items, and when the spacing between repeated presentations of each item

is manipulated to include more or fewer of the other items. The number of presentations that

intervene could be from 0, up to any number of intervening items. Findings in the spacing

literature generally indicate less of an advantage to memory when the size of spacing delays

is 0 or at a maximum, but better recall when spacing is intermediate (Glenberg, 1976).

1.3.2 Theoretical Explanations of Spacing

What can explain the gains in memory performance that result from spacing repetitions of an

item across time? A few theories have been proposed to explain results, but in general, the

specific mechanisms that underlie spacing effects remain elusive. Three theories are briefly

described here, the last of which motivates much of this thesis.

Consolidation One potential explanation for the benefits of spacing in memory is that the

time that elapses between presentations of an item causes greater consolidation of the memory

traces that support retrieval of that item (Wickelgren, 1972). In essence, consolidation

processes more deeply encode memories across time, and further presentations of an item

inherit those more consolidated traces, benefiting later recall. Consolidation is consistent

with cognitive and neuroscientific theories of memory; however, evidence for consolidation as

a driver of spacing effects is less strong. One elegant study by Bjork and Allen (1970) showed

that consolidation is not likely the best explanation for the benefits of spacing. Researchers
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inserted either easy or difficult distracting tasks during a short or long interval between

presentations of an item. Since difficult distracting tasks presumably disrupt consolidation,

one would expect that, if spacing effects depend on consolidation, a difficult task would

prevent any spacing effect. These researchers instead found the opposite: that difficult tasks

during longer spacing intervals actually improved retention. Thus consolidation, while an

important concept, does not appear to be the driver of spacing effects in memory. Instead,

conditions of retrieval and encoding likely play a larger role.

Encoding variability Another explanation of spacing benefits is that circumstances of

encoding are made more diverse when practices occur far apart in time. It is thought that

diverse contexts at the time of encoding will be more likely to closely resemble the diversity

of circumstances at final recall, thus facilitating recall performance. It is thought that the

proximity of practice events affects the diversity of contexts during encoding, including such

factors as: presence of other learning items, memory for previous presentations, and environ-

mental or bodily status. By this account, learning advantages from spaced practice happen

because encoding events naturally become more diverse as spacing increases (Raaijmakers,

2003; Kahana, 1996). These findings have even been incorporated in scheduling algorithms

that attempt to optimize variability (and thus spacing) dynamically during learning (Mozer,

Pashler, Cepeda, Lindsey, & Vul, 2009).

Unfortunately, a theory of encoding variability has difficulty accounting for some observed

effects of spacing. So-called ‘superadditivity’ and ‘non-monotonicity’ effects are common to

spacing but are not predicted by contextual variability models (Benjamin & Tullis, 2010).

By superadditivity, researchers mean the general finding that repeated presentations increase

learning even if the variability of encoding remains the same. Non-monotonicity describes

the eventual decreases in the benefit of spacing that are seen as spacing gaps become large

(Glenberg, 1976). Although encoding variability models might be able to account for these

effects with some special exceptions or extra parameters, and while these phenomena do not

exclude the possibility that encoding variability partially drives learning, it is not clear if
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encoding variability exerts a sufficiently strong influence on memory mechanisms to explain

spacing effects.

Retrieval difficulty A final set of theories considers the beneficial effect of spacing sched-

ules on memory to be related to the amount of effort expended to retrieve items from memory.

Importantly, more memory benefits are found when retrieval events are relatively more taxing

— that is, more difficult in terms of the effort expended to correctly retrieve a memory trace.

Less benefit is found when retrieval is easy. This ‘retrieval effort’ hypothesis has been demon-

strated elegantly by a number of research programs and is compatible with comprehensive

memory theories (Pyc & Rawson, 2009; Thios & D’Agostino, 1976; Bjork & Bjork, 1992).

Results show that difficulty of retrieval can be induced in a number of ways, for example, by

interleaving difficult tasks between retrieval attempts (Bjork & Allen, 1970), changing the

amount of memory interference that retrieval attempts encounter (Storm, Bjork & Storm,

2010), or shifting a criterion number of retrieval attempts that an item receives before a test

(Pyc & Rawson, 2009). Predominantly, however, retrieval effort can be induced naturally

by stretching the intervals (duration of gaps) at which retrievals are attempted. This latter

method leads directly to the technique of expanded retrieval practice which is discussed later.

To summarize briefly, difficult retrieval creates memory traces that are perhaps larger

in number or elaboration, facilitating the eventual difficult retrieval of an item on a test.

Retrieval difficulty is an important and widely supported theory of why spacing is beneficial

for memory. Further, it is a hypothesis that is consistent with the predictions of the adaptive

trial spacing algorithm that we introduce later and is a background assumption of the research

in this thesis.

Physiological mechanisms Though we will not discuss them in depth here, it bears men-

tioning that recent investigations into the cellular basis of memory in neural systems point to

specific biochemical mediators of memory formation, namely protein production and inhibi-

tion at both the presynaptic and postsynaptic level (Kandel, 2001; Jin, Kandel, & Hawkins,
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2011). These findings have been extended to explore the possible neurochemical mediators

and markers of the spacing effect. For instance, in Aplypsia, it has been hypothesized that

protein kinase A (PKA) mediated long-term synaptic potentiation bears the hallmark of

spacing effects in memory, and that patterns of serotonin induced activation consistent with

timed spacing are superior at eliciting long-term sensitization than are massed patterns of

activation (Naqib, Farah, Pack, & Sossin, 2011). Further, some research has begun to model

and optimize the pattern of activation in these in vitro settings (Zhang et al., 2011; Philips,

Kopec, & Carew, 2013). On the whole, these studies are still in their infancy; they are

far from accurate models of how brain processes might store and recollect diverse, complex

units of information, and they do not provide direct answers to ongoing research questions

about the spacing effect. However the findings do provide some helpful guidelines. First,

inasmuch as human memory processes partly involve similar neurochemical changes, these

studies provide confirmation that mechanisms that drive the spacing effect are cellular and

modular, operating largely beyond conscious intent or control. That is, spacing effects likely

involve deep underlying brain processes that can operate in the absence of explicit control

strategies. This relieves some of the explanatory burden from hypotheses that do not rely

on explicit strategies, though it does not exclude the potential influence of strategy on those

same underlying processes. Second, the potential for identifying parallels between models

of spacing in synaptic potentiation and models of spacing in human learning are ripe. No

matter whether higher-level behaviors are necessarily directly linked or constrained by lower-

level processes, the possibility of comparing research at different levels is fertile and may spur

useful productive results in each.

1.3.3 Other Constraints

It is important to note that the spacing effect we are focused on is not a universal one, and

as indicated by Roediger (2008) cannot be described as a ‘law’ of learning1. Many laws of

1Within the domain of learning, there are a number of so-called laws such as the ‘Law of practice’ (Newell
& Rosenbloom, 1981), ‘Law of effect’ (Thorndike, 1898), ‘Josts Law’ (Jost, 1897), and others that hold for
a majority of cases. With a loose criterion the spacing effect could probably be considered a psychological
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memory are known to break down when experimental variables like the type of material or

variations in test or encoding conditions are present (Roediger, 2008; Jenkins 1979). The ef-

fects of spacing are no exception to this so-called ‘relativity of memory’ finding. What follows

is a brief list of exceptional conditions that may warrant revisitation of the assumptions of

spacing effects, either when designing research or building applied learning interventions that

utilize spacing effects: Intentional vs. incidental learning; study vs. testing; feedback; types

of learning materials or learning processes (e.g., perceptual, procedural, category learning);

distinctions in memory processes (e.g., episodic vs. generic); and perhaps others. Future

investigators who wish to apply the results of the current research to realistic educational

settings should keep in mind areas where potential effects might break down, and if needed

consult the appropriate literature.

The circumstances that can affect spacing are varied, and the effect does not always hold.

Since spacing effects may vary with conditions, we have taken special care to ensure that

the background conditions we have chosen (e.g., providing active recall trials rather than

study trials) are most appropriate for revealing effects between the experimental variables

of interest (namely, manipulations to the schedule of spacing). Thankfully, most of these

choices also correspond to learning events that are known to improve learning (e.g., tests)

and would be desired in any applied scheme for encouraging learning.

Ecological validity and diverse learning domains Little is known about how spacing

effects might apply when the material to-be-learned consists, not of simple lists of words

or facts, but of complex knowledge structures (for example, knowledge that is categorically

or hierarchically organized, knowledge that is structured according to grammatical rules, or

knowledge that requires the learning of temporally sensitive procedures or computations).

Other questions arise if one particular to-be-learned item possesses features that are not

completely independent from the total set of items being learned, or from the set of an

entire learner’s existing knowledge. These related problems address the issue of interactions

‘law’; that is it meets the criterion of being an ‘indispensable feature of the theoretical background’ of the
study of memory, and expresses ‘the form of a regularity’ and not its scope (Hanson, 1969).
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between spacing effects and the specific mental representations that underlie various kinds of

knowledge. Similar questions have been brought up by investigators looking to establish the

applicability of spacing effects to realistic educational domains like mathematics (Rohrer,

2009)

Later in this thesis, we examine how adaptive schedules cope with information that is

categorically organized, and learning material that targets learning processes other than fact

memorization - specifically, perceptual category learning.

1.4 Schedules of Practice

1.4.1 Background

It has long been hypothesized that the reduction in the rate of forgetting across repeated

learning opportunities should allow for the formulation of efficient schedules of practice; that

is, schedules should maximize the amount of relearning at each practice and minimize the

total amount of practice time (Tsai, 1927; Starch, 1927; Pimsleur, 1967; Landauer & Bjork,

1978). Combined with the ideas behind the spacing effect, a rich literature covers attempts to

manipulate the duration of spacing, and the pattern of spacing practice, in order to maximize

learning.

Research on fixed schedules can roughly be split into two paradigms: those studies that

compare classes or patterns of spacing schedules (e.g., constant vs. expanding spacing),

and those studies that deal with the parameterization of spacing schedules (e.g., the relative

difference in recall when space is increased or decreased between presentations). In the first

paradigm, a few basic classes of scheduling patterns have been analyzed for their effect on

learning. For example, a classic finding is that expanding intervals — where delays between

presentations of an item get increasingly longer — generate stronger memory traces than

schedules where delays between items remain of a constant duration (Landauer & Bjork,

1978; Pimsleur, 1967; Storm, Bjork & Storm, 2010). In the second paradigm of spacing

11



studies, a small set of practice sessions is parametrically modified to assess the effect of

duration on retention (Cepeda, Vul, Rohrer, Wixted & Pashler, 2008). Usually there are

two practice sessions with a gap in-between, and a test of retention after a delay. The size

of the gap and the delay to test are systematically manipulated to determine the relative

influences of each duration on final retention. Unfortunately, in the latter type of research,

where parameters of spacing are modified, the number of intervening gaps is few.

Combined, almost all current conclusions about spacing schedules in the literature are

dependent on a small class of potential scheduling schemes. One promise is that adaptive

schedules, such as that of Atkinson (1972) and Pavlik & Anderson (2008), and the adaptive

system in the current thesis, may help to traverse more of the possible space of scheduling

patterns than have been investigated with fixed schedules. In addition, adaptive schedules

have rarely been directly compared to fixed schedules of practice — an important task that

we return to later in this thesis.

1.4.2 Expanding Intervals of Retrieval

One highly advocated method of increasing memory retention across time is the method

of successively expanding the intervals of spacing as practice accumulates during learning.

This pattern of interval change during learning, known as ‘expanding’ retrieval practice,

has been studied for nearly half a century (Pimsleur, 1967; Landauer & Bjork, 1978; Cull,

Shaughnessy & Zechmeister, 1996).

Very recent research provides evidence for a substantial advantage of expanding the re-

trieval interval when material is highly susceptible to forgetting or when intervening material

is processed between testing events (Storm, Bjork & Storm, 2010), conditions that apply to

many formal learning situations.

Most explanations of the value of expanded retrieval intervals involve an underlying

notion of learning strength. Learning strength can be thought of as a hypothetical construct

related to probability of successful recall on a future test. When a new item is presented,
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learning strength may be low, but it typically increases with additional learning trials2. The

value of any new test trial varies with an item’s learning strength. Specifically, evidence

suggests that difficulty of successful retrieval is a crucial factor (Landauer & Bjork, 1978;

Karpicke & Roediger, 2007; Pyc & Rawson, 2009). Pyc & Rawson (2009) labeled this idea

the ‘retrieval effort hypothesis’: More difficult, but successful, retrievals are more beneficial.

They studied the relation of number of successful retrievals to later memory performance,

while manipulating the difficulty of those retrievals via number of intervening trials. Greater

numbers of intervening trials led to better retention. One can summarize many of these

findings by saying that the best time for a new presentation of an item is after the longest

possible interval at which retrieval will still succeed. The idea is to stretch, but not snap,

the retention interval.

Expanding retrieval as optimal for retention? A few studies have questioned the

generalizability of expanding schedules of retrieval. In summary, it appears that when the

material to be learned is somewhat easy, and when the second practice of an item is spaced

enough to create difficult retrieval, future presentations of that item can be spaced by either

constant or expanding intervals, with no difference to final retention (Karpicke & Roediger,

2007/2010). However, since the constraints that create those conditions may be very specific,

it is unclear whether the benefits of expanding retrieval can be dismissed outright. Also, as

pointed out by others (Pimsleur, 1967), expanding retrieval — even if equally as effective as

constant spaced retrieval — is inherently more efficient (we return to the issue of efficiency

in learning in Chapter 3). It also appears that when retrieval events are made difficult in

general (by high levels of interference/competition with other items in memory, for example),

expanding schedules result in greater learning than constant schedules (Storm, Bjork, &

Storm, 2010) (We return to issues related to qualitative schedules of practice, e.g., the

benefits of expanding vs. equal schedules in Chapter 2.)

2For simplicity we are describing a unitary concept of learning strength, though more elaborate notions
of internal variables relating to memory strength have been proposed (e.g., Bjork & Bjork, 1992, propose
two variables — memory strength and retrieval strength — to better explain many findings in the memory
research literature.)
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1.4.3 Open Questions

A paucity of researched schedules Although spacing effects have a long history of

research, schedules of presentation have typically been narrowly investigated. That is, given

the space of potential patterns of presentation across time, very few have been tested.

One limiting characteristic of research on patterns of spacing in learning is that most stud-

ies have chosen arbitrarily varying intervals of spacing - often primarily to satisfy method-

ological constraints in research - and have rarely given computational reasons why particular

schedules are selected over others. As an example, research on patterns of spacing typically

use approximately 3 or 4 spacing gaps between presentations of an item, commonly put into

a notation that lists the number of intervening events (trials) between item presentations.

For example, a ‘5 5 5’ spacing schedule would indicate that 3 constant gaps, each of a 5

trial duration, would intervene between successive presentations of an item. Similarly, a ‘0

0 0’ schedule would indicate no gaps between presentations (also known as ‘massed’ presen-

tation). Crucially, some schedules correspond to so-called ‘expanding’ schedules of practice,

where the gap durations are increased as presentations accumulate. For example, both a ‘1

4 10’ and a ‘1 5 9’ schedule would indicate expanding practice, with narrow gaps at the start

of learning, and quite wide gaps near the end of learning. Existing schedules vary widely

in the number and amount of delays, the size of delays, and the exact form of the pattern

of repeated delays (e.g., ‘expanding’ or ‘contracting’). Some examples of fixed schedules are

printed here:

Parameterizing the study and retention intervals As mentioned above, although

some studies have attempted to model the optimal size of spacing schedules, those studies

have usually only attempted to do so with one spacing duration and one delay to retention

test. Cepeda, Vul, Rohrer, Wixted, and Pashler (2008) analyzed the form of the function

relating retention interval and spacing duration to recall at a retention test. They used
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Type: Equal Expanding Contracting Description

5 5 5 1 5 9 9 5 1

Mean delay = 5

(Landauer & Bjork, 1978;

Karpicke & Roediger, 2007)

2 2 2

3 3 3

4 4 4

1 2 3

1 3 5

1 3 8

Mean delays = 2, 3, 4 (Logan & Balota, 2008)

7 7 7 7 0 3 7 18 Mean delay = 7 (Storm, Bjork, & Storm, 2010)

1 2 3

3 5 8

5 8 13

Fibonacci subsets (Callender, 2010)

1 5 9

5 10 15

15 30 45

5 5 5

10 10 10

30 30 30

9 5 1

15 10 5

45 30 15

Mean delays = 5, 10, 30

(Karpicke & Bauernschmidt, 2011)

0 0 0 ‘Massing’

spacing intervals on the order of a few days to many weeks, and retention intervals on the

order of weeks to months. Recall was worst for the shortest delays and best for slightly

longer days, where delays that were maximal for retention increased if retention intervals

were longer.

While the research in this thesis does not attempt to systematically adjust fixed pat-

terns of spacing to find optimal patterns of retention, it is hoped that a direct comparison

of fixed schedules with adaptive schedules might highlight the key differences between stan-

dard schedules and schedules that have been dynamically adjusted as a function of learner

knowledge. Here we adopt standard fixed schedules that have been used in the literature in

order to facilitate this comparison.
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Key questions Might dynamic schedules that change parameters during a learning session

compete better with the fixed schedules in the debates over qualitative schedules of practice?

First we survey existing techniques to schedule practice during learning, both interactive,

fixed, and adaptive. Then we introduce an adaptive algorithm that determines optimal

spacing delays during learning.

1.5 Learning Technology and Other Applied Approaches to Schedul-

ing

While the history of techniques designed to improve learning extends beyond just those that

manipulate the order of practice, some forms of augmented instruction have been specifically

designed to alter the pattern or schedule of practice in order to engender durable, long-

term learning. Since one primary purpose of examining the benefits of adaptive schedules

of practice is to develop learning technology that can be employed in classroom settings, we

review a few examples of prior and existing learning technology, examine their theoretical

motivations and relate them to issues of scheduling in memory.

1.5.1 Non-Computerized approaches

Spacing effects have already been leveraged in a number of existing curricula and learning

systems. Here we describe non-adaptive implementations of the spacing effect, which can be

divided into either fixed spacing, or expanding spacing types.

Fixed spacing Interestingly, spacing effects are naturally implemented in a number of

learning strategies such as flashcards, have been purposefully integrated into static curric-

ula (e.g., the Saxon mathematics curriculum), and have been documented in foreign math

textbooks that encourage distributed practice of previously learned math concepts (Stigler,

Fuson, Ham, & Kim, 1986).
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Expanding spacing Some existing methods of scheduling presentations during learning

already utilize the hypothesized benefits of expanding retrieval practice. One famous method

is the Leitner method of flashcard use (Leitner, 1972, Mondria & Mondria-De Vries, 1994).

In this system, flashcards are separated into groups, and then learned to some criterion

of successful retrieval. When groups have been successfully learned, they are placed in a

re-practice queue, ordered by the time since learning. The system ensures that previously

learned stacks of cards are recycled (re-practiced) at longer and longer delays since original

learning. This method naturally implements a version of expanding practice, although it

is easy to see that the durations between representations are arbitrarily wedded to such

constraints as stack size and total number of cards.

Pimsleur (1967) also described a method of expanding the delays between re-presentations

of an item — a method he called ‘graduated interval recall’. Pimsleur tuned his method to

work optimally for the learning of foreign language vocabulary and conversation, and his

system elegantly scales upward from the learning of individual words and short phrases

to the development of complex conversational skills. Although there is no published work

demonstrating exactly how he determined the length of the delays between presentations

of items, his published thoughts about the method are among the earliest describing the

benefits of an expanding schedule of practice. Anecdotally, his system is effective at training

basic foreign language ability in a short amount of time.

Both of these expanding methods of spacing are still in use today, and the Pimsleur

method has been commercially successful, though neither system has been well researched.

It remains to be seen whether these methods would fare as well as alternate expanding,

adaptive or fixed learning schedules in experimental comparisons.

Learner-controlled schedules Some work has looked at learner-controlled schedules of

instruction (Woodson, 1974; Ciccone & Brelsford, 1976). Major findings tend to discourage

the use of learners’ own judgments in scheduling decisions (e.g., flashcard learning, Kornell

& Bjork, 2007), and metacognitive awareness of learning has generally been deemed poor
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(Kornell & Bjork, 2008; Kornell, Castel, Eich & Bjork, 2010).

1.5.2 Computerized approaches

Computer assisted instruction (CAI) As stated before, research has shown that spac-

ing can affect changes in learning strength of items as learning progresses. Some previous

adaptive approaches have relied on accuracy and trial history to predict learning strength,

either in a Markov model estimating transition probabilities between different states of re-

tention (e.g., Atkinson, 1972) or more elaborate models of learning (Pavlik & Anderson,

2008; Wozniak & Gorzelanczyk, 1994).

Atkinson (1972) designed a scheduling algorithm that used a Markov model to track

learning of vocabulary items during interactive learning sessions. A Markov model is a

mathematical description of state transition probabilities for a simplified system where the

distributions of probabilities of future states depend only on the current state and not on past

states. The model was used to track the probability that a learning item was in hypothetical

states that reflect different degrees of learning (e.g., unlearned vs. well learned). Atkinson

conducted an experiment to compare the following scheduling strategies: self selection of

items, random selection of items, selection of items using a Markov model with individual

parameters for each item, selection of items using a Markov model with parameters estimated

for all items.

Atkinson had participants learn German-English word pairs. Atkinson’s results showed

that learners had greater retention when they were trained with an algorithm that had prior

parameters for each item; less performance when prior parameters were determined for the

entire set; and somewhat less performance for items that had been randomly presented or

that had been self selected by learners. Results suggested that using an adaptive model –

in addition to determining ideal item parameters using a prior learning session – was highly

effective in improving memory performance for realistic learning material.

Pavlik & Anderson (2008), also demonstrated a model that utilizes spacing effects to
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boost learning. They reported strong learning results – better than with Atkinson’s (1972)

approach, using a detailed cognitive model of acquisition, based partially on ACT-R (Ander-

son & Lebiere, 1998). Pavlik and Anderson’s model relied on using prior studies to acquire

learning parameters for individual items and comparable learners, before an adaptive session

was run.

Motivating an adaptive approach that relies on response speed and calculates

optimal spacing delays What none of these prior approaches provide is an ongoing model

of learning strength that can be related to the degree of potential learning benefit conveyed

by spacing delays. Crucially, the benefit of spacing delays can be computed as a function

of learning strength. If learning strength is low, spacing delays must be short in order to

support retention; if learning strength is high, spacing delays will need to be long owing

to shallower rates of forgetting. One important way to measure learning strength during

learning is to measure response speed. Response speed provides evidence for the degree of

current learning strength; if responses are fast, learning strength is high, and if responses are

slow learning strength can be assumed to be low3 (Benjamin & Bjork, 1996; Pyc & Rawson,

2009). Using response speed, and leveraging what is known about spacing effects, we aimed

to construct an algorithm that could automatically generate spacing delays for learners as

learning progresses.

In this thesis, we assess this algorithm in a variety of ways. To determine the power of

adaptive spacing at the level of individual delays and presentations, we compare adaptive

scheduling to fixed scheduling. Expanding the scope of that investigation, we assess the

power of adaptive schedules that incorporate learning criteria in longer durations of practice.

Finally we assess the effect of the algorithm in different learning domains. Namely, we test

adaptive scheduling in the fact learning domain as well as in perceptual learning - the pickup

of structural information in perceptual tasks.

3With some exceptions owing to the contrasting benefits of recent practice on learning strength - with
recent practice, reaction time may remain fast even though learning strength is low (see Bjork & Bjork, 1992
for a more detailed theory of learning strength).
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1.6 Adaptive Response-Time-Based Sequencing (ARTS)

Here we present a scheme for dynamically adjusting the schedule of practice: adaptive

response-time-based sequencing (ARTS). Importantly, this scheme uses both the accuracy

of a learner’s responses as well as their response speeds to calculate new spacing gaps be-

tween presentations. Basing adaptive schemes on both accuracy and response-times offers a

more direct way to assess learning strength for individual learners and items in an ongoing

manner. In our system, retention intervals expand as an inverse function of response-time

(for accurate responses), such that faster responses automatically produce longer recurrence

intervals. Consistent with many studies and models, the approach assumes that learning

strength is reflected in response-times (Benjamin & Bjork, 1996; Karpicke & Roediger, 2007;

Pyc & Rawson, 2009).

1.6.1 Model Detail

ARTS applies principles of learning to all learning items simultaneously in a priority score

system, in which all items are assigned scores indicating the relative importance of that

item appearing on the next learning trial. Priority scores for each item are updated after

every trial, as a function of learner accuracy and RTs (reaction times), trials elapsed, and

in view of predetermined mastery criteria. Learning strength is assessed continuously and

in some implementations, cumulatively, from performance data. The most straightforward

version of our sequencing algorithm chooses the highest priority item for presentation on

each learning trial. Adjustable parameters allow flexible and concurrent implementation of

several principles of learning and memory. One important principle is that the retention

interval (spacing gap) automatically increases for an item as its learning strength grows.

Priority scores are dynamically updated after each trial. In many applications, initial

priority scores are given to all items, and an item’s score does not change until after it is

first selected for presentation. This establishes a baseline priority for feeding in new items

that may be balanced against changing priorities for items already introduced. Parameters
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may be set to favor recurrence of new items, items already seen, or combinations of the two.

The sequencing algorithm is flexible; it may utilize any equations relating elapsed time or

trials, accuracy, and RT to the priority for presentation of an item on a given learning trial.

When any particular function of these variables is used, parameters may be adjusted to suit

particular learning contexts and even individual learners. We describe here a characteristic

priority score equation that allows implementation of several key principles of learning and

has proven highly effective in our prior research. The Priority Score for item i (Pi) is given

by:

Pi = a(Ni −D)[b(1 − αi)Log(RTi/r) + αiW ] (1.1)

where:

Ni = number of trials since item i was presented

D = enforced delay constant (trials)

a, b, r = weighting constants

αi = 0, if learning item was last answered correctly

= 1, if learning item was last answered incorrectly

W = priority increment for an error

RTi = response-time on most recent presentation of item i

Parameters In addition to the variables in the sequencing equation, there is a parameter

Pd that describes the default priority score for items that have not been introduced. Typical

parameters settings for the algorithm are listed in the Appendix in Table A.1. Generally,

there are few changes needed to the parameters to accommodate differing learning material

and learners, however D (delay constant) and r (RT weight) are commonly modified to adjust

the global size of spacing delays and the gap between presentations after incorrect responses.
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1.6.2 Other Characteristics

Rapid Reappearance of Missed Items The system ensures rapid re-presentation of

items answered incorrectly by the assignment of a high priority weighting increment (W ).

The binary variable αi is used to activate one or the other part of the equation, depending

on whether the last trial response was correct or not. If correct, αi is set to 0, and priority

becomes a function of RT. If incorrect, αi is set to 1, and priority increment W applies to

the item. With ordinary parameter settings, the error increment W will exceed all initial

priority score assignments, as well as the highest priority that may result from a slow, correct

answer. However, reappearance of missed items is still subject to enforced delay (see below).

With typical parameter settings, a missed item will tend to have highest priority, once it

passes the enforced delay.

