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Superconductivity in a doped valley coherent insulator in magic angle graphene:
Goldstone-mediated pairing and Kohn-Luttinger mechanism

Vladyslav Kozii,1, 2 Michael P. Zaletel,1, 2 and Nick Bultinck1, 3

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Department of Physics, Ghent University, 9000 Ghent, Belgium
(Dated: May 28, 2020)

We consider magic angle graphene in the doping regime around charge neutrality and study the
connection between a recently proposed intervalley coherent insulator at zero doping and the neigh-
boring superconducting domes. The breaking of the valley U(1) symmetry generates massless Gold-
stone modes, which couple to the doped charge carriers. We derive the effective interaction between
these Goldstone modes and the conduction electrons and study its role in mediating superconduc-
tivity. Combining it with the screened Coulomb potential, we find weak-coupling superconducting
instabilities in the two-component p− and d−wave channels. The competition between the two
channels is set by the distance between the bilayer graphene device and the metallic gates. We
find that the p−wave instability originates from the attraction mediated by the Goldstone modes,
while the d−wave pairing is caused purely by the screened Coulomb interaction, similarly to the
Kohn-Luttinger mechanism.

I. INTRODUCTION

The experimental discovery of superconductivity in
twisted bilayer graphene (tBLG) [1] has spurred a
tremendous interest to develop a theoretical understand-
ing of the underlying pairing mechanism [2–28]. At
present, the microscopic origin of superconductivity in
tBLG is still under debate. For example, it is not clear
whether electron pairing is the result of phonon exchange,
or whether it is driven by a more exotic mechanism com-
ing from Coulomb repulsion. It is also equally unclear
whether the superconducting domes are in any way re-
lated to the correlated insulating phases which are ob-
served in transport experiments at certain integer fill-
ings [29–33] (signatures of these insulating phases are also
seen in spectroscopic measurements [34–39]). This last
question was addressed in more detail in two recent ex-
perimental works [40, 41], where superconducting domes
in the doping regimes around two electrons or holes per
moiré unit cell (ν = ±2) were observed without any sig-
nature of a correlated insulator nearby. This is suggestive
for the fact that the superconductors and insulators near
ν = ±2 are not related in any crucial way, and might
even be competing phases.

In Refs. [31, 40] superconducting domes were also ob-
served next to the charge neutrality point, on both the
electron and hole doped sides. In Ref. [40] it was found
that these domes appear only when the distance be-
tween the tBLG device and the gates is large enough,
i.e., when screening by the metallic gates is sufficiently
weak. This observation suggests that Coulomb repulsion
plays an important role for the origin of superconductiv-
ity near charge neutrality. Interestingly, in the same de-
vices insulating behavior is also observed at charge neu-
trality [31, 40] (a charge gap was also observed in the
tunneling experiments of Ref. [38]).

In Ref. [42] it was proposed, based on a self-consistent

Hartree-Fock analysis, that the insulating behavior of
magic angle graphene at charge neutrality is the result
of an intervalley coherent order which develops at zero
temperature. This type of order implies that the elec-
tron system spontaneously breaks the valley-charge con-
servation symmetry, and therefore has a valley Goldstone
mode. The valley-coherent insulator was dubbed the K-
IVC (Kramers intervalley coherent) insulator [42], be-
cause it is invariant under an emergent spinless Kramers
time-reversal symmetry.

In this work, we take the K-IVC insulator of Ref. [42]
as the starting point for a study of superconductivity in
tBLG near charge neutrality. In particular, we investi-
gate the potential role of the valley Goldstone mode in
the formation of Cooper pairs. More concretely, we study
how the attractive interaction mediated by the exchange
of the Goldstone modes, taken together with the screened
Coulomb interaction, can give rise to the superconduct-
ing instabilities of the doped insulator near charge neu-
trality. Importantly, we find that the density of states of
the doped K-IVC insulator is significantly smaller than
that of the “bare” (non-interacting) nearly flat bands of
tBLG at the magic angle [43–45], which allows us to
treat the problem within a weak-coupling approach. We
note that the role of valley Goldstone modes for super-
conductivity has also been discussed previously in Ref.
[46], where the authors considered a phenomenological
inter-valley coherent insulator in tBLG.

