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Abstract

How responsible someone is for an outcome depends on what
causal role their actions played, and what those actions reveal
about their mental states, such as their intentions. In this paper,
we develop a computational account of responsibility attribu-
tion that integrates these two cognitive processes: causal attri-
bution and mental state inference. Our model makes use of a
shared generative planning algorithm assumed to approximate
people’s intuitive theory of mind about others’ behavior. We
test our model on a variety of animated social scenarios in two
experiments. Experiment 1 features simple cases of helping
and hindering. Experiment 2 features more complex interac-
tions that require recursive reasoning, including cases where
one agent affects another by merely signaling their intentions
without physically acting on the world. Across both experi-
ments, our model accurately captures participants’ counterfac-
tual simulations and intention inferences, and establishes that
these two factors together explain responsibility judgments.

Keywords: responsibility; counterfactual simulation; theory
of mind; causal attribution; social inference.

Introduction
Responsibility attributions are ubiquitous and consequential
in our everyday lives. From watching dashcam or bodycam
footage, people can infer who is at fault in a social situa-
tion and why. What underlies people’s remarkable ability
to make rapid, intuitive responsibility judgments about oth-
ers’ social interactions? Prior work has identified two cog-
nitive processes that drive responsibility judgments: a causal
attribution about the role a person played in bringing about
the outcome, and a mental state inference that is informed by
the person’s actions (Gerstenberg et al., 2018; Langenhoff et
al., 2021; Sosa et al., 2021; Carlson et al., 2022). However,
these studies do not provide concrete accounts of the mecha-
nisms through which these two processes connect to respon-
sibility judgments, particularly for social interactions that un-
fold over time. Here, we bridge work on causal attribution
and mental state inference to provide a unified computational
model of responsibility judgments.

Causal attribution
One way of capturing a person’s causal role in a situation is
by considering what would have happened in a counterfactual
scenario in which they hadn’t been there, or had acted differ-
ently (Lewis, 1973; Pearl, 2000; Chockler & Halpern, 2004;
Halpern & Pearl, 2005; Lagnado et al., 2013; Wu & Gersten-
berg, 2023). However, little work has investigated the actual

cognitive process by which people simulate counterfactuals
involving agents. The process underlying simulation in the
physical domain, in contrast, has been elucidated in more
detail. The Counterfactual Simulation Model (CSM) devel-
oped by Gerstenberg et al. (2021) generates counterfactual
scenarios using a physics engine that approximates people’s
intuitive understanding of physical principles (Gerstenberg &
Tenenbaum, 2017). The CSM predicts that people judge an
object’s causal role by comparing what happened with what
would have happened if the object hadn’t been there.

Sosa et al. (2021) applied the CSM to moral scenarios
by modeling agents who exhibited simple behaviors pro-
grammed using a physics engine. But agents in reality are
governed by their mental states that, together with the prin-
ciple of rational action (Dennett, 1987), dictate how they
should act in order to achieve their goals most efficiently
(Jara-Ettinger et al., 2016; Netanyahu et al., 2021). In prior
work, we integrated agentive planning into the CSM to model
causal judgments about a single agent in pursuit of a physical
goal (Wu et al., 2022). Here, we extend our previous work to
multiple agents, and model outcomes that result from social
goals such as helping or hindering (see Ullman et al., 2009).

Mental state inference
The mental states of others are usually hidden. However, peo-
ple can infer them from observable actions using their intu-
itive theory of mind, a process that has been approximated
as Bayesian inverse planning or inverse reinforcement learn-
ing in Markov Decision Processes (MDPs) and related for-
malisms (e.g. Baker et al., 2009, 2017; Ullman et al., 2009;
Shu et al., 2020; Zhi-Xuan et al., 2020; Jara-Ettinger, 2019).
Here, we focus on inferring an agent’s intention (Kleiman-
Weiner et al., 2015), which is critical for assigning them re-
sponsibility (e.g. Lagnado & Channon, 2008).