Interleaving / Enforced delay To prevent presentation of an item while its answer re-

mains in working memory (Karpicke & Roediger, 2007; Taylor & Rohrer, 2010), the system

is configured to prevent the presentation of the same item on consecutive trials. The param-

eter Ni and constant D determine the enforced delay, because (NiD) is a global multiplier

in the equation. A value of 2 is typical for D, and Ni represents number of trials since

last presentation of item i. Thus, the overall priority of item i will be negative on the trial

immediately following the error (because (NiD) = −1). On the next trial, the priority will

be 0 (because (NiD) = 0). For both negative and zero values, the priority for re-presentation

of item i will be lower than all learning items having positive priority values. From then on,

the priority for a missed item ensures imminent presentation, as its priority increment W

grows proportionally to the number of elapsed trials since last presentation.

Dynamic spacing based on RT The system can use various functions of RT but typically

produces large priority scores for slower rather than faster accurate responses. In the priority

equation: For an item answered correctly, αi = 0, and the part of the equation involving

RT is activated. RTs for inaccurately answered items are not considered meaningful. For
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correctly answered items, a log function of RT is used. In this arrangement, longer spaces

between presentations of an item arise automatically as the learner gives faster (accurate)

responses.

Retirement criteria In some of the studies proposed here, we use ‘retirement’, or re-

moval of an item from the learning set, based on attainment of learning criteria. Pyc &

Rawson (2007) called this ‘dropout’ and found evidence that greater learning efficiency can

be achieved with this feature, especially in highly demanding learning situations. In addi-

tion, because Kornell & Bjork (2007) have shown that learners are quite poor at deciding

which items to remove from a learning set, allowing the learning system to control dropout

is a reasonable feature. The learner has to answer an item correctly and under a criterion

response-time on consecutive (widely spaced) presentations to retire that item. Requiring

several, consecutive, fast responses to an item automatically ensures stretching of reten-

tion intervals. Thus, a retired item will have been answered quickly and accurately several

times across long delays before being retired. (In the experiments where total number of

presentations is fixed (Chapter 2: Exps. 1 & 2), the retirement feature is not used.)

Our approach concurrently incorporates a number of learning principles supported by

recent research. The ARTS system is built around short interactive trials, an approach

supported by considerable evidence indicating that interactive ‘testing’ trials, in which the

learner makes a response, are highly effective in learning, more so than passive presentations

or ‘study’ trials (Carpenter, Pashler, Wixted & Vul, 2008; Karpicke & Blunt, 2011). The use

of systematic mastery criteria, including speed, assures both comprehensiveness and fluency

in learning. As cognitive load is an important limiting factor in learning (Chandler & Sweller,

1991), it is important that items that are foundations for later learning be mastered to a

reasonable degree of fluency. Finally, the rich stream of performance data accumulated by

the ARTS system enables continuous assessment by instructors, and also provides several

forms of learner-directed feedback, which can support specific increments in learning and

sustain motivation.
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1.6.3 Comparison with Past Systems

Empirical comparison with Atkinson Markov Model (1972) We compared ARTS

to Atkinson’s (1972) system. To recall, Atkinson’s system was based on a Markov model

tracking strength of learning items. Presentations were chosen as a function of probabilities

of transitioning between three hypothetical learning states – unlearned, temporarily learned

or permanently learned. The algorithm attempted to select items that would have the highest

probability of moving from an unlearned or temporarily learned state into the permanently

learned state if tested and studied on the next trial. Previous learning data were analyzed to

determine the model’s initial parameters, including learning and forgetting rates and prior

knowledge. Atkinson successfully used his model to improve learning of German-English

vocabulary pairs (and used related systems in a variety of domains; for a review, see Atkinson,

1968). Performance, as measured by recall on a delayed post-test, was superior to random

presentation.

We compared the ARTS system with a version of the Atkinson model using material

that consisted of names and locations of countries on a map of Africa (Mettler, Massey

& Kellman, 2011). To implement the Atkinson condition, item parameters were estimated

using data from a previous experiment, in a manner similar to that in Atkinson (1972). No

prior information was required for implementation of the ARTS system.

Method Participants were randomly assigned to two learning conditions. One group re-

ceived training using ARTS. The other group received training using the Atkinson scheduling

algorithm. Each group of subjects took a pre-test in which they were asked to identify 24

countries on a map of Africa. We used countries whose location was relatively unfamiliar

(e.g., Djibouti, but not Egypt). On each trial, a country was highlighted on the map, and

participants were asked to choose its name from a list of 24 country names. Countries were

presented individually and no feedback was given.
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Results The results showed that adaptive sequencing based on response-times and accu-

racy can produce substantial enhancements in learning relative to other methods. The ARTS

system was 54 percent more efficient on immediate post-test based on trials and 76 percent

more efficient based on time than the Atkinson (1972) approach, and these differences were

equally evident on delayed post-test (see Figure 1.1). The Atkinson condition tested in this
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Figure 1.1: Efficiency for ARTS and Atkinson scheduling algorithms at immediate and de-

layed (1-week) post-tests. Efficiency equals improvement in number of post-test items an-

swered correctly per trial of training. Reprinted from Mettler, Massey and Kellman (2011).

study has been shown in prior work to offer substantial improvement over random schedules

of presentation (Atkinson, 1972), so we might infer that the ARTS system would outper-

form random schedules. However, we go further in this thesis, to demonstrate the power of

adaptive schedules directly compared with random schedules of practice (Chapter 3).
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1.6.4 Motivating Issues

What explains benefits of adaptive spacing? What are reasons that adaptive sched-

ules could confer benefits during learning? Three factors come to mind. First, adaptive

schedules might benefit learning because they take into account random and unexpected

variation in learning. This variation could manifest in different facets of the learning pro-

cess. For example the typical accumulation of knowledge, or change in learning strength

on a given trial, may suffer from chance fluctuation. Alternatively, there may simply be

random variability in performance rather than in the knowledge of an item. An adaptive

system may account for these types of errors better than a system that has pre-determined

and fixed amounts of spacing between trial presentations. Secondly, a learning scheme that

separately tracks a learner’s performance on individual items may perform better than one

that does not. Such a scheme could track individual items in addition to individual learners.

Third, a learning scheme that adjusts to the dynamics of the set of items to be learned —

as an example, changes spacing as a function of the number of items that are in a working

set of currently practiced items — may better cope with emergent properties of the learning

session.

1.6.5 What is the Range of Benefits that Adaptive Spacing can Confer?

In what conditions will an adaptive algorithm help learning? With what stimuli and what

modes of processing? Are there limitations to the complexity of material that can be learned?

Are there instances where adaptive approaches would not benefit learning? Questions about

the range of materials and conditions that are affected by adaptive learning will be addressed.

In this thesis we test hypotheses about the usefulness of adaptive schedules over that

of fixed, spaced practice, through a variety of experiments. First, we compare adaptive

scheduling with fixed scheduling (Chapter 2, experiment 1). Next we attempt to assess

the locus of learning benefits in adaptive learning (Chapter 2, experiment 2). We also

compare adaptive schedules under conditions that are more prolonged, matching conditions
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of study and outcomes of learning that would be expected in real-world settings (Chapter

3, experiments 1 & 2). Finally, we assess whether the benefits of adaptive scheduling also

apply to perceptual learning – an alternate learning process that may be influenced by spacing

techniques (Chapter 4). Throughout we assess the theoretical reasons that adaptive learning

techniques might bring benefit to memory and learning processes.
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CHAPTER 2

Adaptive Schedules vs. Fixed Spacing Schedules

2.1 Introduction

Background This set of experiments compares adaptive schedules to fixed schedules of

practice. The motivation for these studies is twofold: First, the literature that addresses pat-

terns of spacing in memory typically considers a set of schedules that differ in the prescribed

duration of delays separating presentations of an item. Fewer studies have examined sched-

ules that adapt, or change duration during practice, and no studies have directly compared

schedules of fixed delays to schedules that algorithmically adapt delays during the course

of learning. Second, studies that examine the character of learning schedules that change

delay duration over the course of multiple presentations typically compare categorically dif-

ferent schedules, such as fixed expanding vs. fixed equal presentation schedules, joined by a

common measure such as mean delay size, rather than attempt to match schedules to actual

needs of the learning material. The current set of studies systematically assess an adaptive

schedule that administers multiple, adaptive delays for each item during learning. In doing

so we aim to answer a set of related questions. First and generally, do adaptive schedules

of practice outperform fixed schedules (e.g., of either the constant delay or expanding delay

type)? We can test this by directly comparing fixed and adaptive schedules. Second, if

adaptive schedules are better, what could be a specific reason that adaptive schedules confer

benefit over fixed schedules? For instance is adaptation to individual learners more powerful

than adaptation to individual items? We can test this by implementing a set of fixed sched-

ules of practice that are either more or less congruent with the required spacing dynamics of

individual items or individual learners.
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We might expect that an adaptive system which can accurately measure a learner’s

current knowledge will be better prepared to react to variability in the learning process,

variability among learners, and variability among items, than any fixed schedule. We might

also expect adaptive schedules to be better than fixed schedules that have been tuned to

individual differences among items. Again, as described previously, we use an adaptive

algorithm that computes spacing intervals as a function of response time and accuracy.

Since response time on correct trials is thought to be a direct indication of an item’s learning

strength in memory, it is hypothesized that schedules of practice which use response time

and adapt dynamically to a learner’s current learning strength will perform better than any

schedule that does not respond to learning strength.

Prior work In terms of a comparison of adaptive algorithms and fixed schedules, the

present work is the first known attempt to compare the two types of schedule. A growing

literature explores methods of scheduling based on adaptive techniques1, and a separate large

literature addresses issues related to scheduling of a few fixed trials of practice; however no

study at present has attempted to compare both fixed and adaptive schedules, and to assess

the relative benefits of spacing to long-term learning in each.

2.1.0.1 Debates about scheduling

A few studies focusing on fixed schedules bear directly on the work attempted here. First,

some studies have attempted to show the benefits of particular qualitative schedules of prac-

tice, as mentioned in Chapter 1 (Karpicke & Roediger, 2007; Landauer & Bjork, 1978; Storm,

Bjork, & Storm; Carpenter & Delosh, 2005). Second, some studies have attempted to ad-

dress the range of the power of spacing intervals over repeated presentations (Karpicke &

1Techniques do not always agree on the types of learning goals to achieve. For instance some techniques
aim primarily to reduce the amount of total time spent practicing items, thus targeting the learning of items
most likely to benefit from extra practice in the long term, but at a sacrifice to items deemed too difficult
to learn quickly (Pavlik & Anderson, 2008). Few adaptive schedules attempt explicitly to maximize the
duration of spacing delays to optimize learning for each item, and we know of no other techniques that rely
on ongoing measures of response speed during learning.
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Bauernschmidt, Pashler, Zarow, & Triplett, 2003), as well as interactions with features of

learning such as dropout and learning criteria (Pyc & Rawson, 2009). Though there is persis-

tent controversy throughout this body of work, there has been much progress in determining

the range of benefits that come from distributed scheduling, as well as some old and new

questions.

Is expanding practice optimal for retention? One issue that has arisen is a debate

over the relative benefits of expanding vs. equal intervals of practice. Despite intuition and

some evidence that expanding retrieval practice is the most effective distributed scheduling

technique (Landauer & Bjork, 1978; Pimsleur, 1967), other evidence indicates that, to the

contrary, there is no difference between expanding and equal schedules of practice (Carpenter

& DeLosh, 2005; Karpicke & Baeurnschmidt, 2011) or even that equal interval practice

is superior to expanding practice (Karpicke & Roediger, 2007; Logan & Balota, 2008) or

superior at a delay (Cull, 2000). For example, Karpicke and Roediger (2007) showed that

expanding interval practice (1-5-9 intervening trials between 4 presentations) led to poorer

performance vs. equal interval practice (5-5-5 intervening trials) at a delayed test, whether

or not training had feedback (without feedback recall accuracies were 0.33 vs. 0.45 after a

two day delay, and with feedback recall accuracies were 0.49 vs. 0.60). These findings are

in contrast to studies that have shown effects in favor of expanding practice (Landauer &

Bjork, 1978; Storm, Bjork, & Storm, 2010).

The lack of demonstration of the superiority of expanding schedules, as well as the pos-

sibility of their inferiority, has generated a few explanations. One rationale is that, in any

given schedule of multiple, repeated practices, the benefits to learning come primarily from

the initial intervals of practice. In some cases, the smaller initial intervals of expanding prac-

tice help learning - such as when learning strength is low for poorer learners or for difficult

material (Cull, Shaughnessy, Zechmeister, 1996). In other cases, however, smaller initial

intervals are insufficiently short, and do not add appreciably to learning. In these cases,

an equal practice schedule whose initial intervals are long (in fact uniformly long through-
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out), do in fact benefit learning. Without wasted opportunities on substandard delays, equal

schedules benefit from a greater number of longer delay intervals. A further possibility is

that, after a few initial intervals, later intervals in these schemes have very little effect on

learning (Karpicke & Roediger, 2010). A second, somewhat competing rationale is that

the power of different schedules interacts with the difficulty of intervening learning material

(Storm, Bjork & Storm, 2010). With more difficult material, the power of expanding practice

is clearly shown.

We add here a third possible rationale that we think can help explain and unify the

disparate effects and embattled theories in these prior studies. This rationale is simply that,

since expanding schedules are not, on their own, powerful enough to predict when and where

learning strength might increase or decrease during a learning session, there will necessarily

be both instances in which expanding schedules are better and instances in which expanding

schedules are worse than equal schedules. It should be remembered that the hypothesis

sanctioning larger and larger delays between practice hinges on both the difficulty and the

success of repeated retrievals. There are thus two maladaptive events that could contravene

the possible benefits expanding delays bring to learning: retrievals that fail due to exceedingly

long delays, and those easy retrievals that fail to add much to learning strength. Equal

intervals do not have the former drawback, and are usually designed not to have the latter

because delay schedules are usually chosen so that average delay intervals are not beyond the

limits of reasonable practice. A casual analysis of results in Karpicke and Roediger (2007)

seems to confirm that schedules could not maintain difficulty of retrieval across the expanding

schedule, as indicated by relatively higher response speed across each presentation in the

expanding than the equal condition. Response speeds declined proportionally more quickly

across the final interval of the expanding condition than the equal condition, suggesting that

retrievals could have been made more difficult in an expanding scheme by expanding delays

toward the end of learning - but they were not made so. All of this is to claim that, in

order for expanding schedules to benefit learning they need to possess delays that closely

track ongoing learning strength, a feat made difficult when learners and learning material
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vary. To reiterate, it is very likely that expanding schedules are powerful drivers of learning -

and especially efficient learning - but that when fixed (pre-determined), expanding schedules

alone cannot always make up for differences in learners’ ongoing learning strength or for

differences across learning material. Contrary to Karpicke and Roediger’s (2007) comment,

‘Considering the widespread belief in the utility of expanding retrieval, it is surprising that

there is not a larger base of research with consistent evidence showing expanding retrieval

practice to be the superior spaced practice technique for improving long-term retention,’

we claim instead that the lack of demonstration is unsurprising given the lack of flexibility

of the match between the exact parameters of the schedule and the variety of materials

and conditions that experimenters have utilized in testing 2. It is possible that, in theory,

that claims about expanding schedules remain sound. One purpose of the experiments in

this chapter is to see if any evidence for the benefits of expanding practice might lie in the

pattern of schedules that are generated in adaptive schedules of practice.

What learning events are optimal? Aside from studies that directly compare two qual-

itative types of schedule, some studies have attempted to ask questions about the form of

optimal spacing delays regardless of the qualitative schedule, and about the character of the

learning events within schedules. That is, these studies attempt to predict the relative size

of spacing advantages based on spacing patterns and trial features. For instance, some have

asked what the general size of optimal spacing delays should be (Karpicke & Bauernschmidt,

2011), or how spaced practice differs depending upon whether practice is successful or unsuc-

cessful during learning (Pashler, Zarow, & Triplett, 2003). Karpicke and Bauernschmidt’s

work suggests that optimal spacing schedules are those that possess the largest absolute

delay size. In a comparison of schedules with average delay sizes of either 5, 15 or 35 trials,

the best recall performance was found for the spacing schedules with delays that averaged

35 trials, regardless of the qualitative pattern of those schedules 3. Items were presented

2As Cull et al. indicate, ‘boundary conditions’ do much to mediate the expanding retrieval spacing effect.
3Karpicke and Baeurnschmidt (2011) also compared equal, expanding, and contracting schedules but

found no difference in recall for them. Again, to prove that expanding intervals were consistently engaging
difficult recall they looked to response time as an indicator of retrieval difficulty and showed that the slope
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with feedback, and there was relatively little forgetting at each delay duration, except with

the largest (35 trial average) schedules where recall after each delay interval was consistently

about 90%.

Related to this work, Pashler, Zarow and Triplett (2003) showed that the effect of the

size of delays between two presentations moderated the effect of recall at a delayed test,

regardless of the recall performance at the second presentation. In their study they gave

participants paired associates (foreign vocabulary items) at two presentations separated by

a parameterized delay interval of between roughly 1 and 32 trials. At each presentation

participants were given feedback showing the correct answer. Interestingly, performance at

the second presentation was highest for the shortest delay size (around 90% correct) and

lowest for the largest delay size (around 50% correct). More interestingly, delayed recall

performance (the next day) was highest for the largest delay size (still at 50% correct) and

lowest for the shortest delay size (well below 50%). Since there did not seem to be any

indication of the classic ‘non-monotonic curve’, found in most spacing effect research, a

second experiment also extended the range of possible delays to 96 trials. Even with 96

trial delays and alternate learning material, it still appeared that, consistent with Karpicke

and Bauernschmidt (2011), that the largest delay sizes were most beneficial to learning.

Their conclusion was that errors – combined with feedback after errors – may actually be

facilitating rather than preventing spacing effects. 4

It should be obvious that both of these studies’ findings are contrary to the theoretical

framework we have been espousing, namely that in schedules of repeated practice it is impor-

tant to have difficult but successful retrievals. For the Karpicke and Bauernschmidt work,

there are two issues. First is that their method required items to be learned to criterion be-

fore spacing schedules were tested. Second, as in other prior work, we feel that the patterns

of response time decrease was shallowest for expanding retrieval. However a casual look at their results for
response time reveals that their slope estimates were too biased in favor of the response times at the final
presentation, where responses times were in fact highest for the expanding condition; for the majority of the
prior presentations, equal presentation schedules had higher response times.

4Some criticisms immediately come to mind: For instance the construction of schedules with some highly
short and some extremely long delays is likely to bias items with long delays into positions of early or later
learning - thus instigating corresponding primacy and recency effects.
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of expanding practice did not map to item characteristics and learner characteristics in an

optimal way - and that the benefit of absolute delay sizes will eventually have its limit (this is

hinted at in the analysis of Pashler, Zarow, and Triplett, 2003). For the Pashler, Zarow, and

Triplett work, it could be that in schedules where there are only two presentations of an item,

failure after long delays encourages encoding processes or strategies that try to ‘make-up’ for

the lack of future presentations. In addition, there could be an interaction with the kinds

of spacing delay optimal for certain material, such that errors are harmful if spacing delays

are short, but beneficial if spacing delays are excessively long. Clearly there were differences

in the method of these two studies and the work we are presenting here. We attempt direct

tests of comparing adaptive schedules to fixed schedules, across 4 presentations and without

prior learning to criterion. Some of our analysis will go to show that successful retrievals

after each practice are in general important to generate better learning, and that conversely,

‘snapped’ or failed intervals are not as beneficial for learning.

Key questions and motivation In a comparison of adaptive schedules to typical fixed

schedules of practice, we expected to find greater learning in the adaptive condition than in

either of the fixed conditions, but we also hoped to weigh in on debates about scheduling

in the literature such as the merits of expanding vs. equal delay fixed schedules. Further,

we hoped to answer a small set of questions: First, we wished to know the gross capabilities

of the adaptive algorithm performing in the absence of learning criteria across a fixed set

of presentations. Second, we wished to observe differences between characteristics of the

learning session between fixed and adaptive items. Finally we hoped to examine the resulting

adaptive trial data, to reveal hitherto unknown aspects of learning schedules that might

inform future fixed or adaptive schedule designs. Of course, in the main it was expected that

an adaptive algorithm would outperform fixed schedules of practice, but we hoped to reveal

more precise reasons for this advantage through experimentation.

It is worth asking what we would learn if we instead found deficits in learning from an

adaptive condition rather than gains. We would have to consider factors such as: the poor

34



match between reaction times and learning strength, the possibility that learning strength

does not inform scheduling strategy, the influence of participant strategies, the stochastic

nature of memory representation such that fixed schedules somehow force order or otherwise

smooth natural fluctuations in the learning process by distributing strength or attention

across items, among other possibilities. We expect that some of these factors are real; that

the strength of certain effects is sometimes diminished, that the learning process is more

complex than as sometimes characterized, that there is noise in the behavioral process,

and that we are still in an early stage of determining formal models of memory that can

incorporate all of these minor, albeit influential, factors.

2.2 Experiment 1) Fixed Spacing vs. Adaptive Spacing

Brief description of study In order to explore issues relevant to the literature above, and

to test whether adaptive spacing of delay intervals is more beneficial than fixed schedules of

delay, we constructed an experiment that presented learners either adaptive or fixed schedules

of practice under highly constrained learning conditions. In an initial session, participants

learned factual items: 24 country names and locations on a map of Africa. Each item was

presented exactly 4 times in all conditions. There were 3 different types of delay schedule:

One group of participants received items using an adaptive algorithm as detailed in the

explanation of adaptive sequencing in Chapter 1. Another group of participants received

a fixed schedule of practice where half of their learning items were scheduled according to

an equal schedule of practice (5-5-5 intervening items) and another half of their items was

scheduled according to an expanding schedule of practice (1-5-9 intervening items). In the

learning session, every presentation consisted of a test trial where participants were shown

a country and asked to select a name. On every trial participants were told whether their

responses were correct and were shown feedback containing the correct answer. Participants

were measured first at a pre-test given before the learning session and at an immediate post-

test given immediately after the learning session. The pre and post-tests were identical to
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training trials except that there was no feedback given after a response. Each country was

tested once in pre-test and once in post-test. Finally participants returned for a delayed

post-test after one week. The delayed post-test was identical to the immediate post-test. If

adaptive scheduling provides better learning conditions than fixed scheduling, participants

should perform better on measures of recall at both immediate and delayed post-tests. It

was expected that mean accuracies would be higher for items scheduled using an adaptive

sequencing algorithm, since the pattern of spacing delays would be tuned to the interaction

of learner, items and chance variability in learning events.

Planned analyses For this experiment, the primary dependent measures were mean accu-

racy and latencies (RT) across items. Since the total number of presentations for each item

in each condition remains fixed, the analyses did not benefit from a comparison of learning

efficiency (accuracy as a function of trials invested in learning). In addition to performance

measures, the exact amount of spacing generated by adaptive schedules can be compared to

those chosen for fixed schedules.

This experiment also served as a baseline for determining the individual item intervals

for Expt. 2 (adaptive sequencing vs. fixed yoked schedules).

2.2.1 Methods

Participants The participants were 72 undergraduate psychology students who received

course credit for completing the experiment.

Design There were two between-subject conditions, adaptive spacing and fixed spacing.

There were two within subject fixed spacing conditions, equal fixed spacing and expanding

fixed spacing. In the fixed spacing conditions, one random half of learning items was assigned

to the fixed equal condition and the other half was assigned to the fixed expanding spacing

condition.
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Materials The learning materials consisted of 24 African countries that participants were

required to identify on a map of Africa. 14 additional countries were used as ‘filler’ items in

order to space presentations appropriately, especially at the end of a learning session (see note

on filler items in ‘Filler items and jitter in fixed schedules’). All material was presented on a

computer within a web-based application. Participants saw a 500 pixel by 800 pixel map of

Africa on the left side of the screen and a two column list of African countries alphabetically

organized by column then row (see Figure 2.1). Each list label was a software button that

could be independently selected using a computer mouse.

Figure 2.1: Exp 1. Stimuli presented to participants on each trial. Map of Africa with target

country highlighted, and a list of response choices on the right side of screen.

Procedure In all sessions of the experiment learning items were presented singly, in the

form of test trials. Participants were shown a map of Africa featuring an outlined country

and were asked to select, from a list of labels containing country names, the name that

matched the highlighted country. Participants used the computer mouse to select from the

list of names.

Participants attended two sessions, separated by one week. In the first session, partici-
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pants initially took a pre-test on all items. Pre-tests contained all 38 target and filler items,

presented in random order. During the pre-test phase participants were not given feedback

as to whether their response was correct. The pre-test was followed by a learning phase

that consisted of the same type of trial as the pre-test, except that participants were given

feedback after each response showing the correctness of their response as well as a label

indicating the correct answer. The learning phase took up the majority of the first session of

the experiment. During the learning phase, after every ten trials participants received block

feedback indicating their average response accuracy and average response speed for the pre-

vious block of 10 trials and every previous block up to ten prior blocks. After the learning

phase, an immediate post-test was administered, identical to that given in the pre-test. Af-

ter the post-test participants were instructed to return in one week and were asked not to

study or reflect on the information learned. A delayed post-test, identical to the immediate

post-test, was administered after one week. No feedback was given on either post-test.

Spacing conditions Participants were randomly assigned to one of two scheduling con-

ditions: fixed or adaptive (36 participants in each condition). In the adaptive condition, all

training session trials were adaptively sequenced according to a reaction-time-based schedul-

ing algorithm (see description of adaptive sequencing in Chapter 1). In the fixed condition,

one random half of each participant’s items were scheduled according to an equal spacing

scheme, and the other random half were scheduled according to an expanding spacing scheme.

Thus, in the fixed condition, every participant received two within-subject conditions that

manipulated fixed scheduling in either an expanding or equal spacing scheme. This inter-

leaving of conditions was done primarily to avoid the problem of excessive filler items in the

expanding spacing condition.

In the fixed spacing condition, delays between presentations were pre-determined and

constant. Items in the fixed equal condition received spacing of 5 trials between items. Items

in the expanding spacing condition received first 1, then 5, then 9 trials between presentations

of each item. For every participant in the fixed condition, the order of presentation was
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pre-set so that every participant received the same number and order of fixed equal or

expanding trials. Items in the fixed condition did not strictly alternate between equal and

expanding schedules, but every attempt was made to balance the number of equal and fixed

schedules across position in the entire learning phase, so as not to confound serial position

with schedule type. Although the order of presentation of items in the fixed condition was

fixed, the assignment of individual items to either of the two schedule types was randomized

for each participant. In addition, the order of introduction of individual items was shuffled

across possible positions in the pre-set schedule for each participant before the learning phase

began.

For every participant in the adaptive condition, the total schedule order was dynamically

decided during the learning session, and the order of introduction of new items was chosen

randomly from the remaining items in a learning set for each participant.

In all conditions in Experiment 1, each learning item was presented a total of four times.