Remarkably, we find that the leading superconducting
instability in the doped K-IVC state is either in the two-
component p-wave or d-wave channel, depending on the
gate distance. The origin of this result is rooted in the
interplay between the attraction mediated by the Gold-
stone modes and screened Coulomb interaction. When
the distance between the gates is sufficiently large and
the K-IVC state is well-developed, the interaction due to
Goldstone modes has sufficiently strong components in
both s−wave and p−wave channels. The former, how-
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ever, is significantly suppressed by the repulsive part of
the Coulomb interaction, resulting in p−wave supercon-
ductivity. The d−wave pairing state, on the other hand,
originates purely from the Coulomb interaction, simi-
larly to the Kohn-Luttinger mechanism [47, 48]. The
momentum-dependent screening due to the doped charge
carriers generates strong attractive component in the
d−wave channel, which becomes dominant when the dis-
tance between the gates becomes small enough. Finally,
we emphasize that our results do not rely on the retarda-
tion effects that are required to weaken strong Coulomb
repulsion in conventional metals. The absence of retar-
dation generally poses a serious problem in the study of
superconductivity in low-density materials with a small
Fermi energy [49–51], but does not play a significant role
in our work.

Our BCS-type calculation predicts the value of the
dimensionless interaction strength in the Cooper chan-
nel of approximately λ ≈ 0.1 for both p−wave and
d−wave channels. This is an unexpectedly large value for
the d−wave pairing realized through the Kohn-Luttinger
mechanism, which is usually believed to be extremely
weak [47]. However, this value is still too small to ex-
plain the experimentally observed superconducting tran-
sition temperature Tc ≈ 0.3 K. Nevertheless, since Tc is
exponentially sensitive to λ, Tc ∝ exp(−1/λ), one would
obtain the value of Tc comparable to the experiment if
λ is only two times larger. One way to obtain a larger
value of λ is to take the electron’s mass renormalization
into account, which has been neglected in this work. The
enhanced effective mass would increase density of states
at the Fermi level, leading to a higher value of λ. We
leave the detailed study of this and related questions for
a future work.

As was found in Ref. [42], the valley coherent order
at charge neutrality gets destroyed under sufficient sub-
strate alignment. The pairing instabilities discussed in
the present work would then disappear together with it.
This could potentially explain why no superconductivity
is seen in the aligned devices of Refs. [32, 33]. As ex-
plained in more detail below, the pairing instabilities we
find are also sensitive to the gate distance, which could
explain the correlation between gate distance and critical
temperature observed in Ref. [40].

We want to point out that a recent work has put for-
ward another, topological pairing mechanism for super-
conductivity in tBLG, also starting from the same K-IVC
insulator at charge neutrality. In Ref. [28], the anal-
ogy between tBLG at charge neutrality and two time-
reversed copies of a quantum Hall ferromagnet was used
to propose that superconductivity results from the con-
densation of charge-2e skyrmions. It was found [28] that
these skyrmion excitations become energetically compet-
itive with the conventional electron excitations at small
doping. It is not clear whether the topological pairing
mechanism of Ref. [28] is in any way competing with the
Fermi surface instabilities discussed in this work. And if
they were to be competing mechanisms, then the compe-

tition is likely to be set by microscopic details which are
highly sample-dependent.

The remainder of the paper is organized as follows.
In Sec. II, we start by reviewing the essential proper-
ties of the valley-coherent insulator found in Ref. [42].
In Sec. III, we derive the coupling between electrons in
the conduction bands of the valley-coherent state and
the valley Goldstone mode (for concreteness, we focus
on electron doping). In Sec. IV, we briefly discuss the
repulsive Coulomb interaction between the doped elec-
trons and how it gets screened in the conventional way
by particle-hole excitations. The effective attractive and
repulsive interactions for electrons at the Fermi surface
are discussed in Sec. V. In the same section, we also de-
compose the interaction in the different angular momen-
tum channels and look for superconducting instabilities.
We end with a discussion and outlook in Sec. VI. In the
Appendices, we provide additional details on how to cal-
culate the Goldstone mode propagator at charge neutral-
ity and on how to derive an effective low-energy theory
for the doped electron system and the Goldstone modes.
We also give a more thorough discussion of the analysis
of the superconducting instabilities.