Computational framework
In this paper, we develop a computational model of responsi-
bility judgments that combines mechanisms of counterfactual
simulation and intention inference. Importantly, we apply
the same generative model of agent behavior to both simu-
late counterfactual scenarios involving agents and infer those
agents’ mental states. While counterfactual simulation is suf-
ficient to explain causal judgments in the physical domain,
here we show that intentions additionally matter for respon-
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Figure 1: Example. (A) RED and BLUE in the environment at
timestep t = 0. (B) BLUE pushes the box to the left. A level-0
RED backtracks and fails, while a level-2 RED correctly infers
BLUE’s intent to hinder and succeeds. (C) Some of RED’s
possible counterfactual paths if BLUE hadn’t been there.

sibility judgments, and we demonstrate an implementation of
counterfactual simulation for responsibility. We now describe
our agents, environment, and models in turn.

Agents
Our setting is a grid world in which agents and objects can
interact (Figure 1A). On each timestep, agents can move up,
down, left, right, or stay in place, but cannot move through
walls or boxes. One agent, RED, has a physical goal of reach-
ing a star in 10 timesteps. If they run out of time, then they
fail. Another agent, BLUE, has a social goal of helping or
hindering RED. BLUE has the ability to push or pull boxes
around. Using an approach similar to level-k reasoning or
cognitive hierarchy (Wright, 2010), we model two types of
RED: a level-0 RED who plans only towards their physical
goal, and a level-2 RED who additionally infers and plans
around BLUE’s intentions (Figure 1B). This agent can, for ex-
ample, try to avoid BLUE or wait for them to take some action.
BLUE is level-1 and always assumes a level-0 RED.

Environments
Formally, our setting can be represented as a set of Social
MDPs (see Tejwani et al., 2021, for the general formulation).
The Social MDP Ml

i for agent i ∈ {R,B} at level l is the tuple
⟨S ,A ,T ,χi,gi,R l

i,γ⟩, where S is the state space of all states
s ∈ S ; A is the joint action space of all pairs of actions aR,
aB; T = T (s′ | s,aR,aB) dictates the transition probabilities;
χi is agent i’s social goal, gi is their physical goal; R l

i is their
reward function, and γ ∈ (0,1) is a reward discount factor.

The level-0 RED has no social goal, so χR = 0. Their re-
ward function is static and depends on their physical goal of
reaching the star, along with their action cost c(aR):

R 0
R(s,aR,aB,gR) = rR(s,aR,gR)− c(aR).

The level-1 BLUE has no physical goal, so gB = 0. Their
social goal is instantiated as a scaling factor that transforms
their estimate of level-0 RED’s reward into their own reward:

R 1
B(s,aR,aB,gR) = χB · R̃ 0

R − c(aB)+ f (χB).

Here, we set χB = 0.5 for a helping BLUE or χB =−0.5 for
a hindering BLUE. To add gradation to BLUE’s intentions, we
define a supplemental reward term f (χB), which is a func-
tion of the change in the number of shortest paths available to

RED and the change in the length of the shortest path. Increas-
ing path availability and decreasing path length both reward
a helping BLUE, but penalize a hindering BLUE.

BLUE’s estimate of a level-0 RED’s reward function is
R̃ 0

R = rR(s,aR,gR)− c(aR). Here, RED’s physical goal gR is
assumed to be known, and does not need to be estimated.

Finally, since the level-2 RED only has a physical goal, its
reward function is identical to that of a level-0 RED agent:

R 2
R(s,aR,aB,gR) = rR(s,aR,gR)− c(aR).

We now describe how to plan for these settings and, in par-
ticular, how to infer BLUE’s social goal (i.e. their intention).

Generative model

Our generative model solves the pairwise Social MDPs M0
R,

M1
B, and M2

R. Each trial features a RED who is either level-0
or level-2, and a BLUE who is level-1. To solve M0

R and M1
B,

the model uses a Q function for each agent i at level l:

Ql
i(s,ai,gi,χi) = ∑

s′
T (·)

[
R l

i(·)+ γ V l
i (s

′,gi,χi)
]
,

where V l
i is the respective value function.

Agents iteratively compute their Q functions and determin-
istic policies (see Tejwani et al., 2021, for the full algorithm
and general formulation of value functions). The level-0 RED
plans as in a simple MDP, and the level-1 BLUE plans assum-
ing the level-0 RED’s physical goal is known.

To solve M2
R, the level-2 RED continuously maintains es-

timates of level-1 BLUE’s social goal χB. At timestep t = 0,
their belief p(χ̃0

B) is initialized to the uniform distribution. On
each timestep t thereafter, they perform a Bayesian update:

p
(
χ̃

t
B | st−1, at−1

B
)

∝ p
(
at−1

B | st−1, χB
)

p(χ̃t−1
B ).