Filler items and jitter in fixed schedules Filler items were used to support the inter-

leaving of items with different fixed schedules, and to maintain appropriate spacing delays

at the end of a learning session, when no target learning items remained in the set. Filler

items consisted of presentations of 14 additional countries, randomly selected whenever filler

items were needed. Filler items are necessary in the fixed expanding presentation condition

and the adaptive presentation condition; in both cases the final few presentations of items

occurs at larger and larger delays, requiring filler items when no new target items are avail-

able. In addition to filler items at the end of learning, filler items are also required during

the learning session. This is because the structure of fixed spacing intervals do not allow

continuous presentation of items without conflicts in the intended interval schedule for each

item. Imagine 4 items each presented first with a 1 trial delay, then a 3 trial delay. The

layout of this presentation sequence would appear as follows: 1 2 1 2 3 4 1/3.. where the

7th presentation indicates a conflict between the first and third item. These conflicts do not

arise with equal expanding schedules or with adaptive schedules. One of the strengths of
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combining expanding and equal schedule presentations into the same session was that we

were able to design a single fixed session that uses limited filler items for the majority of the

learning session . We were able to do this by allowing for a degree of ‘jitter’ in any given

fixed schedule following a simple rule: Each set of 3 delays between the four presentations of

an item in the fixed or equal condition was allowed to deviate from it’s pre-set interval (e.g.,

1-5-9) by one position, smaller or larger at any delay except the first. For example, 1-6-9,

1-5-9, 1-5-10 would all be valid ‘jittered’ versions of the 1-5-9 expanding interval. Using jitter

we were able to fit expanding and equal conditions together with minimal filler items. Thus,

filler items were utilized primarily to fill expanding schedules at the end of training and their

use was equated across both adaptive and fixed conditions.

Sequencing parameters The default adaptive sequencing parameters are described in

Appendix, Table A.1. In this study, the default parameters were used for the adaptive

algorithm except for the following parameters: ‘RT weight’, r = 3.0; ‘enforced delay’, D = 1.

2.2.2 Results

Average Accuracies across Test Phase Average accuracies for each experiment phase

are presented in Figure 2.2 on page 41. At pre-test, adaptive accuracies were highest

(M=0.076, SD=0.266), followed by fixed expanding (M=0.051, SD=0.22) and fixed equal

(M=0.042, SD=0.20). Comparisons between conditions showed a reliable difference for

adaptive vs. fixed equal (t(70)=2.19, p=.032), but not for adaptive vs. fixed expanding

(t(70)=1.54, p=.13), or fixed equal vs. fixed expanding (t(35)=0.73, p=.47). These differ-

ences indicate some pre-test differences in performance across groups, despite random as-

signment of participants to conditions. Overall mean pre-test scores (M=0.056, SD=0.072)

were significantly different from chance responding (one sample t-test: t(107)=4.13, p<.01),

suggesting that some participants possessed prior knowledge of some countries. (Chance

responding would have been 1 correct item out of 24, or .042.) As a result, we compute

change scores between pre and post-test in addition to comparing average accuracies.
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Figure 2.2: Exp 1. Average accuracies by experiment phase across 3 scheduling conditions.

Error bars show +/- 1 standard error of the mean.

Performance results were not treated to a standard one-way ANOVA due to the special

combination of between and within subjects factors. 3 ANOVAs were used, one for each

comparison of pairs of conditions, with test-phase as a within subjects factor.

A 2X2 mixed factor ANOVA on scheduling condition (adaptive vs. fixed equal) and

test phase (immediate post-test vs. delayed post-test) found a significant main effect of

condition (F(1,70)=4.63, p=.035), a main effect of test phase (F(1,70)=110.56, p<.001)

and no interaction of test phase and condition (F(1,70)=1.06, p=.31). A 2X2 mixed factor

ANOVA on scheduling condition (adaptive vs. fixed expanding) and test phase found no

reliable main effect of condition (F(1,70)=2.37, p=.13), a significant main effect of test phase

(F(1,70)=147.0, p<.001), and a significant condition by test phase interaction (F(1,70)=5.1,
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p=.027). A 2X2 repeated measures ANOVA on scheduling condition (fixed equal vs. fixed

expanding) and test phase found a marginal main effect of condition (F(1,70)=3.13, p=.081),

a main effect of test phase (F(1,35)=126, p<.001), and no condition by test phase interaction

(F(1,70)=1.18, p=.28). A Bartlett’s test confirmed homogeneity of variance for accuracies

at both post-tests (immediate: p=.64, delayed: p=.31).

At the immediate post-test average accuracies were highest for the adaptive condition

(M=0.61, SD=0.21), lower for the expanding condition (M=0.58, SD=0.23), and lowest for

the equal condition (M=0.52, SD=0.24). Accuracies did not differ reliably between the adap-

tive and fixed conditions (adaptive vs. equal: t(70)=1.63, p=.11; adaptive vs. expanding:

t(70)=0.55, p=.58). A paired t-test showed that the two within-subject fixed conditions dif-

fered reliably (t(35)=2.15, p=.039, Cohen’s d=0.24). Looking at average accuracies at the

delayed post-test, accuracies were highest in the adaptive sequencing condition (M=0.42,

SD=0.20), and lower for the two fixed conditions: expanding spacing (M=0.31, SD=0.19)

and equal spacing (M=0.30, SD=0.24). Individual comparisons showed average accuracies

for the adaptive spacing condition were significantly greater than both of the fixed spac-

ing conditions (adaptive vs. expanding: t(70)=2.41, p=.019, Cohen’s d=0.57; adaptive vs.

equal: t(70)=2.38, p=.02, Cohen’s d=0.56). A paired t-test showed that the expanding and

equal spacing means were not significantly different from each other (t(35)=0.45, p=.65).

Since there was detectable prior knowledge and marginally significant differences between

conditions at pre-test, we examined post-test results in terms of change scores computed

between pre and post-tests. We computed two types of change score for each participant:

change scores and gain scores. Change scores were computed by subtracting average pre-test

accuracies from average post-test accuracies. Gain scores were computed by subtracting

pre-test scores from post-test scores, but only for those items that were accurate at both

post-test and pre-test. Items that were answered accurately at pre-test but were answered

inaccurately at post-test were not subtracted from post-test scores in the calculation of a

gain score. This calculation is based on the assumption that there would not be a loss of

knowledge between pre-test and post-test, since the primary intervention between tests was
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a learning phase in which each item was presented with feedback.

Immediate post-test change scores were computed by subtracting a participant’s average

pre-test accuracy from their average post-test accuracy, and delayed post-test change scores

were computed by subtracting average pre-test accuracy from average delayed post-test accu-

racy. Post-test and delayed post-test change scores are shown in Figure 2.3. Three ANOVAs
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Figure 2.3: Exp 1. Average change in accuracy from pre to post-tests across 3 scheduling con-

ditions. Left panel shows difference between immediate post-test and pre-test. Right panel

shows difference between delayed post-test and pre-test. Error bars show +/- 1 standard

error of the mean.

were conducted on change scores. A 2X2 mixed factor ANOVA on condition (adaptive vs.

fixed expanding) and test phase found no main effect of condition (F(1,70)=1.21, p=.28), a
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main effect of test phase (F(1,70)=147.13, p<.001), and a significant condition by test phase

interaction (F(1,70)=5.03, p=.028). A 2X2 mixed factor ANOVA on condition (adaptive vs.

fixed equal) and test phase found no main effect of condition (F(1,70)=2.37, p=.13), a main

effect of test phase (F(1,70)=110.68, p<.001), and no significant condition by test phase

interaction (F(1,70)=1.03, p=.31). A 2X2 repeated measures ANOVA on condition (fixed

expanding vs. fixed equal) and test phase found no main effect of condition (F(1,70)=1.29,

p=.26), a main effect of test phase (F(1,35)=126, p<.001), and no significant condition by

test phase interaction (F(1,70)=0.88, p=.35).

At immediate test, changes scores were similar for all schedules and did not show sig-

nificant differences (adaptive vs. fixed equal: t(70)=1.03, p=.30, Cohen’s d=0.22; adaptive

vs. fixed expanding: t(70)=0.076, p=.94, Cohen’s d=0.25; paired t-test between fixed equal

and expanding conditions: (t(35)=1.58, p=.12, Cohen’s d=0.22). At delayed-test, average

change scores were highest in the adaptive condition (M=0.35, SD=0.18), lowest in the

fixed equal condition (M=0.26, SD=0.24) and nearly as low in the fixed expanding condi-

tion (M=0.26, SD=0.17). Comparing means at delayed test, t-tests showed a significant

difference between the adaptive and fixed expanding condition (t(70)=2.11, p=.04, Cohen’s

d=0.50) and a marginally significant difference between the adaptive and fixed equal condi-

tion (t(70)=1.81, p=.07, Cohen’s d=0.43). A paired t-test between the two fixed conditions

showed no reliable difference (fixed equal vs. fixed expanding: t(35)=0.13, p=.90, Cohen’s

d=0.02).

In addition to change scores, we computed gain scores by subtracting pre-test scores from

post-test scores, but did not include items that were accurate at pre-test but inaccurate at

post-test. Gain scores are shown in Figure 2.4. Three ANOVAs were conducted on gain

scores. An 2X2 mixed factor ANOVA on condition (adaptive vs. fixed expanding) and test

phase showed no main effect of condition (F(1,70)=1.67, p=.20), a main effect of test phase

(F(1,70)=141.5, p<.001) and a reliable condition by test phase interaction (F(1,70)=5.51,

p=.022). An 2X2 mixed factor ANOVA on condition (adaptive vs. fixed equal) and test

phase showed a marginal main effect of condition (F(1,70)=3.09, p=.08), a main effect of
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Figure 2.4: Exp 1. Average gain in accuracy from pre to post-tests across 3 scheduling con-

ditions. Left panel shows difference between immediate post-test and pre-test. Right panel

shows difference between delayed post-test and pre-test. Error bars show +/- 1 standard

error of the mean.

test phase (F(1,70)=105, p<.001), and no condition by test phase interaction (F(1,70)=1.55,

p=.22). An 2X2 repeated measures ANOVA on condition (fixed expanding vs. fixed equal)

and test phase found no main effect of condition (F(1,70)=1.89, p=.17), a main effect of test

phase (F(1,35)=114, p<.001), and no condition by test phase interaction (F(1,70)=0.84,

p=.36).

At immediate test, mean change scores were similar (adaptive: M=0.55, SD=0.19; fixed

equal: M=0.49, SD=0.23; fixed expanding: M=0.54, SD=0.21). Comparisons between con-

ditions did not show significant differences: (adaptive vs. fixed equal (t(70)=1.12, p=.26,

45



Cohen’s d=0.26; adaptive vs. fixed expanding: t(70)=0.19, p=.85, d=0.045; paired t-test be-

tween the two fixed conditions: t(35)=1.69, p=.10, Cohen’s d=0.21). Comparing gain scores

at delayed post-test, scores were highest for the adaptive condition (M=0.37, SD=0.18), and

lower for fixed equal (M=0.27, SD=0.23) and fixed expanding schedule conditions (M=0.28,

SD=0.16). Individual comparisons of conditions at delayed test showed significant differ-

ences between the adaptive and both fixed conditions (adaptive vs. fixed equal: t(70)=2.11

p=.01, d=0.50; adaptive vs. fixed expanding: t(70)=2.34, p=.02, Cohen’s d=0.55). The two

fixed spacing conditions did not differ reliably: t(35)=0.31, p=.76, Cohen’s d=0.05). Since

every condition showed significant differences between gain scores at immediate test and at

delayed test (all ps<.001), the apparent interaction was driven by gain scores that were not

significantly different at immediate post but were different at delayed test.

Average latencies (Reaction time) Average reaction times (RTs) are shown in fig-

ure 2.5 for each condition and for 3 experimental phases: the learning phase, immediate

post-test and delayed post-test. RT data only include RTs from trials that were answered

correctly. Pre-tests are ignored owing to the few items that were answered correctly in that

phase. Of most interest were RTs at training and at immediate and delayed post-tests.

ANOVAs were not run on RTs due to missing data for 4 participants who answered no items

correctly at either immediate post-test or delayed post-tests. At training, adaptive RTs

were lowest (M=4.04 sec, SD=0.99) followed by fixed equal (M=4.59, SD=1.34), then fixed

expanding (M=4.61, SD=1.4). Individual comparisons showed the difference between the

adaptive and the two fixed conditions was marginally significant (adaptive vs. fixed expand-

ing: t(70)=1.97, p=.052, d=0.47; adaptive vs. fixed equal: t(70)=1.97, p=.053, d=0.47), but

a paired t-test between the two fixed conditions showed no significant difference (t(35)=0.11,

p=.17, d=0.012). At immediate post-test t-tests between conditions showed no significant

difference between adaptive and the two fixed conditions (adaptive vs. fixed expanding:

t(69)=0.07, p=.94, d=0.02; adaptive vs. fixed equal: t(70)=1.46, p=.15, d=0.35) and a

paired t-test between the two fixed conditions showed no significant difference (t(34)=1.39,
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Figure 2.5: Exp 1. Average reaction time (in seconds) at each test phase across 3 scheduling

conditions. Reaction time is from correctly answered trials only. Error bars show +/- 1

standard error of the mean.

p=.17, 0.43). At the delayed post-test there was a significant difference between the adaptive

and fixed expanding conditions (t(69)=2.3, p=.02, d=0.64), but other RTs were not signif-

icantly different from one another (adaptive vs. equal: t(66)=1.31, p=.19, d=0.36; fixed

equal vs. fixed expanding: t(30)=1.48, p=.15, d=0.166). Comparing RTs across post-test

phases, only the difference between the fixed expanding condition at post-test vs. delayed

post-test was significant (t(33)=2.8, p=.008; all other ps>.70).

We also examined the RTs at each presentation in learning across the 3 schedules. Re-

action times during the learning phase are shown in Figure 2.6 by scheduling condition and

presentation number. Examination of response times revealed that conditions did not differ
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Figure 2.6: Exp 1. Average reaction time (in seconds) at each presentation (1-4) during

learning, across the 3 scheduling conditions. Reaction time is from correctly answered trials

only. Error bars show +/- 1 standard error of the mean.

in response times at the first, third, or fourth presentation (all t-test ps>.05), but that there

were significant differences at the second presentation. There were significant differences be-

tween the adaptive and fixed conditions (adaptive vs. fixed expanding: t(70)=2.59, p=.01;

adaptive vs. fixed equal: t(70)=3.64, p<.001) but not between the two fixed conditions

(t(34)=1.06, p=.29, paired t-test).

Analyses of average delay size (Trials between presentations of an item) Adap-

tive and fixed conditions differed in the size of trial delays delivered to individual items

during the learning session. The mean delay size per learner was calculated by averaging
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the mean presentation delays for every item and averaging over items. In the equal and

expanding fixed conditions, the intervals chosen in the experiment (1-5-9 and 5-5-5) ensured

that mean delays were always 5 trials in length. Average adaptive schedule delays were

close in length but with some variance (M=6.7, SD=2.033) 5. We also looked at the size of

delays conditional on whether the presentation before the delay was responded to correctly

or not. The mean delay size by scheduling condition and conditional on response accuracy

are shown in Figure 2.7. Although the mean adaptive delay size was similar to the mean
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Figure 2.7: Exp 1. Average delay size (in trials) across 3 scheduling conditions conditional

on whether the trial preceding the delay was answered correctly or not. Error bars show +/-

1 standard error of the mean.

delays for fixed schedules, the conditional values reveal that adaptive delays were both larger

5Across items, in the fixed conditions there was also some variance in delay size due to the use of ‘jitter’
and filler items
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and smaller. After incorrect responses adaptive delays were small (M=1.01, SD=0.09) ow-

ing to the enforced delay mechanism. After correct responses adaptive delays were larger

(M=10.88, SD=6.50) than average fixed delays.

Finally we examined the average delay at each presentation number for the adaptive

condition. The mean sizes of the three delays in the adaptive condition are shown in Figure

2.8. The mean initial delay was the smallest (M=1.62, SD=0.71), the second delay largest

(M=10.95, SD=4.46), and the third delay smaller than the second delay (M=7.52, SD=2.20).

While it appears that the pattern of retrievals was not expanding, but expanding-then-
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Figure 2.8: Exp 1. Average delay size (in trials) across 3 delays in the adaptive scheduling

condition. Error bars show +/- 1 standard error of the mean.

contracting, in fact, a line of best fit to these points still yields a positive slope. There were

also 4 adaptive participants who had strictly expanding practice - positively increasing delay

sizes at each presentation.
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2.2.3 Discussion

Learning was greater – as demonstrated by a variety of measures – for items scheduled us-

ing an adaptive sequencing algorithm than for items scheduled using pre-determined, fixed

schedules of practice. Because average pre-test knowledge was slightly greater than chance

and because there were slight differences between participants’ prior knowledge across con-

ditions, we relied on post-test accuracy as well as two derived measures of accuracy that

discounted prior knowledge from measures of learning. ‘Change scores’ were computed by

subtracting pre-test accuracy from post-test accuracy for each participant. ‘Gain scores’

were computed by subtracting from post-test accuracy only those items that were known

at both pre-test and post-test. Both measures showed significant differences in learning im-

provements across scheduling conditions. Learners experienced significantly greater learning

in the adaptive condition than in the equal fixed condition as measured by a change score

– and when measured with a gain score, learners showed significantly stronger gains in the

adaptive scheduling condition than in either of the fixed scheduling conditions. In addition,

these improvements were retained across a considerable delay (1 week) suggesting that adap-

tive scheduling techniques produce not only greater learning, but more robust learning – that

is, learning is more durable and long-lasting.

In addition to learning gains measured by accuracy, there appeared to be greater fluency

- that is, faster responding - for participants who learned using an adaptive scheduling

algorithm than for participants who learned using fixed expanding schedules of practice,

suggesting that adaptive scheduling produces not only greater retention of knowledge, but

deeper and stronger knowledge gains. Fluency is an important learning goal that is a marker

of higher levels of expertise in many domains (especially domains that involve perceptual

learning; Kellman & Garrigan, 2008).

There are two primary conclusions we can draw from these results. First, as relates to

some debates in research on learning and memory, it appears that certain fixed schedules

of practice are generally poorer at promoting learning than schedules generated using an

51



adaptive spacing algorithm. Second, between some select fixed schedules that we have tested,

we can determine that expanding practice in this learning context is generally no better than

equal practice. Finally we show that the patterns of delays associated with adaptive schedules

were on the whole of a type that increases spacing delays across the duration of learning -

although spacing tended to flatten out and contract at the last interval of practice.

Why were expanding vs. equal spacing schedules nearly the same? We can

speculate as to why expanding intervals of practice were no different from equal intervals

at a delayed test. First, we chose to keep those schedules as within-subject conditions

(primarily to limit the amount of filler items that were needed to support the successful

interleaving of items from expanding schedules). Combining conditions in this way may

have influenced the overall learning benefits of either schedule - for example by reducing

the power of any prediction or encoding strategies based on one particular kind of recurring

pattern in a schedule. This null difference between the conditions might also be similar to

null effects in the literature previously discussed. Given the particular learning items we

used, the particular learners tested, and the particular pattern of learning strength each

item possessed during a session, there may have been deficits to both expanding and to

equal schedules, equating their overall performance. In particular, it is possible that larger

expanded intervals could have been beneficial. However, as we found expanding patterns to

be particularly successful in the adaptive condition, and as we saw that expanding schedules

resulted in greater raw accuracy at an immediate post-test, our results do not contradict the

idea that expanding retrieval practice is often an effective arrangement for learning.

Why did adaptive not do better? We can also speculate as to some possible reasons

that adaptive sequencing did not outperform fixed schedules by a greater margin than was

shown. Some reasons focus on potential benefits of fixed schedules. It is possible that

some patterns of fixed scheduling may be superior for encouraging encoding strategies that

focus learners’ attention. For example, expectation of the recurrence of certain items may

prime learners to better encode items during future occurrences. It is also possible that
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the relatively small amount of practice with items during a short, fixed schedule tipped off

learners as to the importance of having to study items relatively quickly. These sorts of

schedule-mediated encoding decisions could probably be eliminated given new experiments

designed to study or remove such effects.

Other reasons focus on the potential limitations of the adaptive scheduling parameters

selected for use here. It is possible (even probable) that adaptive schedules were simply

not as effective as they could have been. Some evidence from reaction time data (Figure

2.6) appear to indicate that reaction times were lower for the adaptive condition, relative

to fixed schedules. This was especially true at presentation 2, and even at presentation 4.

Low RTs reflect the fact that item recalls were not as difficult as they could have been.

Combined with data that shows adaptive schedules tended to have extremely large delays

between presentation 2 and 3, but somewhat shorter delays between 3 and 4, we can only

suspect that participants in adaptive schedules received a somewhat suboptimal pattern of

trial delays. Contracting spacing indicates a potential ‘overshoot’ of prior delay intervals,

possibly due to misinterpretation of fast reaction time data after initial enforced delays. In

the adaptive condition as implemented here, when an item is answered incorrectly, it recurs

after 1-2 trials. This rapid recurrence (after an enforced delay) is meant to ensure that

learning strength gets a foothold. However, the learner’s response when the item recurs after

1-2 trials may reflect both long-term learning strength and some residual effects of the recent

presentation. This kind of problem is the basis for separating two notions of learning strength

in earlier work (Bjork & Bjork, 1992). In the present context, it may be that response time

on the first successful trial after a miss should be adjusted somehow to reflect the residual

effects of the recent trial (and feedback). Alternatively, the recurrence interval after a miss,

with feedback provided, could be increased, albeit at the risk of further incorrect responses

for difficult-to-learn items. These issues in adaptive scheduling pose interesting questions for

future work.

Another general reason that effects were not as strong as hoped has to do with the

conditions of learning. In general, scheduling conditions constrained the total amount of
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learning; each item was presented a limited number of times (four) and in relation to the

total amount of learning time, delayed post-tests came at a considerable delay (one week).

It is encouraging that despite those limitations the effects were still visible and robust.

It is important, when analyzing these results and reflecting on their importance, to bal-

ance consideration of the available sources of evidence, including null-hypothesis statistical

results, statistical power, observed effect sizes, and common-sense knowledge of the prop-

erties of the quantities measured. Although there were a number of marginally significant

null-hypothesis tests, every critical condition comparison showed a medium effect size. These

issues speak to the difficulty of obtaining reliable measures of differences when participants

learn under highly artificial experimental conditions.

Possible criticisms We can identify some possible criticisms of the demonstrations in this

experiment. One potential problem is the comparability of intervals between adaptive and

fixed conditions. If intervals were longer on average in the adaptive case, greater spacing

alone may have led to greater learning benefits in the adaptive condition. Other objections

point at the choice of fixed delays. Those delays were somewhat arbitrarily chosen from

the research on spacing effects and may have been incompatible with the type of stimuli

chosen for the current study. Another criticism is that, since intervals were more varied in

the adaptive case, it was some aspect of the variable contexts of encoding that promoted

learning, not anything about delay size or character.

These are interesting issues, but they do not detract from the major claims of this study

and further experiments do much to dispel these questions. In Experiment 2, where we

attempt to find the locus of learning effects in adaptive schedules, we compare adaptive

schedules with fixed schedules that are matched to both the character of the stimulus set

and that have similar patterns of spacing delays to that generated by adaptive schedules. In

experiments in Chapter 3 we test schedules that have greater amounts of variability across

schedule delays.
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Possible explanations for effects There are a couple of immediate explanations for the

results demonstrated in this experiment. First is that adaptive delays generated schedules

that better matched the ongoing learning dynamics of individual items and learners. This in-

cludes such characteristics as the varying difficulty of individual items or the varying abilities

of individual learners. In addition, events such as unexpected variation or fluctuation in the

learning strength of items would likely be smoothed out by an adaptive spacing schedule.

The variable characteristics of learners and items implies that spacing intervals for those

items should also vary. Because fixed schedules did not vary as a function of either items

or learners, performance suffered. Adaptive schedules appeared to detect and respond to

variation in learning to a significant degree. The result was better post-test and delayed

post-test retention, as well as better speed of responding, for participants who learned using

an adaptive scheduling algorithm than those who learned using some select fixed schedules

of practice. This experiment is the first to show that adaptive schedules perform better when

compared directly with fixed schedules of practice.

Experiment 1 Conclusions Despite these potential concerns and despite the modest

nature of some of the learning outcomes, this study reflects importantly on the primary

hypotheses. It also adds useful knowledge to continuing, complex debates about the efficacy

of schedules of practice in the research literature. Experiment 1 gave strong evidence that

adaptive sequencing provides efficacy beyond some common fixed spacing schedules that are

known to improve learning in many domains.

2.3 Experiment 2) Yoked-adaptive Fixed Spacing vs. Adaptive

Sequencing.

To what can we attribute the learning improvements exhibited by adaptive scheduling using

an adaptive sequencing algorithm? How can we identify the driver of those improvements?

So far we have suggested that the power of adaptive intervals rests on adaptation to ongoing
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learning strength during learning. We have offered two possible sources of this advantage:

adaptation to individual items and adaptation to individual learners. In order to more fully

explore these possible effects, we designed a set of fixed schedules that either targeted or

ignored individual item differences during learning. We compared adaptive spacing to fixed

delay intervals where the fixed schedules had spacing intervals that were copied directly

from adaptively generated schedules. Fixed schedules in Experiment 2 were ‘yoked’ to the

exact same schedule characteristics as adaptive schedules. These new ‘yoked’ participants

thus received schedules that identically mimicked the size of spacing delays and order of item

presentation from prior adaptive schedules, but presentations were strictly fixed - that is they

did not change depending upon a participant’s ongoing responses or as any direct function

of ongoing learning strength. Across two fixed conditions, schedules were either yoked to

preserve individual item characteristics, or item characteristics were ignored by shuffling

items across delays. In the former case, fixed schedules compared to adaptive schedules

would demonstrate the power of individual learners. In the latter case – fixed schedules with

item characteristics ignored compared to fixed schedules with item characteristics preserved

– the comparison would demonstrate the power of adaptation to item characteristics. These

comparisons would help unveil the power of adaptive schedules of practice in improving

long-term learning.

This experiment utilized the same learning material as Experiment 1 and retained the

pre-test, post-test, delayed post-test design, but changed the nature of the fixed condition.

As a side effect, these fixed schedules were expected to be more competitive with adaptive

schedules since they were tuned to a length roughly appropriate for the type of learning

material and more closely matched to that of adaptive schedules than in Experiment 1.

Yoking fixed schedules to adaptive schedules was accomplished in the following way: a

participant in a ‘yoked’ condition received the same schedule of delays that a prior participant

in an adaptive condition received. The difference between the two schedules was that in

the yoked conditions, spacing delays were fixed, and the schedule had no relation to the

‘yoked’ participants’ ongoing pattern of performance during learning. These fixed, yoked
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schedules were copied directly from the trial record of actual participants who had recently

completed the adaptive condition in the same ongoing experiment. Because yoked schedules

deliver spacing delays that have been adaptively generated as a function of prior learners’

performances with the same material, they represent one version of delays that have been

optimized or tuned for the duration and character of the current learning stimuli6. In this

way ‘yoked’ schedules served as a direct comparison between adaptive schedules and fixed

schedules. In addition, two separate ‘yoked’ conditions were designed to tease apart learner

vs. item characteristics. In a yoked-item condition, a learner received the same schedule of

delays that a prior adaptive participant received: each item was presented in the same order,

and the pattern of delays given to each item was retained. In a yoked-random condition,

a learner received the same schedule of delays that a prior participant received, but items

were shuffled across the pre-specified schedule of delays. In other words, if the prior adaptive

learner received the country ‘Angola’ with a 1-5-15 series of delays, a yoked-item user would

get the same item, at the same point in the learning session with the same delays. A yoked-

random learner on the other hand, would receive the same series of delays (1-5-15) but for a

different item (e.g., ‘Botswana’).