II. THE K-IVC INSULATOR AT CHARGE
NEUTRALITY

Our starting point is the Kramers intervalley coherent
(K-IVC) insulator, which was proposed in Ref. [42] to de-
scribe the ground state of magic angle graphene at charge
neutrality (we note that similar states were also discussed
previously in Refs. [46, 52]). More recently, evidence for
intervalley coherence in tBLG at charge neutrality was
also found in a quantum Monte Carlo study [53]. We
write the mean-field Hamiltonian of the K-IVC insulator
as

H = H0 +H∆ =
∑
k

c†k [h0(k) + ∆(k)] ck , (1)

where H0 is the valley-symmetric part and H∆ is the
order parameter contribution. By definition, the order
parameter satisfies τz∆(k)τz = −∆(k), where τz is the
third Pauli matrix acting on the valley indices. The

electron operators c†k are defined in the band basis of
the Bistritzer-MacDonald (BM) model of twisted bilayer
graphene [45]. This means that each electron carries val-
ley and spin quantum numbers τ ∈ {+,−} and s ∈ {↑, ↓},
along with a BM band label a. For our numerical sim-
ulations, we keep six bands per spin and valley, corre-
sponding to the two flat bands and the first two disper-
sive bands above and below charge neutrality. The order
parameter contribution H∆ breaks both the valley U(1)
symmetry [denoted as UV (1)] and spinless time-reversal
symmetry T [42], which act as
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FIG. 1. Self-consistent mean-field band structure of the K-
IVC state at charge neutrality along two cuts through the
mini-BZ, one in the x−direction (left panel) and one in the
y−direction (right panel). The parameters which were used
in the BM Hamiltonian are w1 = 110 meV and w0/w1 =
0.75, where w0 (w1) is the sublattice diagonal (off-diagonal)
interlayer tunneling strength. For the interaction, a dual-gate
screened Coulomb interaction with gate distance D = 15 nm
and dielectric constant ε = 10 was used. For more details, see
Ref. [42].
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FIG. 2. Dispersion of the K-IVC Goldstone mode at charge
neutrality.

UV (1) : c†τ,s,a,k→ eiτφc†τ,s,a,k, (2)

T : c†τ,s,a,k→ c†−τ,s,a,−k , i→ −i. (3)

In Fig. 1, the band structure of the K-IVC insulator
is shown along two orthogonal cuts through the mini-
Brillouin zone (mini-BZ). Although the K-IVC state
breaks both time-reversal and UV (1), it preserves an

emergent Kramers time-reversal symmetry T̃ = τzT =
iτyK [42], where τi are the Pauli matrices acting on the
valley indices and K is complex conjugation. Because of
this Kramers time-reversal symmetry, the K-IVC band
structure has, on top of the spin degeneracy, an addi-
tional two-fold Kramers degeneracy at the Γ and the M
points, i.e., the time-reversal invariant points in the mini-
BZ.

Because the UV (1) symmetry is broken spontaneously,
there is a Goldstone mode at zero temperature. In reality,

the UV (1) symmetry is weakly broken, so the Goldstone
modes will acquire a small mass. Here, however, we ig-
nore these very small UV (1) symmetry breaking terms
and derive the leading (quadratic) terms in the effective
action of the Goldstone modes by integrating out the
gapped fermions. The resulting imaginary time action
then takes the general form

SG = −1

2

∫
dω

2π

∫
dq

(2π)2
φ(iω,q)D−1(iω,q)φ(−iω,−q) ,

(4)
with

D−1(iω,q) = χs(iω)2 −K(q) . (5)

In Appendices A and B, it is explained how we com-
pute both K(q) and χs from the mean-field K-IVC band
structure. From the long wavelength part of K(q), one
obtains the stiffness of the K-IVC state ρs as K(q) =
ρsq

2 + O(q4). We find numerically that ρs ≈ 4 meV,
which agrees with the value obtained in Ref. [28] via a dif-
ferent method. For χs, we find numerical values χs ≈ 0.1
meV−1L−2

M (in units where ~ = 1), with LM ≈ 12 nm the
moiré lattice constant at the magic angle. The Goldstone
mode velocity vG is given by

vG =

√
ρs
χs

, (6)

and is of the order vG ≈ 6.3 meV×LM . From Eq. (4),
we also obtain the Goldstone mode dispersion ω(q) as

ω(q) =

√
K(q)

χs
. (7)

In Fig. 2, we plot ω(q) for values of q . 2π/LM . Note
that φ(τ, r) is a continuum field, and that its dispersion
is not periodic under shifts by moiré reciprocal lattice
vectors. From Fig. 2, we see that ω(q) reaches a maximal
value of ≈ 10 meV when |q| ∼ π/LM , and starts decaying
for larger momenta.