They predict the level-1 BLUE’s social policy using their Q
function, which they must solve, under a softmax:

p
(
aB | st , χ̃B

)
∝ exp

(
β ·Q1

B(s,aB, χ̃B)
)
.

The softmax accounts for occasional non-optimal actions via
the parameter β, which captures an agent’s level of random-
ness while acting. The level-2 RED plans by using Monte
Carlo methods to sample possible actions aB that BLUE could
take, and then selecting an optimal path in light of them.

In all experiments, we used an action cost of c= 1 for mov-
ing in the grid, and c = 2 for pushing or pulling a box (for
BLUE only). Solving these Social MDPs generates policies
for RED and BLUE within the bounds of the grid world and
their respective levels of reasoning. These policies approxi-
mate people’s intuitive theories of how agents interact based
on their mental states, capacities, and situational constraints.

Responsibility model
To predict how responsible each agent is for the outcome in
each scenario, our responsibility model uses the generative
model to infer intentions and to implement counterfactual
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Figure 2: Experiment 1 results. Participants’ judgments separated by condition (counterfactual, intention, effort, and responsi-
bility) on a subset of trials. Note that the scale for intention judgments goes from “definitely hindering” being 0 and “definitely
helping” being 100. Each trial diagram illustrates BLUE’s path in light blue, box move actions with blue arrows, and RED’s
path. In all figures, bars show mean ratings, error bars are bootstrapped 95% confidence intervals, large points show model
predictions, small points are individual judgments, RMSE = root mean squared error, and r = Pearson correlation coefficient.

simulations. Let T ≤ 10 be the length of the episode and
H1,...T be the history of states, actions, and rewards that oc-
curred. Firstly, we can obtain an inference about BLUE’s in-
tentions using the distribution p(χT

B). Secondly, we can sim-
ulate what would have happened in a counterfactual scenario.
We focus on whether RED would have succeeded if BLUE
hadn’t been there (e.g. Figure 1C). The model solves the So-
cial MDP M0

R or M2
R without BLUE in the environment, but

preserves any transitions that also occurred in H1,...T . Here,
the environment is deterministic so all transitions result from
agents’ actions, but in stochastic environments, condition-
ing on H is crucial in distinguishing counterfactual from hy-
pothetical simulation (Gerstenberg, 2022; Wu et al., 2022).
Counterfactual episodes are run stochastically to capture un-
certainty about RED’s behavior: RED has a small chance
p = 0.1 of stalling on each timestep. The model runs 1000
noisy counterfactual simulations to get a prediction for how
likely RED would have succeeded if BLUE hadn’t been there.

Responsibility for BLUE In line with prior research, we
propose that responsibility judgments towards BLUE are
driven by two factors: counterfactual judgments that reflect
BLUE’s causal role in the outcome, and inferences about
BLUE’s intentions. We coded both components to account
for the outcome (i.e. used either raw or flipped values). Both
components are then fit through a linear regression,

responsibilityB = α+β1 · counterfactual+β2 · intention.

Responsibility for RED We propose that responsibility for
RED is inversely related to responsibility for BLUE: when
BLUE is attributed much responsibility for the outcome, the
amount assigned to RED is reduced, and vice versa. Formally,

responsibilityR = α−β · responsibilityB.

Alternative models
Effort is another factor that can be observed or inferred about
an agent from their actions. The amount of effort a ratio-
nal agent exerts reflects their desire for a particular outcome,

which affects moral evaluations about them (Jara-Ettinger et
al., 2016; Bigman & Tamir, 2016; Sosa et al., 2021). In Ex-
periment 1, we test an alternative model of responsibility for
BLUE that considers perceived effort in place of intentions,
along with counterfactuals. We model BLUE’s effort in each
scenario as the sum of all action costs c(aB) incurred.

Another possible model of how people assign responsibil-
ity is that they rely on perceptual and physical cues instead of
simulating counterfactuals and inferring mental states (Iliev
et al., 2012; White, 2014). To test this, we construct a heuris-
tic model that performs a linear regression over four percep-
tual features in each trial: the outcome, how many steps RED
and BLUE each took, and how far any boxes were moved. In
both experiments, we compare our responsibility model for
BLUE to the heuristic model, as well as lesioned models that
only include the counterfactual or intention component.