The purpose of this manipulation was two-fold: First, the difference between adaptive

and yoked-item schedules distinguishes between learning schedules which do or do not take

into account individual learner differences. In the adaptive case, schedules take into account

learner differences, in the yoked-item condition schedules ignore learner differences, but -

to some degree - preserve item differences. Second, the difference between yoked-item and

yoked-random conditions explains the effect of schedules that do or do not take into account

item differences during learning (neither takes into account learner differences).

6Another type of optimization might include averaging across all item delays for participants in an adap-
tive condition and yoking new participants’ delays to these averages. Of many possible variations along these
lines we chose direct yoking because of the power it gave us in generating subconditions that examine aspects
of item vs. learner differences in learning.
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2.3.1 Method

Participants The participants were 48 undergraduate psychology students who received

course credit for completing the experiment.

Materials The learning materials were identical to Experiment 1, that is, 24 African coun-

tries as well as filler items.

Design This experiment examined a type of ‘yoked’ fixed spacing in relation to adaptive

spacing. In three between-subject conditions (16 participants per condition), learning items

were presented to participants in either an adaptive schedule (identical to Experiment 1),

or in one of two ‘yoked’ fixed schedules. Each of the fixed conditions were assigned a single

adaptive yoked ‘target’ participant, usually the participant who had last run in the adaptive

condition. In every condition schedules were designed to present each item four times.

Procedure The order of the pre-test, learning phase, post-test and delayed post-tests were

identical to Experiment 1. Trial presentations were identical to Experiment 1.

Yoking conditions For every participant in the adaptive condition, the total schedule

order was dynamically decided as the participant completed the learning session, and the

order of introduction of new items was chosen randomly from the remaining items in a

learning set for each participant. For participants in either of the yoked conditions, items

were presented on a fixed, pre-set schedule. The schedule was based on a prior adaptive

participant’s trial record. In the yoked-item condition, the trial record was simply copied,

so that a new yoked participant received a duplicate version of the trial record of the prior

adaptive participant including the order of introduction of items, the size of the spacing delays

delivered to items, and the number and schedule of filler items. In a yoked-random condition,

the trial record of the previous adaptive participant was retained but the assignment of items

was shuffled, so that new yoked participants received the same schedule of delays, but the
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set of items that received those delays was shuffled. For example, if a prior participant in the

adaptive scheduling condition received a series of three delays, 2-4-10 for the item ‘Angola’,

a participant in the yoked-item condition would get the same item, at the same point in the

learning session with the same delays, whereas a participant in the yoked-random condition

would receive the same series of delays but for a different item (e.g., ‘Botswana’). For each

pair of target adaptive and yoked fixed conditions, then, every series of delays (e.g., 2-4-10)

occupied the same serial position in the learning session, but for the yoked-random group,

items were shuffled across the pre-set series of delays. It should also be noted that not

every set of yoked conditions had a unique yoked target adaptive condition. This was due

to occasional errors with participant login to the system. The most common result was the

occasional re-use of the last most recent adaptive condition as a target for a new set of yoked

participants.

2.3.1.1 Expected results

It was expected that learners in the adaptive scheduling condition would fare better than

learners in either yoked condition. Between the two yoked conditions, it was expected that

yoked-item learners would perform better than those in the yoked-random condition, since

yoked-item schedules would better match the pattern of increases in learning strength for

individual items than would the yoked-random condition. In addition, if the yoked-item

condition performance was roughly equal to adaptive performance, but better than yoked-

random performance this would indicate the general benefit of tuning patterns of delay to

schedules that approximate ideal patterns for individual items. If however, performance was

equal across all three conditions, the supposed advantage of adaptive over fixed schedules

demonstrated in Experiment 1 would likely have to be due to specific aspects of the fixed

schedules used in Experiment 1, not a general advantage over fixed schedules.
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2.3.2 Results

Average accuracies for each experiment phase are presented in Figure 2.9.
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Figure 2.9: Exp 2. Average accuracies by experiment phase across 3 scheduling conditions.

Error bars show +/- 1 standard error of the mean.

Pre-test scores At pre-test, an ANOVA did not find significant differences between schedul-

ing conditions (F(2,45)=1.23, p=.30). Overall mean pre-test scores (M=0.053, SD=0.061)

were significantly different from chance responding (one sample t-test: t(47)=2.88, p<.01),

suggesting that some participants possessed prior knowledge of some countries. As a re-

sult, we compute change scores between pre and post-test in addition to comparing average

accuracies.
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Average post-test accuracies Analyzing accuracies at immediate and delayed post-test,

a 3X2 mixed factor ANOVA on condition (adaptive vs. yoked-random vs. yoked-item) and

test phase (immediate post-test vs. delayed post-test) found a significant main effect of

condition (F(2,45)=3.3, p=.046), a significant main effect of test phase (F(1,45)=77.09,

p<.001), and no condition by test phase interaction (F(2,45)=0.36, p=.7). A Bartlett’s test

confirmed homogeneity of variance for accuracies at both post-tests (immediate: p=.80, de-

layed: p=.19). At the immediate post-test, average accuracies were highest for the adaptive

condition (M=0.63, SD=0.22), lower for the yoked-item condition (M=0.49, SD=0.19), and

lowest for the yoked-random condition (M=0.46, SD=0.23). Comparing means at the im-

mediate post-test, t-tests showed average accuracies for the adaptive spacing condition were

reliably greater than the yoked-random condition (t(30)=2.24, p=.03, Cohen’s d=0.80) and

adaptive spacing marginally exceeded the yoked-item condition (t(30)=1.94, p=.062, Cohen’s

d=0.69). The two yoked conditions did not differ from one another (t(30)=0.49, p=.63, Co-

hen’s d=0.17). Accuracies at the delayed post-test were highest in the adaptive sequencing

condition (M=0.42, SD=0.22), lower for the yoked-item condition (M=0.326, SD=0.144)

and lowest for the yoked-random condition (M=0.26, SD=0.22). Similar to the immediate

post-test, at the delayed post-test, average accuracies for the adaptive spacing condition were

reliably greater than the yoked-random condition (t(30)=2.09, p=.045, Cohen’s d=0.74), but

did not reliably exceed the yoked-item condition (t(30)=1.45, p=.16, Cohen’s d=0.53). The

two yoked conditions did not differ (t(30)=1.03, p=.31, Cohen’s d=0.37).

Change and gain scores Since there was measurable prior knowledge we examined post-

test results in terms of change scores computed between pre and post-tests. We computed

the same two types of change score as Experiment 1: change scores and gain scores. Change

scores were computed by subtracting average pre-test accuracies from average post-test ac-

curacies. Gain scores were computed by subtracting pre-test scores from post-test scores,

but only for those items that were accurate at both post-test and pre-test.

Immediate post-test change scores and delayed post-test change scores are shown in
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Figure 2.10. Analyzing change scores at immediate and delayed post-test, a 3X2 mixed
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Figure 2.10: Exp 2. Average change score at immediate and delayed post-tests. Error bars

show +/- 1 standard error of the mean.

factor ANOVA on condition and test phase found a significant main effect of condition

(F(2,45)=3.64, p=.034), a significant main effect of test phase (F(1,45)=77.09, p<.001),

and no condition by test phase interaction (F(2,45)=0.36, p=.7). Change scores at imme-

diate post-test were highest in the adaptive condition (M=0.57, SD=0.20), lowest in the

yoked-random condition (M=0.42, SD=0.20) and nearly as low in the yoked-item condition

(M=0.42, SD=0.18). Comparing means, t-tests were significantly different between the adap-

tive and both of the two yoked conditions (adaptive vs. yoked-item: t(30)=2.09, p=.045,

Cohen’s d=0.74; adaptive vs. yoked-random: t(30)=2.14, p=.04, Cohen’s d=0.76) but not a

significant difference between the two yoked conditions (t(30)=0.12, p=.91, Cohen’s d=0.04).

Delayed post-test change scores were lower but similar: average scores were highest in the
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adaptive condition (M=0.35, SD=0.17), lowest in the yoked-random condition (M=0.22,

SD=0.17) and nearly as low in the yoked-item condition (M=0.26, SD=0.13). Comparing

means, t-tests showed significant differences between the adaptive and the yoked-random con-

ditions (t(30)=2.23, p=.03, Cohen’s d=0.78), and a marginally significant difference between

adaptive and yoked-item (t(30)=1.79, p=.08, Cohen’s d=0.63). The difference between the

two yoked conditions was not significant (t(30)=0.71, p=.48, Cohen’s d=0.25).

In addition to change scores, we also computed gain scores by subtracting pre-test scores

from post-test scores, but only for those items that were accurate at both post-test and pre-

test. Items accurate at pre-test but inaccurate at post-test were not subtracted from post-test

scores. Gain scores are shown in Figure 2.11. A 3X2 mixed factor ANOVA on condition and
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Figure 2.11: Exp 2. Average gain scores at immediate and delayed post-tests. Error bars

show +/- 1 standard error of the mean.

test phase found a significant main effect of condition (F(2,45)=3.3, p=.046), a significant
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main effect of test phase (F(1,45)=77.09, p<.001), and no condition by test phase interac-

tion (F(2,45)=0.36, p=.70). Like change scores, gain scores at delayed post were highest for

the adaptive condition (M=0.367, SD=0.171), lower for the yoked-item condition (M=0.284,

SD=0.123) and lowest for the yoked-random schedule condition (M=0.227, SD=0.177). Com-

paring gain scores by condition at immediate post-test, t-tests showed marginally significant

differences between the adaptive and yoked-random conditions (t(30)=1.98, p=.057, Co-

hen’s d=0.70), between adaptive and the yoked-item condition (t(30)=1.97, p=.058 Cohen’s

d=0.70) and no difference between the two yoked conditions (t(30)=0.16, p=.88, Cohen’s

d=0.06). Comparing gain scores by condition at delayed post-test, t-tests showed significant

differences between the adaptive and yoked-random conditions (t(30)=2.29, p=.03, Cohen’s

d=0.81) but not between adaptive and the yoked-item condition (t(30)=1.58, p=.12, Cohen’s

d=0.57) or between the two yoked conditions (t(30)=1.06, p=.30, Cohen’s d=0.38).

Average latencies (Reaction time) Average reaction times (RTs) are shown in Figure

2.12 for each condition and each experimental phase except pre-tests (pre-tests are ignored

owing to the few items that were answered correctly in that phase). RT data only include

RTs from trials that were answered correctly. Of most interest were RTs at training and at

immediate and delayed post-tests. At the learning phase, an ANOVA showed no significant

differences between conditions (p>.18). A 3x2 ANOVA on scheduling condition and the two

post-test phases found no significant effect of condition (F(2,45)=0.26, p=.77), no effect of

test phase (F(1,45)=1.12, p=.29), and no interaction of scheduling condition with post-test

phase (F(2,45)=0.03, p=.97). Paired comparisons showed that RTs at each phase were not

significantly different from one another (all ps>.05). Comparing RTs across post-test phases,

no conditions showed significantly different RTs across post-test phase (all ps>.05).

We also examined the RTs at each presentation in learning across the 3 schedules. Reac-

tion times during the learning phase are shown in Figure 2.13 by scheduling condition and

presentation number. A mixed factor, 3X4 ANOVA on scheduling condition and presentation

number (1-4) found significant main effects of presentation number (F(3,42)=4.93, p<.001),
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Figure 2.12: Exp 2. Average reaction time (in seconds) at each test phase across 3 scheduling

conditions. Reaction time is from correctly answered trials only. Error bars show +/- 1

standard error of the mean.

no effect of condition (F(2,42)=0.52, p=.59), and no significant presentation number by

condition interaction (F(6,115)=0.61, p=.72). Examination of response times revealed that

conditions did not differ in response times at any presentation (all t-test ps>.05). Compar-

ing the difference between presentation numbers for each condition, there were no significant

differences between any presentation number except for adaptive between presentation 2 and

3 (t(15)=2.14, p=.049) and 3 and 4 (t(15)=3.7, p=.002), and yoked-item between 2 and 3

(t(15)=3.13, p=.007) and 3 and 4 (t(15)=2.29, p=.04) (all other ps>.05).
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Figure 2.13: Exp 2. Average reaction time (in seconds) at each presentation (1-4) during

learning, across the 3 scheduling conditions. Reaction time is from correctly answered trials

only. Error bars show +/- 1 standard error of the mean.

Analyses of average delay size (Trials between presentations of an item) Adaptive

and yoked conditions differed only slightly in the size of trial delays delivered to individual

items during the learning session. The mean delay size per learner was calculated by averag-

ing the mean presentation delays for every item and averaging over items. Average adaptive

schedule delays were close in length to the adaptive condition in Experiment 1 (adaptive:

M=6.77, SD=1.46, yoked-item: M=6.81, SD=1.40, yoked-random: M=6.89, SD=1.43). We

also looked at the size of delays conditional on whether the presentation before the delay was

responded to correctly or not. The mean delay size by presentation are shown in Figure 2.14.

Once again, the conditional values reveal that adaptive delays sizes were bimodal: larger for
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Figure 2.14: Exp 2. Average delay size (in trials) across 3 scheduling conditions conditional

on whether the trial preceding the delay was answered correctly or not. Error bars show +/-

1 standard error of the mean.

correct responses (M=11.76, SD=5.04) and smaller for incorrect ones (M=1.0, SD=0.0).

Finally we examined the average delay at each presentation number for the adaptive

condition. The mean sizes of the three delays in the adaptive condition are shown in Figure

2.15. The mean initial delay was the smallest (M=1.67, SD=0.98), the second delay largest

(M=10.42, SD=2.12), and the third delay smaller than the second delay (M=8.22, SD=1.82).

Again it appeared that the pattern of retrievals was not expanding, but expanding-then-

contracting. There was only 1 adaptive participant who had strictly expanding practice -

positively increasing average delay sizes at each presentation.
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Figure 2.15: Exp 2. Average delay size (in trials) across 3 delays in the adaptive scheduling

condition. Error bars show +/- 1 standard error of the mean.

2.3.3 Discussion

In a second experiment comparing adaptive vs. fixed schedules of practice, adaptive schedul-

ing led to larger learning improvements at both an immediate and delayed post-test than

yoked schedules. Yoked schedules were unlike adaptive schedules in that 1) delays were

not adaptively generated (that is schedule dynamics did not respond to participants’ per-

formances), 2) in the yoked-item case delays were not tuned to individual learners, and 3)

in the yoked-random case, delays were not tuned to individual items. Adaptive scheduling

showed significantly greater learning as measured by change scores between pre-test and

post-test than both yoked conditions at an immediate post-test. Adaptive scheduling also

significantly outperformed the yoked-random condition, both in terms of greater learning

accuracy at both post-tests, and in terms of change-scores and gain scores at a delayed

test. In addition, there were numerous marginal effects of adaptive over both yoked-item

and yoked-random conditions; gain scores were marginally better at immediate post-test and

accuracies were marginally better at delayed post-test for the adaptive condition than the
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yoked-item condition, and in all cases, yoked-item performance trended numerically lower

than performance in the adaptive condition. In no case, neither at immediate or delayed

post-test and not for any measure of performance were the two yoked conditions reliably

different from one another.

In summary, participants who learned items using adaptive scheduling had higher per-

formance at immediate and delayed post-tests than participants who saw yoked schedules,

where yoked schedules were identical to adaptive schedules in terms of schedule charac-

teristics (average delay size and pattern of delays). Differences between yoked and fixed

conditions persisted at a delayed post-test, and yoked schedules were especially poor when

they did not preserve spacing delays for individual items (yoked-random condition).

The learning advantages of adaptive conditions over both fixed yoked conditions suggest

that the advantages of adaptive scheduling are specific to the ongoing adaptive characteristics

of the algorithm. Namely, it is the adaptive algorithm’s ability to deal with variability in

ongoing learning strengths for learners and items that enables higher long-term learning in the

adaptive case, and it is the inability of schedules in the yoked conditions to track and account

for changes in ongoing learning strength for learners and items that disable performance in

those conditions. The specific advantages of adaptive schedules over the yoked-random

condition suggests that adaptive sequencing is driven by identifying the delay schedules

most suited to both particular stimulus characteristics and potentially the interaction of

individual learners and stimulus characteristics. The discussed findings are noteworthy in

that they demonstrate support for some of our stated hypotheses, they speak against some

previous hypotheses about spacing effects in the literature, and they open the door to future

research on the spacing effect and adaptive schedules.

Evidence supporting hypotheses Greater long-term learning for learners who used

an adaptive algorithm demonstrates that the algorithm was able to track and account for

changes in ongoing learning strength across learners and items during the learning session.

In both yoked conditions, new learners received identical delays to old items and old learners.
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However performance in the yoked-item condition declined since learners likely required dif-

ferent scheduling dynamics than old learners. Relatedly, performance in the yoked-random

condition declined since individual learning items likely required similar scheduling dynamics

to prior learners, but did not receive them. These deficits across the two yoked conditions

were regardless of the fact that the absolute delay sizes were identical between both yoked

and adaptive participants. Tuning delays to the requirements of learners and items was the

goal of an adaptive scheduling system, and these differences between adaptive and yoked

conditions show that the adaptive system largely met those goals.

The differences in performance between the adaptive and yoked-random conditions sug-

gests that item characteristics are more important than learner characteristics in the opera-

tion of an adaptive scheduling algorithm. Identifying item characteristics, namely predicting

intervals of practice for those items, are the heart and soul of adaptive sequencing and it

is unsurprising that fixed schedules which do not utilize those characteristics result in poor

learning performance. However, the determination of optimal item characteristics alone is

probably not sufficient to engender learning. For instance, fixed schedules that have been

tuned to item characteristics alone - e.g., in textbooks and other static curricula - would

probably not generate greater learning than adaptive schedules of practice for those items.

These results also suggest that systems that run prior studies to obtain parameters for their

models ( Atkinson, 1972; Pavlik & Anderson, 2008), may well have success across different

learners. However an important difference is that the ARTS system tested here was able to

acquire these parameters while in use with learners. Since, in real settings, it would often

be impractical to run a prior experiment with similar learners in the same material, there

are clear advantages to an adaptive learning system that does not require such prerequisite

effort. Finally, the kind of adaptation effects seen here would likely be larger wherever there

would be expected to be greater diversity both in learning items as well as in the diver-

sity of learners (our participant pool and our learning materials may have been relatively

homogenous with respect to this particular adaptive scheduling advantage).
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Evidence against competing hypotheses. This experiment goes a long way towards

proving that characteristics of delay size alone, such as average delay size, absolute delay

length, etc., are insufficient criteria for a theory of spacing effects. The results of the study

make a clear and compelling point: absent a theory of the power of repeated retrievals un-

der particular conditions of delay or difficulty, and absent any underlying notion of ongoing

learning strength during learning, rules about spacing effects that focus on delay character-

istics applied uniformly to all items are mostly incorrect. For example, if it was the case

that delay size during learning was crucial, one should expect the same performance in two

conditions that receive the same pattern and size of delays. In fact, we have demonstrated

that the opposite occurs: that even when schedule characteristics are equated, learning suf-

fers in the condition where spacing delays do not match item and learner characteristics.

The strongest effects involve item characteristics. Additional effects, mostly evident here in

immediate posttests, involve differences across learners that can be captured by adaptive

algorithms. Similarly, if it was the case that average delay sizes were most important in

promoting learning, yoked schedules and adaptive scheduling should have generated similar

learning outcomes. Clearly, the primary theoretical reason to expand intervals during prac-

tice is to match the characteristics of ongoing learning strength, not to meet particular delay

characteristics or criteria of spacing schedules in the abstract.

2.3.4 Exploratory Analyses

2.3.4.1 Increase in failure after spaced delays for non adaptive conditions

One important analysis that we conducted, both during piloting of the study as well as after

the study itself, was to determine the relative amount of failure (or ‘snapping’) that occurs

after adaptive delays. Since the theory guiding implementation of the adaptive sequencing

algorithm dictates that delay intervals should be just long enough to support difficult retrieval

- but not so long as to cause retrieval failure - it was important to assess that, for a range of

generated spacing delays, retrieval success stays relatively high. We did this by tabulating
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the amount of retrieval successes after adaptive delays (as well as after enforced delays),

for each presentation number during the learning session. The proportions of success and

failures after adaptive delays are plotted in bins according to size of adaptive delays, creating

a histogram, at every presentation number, and for each of the two possible prior response

events: whether prior to the delay the item was answered correctly or incorrectly.

These histograms are displayed in Figure 2.16 for the adaptive condition. What is evi-
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Figure 2.16: Exp 2. Histograms of success or failure (snaps) after adaptive delays by delay

number and prior response accuracy in the Adaptive condition.

dent is that, across a range of values of adaptively generated delay, the proportion of response

success remains high, whereas the proportion of response failure remains low (adaptive con-
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dition: proportion of snaps after incorrect response: 0.11, after correct response, 0.17). This

high proportion of successes is evident at even the largest delay sizes, and at all presentations

during the learning session. This is exactly the behavior one might expect if adaptive inter-

vals were correctly predicting delays that are long and difficult, but that ultimately result

in successful retrieval. The contrary pattern would mostly likely show that, as delays get

larger, the proportion of failures, or snaps, gradually increases. This maladaptive pattern

is exactly the resulting behavior that we found in pilot testing with incorrect sequencing

parameters, where delays were made on average too long for participants. It is also similar

to the behavior that is demonstrated in the two yoked conditions. Figures 2.17 and 2.18

show the same response histograms for participants in the two yoked conditions. What is
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Figure 2.17: Exp 2. Histograms of success or failure (snaps) after yoked delays by delay

number and prior response accuracy in the Yoked-random condition.

evident is that response successes and failures do not remain stable across increasing delay

sizes. In fact, the proportion of failures is much larger at many delays for participants in the
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Figure 2.18: Exp 2. Histograms of success or failure (snaps) after yoked delays by delay

number and prior response accuracy in the Yoked-item condition.

yoked conditions (yoked-item: proportion of snaps after incorrect response, 0.29; after cor-

rect response, 0.20; yoked-random: proportion of snaps after incorrect response: 0.39, after

correct response, 0.22). This is consistent with an account of variable learning strength dur-

ing individual delays - with resulting failures of response after delays that were not designed

to support ongoing learning strength for learners and for items.

An inference can be drawn between these results and the poor delayed post-test perfor-

mance of participants in the yoked groups. We reason that successes at increasingly long

delay intervals are crucial to the successful operation of almost any scheduling technique,

and that adaptive techniques better enable exactly those successes at exactly those types of

delay intervals. Although this observation is only correlational and not directly causal we

explore it more in the following additional analyses.
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2.3.4.2 Correlation of slope of delay sizes with delayed post-test performance

Finally, we also conducted an analysis that attempted to determine which qualitative sched-

ule of performance – e.g., expanding, contracting – best supported long-term learning. First

we computed a measure of ‘delay-slope,’ the slope of a line of best fit through the three delay

interval sizes. Positive delay slopes indicated ‘expanding’ schedules. Negative delay slopes

indicated ‘contracting’ schedules. Slopes near 0 indicated flat or equal spacing schedules. Of

course, the adaptive algorithm, as noted in prior analyses, rarely generated strictly equal or

expanding schedules (more often than not schedules were expanding-then-contracting), but

we felt that constructing a continuous dimension to measure the relative pattern of delay

sizes was a highly valid statistical abstraction and would reflect well on prior experimental

efforts to divine the benefits of qualitatively differing schedule types. Correlations between

delay slope and delayed post-test performance are illustrated graphically in Figure 2.19 for

each condition. Data points were for individual items: predictors were the delay slope of

items and the outcomes were binary delayed post-test accuracies (accurate or inaccurate).

To simplify the analysis, we chose linear rather than logistic regression. Correlations between

delay slope and delayed post-test performance were positive and significant for the adaptive

condition (slope b=0.036, t(382)=3.91, p<.001; R=0.20), and for the yoked-item condition

(slope b=0.017, t(382)=1.98, p=.049; R=0.10), but not significant for the yoked-random

condition (slope b=0.003, t(382)=0.34, p=.74). Positive correlations imply that increasing

slopes – that is, more highly expanding schedules – resulted in greater post-test perfor-

mances. This was most evident for the adaptive condition, slightly less so in the yoked-item

condition, and there was a flat pattern and no significant correlation for the yoked-random

condition. This result implies first that in the adaptive condition, schedules that tended to

expand the size of delays across presentations were correlated with better long-term learn-

ing. It also shows that although some schedules tended to expand in both the yoked-item

and yoked-random conditions, expansion enough was not enough to correlate with better

delayed post-test performance in the yoked-random condition. In the yoked-item condition,

the correlation was significant but the slope of the correlation was less than in the adaptive
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Figure 2.19: Exp 2. Delay slope correlated with delayed post-test performance, across 3

conditions. Data points were accuracies on delayed post-test and delay slope of individual

items. Delay slope was computed using a line of best fit through an item’s three delay values.

Delay slope was positive if an item had expanding delay intervals, negative for contracting

intervals, and 0 for equal intervals. Shaded regions show a 95% confidence interval.

case. It should be noted that the R squared values were fairly low. The takeaway from

this analysis is that expanding schedules can be correlated with better learning gains, but

mostly in cases where spacing delays respect ongoing learning strength, e.g., in an adap-

tive scheduling condition. This result weighs in partially on the debate between qualitative

schedules of practice, and it shows that even among schedules that differ only slightly in the

qualitative schedule of practice, there are differences in whether particular qualitative sched-

ules generate learning advantages. Thus, the match between ongoing learning strength and

the benefits of a particular pattern of spacing delays participate cooperatively in generating

greater learning.

76



2.4 Conclusion - Experiments 1 & 2

Across two experiments, we showed that a technique of adaptive scheduling in order to max-

imize the spacing delay between presentations of items was successful in producing greater

learning benefits than related fixed schedules of practice. In both experiments items were

presented for the same limited number of presentations (four), where the only manipulation

was to the order of presentation of items during the learning session. Experiment 1 demon-

strated that learning gains were higher for an adaptive scheduling condition than a series of

fixed schedules commonly used in the research literature of studies on learning and memory.

Experiment 2 demonstrated that even when schedules were equated in the size of the spacing

delays across conditions, adaptive schedules outperformed fixed ones. Specifically the locus

of the improvements appeared to be over those schedules whose spacing delays did not meet

item and learner characteristics. In both experiments the improvements were measured at

both immediate and delayed post-tests. It appears that the strongest benefit of adaptive

scheduling is to track the ongoing learning strength of variable learners and items, and that

the resulting schedules are more powerful at promoting learning than most fixed schedules

of practice.

It is important to step back and qualify the contributions of the present series of experi-

mental schedule manipulations to larger concepts and theories in the study of memory and

learning. Although a purpose of the preceding experiments has been to study the benefits

and limitations of particular scheduling strategies among a set of competing ones, a further

purpose has been to determine the locus of learning benefits, and the nature of learning

mechanisms more generally. These general findings in some cases take the form of new di-

mensions previously not addressed in theory (for example, the degree to which adaptation

affects learning). In other cases, the processes are directly relevant to pre-established theories

of learning and enable us to evaluate and assess those theories.