III. DOPING THE K-IVC STATE AND
COUPLING TO GOLDSTONE MODES

In this section, we consider what happens if we dope
away from the charge neutrality point. For concrete-
ness, we focus on electron doping and work at a fill-
ing ν = 1/4 (i.e., one electron for every four moiré unit
cells). By solving the Hartree-Fock self-consistency equa-
tions at ν = 1/4, we find that the K-IVC bands do not
change significantly compared to those at charge neu-
trality. The additional doped electrons simply occupy
the lowest-energy states in the conduction bands of the
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FIG. 3. (a) K-IVC conduction bands at θ = 1.09◦ with the
Fermi energy at ν = 1/4 indicated by a gray dashed line. (b)
Colorplots of the band energies of the two K-IVC conduction
bands with a contour corresponding to the two Fermi pockets
around Γ at ν = 1/4.

band structure at charge neutrality, without any major
changes to the dispersion or the energy gap between va-
lence and conduction bands. In Fig. 3, the K-IVC con-
duction bands are shown and the Fermi energy at ν = 1/4
is indicated by a gray dashed line. It lies approximately
3.2 meV above the conduction band minimum. From
Fig. 3, we see that at ν = 1/4 there are two Fermi
surfaces around the Γ point. The average Fermi veloc-
ity for electrons at the outer (inner) Fermi surface is
vF,1 ≈ 5.5 meV×LM (vF,2 ≈ 8 meV×LM ). Through-
out this work, we will use a notation where subscript 1
(2) refers to the lower (upper) K-IVC conduction band
containing the outer (inner) Fermi surface. In Fig. 4,
we show the Fermi energy εF and the density of states
at the Fermi energy N(0) as a function of the filling ν.
We see that for ν = 1/4, the density of states is given
by N(0) ≈ 0.08 meV−1L−2

M . Note that this value is sig-
nificantly smaller than the density of states in the BM
bands at the magic angle, where the density of states is
N(0)BM & 1 meV−1L−2

M . This will be important for our
analysis below.

We now derive the coupling between the electrons in
the conduction bands and the K-IVC Goldstone modes.
Similarly to the calculation of K(q) in Appendix A, we
start from the Hamiltonian [54]

H[φ] = H0 + e−iQ̂H∆e
iQ̂ , (8)

where

Q̂ =
1

2

∫
dr φ(r)f†r τzfr (9)

0.2 0.3 0.4 0.5
0.05

0.10

0.15

N
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) (
m

eV
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2
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4
5
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m

eV
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FIG. 4. Density of states at the Fermi energy N(0) and the
Fermi energy εF (relative to the band minimum) of the K-IVC
conduction bands as a function of the filling factor ν.

is the operator that generates spatially-dependent valley
rotations. Specifically, the function φ(r) is the spatially-
dependent UV (1) angle over which the K-IVC order pa-
rameter is rotated and f†r are the real-space fermion cre-
ation operators of the tBLG continuum model [43–45] in
the orbital basis. Going to momentum space and trans-
forming to the band basis of the BM model we can write
Q̂ as

Q̂ =
1

2
√
A

∑
k,q

φqc
†
k+qΛq(k)τzck , (10)

where A is the area of the system and c†m,k create elec-

trons in the BM bands, with m = (τ, s, a) a combined
valley, spin, and band index. The sum over k is restricted
to the first mini-BZ, while the sum over q runs over all
BZ in the repeated zone scheme. In Eq. (10), the form
factors Λq(k) result from doing the unitary transforma-
tion from the orbital basis to the BM band basis and they
are defined as

[Λq(k)]mn = 〈vm,k+q|vn,k〉 , (11)

where |vm,k〉 are the periodic part of the Bloch states of
the BM Hamiltonian. Note that since the BM bands have
a well-defined valley quantum number, we could put the
valley matrix τz outside of the form factor in Eq. (10).