Experiment 1: Level-0 RED

In Experiment 1, we considered scenarios featuring a level-
0 RED and a level-1 BLUE. Between conditions, participants
were asked to make counterfactual, intention, effort, or re-
sponsibility judgments about what happened in each scenario.
We tested how well the components of our model capture
these judgments and predict responsibility overall.

Methods
All materials and data are available at: https://github.com/
cicl-stanford/counterfactual agents.

Participants The experiment was preregistered and posted
on Prolific. 200 participants (age: M = 34, SD = 13; gender:
100 female, 88 male, 9 non-binary, 1 agender, and 2 undis-
closed) were recruited and compensated $11/hour. They were
randomly assigned to the counterfactual, intention, effort, or
responsibility conditions with n = 50 in each.

Procedure Participants were introduced to the setting with
RED and BLUE. They were guided through instructions with
an example trial and then required to answer three compre-
hension questions correctly before proceeding to the main
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Figure 3: Experiment 1 responsibility judgments. Participants’ mean judgments for BLUE compared to model predictions that
consider (A) counterfactuals only, (B) intentions only, (C) both counterfactuals and intentions, (D) effort instead of intentions,
and (E) a heuristic model. Model predictors use participants’ mean judgments from the respective conditions.

task. During the main task, they saw 24 different trials in
a randomized order (see Figure 2 for some examples).

In each trial, participants watched what happened and then
responded to a question with a video replay of the scenario
available. In the counterfactual condition, participants were
asked how much they agreed that “RED [would have / would
still have] succeeded if BLUE hadn’t been there.” We used
“would have” if the outcome was a failure and “would still
have” if it was a success. Participants answered on a contin-
uous slider from “not at all” (0) to “very much” (100). In the
intention condition, participants were asked “What was BLUE
intending to do?” and answered on a slider from “definitely
hinder RED” (0) to “definitely help RED” (100) with the mid-
point labeled “unsure” (50). In the effort condition, partici-
pants were asked “How much effort did BLUE exert?” with
the slider endpoints labeled “very little” (0) and “very much”
(100). Finally, the responsibility condition was similar to the
counterfactual condition except that the question read “How
responsible was BLUE for RED’s [success/failure]?”. The ex-
periment took an average of 12 minutes (SD = 7) to complete.

Design Across the 24 trials in the experiment, we manipu-
lated whether RED succeeded or failed (actual outcome), and
whether RED would have succeeded or failed had BLUE not
been there (counterfactual outcome). BLUE’s intentions were
also varied so that they could appear to be helping, hinder-
ing, or have ambiguous intentions. We manually generated
BLUE’s actions in each trial to create interesting interactions,
but modeled them as a level-1 agent.

Results
Figure 2 shows participants’ judgments in the different con-
ditions across a subset of the 24 scenarios. Our model used
a softmax of β = 0.4 and discount factor of γ = 0.99. The
model captures much of the variance in participants’ counter-
factual judgments (r = 0.95, RMSE = 14.73), intention in-
ferences (r = 0.97, RMSE = 11.74), and effort judgments
(r = 0.95, RMSE = 5.44). To predict responsibility judg-
ments, we fit five different Bayesian linear mixed effects
models. The first considers counterfactuals only, the second
considers intentions only, the third considers both counterfac-
tuals and intentions (our model), the fourth considers counter-

factuals and effort as an alternative, and the fifth is a heuristic
model. All models included random intercepts and slopes for
each participant. We used participants’ mean counterfactual,
intention, and effort judgments as predictors in the models.

Figure 3 shows that our model (‘counterfactual + inten-
tion’) qualitatively captures responsibility judgments well.
It also has the highest correlation and lowest RMSE. For a
quantitative comparison, we used approximate leave-one-out
cross-validation, which takes into account the varying model
complexity. Table 1 shows that our model performs best over-
all, and best fits the most individual participants’ judgments
(using the same cross-validation procedure).