Other issues - Total presentations It should be noted that adaptive sequencing was

originally designed to support learning to criterion - that is, the continuation of presentation
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of any item until the point that a learner meets a learning criterion for that item, also known

as ‘drop-out’, ‘retirement’, or ‘criterion-based learning’ (see Chapter 3). Instead, in this

study, all conditions were designed so that each item received four total presentations in the

learning phase. This is a highly artificial way of producing real learning - likely not to be used

in practice by any actual student or learner. No learner would be expected to be satisfied

with the fairly low resulting learning performance that resulted at delayed test, and no

scheduling condition given only 4 total presentations per item would be able to appreciably

increase those low learning rates, even if a mathematically optimal learning schedule was

found. There are simply not enough presentations to support robust, long-term learning. To

researchers credit, it is probably assumed that such controlled studies can inform us about

theoretical aspects of the spacing effect, in a way that realistic studies cannot. It is assumed

that controlled conditions such as limited presentations (often presentations are limited to

only 2 tests with a single spacing delay), can provide quantitative information that informs

the design of more realistic, longer-lasting teaching and study strategies. Unfortunately,

there is less evidence of productive transfer of knowledge from controlled studies to real-

world learning situations than would be desirable. It is hoped that in future studies, this gap

can be bridged. By conducting work on learning schedules of a more realistic nature, and

uniting work from highly constrained studies with more realistic studies, better hypotheses

about the conditions of practice can be formulated in both domains.

On the whole, we think these experiments bring research on the spacing effect steps

closer toward the goal of depicting the gamut of spacing effects through the relative strengths

and weaknesses of particular schedules of practice, and through sophisticated measures of

performance, a strategy outlined by Landauer:

“...using information theory to model memory functions [is] a powerful method-

ological tool I believe to have been woefully underused in cognitive psychology

(despite the loosely labeled ‘information processing’ approach). For spacing ef-

fects in particular, an example of what might be done is to study the cumula-

tive storage efficiency of differing repetition regimes and scheduling distributions.
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This might yield more accurate, quantitative, and continuous valued treatments

of the effects of variables and their interaction than measures of raw frequencies

of right and wrong answers or raw accuracy of performance.” - (Landauer, 2010)

Of course, we are not here using information theoretic rules to describe learning gains in

these experiments, but we are conscious of the goal of contrasting the likelihood of current,

possible learning gains with the space of possible ones - a strategy not unlike the tenets of

information theory - and we are of course seeking dimensions of influence on spacing effects,

including effects of adaptation.

What remains to be done is to test more realistic learning schedules, of longer duration

and with stopping rules that entail learners reach reasonable levels of proficiency with mate-

rial, and to assess their encoding efficiencies - that is, to examine how quickly learners reach

learning criteria - to determine which schedules require the fewest number of presentations

to achieve durable learning. We turn to more realistic learning situations in Chapter 3
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CHAPTER 3

Adaptive vs. Random Scheduling

Comparing Schedules using Realistic Learning

Conditions

3.1 Introduction

3.1.1 Limitations of Fixed Schedule Studies

In Chapter 2 we demonstrated that the technique of adaptively expanding delays between

trials during a learning session is a beneficial strategy for increasing the short and long-term

retention of basic facts. These studies do not, however, definitively prove the effectiveness

of adaptive schedules in typical real-world learning settings, where learning sessions are not

limited to a few presentations per item, and where it is usually desired that presentation con-

tinues until learning has reached some learning criterion or standard of proficiency (Bloom,

1968; 1974).

It is therefore important to demonstrate that the advantages of adaptive schedules are

general; that adaptive schedules also operate effectively under realistic learning criteria and

do well compared to common learning strategies. What are some reasons that adaptive

schedules would not perform as well under general conditions of learning? One possibil-

ity is that learning criteria may make up for the deficiencies of a non-adaptive schedule,

counteracting the poorness of the match between spacing interval sizes and ongoing learning

strength. Alternatively, matching spacing delays to ongoing learning strength may simply
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be less important or less effective at later points in the learning session; adaptive sequencing

may simply be less effective at generating the last, longest delays for an item before it reaches

a learning criterion. Finally, adaptive schedules may not compete well with some commonly

used schedules - such as random presentation schedules - that incorporate a variety of robust

spacing delays as well as learning criteria.

To address these questions, in this chapter we set out to investigate adaptive schedules of

practice using learning to objective criteria, and to compare adaptive to random schedules

under more typical durations and conditions of learning practice. First we assess some

background literature on the topic of learning criteria, dropout and efficient learning, and we

assess their relationship to spaced schedules of practice. We then present two new studies

that address the relative benefits of adaptive vs. random scheduling, both with and without

learning criteria.

Learning efficiency In order to investigate these questions we must more closely consider

the character of the learning performance that is affected by realistic durations of practice,

and features such as learning criteria and dropout. Crucial to our investigation will be

a performance measure of ‘efficiency’, that is, the number of learning trials invested in a

learning session in relation to overall performance (accuracy) gains on a post-test. Only

with respect to trials invested will learning accuracies be interpretable, since we can predict

that different schedules (e.g., schedules with differing learning criteria across conditions) will

deliver differential amounts of practice on average across conditions. We consider dropout

and then learning criteria and spacing in light of a measure of efficiency.

3.1.2 Learning Criteria, Dropout, Spacing and Efficiency

3.1.2.1 Overview of learning to criteria

What are learning criteria and what relationship does a learning criterion have with dropout?

By learning criteria it is generally meant that some number of successful recalls of an item
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are necessary in order to demonstrate proficiency with that item. Although seldom tested,

learning criteria can also incorporate fluency criteria, e.g., responding that meets preset

speed criteria. By ‘dropout’ it is meant that an item is no longer presented for the duration

of the learning session. Dropping out items from the learning set encourages ‘efficient’

learning: practicing items fewer times but with greater benefit to learning. An obvious

dropout strategy is to remove an item from the learning set at the moment it reaches a

learning criterion.

Generally, learning criteria are related to the notion of mastery learning (Bloom, 1968;

1974), or the notion that individuals should master units of learning before proceeding to later

learning. Mastery learning treats learners as individuals, having different requirements and

taking differing amounts of time to achieve unified learning standards. This is as opposed to

much traditional instruction that grades students on units of instruction rather than ensuring

successful learning. Mastery learning was the motivator of early attempts to create adaptive

learning techniques, for example in curricula such as ‘programmed instruction’ (Skinner

1954; Holland and Skinner, 1961). As principles of cognitive science get applied to the real

world, mastery learning has become considerably more important. In addition, technological

advances have made tracking of individual learning items and assessment of instructional

objectives easier to achieve. Any future, realistic application of spacing to learning should

be compatible with, and studied in the context of, learning to criterion.

How do learning criteria affect learning? Criterion learning has been studied generally

in terms of its effects on learning, as well as specifically in terms of the kind or amount of

recall success required to meet a criterion.

In studies of memory and learning, criterion learning appears to improve all aspects

of associative retrieval (Vaughn & Rawson, 2011). Specifically, as Rawson and Dunlosky

have reported (2011), increases in the stringency of learning criteria have a logarithmic

relationship with later recall; that is, stronger criteria result in greater amounts of learning

(as measured by retention on a delayed post-test), but there are diminishing returns on

learning for every unit increase in the strictness of a criterion. In other words, there are
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limits to how strict a learning criterion should be. Rawson and Dunlosky (2011) manipulated

the number of successful recalls required before items dropped out of a learning session.

They repeatedly tested participants with passages of textbook material and learners ‘self-

monitored’ the success of recall of key facts. Items were considered learned after either 1, 2,

3, or 4 successful recalls, after which items were no longer shown to participants. Rawson

and Dunlosky found that greater criterion level (2, 3, or 4 recalls) increased the success of

recall on a test after 2 days, but that the difference between an initial criterion of 3 vs. 4

recalls was not significant. It also appeared that given a second re-learning session where

items were learned to the same criterion level, the differences in recall between all criteria

levels vanished in a third, delayed session. Finally, their analyses showed that the largest

difference in delayed recall given initial criterion level came from extremely poor learning in

the one-correct response criterion case, suggesting that a single correct recall is either a poor

criterion, or perhaps categorically different from a true learning criterion. Thus learning

criteria do appear to affect learning in a positive but negatively accelerating way. However

the conditions under which criteria affect learning are highly constrained. It is also possible

that, if measured purely in terms of the number of successful recalls, the presence or absence,

rather than the exact level or strictness, of a learning criterion has the single greatest effect

on learning.

Compared to learning gains seen without a learning criteria in fixed comparison studies,

would adaptive schedules convey similar or greater learning gains when sessions extend be-

yond a few short presentations? One possibility is that they will not. For example, after the

first few presentations, it may be that the impact of adaptive delays on learning differs from

the impact during the first few presentations. Adaptive delays may not help much during

later learning, or the power of an adaptive algorithm to accurately predict delay size based on

response speed may diminish. Relatedly, the advantage of adaptive delays over other types

of schedule may diminish when there are enough encoding opportunities to achieve reason-

able learning criteria, regardless of the match between spacing interval sizes and ongoing

learning strength. In other words, learning to a criterion may make up for the deficiencies of
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a non-adaptive schedule. Alternatively - and as we predict - an adaptive schedule of delays

may in fact produce even greater learning or - crucially - even faster, more efficient learning,

that is, using fewer total trials presented per item. The reasons for this advantage fall largely

in the scope of the theoretical background discussed in Chapter 1: increases in difficulty at

each recall produce even greater gains in long-term storage strength, enabling spacing delays

to expand as learning progresses. Accurately predicting the length of spacing delays ensures

continuously difficult, but successful retrievals across the learning session. More numerous

successful retrievals and fewer failed retrievals add up to fewer total learning trials and thus

greater learning efficiency.

3.1.2.2 Learning Criteria and Spacing

One point not fully addressed in the prior literature is how learning criteria might interact

with spacing between learning events. To our best knowledge there is only one existing study

that has systematically manipulated both learning criterion and spacing of learning events

to examine the interaction of spacing and criterion. Pyc and Rawson (2009) had participants

learn swahili-english word pairs under two spacing conditions (long and short spacing) and

a number of criterion levels - roughly 1 to 10 correct retrievals. Retention intervals were also

manipulated. Long spacing intervals generally improved learning, but increases in criterion

level showed curvilinear decrease of learning gains at both spacing durations. In other words

the difference in gain between learning criteria of either 9 or 10 correct recalls was not as

great as between 2 and 3. Their finding is roughly in line with that of Rawson and Dunlosky

(2011), that increases in criterion strength result in logarithmically decreasing improvements

to final recall performance. In relation to the issues of spacing and criterion that we have

been discussing, the limitation of Pyc and Rawson’s (2009) study is that the effects were only

investigated under the scheduling constraints of equal spacing, rather than expanding or other

forms of spacing. Consistent with a theory of retrieval difficulty that supports expanding

retrieval practice, equal spacing schedules may not provide consistent levels of difficulty at

each practice, thus reducing the difficulty of nominally more ‘stringent’ criteria levels. As
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an alternative, increasing the spacing across criterion trials might counteract the negative

acceleration of learning strength by maintaining high levels of difficulty at every criterial

learning practice 1. With increases in spacing accompanying increases in the difficulty of a

criterion, there may be super-additive effects as opposed to diminishing returns: the form

of the relationship between criterion difficulty and long-term learning may be linear or even

exponential.

Indeed, it will be important to assess the difficulty of the ensuing retrievals during cri-

terial practice. For example, a continuous sequence of massed repetitions of an item likely

promotes perfect performance in the immediate term, no matter the strictness of the crite-

rion. Similarly, a schedule that promotes extremely difficult material may find that criterial

performance is nearly impossible to achieve. Thus criteria need necessarily be evaluated in

relation to the kinds of ongoing schedule dynamics during the criterion trials, namely the

spacing of learning events.

In the adaptive algorithms we have introduced in this thesis, we have devised learning

criteria that implicitly contain spacing criteria as well as explicit speed and accuracy criteria.

Since our learning criteria require fast responses in addition to correct responses (responses

must be made in less than 7 seconds), and since adaptive spacing intervals are a function

of the speed of response, the resulting criteria enforce spaced, difficult retrievals, not just

correct or fast ones. One of the goals of the present research was to examine the benefits of

such learning criteria on learning.

As noted, learning criteria that incorporate response speeds are a natural feature of adap-

tive scheduling algorithms of the sort tested here. The incorporation of response speeds into

learning criteria is exceptionally rare in practice and in the experimental literature. Using

response speeds in learning criteria is one the benefits of using computer based learning

1Possibly one of the reasons experiments along these lines have never been conducted owes to the general
lack of knowledge about the exact mathematical relationships between spacing and criteria. Doing such
an experiment may be particularly risky if the match between item spacing and ongoing learning strength
is weak - that is, the effect of a strict criterion may be lost if spacing does not support difficult retrieval.
Although we do not attempt a systematic exploration of the interactions of spacing and criterion level in the
current studies, we assume that adaptive spacing enables a wider range of learning criteria to convey high
levels of benefit to learning.
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technology to schedule learning. Since much of the theory behind the operation of the adap-

tive sequencing algorithm places response speed in a central position in the determination

of learning strength, it is natural that response speeds should also form part of learning

criteria: knowing how quickly responses are made can be as informative as knowing how

sufficiently material has been learned. The use of fluency criteria goes beyond the mere

value of time saved by fast responding. In many complex learning domains, basic tasks must

be relatively automatic in order to allow higher level skills to be built on top of them. RT

criteria in learning provide some indication of automatic processing (Schneider & Shiffrin,

1973). Just as with accuracy learning criteria however, response speeds should be chosen

within the context of ongoing retrieval difficulty and spacing delays. Response speed-based

learning criteria will only be effective if the conditions of practice support them. There is

a bright future for an experimental analysis of response speeds in learning criteria and we

broach this topic briefly in Chapter 4, experiment 3.

3.1.2.3 Learning Efficiency

Use of learning criteria introduces a problem in comparing the effectiveness of learning con-

ditions. Because individuals may reach the set criteria after different amounts of time or

numbers of learning trials, learning effects involve two dependent measures, rather than one.

Accuracy as seen in a post-test is one, and the number of trials to attain a given accuracy

level is another. Thus, learners in one group may take longer to learn and perform better

in terms of post-test accuracy than another group that requires fewer learning trials and

performs less well. Which is better? How can we compare learning conditions when two

dependent measures are involved in order to obtain “apples to apples” comparisons? Put

another way, in most real-world settings, both variables – how long learning takes and what

gains it yields – are important. In fact, some measure of learning rate – how much is learned

per unit of investment – might be most important. In the present work, we use two methods

to obtain “apples to apples” comparisons. One, which we describe in more detail later, is to

examine learning at or close to the point when participants in one learning condition (the one
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requiring fewest trials) are at the point or close to the point of reaching the learning criteria.

We can look at performance in all groups after that number of trials. (Section below.) This

measure is helpful, but it has some limitations, including that learning to criterion has not

yet occurred for some participants when it is applied, and that it is not applicable to delayed

tests, which may be more important for gauging lasting learning.

Here we describe the primary method for comparing conditions that may vary both

in learning gains and in the number of learning trials required to achieve them: We use

a measure of learning efficiency that combines these dependent measures. Crucial to our

investigation will be a performance measure of ‘efficiency’, that is, the number of learning

trials invested in a learning session in relation to overall performance (accuracy) gains on a

post-test. Efficiency is shown in equation 3.1, where Ap is the accuracy on a post-test and

T is the number of learning trials invested.

e = Ap/T (3.1)

Only with respect to trials invested will learning accuracies be interpretable, since we can

predict that different schedules (e.g., schedules with differing learning criteria across condi-

tions) will deliver differential amounts of practice on average across conditions. We consider

dropout, learning criteria and spacing in light of a measure of efficiency.

3.1.2.4 Dropout and Learning Efficiency

How does ‘dropout’, that is, removal of well-learned items during the learning session, affect

learning performance? Kornell and Bjork (2007) found that dropout was an intuitive, com-

mon strategy that most students employed while studying, but that when used in practice,

students’ inability to accurately monitor their own learning strength lowered their overall

learning gains (Kornell & Bjork, 2008). In other words, students’ recall performances were

poorer when they chose to drop learning items. When dropping items based on learning

criteria, Pyc and Rawson (2011) showed that learning improved - as measured by efficiency

- compared to fixed schedules of practice where there was no dropout. In terms of raw recall
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accuracies, performance was generally better for fixed schedules than for dropout schedules;

however two points should be kept in mind. First, Pyc and Rawson’s criterion for dropout

consisted of one correct response. Second, a conditional analysis showed that the primary

advantage for fixed schedules was when performance for items was initially correct earlier in

the schedule, suggesting that many items in fixed schedules experienced learning beyond the

criterion and that many items in dropout schedules were dropped too early. These studies

and some intuition indicate that presumably, the gains in efficiency found from dropping

items could be balanced with the losses incurred from when items are dropped too early.

Again, one of the purposes of the studies in this chapter was to examine schedules of prac-

tice under realistic learning conditions - using features that make sense in terms of long-term

learning, e.g., strict criteria (five correct responses in a row) and criteria that ensure recall

is difficult, by spacing across long time scales.

We think there is an important definitional point to be made about the use and study of

dropout in learning schedules. As mentioned, dropout schedules are one side of a coin that

includes learning criteria (and in some sense, retrieval difficulty). Dropout cannot happen

except in light of a measure of learning strength, whether through a students’ poor estimate

via self-monitoring, or through criteria or rules that are assumed to monitor the development

of learning strength. Criteria that poorly estimate learning strength are not likely to show an

effect of dropout - or conversely may show negative effects. It may be the case that the true

question of when and how dropout should be used should be focused on the development

and understanding of proper learning criteria rather than the development of techniques or

rules for enacting dropout.

In addition to learning criteria, dropout may be intimately related to learning efficiency.

Dropout may make learning more efficient by ensuring that some items cease practice earlier

than they would have given unmodified presentation. However, because of this relationship,

it may be easy to erroneously conclude that drop-out always improves efficiency. A number

of factors make it less than certain that long-term efficiency will improve with dropout. First,

there are benefits to practice beyond meeting learning criteria. This effect of improvements
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to learning beyond nominal learning criteria is known as over-learning (Underwood, 1964;

Krueger, 1930). Because learning can still improve beyond the point that a given performance

criteria is met, it is not guaranteed that dropping items after meeting criteria maximizes long-

term efficiency. Further, since learning criteria provide somewhat different levels of difficulty

of retrieval practice for items, items may prematurely drop out if all items share learning

criteria (Vaughn, Rawson, & Pyc, 2013). In addition, dropout is likely to affect efficiency

differently for schedules of varying difficulty. Overall it is important to note that dropout

and efficiency are directly tied, but it is not a given how efficiency will be affected by changes

in the way dropout is conducted.

Monitoring ongoing practice to determine if learning criteria have been met is a good

example of using information about the learner’s performance and progress to arrange what

happens in learning - in other words, to adapt learning. It is worth stressing that learning

criteria are part and parcel of an advanced, adaptive way to schedule learning, that is,

learning criteria (and dropout) are adaptive learning features. Since it will be necessary to

design learning systems around these features in the future, it is important to study them,

and develop strategies that best implement learning criteria for a wide range of learning

situations.

3.2 Motivation for Studies and Key Questions

In summary, spacing effects in cases involving learning criteria have not been extensively

studied, and the effects of dropout have not been tested much in connection to adaptive

learning techniques. In addition, we know of no previous studies that have used response-

time criteria in dropout, much less have used learning criteria in relation to adaptive spacing.

What we have done in the following studies is attempt to draw contrasts between obvious

and reasonable combinations of such features.

We conducted a comparison between two types of schedule: adaptive schedules and ran-

dom schedules of presentation. In the adaptive schedule condition, items were presented
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using the adaptive sequencing algorithm presented in Chapter 1; however, unlike experi-

ments in Chapter 2, learning continued until each item met a learning criterion, after which

individual items were dropped from the set of learning items. In the random schedule case,

learning items were presently randomly with no restriction on repetition or length of delay

between presentation, and items were not dropped from the session. Each item was tracked

so that after every item had met learning criteria the session was terminated. This com-

parison stood to demonstrate whether learning in an adaptive condition could compete with

unmodified random presentation, where neither spacing nor dropout was controlled by the

computer. In a second experiment we compared adaptive presentation with random presen-

tation, where the adaptive and random conditions both had identical learning criteria and

both schedules included dropout. In both experiments, the learning criteria for every item

was five of the last five presentations correct with response-times less than seven seconds.

Crucially we looked at the efficiency of learning across the two scheduling conditions, at both

immediate and delayed tests of retention.

We aimed to answer the following questions: Do adaptive schedules result in greater

learning efficiency than random schedules? Do adaptive schedules result in greater learning

efficiency when compared to schedules that have similar learning criteria — that is, does

an adaptive schedule show efficiency gains beyond that which is achieved through the effect

of a learning criterion? Finally, we assessed whether schedules differed at equivalent points

(identical number of trials) during learning.

Random schedules Despite the focus in the experimental literature on organized and

theory-driven methods of retrieval practice (e.g., expanding retrieval practice), it bears men-

tioning why we have chosen random schedules rather than other fixed schedules. Random

schedules naturally implement a form of spaced practice, where spacing intervals for items

are on average as long as the number of items in the learning set. In addition, random

practice tends to encourage highly variable contexts of encoding — that is, each practice

with an item is usually preceded by and followed by a different set of items; conditions that,
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according to some theories of the benefit of spacing, are hypothesized to have a strong effect

on learning (Young & Belleza, 1982; Howard & Kahana, 1999). Probably the connection

between conditions of encoding variability and retrieval practice is strong: retrievals would

be likely to be more difficult given differing encoding contexts. Interestingly, almost no stud-

ies in the literature on scheduling and spacing include random practice as a comparison (in

contrast to many studies in the motor learning literature that compare blocked vs. random

schedules, e.g., Shea & Morgan, 1979). In addition, truly random schedules do involve some

degree of learning “technology” in the sense that purely random schedules are difficult to

generate without a computer. In some sense, random schedules are understudied and they

may provide a window into extra-theoretical conditions of practice that are beneficial for

learning.

There are also reasons for choosing random schedules over other fixed schedules. For

instance, with qualitative schedules of spaced practice such as expanding practice, it is not

clear how such schedules should proceed. That is, if there is not cessation of a session

until learning criteria are met, should expanding spacing continue? How should filler items

be introduced in those cases to support longer retention intervals? How could one ensure

the proper interleaving of expanding schedules if items are continuously dropping out -

altering the schedule of future presentations? For these and other related reasons, random

schedules are particularly suitable to investigations that involve learning criteria, drop out

and measures of schedule efficiency.

Summary of studies To summarize, we asked whether the benefits that adaptive prac-

tice convey to learning extend beyond the simple, constrained learning conditions tested in

Chapter 2. That is, we aimed to show that in conditions of practice — namely an extended

learning session where items are continuously presented until they meet learning criteria —

that adaptive schedules also out-perform typical realistic schedules of practice, namely ran-

dom presentation. Further we aimed to show that this benefit exists whether or not dropout

is considered as a feature of the adaptive system.
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3.3 Experiment 1: Random vs. Adaptive Presentation (Random

Without Dropout)

3.3.1 Method

Participants Participants were 48 UCLA undergraduates who participated for course

credit.

Experiment design The experiment used a pre-test/post-test design, with a delayed

post-test administered after 1 week. Pre-test and post-tests consisted of the same 24 ques-

tions. There were 2 between subjects conditions, adaptive and random, that manipulated

the scheduling of items during the learning session. Items were either presented using an

adaptive schedule identical to the adaptive algorithm in Experiment 1 and 2 in Chapter 2,

or a random presentation schedule.

Materials Materials were nearly identical to those in Experiments 1 and 2 in Chapter 2.

The learning items were the same 24 countries used as learning items in Experiments 1 and

2, but there were no filler items used.

Procedure Participants went through the same procedure as in Experiments 1 and 2 (Ch.

2).

Unlike Experiment 1 and 2 (Ch. 2), in the adaptive condition, there was not a fixed

number of presentations of each item. Each item was learned until it reached a learning

criterion and was dropped out of the set. In the random condition, each item was tracked

so that the experiment session ended after every item had reached a learning criterion, or

after the learning session reached 45 minutes, whichever came first. There was no dropout

of items during the learning session in the random condition.

The learning criterion was five out of the last five presentations of an item correct with

all five response-times less than seven seconds.
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The parameters of the adaptive algorithm did not change from Experiments 1 and 2 (Ch.

2).

Dependent measures The primary dependent measure was learning efficiency. Efficiency

is a measure of post-test performance that takes into account the total number of presen-

tations a learner receives during a learning session. Because different amounts of exposure

to practice items during learning can lead to different amounts of overall retention on a

post-test, and because the learning schedules that we used took differing number of trials for

participants to complete the learning session, we relied on a measure of efficiency to describe

learning performance. Efficiency can be defined as the number of items correct on a post-test

divided by the total number of trials in training. In the current experiments, we subtracted

the number of pre-test items answered correctly from the number answered correctly on a

post-test before dividing by the number of trials in the learning session. Efficiency is thus

a rate that expresses the amount (fraction of an item) gained on a post-test for every trial

invested in learning. Owing to the proportional nature of the measure, changes which appear

small in units of efficiency, for example the difference between .06 and .08, are actually quite

large; a difference of 0.02 is actually a 30 percent difference in the example.

Efficiency was calculated based on the change score (post-test accuracy minus pre-test

accuracy) between pre and post-tests.

3.3.2 Results

Primary dependent measure: Learning efficiency Results for efficiency at imme-

diate and delayed post-tests are shown in Figure 3.1. A 2x2 mixed factor ANOVA on

scheduling condition (adaptive vs. random) and post-test phase (immediate vs. delayed)

ANOVA found significant main effects of condition (F(1,46)=33.8, p<.001), a main effect of

post-test phase (F(1,46)=89.7, p<.001), and a significant scheduling condition by test-phase

interaction (F(1,46)=36.6, p<.001). At immediate post-test, efficiencies were higher in the

adaptive condition (M=0.109, SD=0.03) than the random condition (M=0.054, SD=0.012)
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Figure 3.1: Exp 1. Efficiency at immediate and delayed post-tests by scheduling condition.

Efficiency was the change in accuracy from pre-test to post-test divided by the number of

trials in training. Error bars show +/- 1 standard error of the mean.

a significant difference (t(46)=8.53, p<.001, Cohen’s d=2.68). This outcome represents a

102% greater efficiency in the adaptive condition at immediate posttest. At delayed post-

test, efficiencies were also higher in the adaptive condition (M=0.067, SD=0.04) than the

random condition (M=0.045, SD=0.015), a significant difference (t(46)=2.87, p=.006, Co-

hen’s d=0.892). These differences comprise a 50% greater efficiency in the adaptive condition

at delayed posttest. Comparing means between the two test phases, the difference between

efficiencies at each test phase for both the adaptive and random condition were signifi-

cant (adaptive immediate vs. delayed, t(23)=5.88, p<.001; random immediate vs. delayed,

t(23)=8.11, p<.001). The interaction appeared to be the result of declining efficiency in the
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adaptive condition from immediate to delayed post-test, but smaller decline in the random

condition.

Trials to criterion Because learning took differing amounts of time in the two schedul-

ing conditions owing to differing drop-out schedules, the number of trials to criterion was

analyzed. The number of trials to criterion in each condition are shown in Figure 3.2. The
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Figure 3.2: Exp 1. Number of trials in learning session for each scheduling condition. Error

bars show +/- 1 standard error of the mean.

random condition took on average 429 trials to reach the end of the session (SD=97.7). The

adaptive condition took on average 197 trials (SD=43.5). This difference was significant

(t(46)=10.6, p<.001, d=3.29).