Discussion
In this experiment, we found that participants’ responsibil-
ity judgments for BLUE were well predicted by our model,
which explains responsibility as a combination of counterfac-
tual judgments about what would have happened had BLUE
not been there (reflecting BLUE’s causal role), and inferences
about BLUE’s intentions (reflecting BLUE’s character). Nei-
ther component alone predicts responsibility as well, and in-
tention is a better predictor than effort. For example, in trial 1,
BLUE pushed a box in RED’s way despite another box already
blocking the star. Participants judged BLUE’s causal role to be
low (RED would have been unlikely to succeed even if BLUE

Table 1: Experiment 1 model comparison. “∆elpd” shows
the difference in expected log predictive density using ap-
proximate leave-one-out cross-validation between the best-
fitting model (indicated by 0) and the other models, along
with associated standard error. Lower numbers represent
worse performance (Vehtari et al., 2017). “n best” is the num-
ber of individual participant judgments best fit by each model.

Model ∆elpd (se) n best

counterfactual + intention 0 (0) 38
intention −162.0 (18.5) 2
counterfactual −178.6 (21.8) 6
counterfactual + effort −179.1 (21.9) 4
heuristic −445.2 (28.1) 0
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Figure 4: Experiment 2 results. Participants’ judgments separated by condition (counterfactual, intention, and responsibility
for BLUE and RED) on a subset of trials. Each pair features an (A) level-0 RED and (B) level-2 RED on the same scenario.

hadn’t been there), and BLUE’s effort to be low, but still held
BLUE very responsible because of the strong inference that
they intended to hinder. Conversely, in trials 5 and 6, par-
ticipants inferred similar intentions and effort, but different
counterfactuals, which set apart the respective responsibility
judgments. In trial 5, RED could not have succeeded with-
out BLUE’s help, but in trial 6, the missing wall would have
made that possible. In the next experiment, we explore more
complex interactions involving reasoning beyond level-1, and
investigate responsibility judgments for both agents.

Experiment 2: Level-2 RED

In Experiment 2, we introduced a level-2 RED. This agent
plans relative to a level-1 BLUE’s social goal and can, for ex-
ample, wait for BLUE to move a box out of their way after
correctly inferring BLUE’s intention to help. Then, a level-3
BLUE, who reasons about a level-2 RED, would be able to
act so as to deceive RED by deliberately signaling false in-
tentions (knowing that RED assumes them to be level-1). For
example, in trial 3B in Figure 4, BLUE moved right to pick up
the box, and RED moved down, anticipating that BLUE would
helpfully pull the box aside. However, BLUE didn’t actually
move the box, forcing RED to backtrack and ultimately fail. In
that sense, higher-level reasoning enables difference-making
beyond just the physical world: it becomes possible for an
agent to play a causal role in the outcome by affecting the
mental states of others. In this experiment, we extended our
responsibility model to a wider range of social interactions,
including scenarios in which BLUE makes no changes to the
physical environment, but nevertheless affects RED’s actions.

Participants were asked to make counterfactual, inten-
tion, and responsibility judgments about each scenario. We
asked about responsibility for RED in addition to BLUE, and
also asked some participants to give open-ended explanations
about why RED succeeded or failed in each trial.

Methods
Participants The experiment was preregistered and posted
on Prolific. 200 participants (age: M = 36, SD = 12; gen-
der: 98 female, 93 male, 7 non-binary, 1 transgender, 1 undis-
closed) were recruited and compensated $12/hour. They were
randomly assigned to the counterfactual, intention, responsi-

bility, or explanation conditions with n = 50 in each.

Procedure & Design The procedure and design were sim-
ilar to that of Experiment 1. The counterfactual and inten-
tion conditions were identical. In the responsibility condi-
tion, participants were asked “How responsible was RED for
the [success/failure]?” and “How responsible was BLUE for
the [success/failure]?” on separate sliders from “not at all”
(0) to “very much” (100). In the explanation condition, they
were asked “Why did RED [succeed/fail]?” and typed their
answers in a free-form text box. The experiment took an av-
erage of 21 minutes (SD = 12) to complete. We designed
24 trials consisting of 12 pairs in which the environment and
BLUE ’s actions were the same, but RED was either level-0
or level-2. Across the 12 pairs of trials, we manipulated the
outcome and BLUE’s intentions as in Experiment 1.

Results
Figure 4 shows participants’ judgments in the different condi-
tions across the 12 pairs of scenarios. Our model used a soft-
max of β = 0.3 and discount factor of γ = 0.99. The model
accounted well for counterfactual judgments (r = 0.8, RMSE
= 23.05) and intention inferences (r = 0.72, RMSE = 27.81),
although some variance remains unexplained.