Equivalent learning trials analysis Because drop-out strategy and schedule structure

led to differing numbers of trials during training, we analyzed the two scheduling condi-

tions at equivalent points near the end of training - at the moment that participants in the

adaptive condition retired - in order to assess whether learning was still progressing in the
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random condition. Comparing at equivalent moments in learning allows for an alternative

comparison of training performance than average accuracy at a post-test, where, owing to

learning criteria, performance is expected to be the same across conditions.

Accuracies were compared at the moment participants in the adaptive condition finished

the learning phase, trial 197. The accuracy of the prior 2 presentations for each item was

measured in both conditions. Accuracies are shown in Figure 3.3. Average accuracy was
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Figure 3.3: Exp 1. Accuracy at equivalent points in learning (trial 197) in both scheduling

conditions. Error bars show +/- 1 standard error of the mean.

higher in the adaptive condition than the random condition (adaptive M=1.0, SD=0; random

M=0.87, SD=0.12), a significant difference (t(46)=5.03, p<.001, d=2.05).

Average reaction times were also taken at the equivalent point in learning. Reaction times

are shown in Figure 3.4. Reaction times were lower for the adaptive condition (M=2.66

sec, SD=0.31) than the random condition (M=3.03 sec, SD=0.65), a significant difference

(t(46)=2.55, p=.014, d=0.78).

We also analyzed accuracies at a number of trial blocks before the equivalent learning

point. In blocks consisting of 3 trials per item, and starting 5 blocks before the equivalent

learning point, accuracies across condition are displayed in Figure 3.5 (blocks are displayed

in reverse in the figure). A 2X4 mixed factor ANOVA on schedule condition and trial block
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Figure 3.4: Exp 1. Reaction time at equivalent points in learning (trial 197) in both schedul-

ing conditions. RTs are from correct responses only. Error bars show +/- 1 standard error

of the mean.
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Figure 3.5: Exp 1. Accuracy at equivalent learning points for the last 3 presentations of each

item in both scheduling conditions. Trial blocks were 3 presentations of each item. Error

bars show +/- 1 standard error of the mean.
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was conducted (trial block 5 was not included owing to that some participants did not have

a 5th trial block 2). The ANOVA found main effects of scheduling condition (F(1,46)=11.9,

p<.01) and trial block (F(3,138)=128.5, p<.001), but no condition by trial block interaction

(F(3,138)=1.88, p=.14). Independent t-tests were conducted at each trial block. Accuracies

were higher for the adaptive condition than the random condition at blocks 1, 2, and 3

(ts(46)=5.83, 2.5, and 3.43 respectively, all ps<.05) but not at blocks 4 and 5 (block 4,

t(46)=1.16, p=.25; block 5, t(35)=0.354, p=.73).

Accuracy change between pre-test and post-tests Finally, we also compared raw

accuracies between conditions using a change score between pre and post-tests (Post-test

accuracy minus pre-test accuracy). Accuracy change scores are shown in Figure 3.6 for

immediate and delayed post-test change scores. A 2X2 mixed factor ANOVA on scheduling

condition and post-test phase showed a significant main effect of condition (F(1,46)=17.8,

p<.001), a main effect of post-test phase (F(1,46)=105.5, p<.001), and a significant test

phase by condition interaction (F(1,46)=10.9, p=.001). At immediate post-test change scores

were higher for the random condition (M=0.93, SD=0.09) than for the adaptive condition

(M=0.85, SD=0.12), a significant difference (t(46)=2.55, p=.01, d=0.746). At delayed post-

test, change scores were also higher for the random condition (M=0.76, SD=0.16), than

for the adaptive condition (M=0.52, SD=0.22), a significant difference (t(46)=4.29, p<.001,

d=2.68). Comparing conditions across test phases, the difference between immediate and

delayed change scores for the random condition was significant (t(23)=5.38, p<.001) as was

the difference for the adaptive condition (t(23)=8.9, p<.001).

3.3.3 Discussion

We found significantly greater learning efficiency in an adaptive condition where learners had

trials scheduled using an adaptive scheduling algorithm that utilized learning to criterion and

dropout, than in a random presentation condition that had no adaptive features, either for

2Some participants retired all items in less than 12 presentations; 3 trials x 4 blocks=12 presentations
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Figure 3.6: Exp 1. Accuracy change score (Post-tests minus pre-test accuracy) for immediate

and delayed post-tests by scheduling condition. Error bars show +/- 1 standard error of the

mean.

scheduling or dropout. Efficiencies - average learning gains weighted by the number of trials

in a learning session - were higher in the adaptive condition for both immediate post-tests

and delayed post-tests. Efficiencies were 102 percent higher for adaptive then random at

immediate post-test and 50 percent higher at delayed post-test.

Thus, in sessions that had longer duration and used rules to determine when proficient

learning had been met for each item, the adaptive algorithm succeeded in creating efficient,

durable learning. This was despite a degree of overlearning that occurred in the random

schedules - despite nearly twice as many presentations of each item, and despite overall

higher accuracies in the random condition.
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In addition, when compared at the same moment during learning, average accuracies were

higher in the adaptive condition at a number of equivalent points of learning. This is further

evidence that random schedules were simply less efficient than adaptive ones at creating

successful learning, and some evidence indicating that extra trials in the random case were

not unnecessary but actually improved learning. In addition to accuracy results, we also

found lower reaction times in the adaptive condition indicating greater learning strength at

retirement.

We were also interested in the effect of dropout on non-adaptive conditions of prac-

tice, and in a second experiment we compared adaptive sequencing to a random schedule

of practice that also included drop-out. In Experiment 2, both the adaptive and random

presentation conditions had exactly the same retirement criteria, the same as the adaptive

condition in Experiment 1. That is, in Experiment 2, both adaptive and random conditions

had learning criteria and dropout of individual items as each item met a learning criteria.

This experiment would also provide evidence that it is not learning criteria alone that give

adaptive schedules their power.

It was expected that adaptive conditions with learning criteria would still be better than

random presentation conditions, even random presentation conditions with the same learning

criteria.

3.4 Experiment 2: Random vs. Adaptive Presentation (Random

With Dropout)

3.4.1 Method

Participants Participants were 48 UCLA undergraduates, some who participated for course

credit and some who were recruited and paid 16 dollars for their time.
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Design The design was identical to Experiment 1, except that the random condition was

altered to have dropout; after each item reached a learning criterion it was removed from

the set of learning items. The learning criteria was five of the last five presentations of each

item correct with response times less than seven seconds, the same as in Experiment 1.

Materials The materials were identical to Experiment 1.

Procedure The procedure was identical to Experiment 1.

3.4.2 Results

Primary Dependent Measure: Learning Efficiency Results for efficiency at imme-

diate and delayed post-tests are shown in Figure 3.7. A 2x2 mixed factor ANOVA on

scheduling condition (adaptive vs. random) and post-test phase (Immediate vs. Delayed)

found significant main effects of condition (F(1,46)=10.6, p=.002), a main effect of post-

test phase (F(1,46)=163.28, p<.001), but no significant scheduling condition by test phase

interaction (F(1,46)=1.83, p=.18). At immediate post-test, efficiencies were higher in the

adaptive condition (M=0.12, SD=0.02) than the random condition (M=0.09, SD=0.02) a

significant difference (t(46)=4.07, p<.001, Cohen’s d=1.17). At delayed post-test, efficiencies

were also higher in the adaptive condition (M=0.084, SD=0.03) than the random condition

(M=0.064, SD=0.064), a significant difference (t(46)=2.31, p=.025, Cohen’s d=0.67). Com-

paring means between the two test phases, the difference between efficiencies at each test

phase for both the adaptive and random condition were significant (adaptive immediate vs.

delayed, t(23)=9.05, p<.001; random immediate vs. delayed, t(23)=9.14, p<.001).

Trials to criterion Despite identical drop-out features, learning took differing amounts

of time in the two scheduling conditions. The number of trials to criterion was analyzed.

The number of trials to criterion in each condition are shown in Figure 3.8. The random

condition took on average 231 trials to reach the end of the session (SD=48.3). The adaptive
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Figure 3.7: Exp 2. Efficiency at immediate and delayed post-tests by scheduling condition.

Efficiency was the change in accuracy from pre-test to post-test divided by the number of

trials in training. Error bars show +/- 1 standard error of the mean.

condition took on average 183 trials (SD=35.1). This difference was significant (t(46)=3.88,

p<.001, d=1.13).

Equivalent learning trials analysis Because schedule structure led to differing numbers

of trials during training, we analyzed the two scheduling conditions at equivalent points near

the end of training - at the moment that participants in the adaptive condition retired - in

order to assess whether learning was still progressing in the random condition. Comparing

at equivalent moments in learning allows for an alternative comparison of training perfor-

mance than average accuracy at a post-test, where, owing to learning criteria, performance
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Figure 3.8: Exp 2. Number of trials in learning session for each scheduling condition. Error

bars show +/- 1 standard error of the mean.

is expected to be the same across conditions.

Accuracies were compared at the moment participants in the adaptive condition finished

the learning phase, trial 183. The accuracy of the prior 2 presentations for each item was

measured in both conditions. Accuracies are shown in Figure 3.3. Average accuracy was

higher in the adaptive condition than the random condition (adaptive M=1.0, SD=0; random

M=0.91, SD=0.13), a significant difference (t(46)=3.46, p=.001, d=1.41).

Average reaction times were also measured at the equivalent point in learning. Reaction

times are shown in Figure 3.10. Reaction times were lower for the adaptive condition

(M=2.66 sec, SD=0.33) than the random condition (M=3.36 sec, SD=0.86), a significant

difference (t(46)=3.22, p=.002, d=1.02).

We also analyzed accuracies at a number of trial blocks before the end of the learning

phase (trial 183) in the adaptive condition. At five equivalent learning points, average

accuracies for the last 3 trials per item are displayed in Figure 3.11 (blocks are displayed

in reverse in the figure). A 2X3 mixed factor ANOVA on schedule condition and trial block
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Figure 3.9: Exp 2. Accuracy at equivalent points in learning (trial 183) in both scheduling

conditions. Error bars show +/- 1 standard error of the mean.
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Figure 3.10: Exp 2. Reaction time at equivalent points in learning (trial 183) in both

scheduling conditions. RTs are from correct responses only. Error bars show +/- 1 standard

error of the mean.

was conducted (trial blocks 4 and 5 were not included owing to that some participants

did not have a complete 4th or 5th trial block 3.). The ANOVA found main effects of

scheduling condition (F(1,46)=45.1, p<.001) and trial block (F(2,92)=285.7, p<.001), and a

3Some participants retired all items in less than 9 presentations; 3 trials x 3 blocks=9 presentations
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Figure 3.11: Exp 2. Accuracy at equivalent learning points for the last 3 presentations of

each item in both scheduling conditions. Trial blocks were 3 presentations of each item.

Error bars show +/- 1 standard error of the mean.

significant condition by trial block interaction (F(2,92)=24.9, p<.001). Independent t-tests

were conducted at each trial block. Accuracies were higher for the adaptive condition than

the random condition at blocks 1, 2, and 3 (ts(46)=3.91, 4.71, and 7.38 respectively, all

ps<.001) but not at blocks 4 and 5 (block 4, t(45)=1.04, p=.30; block 5, t(26)=1.14, p=.26).

Accuracy change between pre-test and post-tests Finally, we also compared raw ac-

curacies between conditions using a change score between pre and post-tests (Post-test accu-

racy minus pre-test accuracy). Accuracy change scores are shown in Figure 3.12 for immedi-

ate and delayed post-test change scores. A 2X2 mixed factor ANOVA on scheduling condition

and post-test phase showed no significant main effect of condition (F(1,46)=0.11, p=.75), a

significant main effect of post-test phase (F(1,46)=160.72, p<.001), and no significant test

phase by condition interaction (F(1,46)=0.01, p=.94). At immediate post-test change scores

were higher for the adaptive condition (M=0.89, SD=0.07) than for the random condition
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Figure 3.12: Exp 2. Accuracy change score (Post-tests minus pre-test accuracy) for imme-

diate and delayed post-tests by scheduling condition. Error bars show +/- 1 standard error

of the mean.

(M=0.87, SD=0.14), not a significant difference (t(46)=0.44, p=.66, d=0.132). At delayed

post-test, change scores were also higher for the adaptive condition (M=0.61, SD=0.16), than

for the random condition (M=0.60, SD=0.20), also not a significant difference (t(46)=0.20,

p=.84, d=1.17). Comparing conditions across test phases, the difference between immediate

and delayed change scores for the random condition was significant (t(23)=9.18, p<.001) as

was the difference for the adaptive condition (t(23)=8.77, p<.001).
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3.4.3 Comparisons between Experiment 1 and 2

We also conducted one short analysis of the differences between learning efficiency in Ex-

periments 1 and 2. Specifically we compared the effects of random schedule presentation

without dropout (Exp. 1) and with dropout (Exp 2.) to approximate the effects of dropout

on efficient learning. The difference between random conditions was significant (t(46)=3.2,

p=.002, Cohen’s d=0.924).

3.4.4 Discussion

Just as in Experiment 1, average efficiencies were higher for the participants who had learning

trials scheduled using an adaptive algorithm than for participants who had learning trials

scheduled randomly. This was true even though both schedules possessed exactly the same

retirement criteria (including both accuracy and reaction time criteria). The efficiencies in

the adaptive condition were 33 percent higher than the random condition at immediate post-

test, and 31 percent higher for the adaptive condition than the random condition at delayed

post-test.

In addition, an analysis of learning session accuracies at equivalent points in training

found that learners were on average more accurate in the adaptive condition than in the

random condition, both at an equivalent point and for some trial blocks previous to that

point.

3.5 Conclusion

3.5.1 Discussion of Adaptive Sequencing and Learning to Criterion

Efficiencies improved for schedules that utilized adaptive sequencing over a random schedule

of practice. In both experiments, adaptive sequencing included dropout, or removal of items

when the learning for an item reached a criterion level of performance - namely, five of the

last five presentations of the item had to be answered correctly and in under 7 seconds. In
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Experiment 1, random schedules did not include dropout. This comparison demonstrated

the power of adaptive sequencing to create schedules of practice that are more beneficial

than what might be typically accomplished in a real learning situation. In Experiment 2,

random schedules included dropout. This comparison showed that adaptive schedules were

more efficient than random schedules, even when equated for dropout. Clearly, the structure

of adaptive trial schedules drove efficient learning, and dropout alone was not the driver of

learning effects in adaptive sequencing.

In addition, dropout improved the efficiency of schedules. When comparing the efficiency

of random schedules without dropout (Experiment 1) to random schedules with dropout

(Experiment 2), learning efficiencies were greater for schedules that included dropout. Ana-

lytically, efficiencies should increase with the removal of items - schedules will use fewer trials

if items drop out - but dropout alone does not determine final learning efficiency. Dropout

must be combined with efficient spacing schedules that encourage robust learning.

We have demonstrated that, when comparing longer schedules of practice that continue

to learning criteria, adaptive schedules outperform random schedules of practice - where

random schedules are effective but under-studied forms of scheduled practice. Adaptive

schedules were more efficient - that is, the rate of learning and the durability of that learning

were greater - than random schedules, both at delayed tests as well as at equivalent points

during the learning session.

Other questions There were a number of theoretical reasons that we expected adaptive

scheduling to perform better than fixed schedules of practice. One hypothesis was that

adaptive schedules benefit learning because they better account for random fluctuation in

the learning process; meaning that the match between adaptive schedules and actual learning

strength will be high, whereas fixed schedules, especially fixed equal and expanding schedules,

will deviate from actual, ongoing changes in learning strength and produce poorer learning

gains. Although random schedules too should benefit from random fluctuations in learning

since random schedules by definition fluctuate, those fluctuations in random conditions rarely
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would meet the requirements of ongoing learning strength of individual items and learners.

Thus, their performance may very infrequently resemble that of adaptive schedules, but it

appears the vast majority of the time, adaptive schedules better match ongoing learning

strength.

These studies by no means represent the last word on the issues discussed here. The

relationship between learning criteria, spacing and learning performance will prove to be a

fluid one; no one factor can be examined in the absence of others. Increases in the strictness of

learning criteria will interact with spacing; and the benefits to efficiency brought by dropout

will be balanced by the efficiencies brought by the structure of learning schedules.
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CHAPTER 4

Perceptual Learning and Adaptive Category

Sequencing

Enhancing Complex Knowledge Representations

4.1 Introduction

4.1.1 Perceptual Learning and the Development of Expertise

Attaining expertise in many domains depends on not just the storage of individual facts, but

changes in the way information is extracted – a process known as perceptual learning (Gibson,

1969; Kellman & Garrigan, 2009). In the last two decades, work in the cognitive and neural

sciences has witnessed a resurgence of interest in perceptual learning (PL). The focus of early

PL research (Gibson, 1969) and the application of PL in virtually all real-world tasks involves

discovery of invariance amidst variation. As emphasized by Gibson, perceptual learning is a

process of picking up relevant structure and ignoring irrelevant structure; of discriminating

between highly similar categories. Gibson often used “differentiation learning” as a synonym

for PL. In this process, effects such as pattern recognition, discovery, transfer, and fluency

come to the fore. These are neural and information processes of a potentially different

character than the mnemonic processes of encoding and recall.

Whereas item learning involves storing and retaining specific information, PL has been

argued to contain two kinds of changes: discovery and fluency effects (Kellman, 2002).

Discovery involves altering encoding processes to progressively locate the most relevant in-
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formation for some task. Specific PL discovery effects, observed in both simple and complex

PL tasks, include increasing selectivity and precision of information extraction as learning

progresses; relevant features are encoded and irrelevant ones ignored (Gibson, 1969; Petrov,

Dosher, & Lu, 2005). Other discovery effects involve the learner coming to notice higher-

order relations that were initially not encoded at all, and/or coming to encode information

in larger “chunks” (Chase & Simon, 1975; Gibson, 1969; Goldstone, 2000; Kellman & Gar-

rigan, 2009). Fluency effects involve improved speed, greater parallel processing, and lower

attentional load in picking up task-relevant information as learning progresses (Kellman &

Garrigan, 2009; Schneider & Shiffrin, 1974).

All of these processes go well beyond storing and maintaining a specific memory trace.

In learning a number of related perceptual classifications, commonalities or invariances that

determine category membership must be discovered in PL, and conversely, in learning to

differentiate different categories, distinguishing features must be discovered.

The realization of the importance of PL in diverse learning tasks and the emergence of

PL interventions raise the question of whether PL shares principles that have been found

to improve or optimize other kinds of learning. When we learn new perceptual classifica-

tions, what principles govern successful learning? Are there ways of organizing the order of

presentation of material such that learning is enhanced? Such questions form the basis for

the following studies, which investigate effective training strategies for enhancing perceptual

learning – especially when learning concerns sets of categories or natural kinds.

4.1.2 Can Scheduling Benefit Perceptual Category Learning?

Despite differences in underlying mechanism, there are reasons to suspect that spacing may

be beneficial in perceptual category learning as well as in factual learning. One reason is

that interleaving exemplars of different categories may facilitate discovery of distinguishing

features (Gibson, 1969), just as paired comparisons might (Mettler & Kellman, 2009; Kang

& Pashler, 2012). On the other hand, discovering perceptual attributes shared by exemplars
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of a single category might better be served by encountering several exemplars close together

in time; in other words, massed rather than spaced presentation. Perhaps a more compelling

reason for an analogy between spacing benefits in fact-learning and PL is the notion that the

best time to receive further practice is when learning strength has declined enough to make

accurate performance relatively difficult. Although different specific mechanisms of learning

may be at work in different domains, optimizing practice based on intervals that progressively

increase as learning strength grows may be a commonality across types of learning.

There has been some earlier work on these questions. Kornell and Bjork (2008) com-

pared interleaving and massing of learning items in perceptual category learning of artist’s

painting styles. In the interleaved condition, one painting from each artist was presented in

a sequence before any second painting from an artist was presented (each block of presenta-

tions contained 1 painting from each artist). In the massed condition, the 6 examples of each

artist’s paintings were presented consecutively, followed by the entire set of another artist’s

paintings, and so on, until all paintings from all artists were presented. They measured

participants’ accuracy in classifying previously unseen paintings from each artist and found

that interleaving led to greater success.

Kornell and Bjork’s results differ from that of some studies in memory and human per-

formance that show advantages for blocked vs. randomized trials of practice (see Schmidt

& Bjork, 1992, for a review). Similarly, some work in perceptual learning and unsupervised

category learning shows benefits for massing, severe detriments for interleaving of stimuli

(Zeithamova & Maddox, 2009; Kuai, Zhang, Klein, Levi, & Yu, 2005), or no advantage

for either type of schedule (Carvalho & Goldstone, 2011). We wondered if schedules that

combine spacing with modest amounts of massing could result in even greater learning than

spacing or massing alone. This hypothesis was tested using a separate condition that com-

bined blocking in the initial stages of learning with adaptive spacing in later stages (see

below).
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4.1.3 Current work

To study this question, we used a learning task involving taxonomic classifications of images

of butterfly (Lepidoptera) species. Natural stimuli such as these afford the type of feature

discovery present in real-world perceptual learning, where, in contrast to most artificial stim-

uli, relevant stimulus features are richly perceptual, hierarchically organized, and distributed

stochastically and non-independently across categories. We employed a web-based percep-

tual learning module (PLM) that included the ARTS system described in prior Chapters.

The PLM presented butterfly images in pairs, one from a target category (target butterfly

genus) and one from an alternate category. Participants were asked to choose the image

that correctly matched the presented target category name. Feedback was given on each

trial, and participants continued discriminating butterflies until they had learned the correct

label-to-category mappings. Previous work suggests that paired comparisons across many

trials are effective in eliciting PL (Mettler & Kellman, 2009; Walheim, Dunlosky, & Jacoby,

2011).

We continued the PLM until each learner met mastery (learning) criteria based on ac-

curacy and speed of classification. We used learning criteria because of their relevance to

applications in real-world learning contexts, and from the standpoint of experimental control,

they allowed us to assess learning after each learner had reached a similar endpoint. Learning

criteria are also used to determine dropout of learned categories, allowing each learner to

spend further learning effort where it is needed most. The benefits of using learning criteria,

however, come with a difficulty. Different learners require different numbers of trials to reach

criterion. This leaves the experimenter with two dependent measures of learning – post-test

performance and trials to criterion. To allow comparisons between conditions that included

both of these measures, we combined them into a measure of learning rate or learning effi-

ciency, as discussed in prior Chapters, defined as accuracy gains divided by learning trials

invested.

Based on potential benefits of both spacing and massing in PL, and in view of earlier
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work indicating that complete massing is sub-optimal, we also included a condition with some

initial massing of category exemplars (“mini-blocks”). To ensure that learning involved dis-

covery of perceptual structure, rather than memorization of instances, we assessed learning

using an equal number of unfamiliar instances, never shown during the pre-test or learning

phases, and familiar instances, which could appear one or more times during learning. Fi-

nally, we tested learning both in an immediate post-test and after a delay of one week. In

studying spacing effects in perceptual learning, it is important to consider the possibility

of transient performance effects that appear in immediate tests but might not survive in

a delayed test, as has proven important in studies of other kinds of learning. Conditions

that optimize performance on immediate tests may not be the ones that are best for durable

learning (e.g., Schmidt & Bjork, 1992).

In Experiment 1a we tested three conditions: 1) a control condition that orders items in

an unmodified random sequence, 2) an adaptive sequencing condition (ARTS) that changes

the delay between presentations of a category as a function of learning strength, and 3) a

condition that initially blocks 3 exemplars from a category sequentially (called“mini-blocks”),

presented for two rounds before proceeding to standard adaptive sequencing. Because the

adaptive sequencing conditions also included retirement, we anticipated that learning would

be quicker there, and that performance at an immediate and 1 week delayed test would

be most efficient for participants in those conditions (greatest learning per trial invested in

training).

In a second experiment (1b), we manipulated the degree of variability between categories

to observe how adaptive sequencing interacts with category structure. Decreasing the vari-

ability, and thus making items within a category more similar to one another, is a way of

approximating the effect that dynamic sequencing would have on a variety of types of cate-

gories. It is also more similar to a situation in which learning concerns individual items as

opposed to categories of varying exemplars. Our prediction was that adaptive sequencing

would operate as well when categories were of lower variability as when high, and we tested

the efficacy of the adaptive scheduling algorithm in both cases without any modification to
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the parameters of our model.

4.2 Experiment 1a: Perceptual Category Sequencing vs. Random

Presentation

4.2.1 Methods

In perceptual category learning using an adaptive sequencing algorithm, all trials consist

of a two-alternative forced choice procedure between two images. Participants are asked to

choose which image matches a presented category label. Feedback is presented on each trial.

Participants 54 undergraduate psychology students from the University of California, Los

Angeles participated in an hour-long experiment for course credit. Participants returned one

week after the first session for a delayed post-test. Four of 58 were disqualified: one because

of a failure to complete a delayed post-test and three others, one from each condition, who

failed to reach a learning criterion in the training session, as described below.

Materials The materials for this study consisted of 108 images of Lepidoptera (butter-

fly) specimens arranged into 12 categories by genus (See Figure 4.1 for examples). Each

Figure 4.1: Exp. 1a & 1b. Examples of butterfly images used in the experiments. Three

examples from each of two butterfly genera (trained categories) are shown. A) Examples of

genus Aglais. B) Examples of genus Cethosia.
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category contained nine exemplars where one exemplar from each category was withheld

during learning in order to be used as a test of transfer of learning to unseen items in the

two post-test phases (see Figure 4.2). A multidimensional scaling analysis was conducted

Figure 4.2: Exp 1a & 1b. Example distribution of one stimulus category across experiment

phases. In pre-test: Exemplar H1 is tested. In the learning phase, all category exemplars

except H9 are presented. In each post-test, one previously seen exemplar, H1, and one novel

exemplar not presented during the learning phase, H9, are tested.

to ensure categories occupied positions of roughly equivalent similarity distance from each

other (implying equivalent learning difficulty), though there was some variability in difficulty

across categories. The images used for both the immediate and delayed post-tests were fixed

for each subject. Images were presented in jpeg form in 16-bit color, where each image was

450x300 pixels. All pre-test, training, and post-test sessions occurred within a web-based

perceptual learning module (PLM). The PLM presented a text label of the category name in

an upper middle position (as in the ‘sample’ position, of a ‘match-to-sample’ presentation).

In pre-test and post-test trials, four images were presented in the center of the screen in

two rows and two columns (see Figure 4.3a). Only one image contained an exemplar from

the target category – the distractors each contained an exemplar from one of three alternate

categories. During training trials, two images were shown side by side in the middle of the

screen just below the category label (a 2AFC presentation, see Figure 4.3b).

Design The experiment utilized a pre-test/post-test design. A pre-test measured baseline

levels of perceptual category knowledge. Participants completed 12 trials where each category
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Figure 4.3: Exp 1a & 1b. Trial presentation formats in the assessment and learning phases

of the experiments. A) Pre-test and post-test: Each trial was a 4-alternative forced choice,

where one of the 4 exemplars belonged to the target genus. B) Learning phase: Each trial

was a 2-alternative forced choice, where one of the two exemplars belonged to the target

genus.

was presented as a target once, in random order. Each trial consisted of a match-to-label

test; a four alternative forced choice between four images: exemplars from three incorrect

categories and one exemplar from the correct target category. Pre-test exemplars were

randomly chosen at the start of the experiment and the same exemplars were displayed to

all participants.

The training session consisted of a series of match-to-label trials, where each trial tested

one target category. Trials consisted of a two alternative forced choice (2AFC) decision be-

tween two images: a randomly selected exemplar from the target category and a randomly

selected exemplar from an alternate category. There were 3 between-subjects scheduling

conditions that determined the order of presented categories: 1) purely random stimulus pre-

sentation 2) adaptive category sequencing with retirement, and 3) mini-blocks with adaptive

category sequencing and retirement. The participant completed as many trials as necessary

to reach a learning criterion.

An immediate post-test measured the degree of perceptual learning after a learning ses-

sion. The immediate post-test was similar to the pre-test but contained an additional trial
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for each category, for a total of 24 test trials. For each category, one trial was of a familiar

exemplar (an image presented during training) and one trial was of a novel exemplar (not

presented during training). The novel exemplar was used to measure transfer or general-

ization of category knowledge to unseen stimuli. The same post-test items were shown to

all participants. A delayed post-test, given one week later, was identical to the immediate

post-test and measured the amount of retention after a delay.

Adaptive sequencing algorithm The adaptive sequencing algorithm was identical to

that presented in Chapters 1-3 except that some sequencing parameters were different (‘RT

weight’, r=1.7; ‘enforced delay’, D=2) and the algorithm assigned priority to categories of

stimuli rather than to individual items.

In all conditions, when a category was chosen for presentation, items were randomly

chosen exemplars from the target category, where the odds of any exemplar being selected

were 1/8.

Other scheduling conditions Adaptive sequencing with ‘mini-blocks’ (Adaptive/Mini-

blocks condition) was identical to the Adaptive condition, but at the start of training partic-

ipants received ‘mini-blocks’ of 3 exemplars from the same category consecutively presented

across sequential trials. Participants received two ‘mini-blocks’ per category before adap-

tively sequencing individual presentations of categories without blocking. We hypothesized

that in this condition, a moderate degree of grouping of exemplars would aid in comparison

processes known to enhance perceptual learning and category learning.

In the Random presentation condition, training sessions consisted of random selection of

categories on each trial, with no constraints on the total number of times a category could

be presented or the total number of presented stimuli from each category. This condition

implemented a method for ending training after the accuracy for every category had reached

the same retirement criteria as in the dynamic sequencing condition (5 out of 6 correct). This

helped to ensure that the number of total presentations of individual categories would accu-
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rately reflect typical randomized learning schedules and remain distinct from the category

retirement feature that was present in adaptively sequenced schedules.

Procedure In the pre-test, participants were presented with a category label at the top of

the screen and four images in the center of the screen. Participants were instructed to indicate

the image that belonged to the presented category label and to make their best guess if they

did not know the answer. No feedback was given during this phase and the test took no more

than 3-5 minutes. The learning phase consisted of one session, no longer than 45 minutes,

where participants were instructed to choose the image that best matched a presented genus

label. Participants were shown one genus name at the top of the screen and images from two

different butterfly genera side by side. Participants were asked to choose either the left or

right image and respond using the keyboard. Responses were considered correct if the chosen

image belonged to the correct genus. Participants were given 30 seconds to respond and were

always provided with feedback. If a participant failed to respond within 30 seconds, the trial

timed out and feedback was given, where a timeout was recorded as an incorrect response.

Feedback consisted of highlighting the correct image and displaying “correct” or “incorrect”

depending upon the accuracy of the participant’s response. In addition, the name of the

target genus moved to a position underneath the correct image. Feedback displayed for a

minimum of 3.5 seconds, although participants had up to 15 seconds to view the feedback

before the screen was cleared. Participants could use the spacebar to progress to the next

trial any time after the initial 3.5 seconds. Summary feedback was provided every 10 trials.

Summary feedback consisted of a graph of average accuracies and response times for each

previous 10 trial block. Immediately after training, participants completed a post-test. After

the post-test participants were asked to not study or review the information in the study.

One week after the post-test, a delayed post-test was administered.

Dependent measures and analyses We used an efficiency measure as in Experiments 1

and 2 in Chapter 3. We were also able extract a measure of learning after equal numbers of

learning trials. To do this, we took the average number of learning trials required in the basic
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adaptive condition to reach the learning criteria, and we looked at accuracy and response

times for conditions on the last two presentations of each stimulus category at that point in

learning. This measure allows some indication of learning across conditions at a point where

each condition had the same number of learning trials.

Predictions In the Adaptive condition, it was expected that adaptive sequencing – where

quick, correct answers to categories would delay their reappearance – would lead to more

rapid learning and enhance discrimination even for difficult categories. It was thought that

retirement of well learned categories would make learning more efficient to an even greater

degree. We expected that the partial blocking in the Adaptive/Mini-blocks condition would

perform better than the Random condition and that the Adaptive/Mini-blocks condition

might even outperform the basic Adaptive condition. A similar effect of these conditions on

transfer to novel stimuli was expected.

4.2.2 Results

Learning performance was measured using a pre-test, a post-test administered immediately

after training, and a delayed post-test administered one week after training. Pre-test scores

averaged 2.43 items out of 12, indicating that performance was no better than chance and that

participants did not possess prior knowledge of butterfly genera. A between subjects ANOVA

on proportion correct in the pre-test confirmed no significant differences across the three

conditions (F(2,51)=1.86, p=.17, η2=0.07). Individual comparisons also showed no reliable

differences (all ps > .20 for Random vs. Adaptive, Random vs. Adaptive/Mini-blocks,

Adaptive vs. Adaptive/Mini-blocks, respectively). In addition, an examination of participant

reaction times (RTs) on the pre-test showed no reliable difference between conditions, neither

in a between subjects ANOVA nor in individual comparisons (all ps > .19).

Learning efficiency was measured in the immediate and delayed post-tests by dividing

the number of correct post-test items by learning trials invested. Efficiency scores are shown

in Figure 4.4 for the three scheduling conditions, and for both previously seen and novel
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instances in both immediate and delayed post-tests. Efficiencies for the Adaptive condition

Figure 4.4: Exp 1a. Mean efficiency scores by learning condition and post-test phase. Effi-

ciency scores were the number of post-test items answered correctly divided by the number

of trials invested in learning. Familiar stimuli were post-test items that had been shown

during training, whereas novel stimuli were items that had not been presented previously.

Error bars indicate +/- one standard error of the mean.

were numerically higher than efficiencies in the Random and Adaptive/Mini-blocks condi-

tion for both immediate and delayed tests (Immediate post-test: M=0.13, vs. 0.11 and

0.12; Delayed post-test: M=0.12 vs. 0.09 and 0.10 respectively). We performed a 3 (con-

dition – Adaptive, Random and Adaptive/Mini-blocks) by 2 (post-test phase – immediate

vs. delayed) by 2 (previously seen vs. novel) mixed factor ANOVA with condition as a

between-subjects factor and test phase and stimulus familiarity as within-subjects factors.

The ANOVA revealed a marginally reliable main effect of scheduling condition (F(2,51)=2.45,

p=.096, η2=0.09). There was a reliable main effect of test phase (F(1,51)=51.52, p < .001,

η2=0.50), and no interaction of scheduling condition with test-phase (F(2,51)=0.16, p=.86,
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η2=0.006).

There was a strong main effect of stimulus familiarity (F(1,51)=17, p < .001,η2=0.25),

due to the somewhat surprising result that performance in the post-tests was superior for

novel instances. There was also a marginally reliable interaction between condition and fa-

miliarity (F(2,51)=3, p=.059, η2=0.105), apparently due to the greater superiority of transfer

to novel instances in the Adaptive condition. There was no interaction between test phase

and familiarity (F(1,51)=0.30, p=.59, η2=0.006), nor was the three way interaction between

condition, phase and familiarity reliable (F(2,51)=2.45, p=.097, η2=0.08). Examining the

interaction of condition and familiarity, there was a reliable efficiency advantage for the

Adaptive vs. the Random condition for novel items at both immediate post-test (Adaptive:

M=0.14; Random: M=0.11; t(34)=2.04, p < .05) and delayed test (Adaptive: M=0.12;

Random: M=0.09; t(34)=2.27, p=.03) but the numerical advantage was marginal or unre-

liable for familiar items at immediate (Adaptive: M=0.13; Random: M=0.10; t(34)=1.69,

p=.10) or delayed test (Adaptive: M=0.11; Random: M=0.09; t(34)=1.89, p=.067). Oth-

erwise, there were no reliable differences between conditions with either novel or familiar

stimuli at any test (all ps > .05). Because our hypothesis specifically concerned differences

in conditions we conducted planned paired comparisons between each condition. Averaging

across post-tests, t-tests showed that the difference between Random and Adaptive condi-

tions was significant (t(34)=2.08, p < .05, Cohen’s d=0.72). On the immediate post-test,

these two conditions differed marginally (t(34)=2.02, p=.051, d=0.70) and on the delayed

post-test, there was a reliable advantage for the Adaptive condition (t(34)=2.04, p < .05,

d=0.71). Other comparisons between scheduling conditions were not significantly different

(averaging over post-tests, Random vs. Adaptive/Mini-blocks, p=.20, d=0.36; Adaptive vs.

Adaptive/Mini-blocks: p=.33, d=0.43). Paired t-tests showed a reliable decrease between

immediate vs. delayed post-tests for all three conditions (all ps < .005).

The efficiency advantage for the Adaptive condition compared to the Random condition

amounted to 25% in the immediate post-test and 29% in the delayed post-test.

We also analyzed separately the two dependent measures that were components of the
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efficiency measure, number of learning trials and post-test accuracy for each participant.

A between subjects ANOVA found significant differences between the number of training

trials across the three schedules. Participants averaged 154.7, 167.4, and 204.3 trials in the

Adaptive, Adaptive/Mini-blocks, and Random conditions, respectively - a reliable difference

(F(2,51)=5.50, p=.007, η2=0.18). Comparing means, the differences between the Adaptive

and Random condition and between the Adaptive/Mini-blocks and Random condition were

significant (t(34)=3.02, p=.005, Cohen’s d=1.01 and t(34)=2.42, p=.021, Cohen’s d=0.81

respectively). Trials did not differ reliably between the two adaptive conditions (t(34)=.85,

p=.04, Cohen’s d=0.28).

Raw accuracy data (not corrected for number of trials invested) are shown in Figure

4.5 for each condition in both immediate and delayed post-tests. A 3x2 ANOVA across

scheduling conditions and both post-test phases found no effect of scheduling condition

(F(2,51)=1.94, p=.153, η2=0.07), an effect of test phase (F(1,51)=52.8, p < .001, η2=0.508),

and no interaction of phase and condition (F(2,51)=0.053, p=.95, η2=0.002). Accuracies

in the Random condition numerically exceeded those in the Adaptive and Adaptive/Mini-

blocks conditions in both the immediate and delayed post-tests (Immediate: M: .86 vs. .79

& .80, respectively; Delayed: M: .75 vs. .68 & .69, respectively). Individual comparisons

showed a marginally significant difference between the Random and Adaptive conditions on

the immediate post-test (t(34)=1.88, p=.069, d=0.63); however, the difference was not reli-

able at delayed post-test (t(34)=1.63, p=.11, d=0.55). No reliable differences were found in

immediate post-test accuracy between the Random and Adaptive/Mini-blocks condition or

between the two Adaptive conditions (ts(34)=1.57 and 0.30, ps=.13 and .76, respectively).

Similarly, at delayed post-test, there was no reliable difference between the Random and

Adaptive/Mini-blocks conditions, or between the two Adaptive conditions (ts(34)=1.34 and

0.10, ps=.19 and .92, respectively). All three conditions showed accuracy decreases between

post-test and delayed post-test (all ps < .05).

We carried out an additional accuracy analysis by comparing the three learning conditions

at a point when all three had the same number of learning trials. We determined the mean
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Figure 4.5: Exp 1a. Mean accuracy results by learning condition and post-test phase. Ac-

curacy is given as the percentage of 24 post-test questions answered correctly. These data

indicate raw accuracy not corrected for number of learning trials; the average number of

learning trials in each condition is shown in parentheses. Error bars indicate +/- one stan-

dard error of the mean.

number of trials to reach criterion in the standard Adaptive condition and examined the

performance of learners in the Random condition and the Adaptive/Mini-blocks condition

after the same number of trials. The mean number of trials to reach learning criterion in the

Adaptive condition was 155 trials (SD=48.2). In the Adaptive condition, we calculated the

average accuracy across the last two presentations of each learning category at the time each

learner reached learning criterion. In the Random and Adaptive/Mini-blocks conditions we

calculated the average accuracy across the last two presentations of each learning category at

the point when learners had received 155 learning trials. Mean proportions correct were .98,

.96, and .92 for the Adaptive, Adaptive/Mini-blocks, and Random conditions respectively,

after an average of 155 learning trials (see Figure 4.6). An ANOVA showed a reliable main
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Figure 4.6: Exp 1a. Mean accuracy by learning condition based on equal numbers of learning

trials. Parentheses indicate trial number at which accuracy was measured, for the two most

recent presentations of each category. Error bars indicate +/- one standard error of the

mean.

effect of learning condition (F(2,51)=6.1, p=.004). Individual comparisons indicated that

the Adaptive condition had reliably higher accuracy than the Random condition (p=.004),

and the Adaptive/Mini-blocks condition had marginally higher accuracy than the Random

condition (p < .06). The two Adaptive conditions did not differ reliably (p > .9). (All

p values were Bonferroni corrected.) There were no reliable differences in response times

across conditions using a similar method of measuring RTs at an equivalent point in the

three conditions (155 trials).

A final set of analyses examined mean response times (RTs) in both post-tests. Only

response times from correct trials were analyzed. Response times for Experiment 1a are

shown in Figure 4.7, right two panels. A 3x2x2 ANOVA examined RTs across scheduling

condition, post-test phase and across novel vs. familiar stimuli. There was no reliable main
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Figure 4.7: Exp 1a. Mean response times by quartile of training phase and in the immediate

and delayed post-tests by scheduling condition. Response times include accurate responses

only. Error bars indicate +/- one standard error of the mean.

effect of scheduling condition (F(2,51)=1.78, p=.18, η2=0.07), a significant main effect of

phase (F(1,51)=6.54, p=.013, η2=0.11), and no effect of familiarity (F(1,51)=2.98, p=.09,

η2=0.06). There were no reliable interactions (all ps > .20). RTs generally increased between

immediate and delayed tests, but individual comparisons did not reveal reliable differences

across post-tests for any condition (all ps > .09).
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4.3 Experiment 1b: Perceptual Category Sequencing of Low Vari-

ability Categories

The purpose of Experiment 1b was to investigate the effect of within-category variability

on adaptive spacing in PL. The spacing principles we tested here in PL were derived from

memory research using fixed items that reappear at varying intervals. In applying these

concepts to PL of categories, the category, not a fixed learning item, is the unit of spacing.

When it is time for another learning trial, a new instance of the category, not a repeat of an

item, is presented. Intuitively, it seems that the applicability of spacing principles derived

from item learning research might be greater in PL for categories with lower variability,

because new instances of a given category will tend to resemble earlier ones. Recurrence

of a category containing low-variability instances more closely resembles re-presentation of

an identical item. This idea also applies to the ARTS adaptive learning system used here.

Recall that ARTS uses response times from earlier trials to estimate learning strength. If

a new exemplar of a category bears little resemblance to an earlier one, the estimate of

learning strength derived for the earlier item may not predict learning strength of the current

item. This problem should be more salient for high-variability categories and especially for

categories that are disjunctive (i.e., an exemplar may be in the category by virtue of having

either characteristic A or characteristic B). The integrity of the concept of learning strength

seems likely to be greatest when it applies to an identical item recurring (as in item learning)

and better for categories whose exemplars resemble each other than for those with highly

variable exemplars.

4.3.1 Method

Procedure Experiment 1b replicated the procedure of Experiment 1a, but tested whether

differences across learning conditions would be affected by the reduced variability of exem-

plars within each category. In Experiment 1b the exemplars in each category were made less

variable in the following way: each category was composed of instances from one distinct
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species. In Experiment 1a, each genus (category) was comprised of 3 distinct species, with

3 exemplars chosen from each of the 3 species. In Experiment 1b, only one of the original 3

species was selected for each genus, and all 9 exemplars for the category were selected from

that species, effectively reducing total category variability.

Participants 54 undergraduate psychology students participated in an hour-long experi-

ment for course credit.

4.3.2 Results

As in Experiment 1a, pre-test accuracy across conditions did not differ from chance (M=.25,

SD=0.11), and an ANOVA showed no reliable differences between conditions (F(2,51)=0.39,

p=.68, η2=0.02). Paired comparisons between conditions were also not significant (all ps >

.40).

Efficiency scores are shown in Figure 4.8 for the three scheduling conditions in both im-

mediate and delayed post-tests and across novel and familiar items. Efficiency was generally

higher in Experiment 1b than in Experiment 1a, as learners required fewer trials to achieve

criterion performance, especially in the Adaptive condition. Efficiencies for the Adaptive

condition were higher than those in the Random and Adaptive/Mini-blocks condition for

both immediate and delayed post-tests (Immediate post-test: Ms= 0.18, vs. 0.10 and 0.11;

Delayed post-test: Ms=0.16, vs. 0.096 and 0.095). A 3x2x2 mixed factor ANOVA with con-

dition as a between-subjects factor, and test phase and stimulus familiarity as within-subjects

factors, confirmed significant main effects of condition (F(2,51)=8.87, p < .001, η2=0.26),

test phase (F(1,51)=84.5, p < .001, η2=0.62), and a marginal condition by test phase inter-

action (F(2,51)=2.6, p=.084, η2=0.092). Paired comparisons revealed that the differences

between Adaptive and both of the other two conditions (vs. Random and Adaptive/Mini-

blocks) were reliable at immediate post-test (t(34)=3.49, p=.001, d=1.22 for Adaptive vs.

Random, and t(34)=3.07, p=.004, d=1.09 for Adaptive vs. Adaptive/Mini-blocks) and at

delayed post-test (t(34)=3.14, p=.004, d=1.1, and t(34)=3.17, p=.003, d=1.12), whereas
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Figure 4.8: Exp 1b. Mean efficiency scores by learning condition and post-test phase. Effi-

ciency scores were the number of post-test items answered correctly divided by the number

of trials invested in learning. Familiar stimuli were post-test items that had been shown

during training, whereas novel stimuli were items that had not been presented previously.

Error bars indicate +/- one standard error of the mean.

the difference between Random and Adaptive/Mini-blocks conditions was not reliable (in

either immediate or delayed post-test, both ps >.40). In percentage terms the Adaptive

condition was 38% more efficient than Random in the immediate post-test and 39% more

efficient than Random in the delayed post-test. Effect sizes for these comparisons exceeded

1.0 in both post-tests. All conditions showed a reliable decrease in efficiency between imme-

diate and delayed post-tests (all ps < .002). There was no reliable main effect of familiarity

(F(1,51)=0.01, p=.91, η2<0.001), nor any reliable interaction between familiarity and phase

(F(2,51)=1.06, p=.31, η2=0.02), familiarity and condition (F(2,51)=0.49, p=.62, η2=0.02),

or between condition and phase (F(2,51)=0.07, p=.93, η2=0.002). The lack of main ef-

fects or interactions involving familiarity indicate that, unlike Experiment 1a, there was no
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advantage in the post-tests for novel vs. previously exposed stimuli.

Trials to retirement differed between conditions; participants averaged 125.3, 174.8, and

234.9 trials in the Adaptive, Adaptive/Mini-blocks, and Random conditions, respectively. A

one-way ANOVA with condition as the factor showed reliable difference (F(2,51)=10.04, p

< .001, η2=0.28). Paired comparisons indicated that all three conditions differed from one

another. The Adaptive condition required fewer trials than the Random condition (t(34)

= 3.82, p=.001, d=1.36); the Adaptive/Mini-blocks condition required fewer trials than

Random (t(34)=2.17, p=.037), and the Adaptive condition required fewer trials than the

Adaptive/Mini-blocks condition (t(35)=-3.46, p=.002).

Raw accuracy data (not corrected for number of trials invested) are shown in Figure 4.9

for each condition in both immediate and delayed post-tests. A 3x2 ANOVA, with schedul-

ing condition as a between-subjects factor and post test phases as a within-subjects factor

showed a marginally reliable main effect of condition (F(2,51)=2.71, p=.076, η2=0.09), a

reliable effect of test phase (F(1,51)=86.3, p < .001, η2=0.63), and a reliable test phase by

condition interaction (F(2,51)=3.62, p=.034, η2=0.12). Accuracies in the Random condition

numerically exceeded those in the Adaptive and Adaptive/Mini-blocks conditions in both the

immediate and delayed post-tests (Immediate: M: .90 vs. .81 & .82, respectively; Delayed:

M: .79 vs. .72 & .65, respectively). Individual comparisons confirmed a reliable differ-

ence between the Random and Adaptive conditions on the immediate post-test (t(34)=2.19,

p=.04, d=0.73), but consistent with the observed interaction, the difference was not reli-

able at delayed post-test (t(34)=1.47, p=.15, d=0.49). No reliable differences were found in

immediate post-test accuracy between the Random and Adaptive/Mini-blocks condition or

between the two Adaptive conditions (ts(34)=1.62 and 0.29, ps=0.11 and 0.77 respectively).

At delayed post-test, there was no reliable difference between Adaptive and Adaptive/Mini-

blocks (t(34)=1.09, p=.28, d=0.37), but there was a reliable difference between Random and

Adaptive/Mini-blocks (t(34)=2.49, p=.01, d=0.84).

As in Experiment 1a, we compared accuracies across conditions at a moment in training

when each participant had accumulated about the same number of learning trials. Mean
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Figure 4.9: Exp 1b. Mean accuracy results by learning condition and post-test phase. Ac-

curacy is given as the percentage of 24 post-test questions answered correctly. These data

indicate raw accuracy not corrected for number of learning trials; the number of learning

trials in each condition is shown in parentheses. Error bars indicate +/- one standard error

of the mean.

trials to criterion was 125 in the Adaptive condition (SD=49.9), and proportion correct

for the last two presentations of each stimulus category for this condition at this point in

training was .99 (see Figure 4.10). In the Random and Adaptive/Mini-blocks conditions,

performance measured from the 125th trial on the last two presentations of each category

was .91 and .93 respectively. A one-way ANOVA comparing the learning conditions on

this measure showed a reliable main effect of condition (F(51)=7.28, p=.002). Individual

comparisons indicated that accuracy was reliably higher in the Adaptive condition than in

the Random condition (p=.002) and also reliably higher in the Adaptive condition than in

the Adaptive/Mini-blocks condition (p=.035). There was no reliable difference in accuracy

after 125 trials between the Adaptive/Mini-blocks and Random conditions (p > .83) (all ps
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Figure 4.10: Exp 1b. Mean accuracy by learning condition based on equal numbers of

learning trials. Parentheses indicate trial number at which accuracy was measured, for the

two most recent presentations of each category. Error bars indicate +/- one standard error

of the mean.

Bonferroni corrected).

Response times in the immediate post-test averaged 3.41, 3.48, and 2.64 sec per trial in the

Adaptive, Adaptive/Mini-blocks, and Random conditions, respectively. In the delayed post-

tests, response times were more similar across conditions, with the Adaptive, Adaptive/Mini-

blocks, and Random conditions averaging 3.73, 3.68, and 3.33 sec per trial respectively. These

observations were confirmed by a 3x2x2 ANOVA across scheduling condition, post-test phase

and familiarity which found a marginally significant main effect of condition (F(2,51)=2.83,

p=.07, η2=0.10), a main effect of phase (F(1,51)=11, p=.002, η2=0.17), and a main effect of

familiarity (F(1,51)=4.84, p=.032, η2=0.86). There were no interactions between the factors

(all ps> .20). Examining the effect of scheduling condition, there were significantly lower RTs

for the Random condition than Adaptive (t(34)=2.37, p=.02, d=0.79) and Adaptive/Mini-
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blocks (t(34)=2.01, p=.05, d=0.69), but no difference between the two Adaptive conditions

(t(34)=0.03, p=.98, d=0.01). Examining differences between immediate and delayed post-

tests, there were significant increases in RT for Random (p < .001), but not for Adaptive or

Adaptive/Mini-blocks (both ps > .20). Individual comparisons showed that in the immediate

post-test, response times in the Random condition were shorter than in either of the other

conditions (Random vs. Adaptive, t(34)=2.74, p=.02, Bonferroni corrected; Random vs.

Adaptive/Mini-blocks, t(34)=3.08, p < .012, Bonferroni corrected). Response times did not

differ between the two Adaptive conditions (t(34)=0.113, p=.91). In the delayed post-test,

there were no reliable response time differences between any two conditions (all ts(34) < 1.0,

ps > .59, Bonferroni corrected).

4.3.3 Efficiency and Transfer Across Experiments

We compared learning results across Experiments 1a and 1b. First, a 3x2x2x2 ANOVA

with between-subjects factors of scheduling condition and experiment, and within-subject

factors of post-test phase and stimulus familiarity, showed a reliable main effect of condi-

tion (F(2,102)= 10.79, p < .001, η2=0.174), a large main effect of test phase (F(1,102)=

132.6, p < .001, 0.56), no main effect of experiment (F(1,102)= 2.30, p=.13, η2=0.022)

and a marginally significant interaction of scheduling condition and experiment (F(2,102)=

2.89, p=.06, η2=0.053). There was also a main effect of stimulus familiarity (F(1,102)=

7.67, p=.007, η2=0.07), and an interaction between stimulus familiarity and experiment

(F(1,102)= 8.65, p=.004, η2=0.078). No other interactions were significant (all ps > .17).

Individual comparisons showed that the source of the main effect of condition was greater

efficiency in the Adaptive condition than in either of the other conditions (Adaptive vs.

Random, t(70)=3.82, p < .001, d=.95; Adaptive vs. Adaptive/Mini-blocks, t(70)=3.10, p

< .002, d=.77). The Adaptive/Mini-blocks and Random conditions did not differ reliably

(t(70)=1.12, p=.27, d=0.26). The same pattern of results appeared when looking sepa-

rately at results from the immediate post-test (Adaptive vs. Random, t(70)=3.89, p < .001,

d=0.96; Adaptive vs. Adaptive/Mini-blocks, t(70)=2.95, p < .004, d=0.73; Adaptive/Mini-
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blocks vs. Random (t(70)=1.51, p=.14, d=0.36) or delayed post-test (Adaptive vs. Random,

t(70)=3.64, p < .001, d=0.91; Adaptive vs. Adaptive/Mini-blocks, t(70)=3.18, p < .002,

d=0.79; Adaptive/Mini-blocks vs. Random (t(70)=.67, p=.51, d=0.16).

The condition by experiment interaction was due primarily to somewhat better efficiency

shown by the Adaptive condition in Exp. 1b compared to Exp. 1a (t(34)=2.03, p=.05,

d=0.69). Neither the Adaptive/Mini-blocks nor Random conditions differed reliably between

Experiments 1a and 1b (ps=.64 and .83 respectively). The interaction of stimulus familiarity

and experiment reflects the lack of any post-test advantage for novel stimuli in Experiment

1b, unlike Experiment 1a, which showed a clear difference.

4.4 Discussion

We studied PL in a rich, natural domain that was unfamiliar to the participants. As in

many real-world PL tasks, the goal of learning is to discover and encode features and rela-

tions that determine natural categories, allowing the learner to accurately classify previously

unobserved instances. Specifically, we tested whether an adaptive sequencing algorithm im-

plementing principles of spacing in an individualized manner could improve PL for natural

categories. The algorithm varied intervals between presentations of new instances of each

learning category based on each learner’s accuracy and RT in classifying instances of that

category.