Responsibility We tested the same set of Bayesian mod-
els from Experiment 1 on responsibility judgments for BLUE,
except for the ‘counterfactual + effort’ model. Because that
model did not perform as well, we dropped the effort con-
dition here. We again used participants’ mean judgments as
predictors in the models. The results are similar to those from
Experiment 1. Figure 5 and Table 2 show that our model
(‘counterfactual + intention’) best captures responsibility for

Table 2: Experiment 2 model comparison. See Table 1 for
column definitions. Lower ∆elpd is worse in cross-validation.

Model ∆elpd (se) n best

counterfactual + intention 0 (0) 26
intention −92.1 (13.8) 15
counterfactual −142.1 (17.5) 7
heuristic −350.5 (25.4) 2
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Figure 5: Experiment 2 responsibility judgments. Participants’ mean judgments compared to model predictions considering
(A) counterfactuals only, (B) intentions only, (C) both counterfactuals and intentions, and (D) a heuristic model. Plot (E) shows
responsibility judgments for RED predicted as a function of corresponding responsibility judgments for BLUE.

BLUE qualitatively and quantitatively, for both overall and in-
dividual participant judgments. Figure 5E shows our respon-
sibility model for RED, using corresponding judgments for
BLUE as a predictor with a random intercept and slopes for
each participant. This model performs decently overall.

Explanations Participants’ open-ended explanations about
why RED succeeded or failed in each trial were coded based
on whether they mentioned the following features: the box,
time, RED’s actions, RED’s mental states or actions requir-
ing mentalizing, BLUE’s actions, and BLUE’s mental states or
mentalizing actions. Overall, participants mentioned RED’s
actions more than RED’s mental states, and vice versa for
BLUE (Figure 6A). In both trials 3B and 4B, BLUE made
no changes to the physical environment, but participants at-
tributed different amounts of responsibility (Figure 5), which
mapped onto different types of explanations (Figure 6B).
In trial 3B, many participants noted BLUE’s deception (e.g.
“[BLUE] tricked [RED] into thinking she was going to move
the box to help her, but once [RED] was stuck on that side
of the wall, [BLUE] left the box where it was.”). In contrast,
in trial 4B, most participants faulted RED’s own behavior and
barely mentioned BLUE (e.g. “[RED] questioned their route
and reversed, thus not having enough steps to reach the star.”).

Discussion

Experiment 2 expanded on Experiment 1 by testing scenarios
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Figure 6: Experiment 2 explanations. Frequency of features
mentioned (A) across all trials for a random subset of partic-
ipants, and (B) specifically on trials 3B and 4B.

involving higher-level reasoning, modeling responsibility for
RED in addition to BLUE, and analyzing open-ended expla-
nations about the outcome. Like in Experiment 1, we found
that responsibility for BLUE was best explained by a combi-
nation of beliefs about BLUE’s causal role in the situation and
their helping or hindering intentions. In turn, this predicted
responsibility for RED well, although other factors are likely
also at play. While RED’s intentions are not apparent (as they
have no social goal), it is still possible to construct counter-
factuals in which they had acted differently. For example, in
trial 1A, RED might be held responsible for the failure on the
basis that, had they been level-2 instead of level-0, they would
have succeeded like in trial 1B, where they waited for BLUE
to move the box out of the way.

Our model captures participants’ counterfactual simula-
tions and intention inferences to a good extent, but there may
be additional sources of uncertainty in people’s judgments
that are not yet accounted for. We found mixed results re-
garding situations in which BLUE seemingly affected RED’s
mental states. In both trials 3B and 4B, participants were
uncertain about whether RED would have succeeded without
BLUE, but they recognized BLUE’s deceptive intentions more
strongly in trial 3B, which drove responsibility judgments
up. Perhaps they were less confident in trial 4B because RED
backtracked less, or because of an asymmetry between posi-
tive and negative signaling. Future work is needed to resolve
these cases of higher-level reasoning.

Conclusion
In this paper, we developed and tested a computational model
of responsibility judgments that bridges mechanisms of coun-
terfactual simulation and intention inference using a shared
underlying generative planner. The planner captures people’s
intuitive theory of mind about agents’ behavior. Across a va-
riety of animated scenarios, our model captured participants’
counterfactual simulations and intention inferences. To-
gether, these two components predicted responsibility judg-
ments better than alternative models of effort, heuristics, or
either component alone. This model brings us closer to a
formal, comprehensive understanding of how people attribute
responsibility.
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