Effects of adaptive sequencing on PL In both experiments, we found evidence of

greater learning efficiency for adaptively sequenced learning over random presentation, in

both immediate and delayed post-tests. We included a test after a one-week delay, because

immediate and delayed tests sometimes differ in interesting ways, and testing after a delay

removes possible influences of relatively transient effects and is therefore considered a better

measure of learning (Schmidt & Bjork, 1992). In Experiment 1a, with higher variability

categories (exemplars chosen from within any species in a genus), the efficiency advantage
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of adaptive sequencing was clearest for novel items in the post-tests and for all items in

the delayed post-test, which showed a 29% efficiency advantage over random presentation.

Moreover, effect sizes for Adaptive vs. Random for both immediate and delayed post-tests

averaged around .7. Adaptive sequencing also reliably outperformed random presentation

on a pure accuracy measure when learning conditions were compared after the same number

of learning trials. These learning effects were magnified in Experiment 1b, in which lower

variability categories (using only one species per genus) were used. In this experiment, the

Adaptive condition showed highly reliable advantages over the Random condition in efficiency

on both immediate and delayed post-tests (on the order of 38-39%); for both familiar and

novel items; and also when accuracy was compared directly across groups after the same

number of learning trials. The results have significance for understanding high-level PL in

general and for applications of PL in real-world education and training domains. The spacing

effect is one of the most important and robust principles of learning and memory (Dempster,

1996), and with memory for factual material, adaptive learning schemes have been shown

to enhance efficiency by tailoring spacing to the individual learner’s course of acquisition

of each item to be learned (Atkinson, 1972; Mettler, Massey, & Kellman, 2011; Pavlik &

Anderson, 2008). The present work may be the first to apply adaptive spacing to PL. The

present results indicate that adaptive sequencing can robustly improve learning. The effect

sizes (ranging from around .7 in Exp. 1a to 1.2 in Exp. 1b), as well as the percentage

advantages in efficiency (25-29% in Exp. 1a to around 38-39% in Exp. 1b) are of sufficient

magnitude to be of substantial value in improving learning in complex learning domains in

real-world settings.

Spacing in PL and fact learning These results may also offer some insight into relations

between PL and factual learning, where spacing has been more extensively investigated. In

our studies, a fundamental principle in the adaptive condition was the stretching of the

recurrence interval for categories based on speed of responding. The present findings that

adaptive spacing improves PL for natural categories parallel similar effects of adaptive spac-

135



ing for memory items. As such, it raises the question of what learning mechanisms may be

shared across these domains. Storage of items in memory (fact or item learning) and discov-

ering structure in displays that allows classification of new instances (PL) appear to involve

substantially different mechanisms. In memory research, retesting an item when it is just

about to be forgotten is usually considered in terms of memory trace decay (Pyc & Rawson,

2009), but in PL, learning progresses by more selective and fluent information extraction

from presented displays. We believe that the common link is not that factual memory and

PL involve the same mechanisms, but that a common principle of optimal learning applies

to both. As learning to extract relevant information improves for one category, it becomes

desirable to have a longer interval and/or more trials with intervening categories before re-

turning for further practice on the initial category. PL involves discovery of invariance and

allowable variation with categories (Gibson, 1969), but perhaps the most crucial component

of PL is coming to encode distinguishing features between categories (Gibson, 1969). This

process may be optimized by modulating the numbers of trials of intervening categories de-

pending on the strength of that category. If the learner is a poor classifier of instances of a

category, many intervening trials of other categories may impede learning, but as learning

improves, more intervening category experiences may be optimal. Although the underlying

processes for item memory and PL are unlikely to be the same, learning in both domains

can be enhanced by adjusting spacing to match changes in learning strength. And in both

domains, because learning strength may not be predictable in advance and may vary by

learners and categories, adaptive scheduling based on updated learning strength estimates,

as was done here by the use of response times, may offer advantages over predetermined

schedules.

Category variability in PL The advantage for lower variability categories can be easily

interpreted in this context. The ARTS system uses response times, along with accuracy,

from earlier trials to estimate learning strength. When a specific item recurs, as in factual

learning contexts, an accurate and faster response can be straightforwardly interpreted as
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an improvement in learning. A primary goal of the present work was to investigate if the

accuracy and speed can also be used to guide PL, where categories recur over spacing intervals

but presented instances are novel. The results indicate that adaptive sequencing of categories

is indeed beneficial, but the benefit is greater for categories with lower variability among

instances. The instances of higher variability categories may involve a greater array of

features and relations to be encoded; thus, a learner’s performance on an earlier instance of a

category may be an imperfect predictor of learning strength for another item. High variability

categories might even be disjunctive, in the sense that there is more than one characteristic

that confers membership, or in the sense that irrelevant variation may differ from instance

to instance. Where such differences exist, performance measured from one instance might

provide little indication of the learning strength for another instance. Gibson’s classic work

on PL emphasized discovery of invariance, but many natural categories may have a family

resemblance structure (Rosch & Mervis, 1975; Wittgenstein, 1953). Perhaps even more

crucially, the process of discovering distinguishing features of categories (Gibson, 1969) may

also involve learning to ignore characteristics that are not diagnostic of category membership.

These may also vary across instances of a single category.

We close this issue by noting that the situation may actually be more complicated. PL in

category learning involves the discovery and selective encoding of diagnostic characteristics

that govern category membership. Explanations of PL based on selection have been sup-

ported by considerable empirical and modeling work (e.g., Petrov, Dosher, & Lu, 2005). In

PL contexts involving categorization of complex, multidimensional stimuli, one implication

of selection is that, as learning progresses, members of the same category will likely come to

resemble each other more. In this sense, the perceived ‘variability’ of instances of a category

likely changes through PL. It might be interesting in future research to develop measures of

perceived similarity to look at stimulus variability as a dependent variable that changes in

PL, in addition to its effects as an independent variable as in the present research.
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Transfer A hallmark of perceptual learning in real-world domains is transfer of learning.

Learners become able to accurately and fluently classify new exemplars of previously learned

categories. To ascertain that true PL, rather than memorization of instances, was involved

in the present studies, we used post-tests with both familiar and novel instances. All of our

results indicate that novel instances were classified at least as accurately as familiar instances.

These outcomes indicate both that participants attained classification skills that generalized

to previously unseen cases and also that our efforts to minimize instance repetitions during

learning were successful.

The results of Exp. 1a actually suggested better performance for novel exemplars, and this

tendency was strongest in the Adaptive condition at delayed post-test. While we cannot rule

out some possible effect of interest here, this seems to us to be most likely an inconsequential

finding. The set of novel exemplars used in the post-tests was the same for all conditions, and

this set may have simply been, on average, slightly less difficult than the familiar instances

used in the post-test. No advantage for novel items appeared in Experiment 1b, which used

a different, fixed set of post-test items. If, paradoxically, there is some reason that PL in

some conditions is actually stronger for novel instances, the current experiments were not

designed to reveal this clearly. Use of a“jackknife”procedure, where each subject is presented

different novel instances, would be preferable for a study focused on this issue. Our use of

novel and familiar post-test items allowed clear comparisons across conditions, and provided

clear evidence for transfer of learning, but it did not provide clear evidence for a novelty

advantage.

Partial blocking in PL Our data offer little or no support for initial blocking or massing

of instances of a given category. At best, the Adaptive/Mini-blocks condition in the present

experiments produced performance nearly equivalent to the Adaptive condition; it was often

somewhat worse, and never better. The intuition behind blocking is that learning of com-

monalities within each category should be facilitated by seeing several instances in succession.

This intuition appears to be incorrect, however. Earlier work (Kornell & Bjork, 2008) com-
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pared complete blocking to complete interleaving in studying examples of different artists’

painting styles and found a clear advantage of interleaving. In our Adaptive/Mini-blocks con-

dition, we investigated whether some initial blocking, followed by interleaved, spaced practice

might aid early learning of categories while still capturing the benefits of interleaving later.

This approach never produced better performance than the regular Adaptive condition, in

which there was consistent interleaving. It appears that stimulus presentation that facili-

tates the learning of contrasts that distinguish categories may be of greatest importance in

arranging PL.

Learning to criterion in PL The studies reported used learning to criterion. Probably

for reasons of experimental control, this is quite rare for studies of spacing in learning. It is,

however, of primary importance in real learning settings. The most obvious methodological

difficulty of studies using learning to criterion is that different participants and conditions

will require different numbers of learning trials. The efficiency measure addressed this issue

by combining both post-test accuracy and the number of learning trials invested; such a

measure is likely to be useful in real-world learning settings where mastery in the shortest

time is desirable. As reaching criterion in our Random condition generally required more

trials than in the Adaptive condition, it is important to consider whether this feature alone

provided the advantage of adaptive sequencing. To address this issue, we also examined

accuracy after a similar number of learning trials in each group. As with the efficiency

measure, this “apples to apples” comparison of accuracy also clearly showed advantages of

adaptive sequencing.

A final note concerns our choice of comparison conditions. We chose to compare sequenc-

ing algorithms against random presentation - a notoriously effective schedule of practice that

produces robust, albeit inefficient, learning in a variety of contexts. For example, random pre-

sentation automatically implements a type of spaced interleaving, and when unmodified, as

in our experiment, can result in repeated presentation of critical stimulus material. Though

random presentation has fared poorly in some experiments that have compared scheduling
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algorithms to random practice (as in Atkinson, 1972), it may be that in a learning domain

with as few categories as in our experiment (12 categories), the benefits of random presenta-

tion may be quite large (compared to, for instance, learning a large number of independent

factual items). The fact that our algorithms performed as well as they did is thus encour-

aging. Presumably, if we had compared adaptive sequencing to massed practice (blocking

of all category exemplars) adaptive sequencing would have fared even better (c.f., Kornell &

Bjork, 2008).

4.5 Experiment 2: Perceptual Category Learning on Fluency with

3D Chemical Representations

4.5.1 Introduction

As discussed in Chapter 3, learning to criteria is an important learning feature that interacts

with the size of spacing delays and difficulty of retrieval during criterial practice. While

somewhat under-studied on its own, learning criteria that also include response speed are rare

in both the experimental literature as well as in practical applications of learning criteria to

learning. In order to further investigate the relationship between response speed and learning

criteria in adaptively spaced practice, we conducted an experiment that manipulated the

degree of reliance on response speed in learning criteria. The experiment was designed to

test the effects of response speed dependent criteria on perceptual learning.

Using software-based, web-delivered, perceptual learning modules (PLMs), students in in-

troductory community college chemistry classes gained knowledge of various chemical struc-

tures including discrimination of bond angles and determination of hybridization. PLMs

presented students with up to 3 related representations of a chemical structure: animated

3D (3-dimensional) representations, 2D Lewis diagrams, and chemical formulas. PLMs uti-

lized an adaptive sequencing algorithm that monitored students accuracies and response

times to determine the trials that should elapse between repeated presentations of structural
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categories. Students procceded through stages that progressively decreased the number of

simultaneously available structural representations until they were able to answer questions

about chemical structure solely with reference to chemical formulas. We tested two adaptive

sequencing conditions, one that included response time and accuracy in the determination of

item retirement and one that included accuracy alone. Results showed significant learning

gains in both conditions, and an effect of response-time-based learning criteria on students’

long-term gains in fluency (speed) at making determinations of chemical structure.

4.5.2 Methods

Participants The participants were 28 community college students who were completing

the experiment as a component of an introductory chemistry course (GenChem 1 at Collin

Community College, Collin, Texas). One participant did not complete a delayed post-test.

Design There were two between subjects conditions that presented learning items using an

adaptive scheduling algorithm but differed in whether the learning criteria utilized response

speed (RT condition) or not (no RT condition). Response criteria in the RT condition were

set at 12 seconds. The experiment utilized a pre-test/post-test design with a 2 month delayed

post-test. There were three similar versions of the test assessment, and participants received

a different version at pre-test, post-test and delayed post-test.

Procedure Participants were randomly assigned to either the RT or noRT condition. Par-

ticipants completed a number of sessions. At the first session participants completed a pre-

test, and began the learning session. Students continued working on the module over the

next few days, both in class and at home, until reaching mastery for all items. Seven days

after the first session they completed a post-test. After two weeks, participants took a de-

layed post-test in class. Assignment of test versions to pre, post and delayed post-test were

counterbalanced across participants.

During learning sessions, participants responded to multiple choice questions in a PLM.
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Initially participants were shown an animated 3D diagram, a Lewis structure and a bare

chemical formula (see Figure 4.11) and were asked various questions about either bond

angle or hybridization of the displayed structure. Feedback was presented on each trial.

Over the course of learning, representations were removed in a fading process: first 3D

diagrams, then Lewis structures were removed, until, at the end of learning, students were

answering questions based on the bare formulas alone. In order to progress between sections,

students had to meet learning criteria of four consecutive correct responses per category.

In the RT condition, students had to additionally respond faster than 12 seconds at each

criterial trial.

Materials Categories of problems consisted of bond angle identification problems of four

types (180, 120, 109.5, 90 degrees) as well as hybridization problems of 6 types (s, sp, sp2,

sp3, sp3d, sp3d2). See Figure 4.11 for some examples of trial types. Additionally, categories

consisted of 3 levels of difficulty - a) easy trials, where a 3D diagram, a Lewis structure, and a

formula were shown, b) medium trials, where the 3D diagram was removed and only a Lewis

structure and formula were shown, and c) difficult trials, where only a formula was shown.

All learning session trials were followed by feedback for the correct answer after the learner’s

response. Chemical structures were chosen from a set of common compounds typical of the

level of the chemistry students in the course. There was also input from the instructor on

the choice of chemical structures prior to the start of the experiment.

Pre-test and post-test materials differed from learning session trials. Pre-test and post-

test trials required multiple choice responses, and did not present feedback after each re-

sponse. Trials usually showed a single form of representation, e.g., a single Lewis diagram,

and asked to choose the correct bond angle or hybridization from a multiple choice list.

There were also problems that asked for the reverse mapping, showing a hybridization value

and asking for the Lewis structure or 3D diagram from a choice of three diagrams.
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Bond Angle Hybridization

Immediate Feedback Additional Help

Figure 4.11: Exp 2. Example of trial screens showing bond angle and hybridization problems.

Immediate feedback was presented after every response. Additional help could be triggered

with a key press during the feedback phases.

Planned analyses The primary analyses in Experiment 2 were accuracy change scores and

latency change scores. It was predicted that an adaptive algorithm that monitors learning

strength for category learning will result in greater learning, measured by both accuracy

increases as well as response speed decreases (fluency), when learning criteria take into

account response speed (RT condition) than when response speed is not a component of
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learning criteria (no RT condition).

4.5.3 Results

Raw accuracies Accuracies are shown in Figure 4.12. A 2x2 mixed factor ANOVA on

condition (RT vs. noRT) and test phase (post-test vs. delayed post-test), found no effect

of condition (F(1,25)=2.24, p=0.15), a significant main effect of test phase (F(1,25)=13.31,

p<.01), and no condition by test phase interaction (F(1,25)=0.24, p=.63). Accuracies de-

clined between post-test and delayed post-test (ps<.05).
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Figure 4.12: Exp 2. Accuracy across experiment phase and by mastery condition (RT vs

noRT). Error bars show +/- 1 standard error of the mean.

Accuracy change score Accuracy change scores (accuracy on post-test minus accuracy

on pre-test) are shown in Figure 4.13. A 2x2 mixed factor ANOVA on condition and

144



test phase found no effect of condition (F(1,25)=0.01, p=.93), a main effect of test phase

(F(1,25)=13.31, p=.001), and no condition by test phase interaction (F(1,25)=0.24, p=.62).

Accuracy change scores declined between post-test and delayed post-test for the noRT con-

dition (t(12)=4.78, p<.001), but not reliably for the RT condition (t(13)=1.81, p=.09).
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Figure 4.13: Exp 2. Accuracy change scores (post-test accuracies minus pre-test accuracies)

by post-test phase (initial post-test vs. 2 month delayed post-test) and mastery condition.

Error bars show +/- 1 standard error of the mean.

Response time There was an effect of response-time-based learning criteria on students’

long-term gains in fluency - or speed of responding at making determinations of chemical

structure. Fluency was measured as a decrease in response time for responses at post-test

compared to at pre-test (it was possible to make this comparison due to the high levels of

prior knowledge - accurate responses - at pre-test). Response-time reductions are shown in
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Figure 4.14. A 2x2 mixed factor ANOVA on condition and test phase found no main effect
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Figure 4.14: Exp 2. Response-time change scores (post-test RTs minus pre-test RTs) by

post-test phase (initial post-test vs. 2 month delayed post-test) and mastery condition. RTs

are from correct responses only. Error bars show +/- 1 standard error of the mean.

of condition (F(1,25)=0.04, p=.84), a main effect of test phase (F(1,25)=4.65, p=.04), and

a marginally significant condition by test phase interaction (F(1,25)=3.44, p=.075). T-tests

between each condition were not significant at either test (post-test: t(25)=0.623, p=.54;

delayed post-test: t(25)=1.1, p=.28), and the paired t-tests showed that the difference be-

tween the post-test and delayed post-test for the noRT condition was significant (t(12)=1.74,

p=.003), but the difference between the post-test and delayed post-test for the RT condition

was not significant (t(13)=0.23, p=.82). This interaction indicated that the no-RT condition

showed greater fluency gains at an immediate post-test (M=7.3 sec reduction, vs. 5.8 sec

reduction in the RT condition, SDs=5.6,6.4 respectively), but the RT condition had greater
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fluency gains at a delayed test, two months later (RT: M=5.4 sec, SD=4.2 vs. noRT:3.2 sec,

SD=6.3). Those in the RT-based criteria condition appeared to maintain their fluency gains

after a delay of 2 months, while students in the no-RT condition lost a significant portion of

their gains.

4.5.4 Discussion

It appears that when learning complex structural information in a chemistry course, the use

of a PLM (perceptual learning module) increased students’ fluency with determining aspects

of chemical structure. Across two mastery criteria conditions, significant gains in fluency

were found between pre-test and post-test. In addition, these effects lasted for over two

months, as measured by gains on a delayed post-test. No significant differences were found

between scheduling conditions in terms of the amount learned, although the sample size was

particularly small, and participant compliance (e.g., studying at home) was particularly un-

controlled. Nevertheless, the study gives us confidence that adaptive scheduling techniques,

combined with stringent mastery criteria can provide fluency advantages to real-world course-

work and in realistic timescales, during the typical schedule of a chemistry course. The study

demonstrates that many of the practical and theoretical points about scheduling, learning

criteria and fluency are applicable to materials that are richly organized, perceptual, and

relevant to real learning: where learning consists of categories of stimuli, where there are

relations between stimuli within and between categories, and where the material is more

than a collection of facts.
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4.6 Conclusion and Discussion of Adaptive Sequencing in Percep-

tual Category Learning

4.6.1 Conclusion of Experiments 1a, 1b, and Experiment 2

It is becoming increasingly clear that perceptual learning comprises a pivotal component in

domains where humans attain high levels of expertise, including high-level cognitive domains

that have traditionally been considered to have little to do with perception (for recent reviews,

see Kellman & Garrigan, 2009; Kellman & Massey, 2013). More than one aspect of perceptual

learning is important, including both discovery effects – finding the information relevant to

a classification – and fluency effects – coming to handle the input quickly and/or with

lower cognitive load (Gibson, 1969; Goldstone, 1998; Kellman & Garrigan, 2009; Shiffrin

& Schneider, 1977). Perhaps most important in complex tasks is discovery of structural

information amidst task-irrelevant variation (Gibson, 1969), with the hallmark of this kind

of PL being that the learner can accurately and fluently classify previously unseen instances.

Whether we consider a child who learns to see a new animal and correctly say“cat,”the skilled

instructor who accurately derives language structure from a student’s poor handwriting, the

“chick sexers” described by Gibson (1969) or the scientist intuitively grasping patterns in

equations and graphs, the discovery of relevant structure and the ability to use it in new

cases is important.

Both basic research and understanding of the widespread implications of perceptual learn-

ing raise questions about how to optimize it. Although a great deal of work has been done

to understand principles of factual or procedural learning, relatively little work has asked

these same questions about PL. No previous studies that we know of have investigated how

adaptive spacing techniques might fare when learning consists, not of the memorization of

words or facts, but in attuning perceptual systems to extract structure. Here we have shown

that adaptive scheduling strategies that enhance declarative learning domains also apply

robustly to learning perceptual classifications.
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Experiments 1a and 1b showed that adaptive techniques lead to more efficient perceptual

learning; these effects are strongest when categories have less internal variability rather than

more; and the effects lead to transfer in classifying novel instances that is fully as accurate

as performance on cases previously observed.

In addition, Experiment 2 showed that the effects of learning complex perceptual cate-

gories with mastery criteria that enforce fast responses are to increase and maintain the de-

gree of fluency developed when discriminating representations. Mastery criteria that require

speed and accuracy in order to proceed to more difficult levels, or in order to retire items and

finish learning, build on concepts of mastery learning in the education and cognitive sciences

that are the building blocks of sound educational approaches to fostering durable, long-term

learning. In addition, mastery criteria appear to cooperate with the spacing advantages of

adaptively scheduled learning - to enforce both learning goals as well as spacing delays, in

order to promote long-term learning.
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CHAPTER 5

Conclusion

5.1 Summary of Dissertation, Results and Importance of Work

5.1.1 Summary of Dissertation

We introduced an algorithm that adapts to learners, scheduling the order of learning trials

dynamically – adaptive sequencing. The adaptive algorithm responds to learners’ ongoing

performance and attempts to generate space or delay between presentations of items in

order to improve the quality and duration of learning for those items. Decisions about how

to schedule trials are based on the spacing effect in memory, the finding that longer durations

between repeated presentations of learning material are more beneficial than shorter ones

(Glenberg, 1976; Karpicke & Bauernschmidt, 2011). The best spacing durations are those

that maximize the amount of time before items are repeated but are frequent enough to

prevent forgetting.

We then demonstrated, across 6 experiments, how adaptive sequencing improves learning

when compared to a variety of types of schedules of practice, and in a variety of learning

domains.

5.1.2 Summary of Results

Adaptive sequencing improved learning when compared to fixed schedules of practice, both

in controlled experiments where the number of presentations was limited (Chapter 2, Experi-

ments 1 and 2), and when experiments involved more realistic durations of practice (Chapter
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3, Experiments 1 and 2). In the case where number of presentations were fixed, learning

improvements consisted of accuracy gains. In the case where presentations continued until

learning criteria were met, adaptive sequencing improved the efficiency of learning, that is,

the rate of learning. In all cases comparing adaptive to fixed schedules, learning gains were

demonstrated after a delay (1 week), indicating that learning gains were durable.

Adaptive sequencing was also demonstrated in a number of learning domains. Learning

improvements were shown when learning consisted of memorization of basic facts in a contin-

uous paired-associate procedure (Chapter 2 and 3: country names and locations) and when

learning involved perceptual learning - pick up of information that enables discrimination of

categories of stimuli (Chapter 4: categories of butterfly species in experiments 1a and 1b;

discrimination of structure in chemical compounds in experiment 2). In the case of percep-

tual learning, learning gains were measured in terms of efficiency – a measure of the rate of

learning combined with overall retention of information – as well as fluency, or the speed of

responding. Learners who learned to discriminate taxonomically organized images of but-

terfly species using an adaptive category sequencing algorithm, improved their learning at a

faster rate than those who had learning trials scheduled randomly. Learners who learned to

discriminate 3-dimensional structural characteristics of chemical compounds using an adap-

tive sequencing algorithm that incorporated learning criteria based on response speed and

accuracy, became faster at making classifications and maintained those speed improvements

for longer durations (2 month delay) than learners whose schedules used learning criteria

based only on accuracy. Such learning gains are crucial components of perceptual learning,

and are key drivers of expertise in many high level human skills (Gibson, 1969; Kellman,

2002; Kellman & Garrigan, 2009).

5.1.3 Discussion

It is well known that stretching the spacing interval during learning produces long-lasting

learning in many domains and across many timescales (Dempster, 1989; Cepeda, Pashler,

Vul, Wixted, & Rohrer, 2006). It is thought that a likely explanation is that spacing intervals
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are powerful when delays between retrievals make recall difficult but not impossible (Bjork

& Bjork, 1992; Thios, D’Agostino, 1976). What is less well understood is exactly how to

take advantage of spacing effects in real learning situations: how to schedule learning across

multiple, spaced presentations, and how to incorporate learning criteria that combine with

spacing to make learning efficient and durable. The goal is that a learner should be able

to go for longer periods of time before requiring renewed learning opportunities. In this

thesis we have presented a suggested solution: that measurements of response speed during

learning can provide a window into the ongoing learning strength of learners - predicting

spacing delays that will maximize the benefit to learning. Adaptive schedules can incorporate

learning criteria that ensure content is mastered in the shortest amount of time and with the

greatest benefits to long-term learning strength. Further, in an adaptive scheduling scheme,

learning criteria that ensure fast responses help to guarantee long spacing delays between

criterial practice, increasing the durability of learning while also decreasing the total number

of practices - that is, increasing not just raw learning gains, but the efficiency of practice.

5.1.4 Importance and Future work

It is hoped that the research in this thesis will help to accelerate processes of discovery in the

application of cognitive models to real-world learning, in two ways. First, it is hoped that

adaptive schedules will be applied in real-world learning situations. Many of the studies in

this thesis provide evidence that adaptive sequencing is a powerful tool to increase learning

in a number of domains. Some of the work reported here develops links that are needed

both to understand the generality of learning principles and to develop useful, real-world

applications. One link is between the development of principles of memory and learning

based on laboratory studies having only a few presentations to situations in which learning

proceeds to some standard of mastery. Another is the link between the literature on fixed

spacing of items and the literature on adaptive learning, two valuable areas of research that

have rarely been connected or compared. The final link is the application and study of basic

principles of learning to diverse material and types of learning, including real-world students
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and content domains.

Second, it is hoped that the development and testing of adaptive scheduling can help to

further research on learning and memory, especially the spacing effect. Adaptive schedules

can potentially generate optimal presentation delays, in a way that could not otherwise be

determined by manual exploration of possible sequencing schedules. And since, as has been

discussed, matching schedules to ongoing learning strength is an important prerequisite for

examining other conditions of spaced practice (e.g., varying learning criteria), it is hoped

that adaptive techniques can be used as a tool to address related experimental questions

about learning.

There is also a pressing need to find models of response time and accuracy criteria in

learning - for instance, convolving the probabilities of response success across multiple consec-

utive presentations in learning with the probability distributions of possible response speeds

is an important step that could help generate new insight into appropriate learning criteria

for developing mastery. In addition, there may be ways of forming complex learning criteria

based on global learning set strength, or relations between categorically connected learning

items.

Prior successes in the laboratory and in schools give us confidence that methods of adap-

tive scheduling are applicable generally (Kellman, Massey & Son, 2009). We look forward

to refining these methods and extending them to larger educational problems.
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Appendix A

Appendix

Table A.1: Adaptive sequencing default parameters.

Parameter Value

a — Counter weight 0.1

r — RT weight 1.7

W — Incorrect penalty 20

D — Enforced delay constant 2

Pd — Default priority for unpresented items 1.1
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