Expanding H[φ] to first order in φ we find

H[φ] = H − i[Q̂,H∆] , (12)

where H =
∑

k c
†
k[h0(k) + ∆(k)]ck is the K-IVC mean-

field Hamiltonian. Written out explicitly, the first order
term takes the form

−i[Q̂,H∆] = (13)

i

2
√
A

∑
k,q

φq c
†
k+q [∆(k + q)Λq(k)τz − Λq(k)τz∆(k)] ck.

We now perform a transformation to the eigen-
basis of the K-IVC Hamiltonian, where H =



5∑
α,s,kEα,kψ

†
α,s,kψα,s,k. The electron operators ψ†α,s,k,

labeled by a K-IVC band index α and a spin index s, are
related to the electron operators in the BM basis as

ψ†α,s,k =
∑
m

[uα,k]m c
†
m,s,k , (14)

where [uα,k]m are the components of the K-IVC eigen-
states |uα,k〉. In the K-IVC eigenbasis, the first order
term in φ takes the form

− i[Q̂,H∆] =
1√
A

∑
k,q

∑
α,β,s

gαβ(k,q)φqψ
†
α,s,k+qψβ,s,k ,

(15)
where the electron-boson coupling gαβ(k,q) is given by

gαβ(k,q) = (16)

i

2
〈uα,k+q|(∆(k + q)Λq(k)τz−τzΛq(k)∆(k))|uk,β〉.

From Λ0(k) = 1, we see that the coupling at zero mo-
mentum transfer can be written as [54]

gαβ(k, 0) =
i

2
〈uα,k|[∆(k), τz]|uβ,k〉

=
i

2
〈uα,k|τz|uβ,k〉 × (Eα,k − Eβ,k) , (17)

where we have used that [∆(k), τz] = [h0(k) + ∆(k), τz].
Written in this form, it is clear that the intraband scat-
tering processes vanish at zero momentum transfer. This
important property implies that, at small coupling, the
Goldstone modes are not Landau damped and do not
destroy the Landau quasi-particles [54].

The coupling of the electrons to the Goldstone modes
will lead to an effective attractive interaction between
the electrons, similar to the attractive interaction me-
diated by acoustic phonons. Below, we will investigate
the potential role of this attractive interaction for super-
conductivity. But before doing so, we first discuss the
repulsive Coulomb interaction in the next section.

IV. COULOMB INTERACTION AND
SCREENING

The bare repulsive interaction between the doped elec-
trons in the K-IVC conduction bands is given by

HC =
1

2A

∑
q

VC(q) : ρqρ−q :, (18)

where VC(q) the dual gate-screened Coulomb potential

VC(q) =
e2

2ε0ε

tanh(Dq)

q
. (19)

In this expression, D is the distance from the tBLG de-
vice to the metallic gates and ε is the dielectric constant.
Note that in the Coulomb interaction, the sum over q
is not restricted to the first mini-BZ, but goes over all
BZ in the repeated zone scheme. The operators ρq are
defined as

ρq =
∑
k

ψ†k+qFq(k)ψk (20)

and correspond to the density of electrons in the K-IVC
conduction bands. The form factors Fq(k) which appear
in this expression are given by

[Fq(k)]αβ = 〈uα,k+q|Λq(k)|uβ,k〉 , (21)

where |uα,k〉 are the K-IVC eigenstates corresponding to
the conduction bands and Λq(k) are the form factors
defined previously in Eq. (11). The form factors Λq(k)
result from expressing the Coulomb interaction in the
BM band basis (see, e.g., Ref. [42] for details). Note that
because of these form factors the Coulomb interaction ac-
quires an explicit dependence on the incoming momenta
k and k′.

Because there is a Fermi surface at ν = 1/4, the elec-
trons can efficiently screen the Coulomb interaction. To
take this effect into account, we calculate the standard
(static) polarization bubble, which evaluates to

Π(q) = −2

∫
dk

(2π)2

∑
α,β

nα,k+q − nβ,k
Eα,k+q − Eβ,k

∣∣ [Fq(k)]αβ
∣∣2 ,
(22)

where nα,k = n(Eα,k) = Θ(εF − Eα,k) is the zero-
temperature Fermi-Dirac distribution [Θ(x) is the Heav-
iside step function] representing the fermion occupation
numbers, εF is the Fermi energy, and the factor of two
comes from the spin degeneracy.

From the polarization bubble we obtain the dielectric
function ε(q) = 1 + VC(q)Π(q), which appears in the
static RPA screened Coulomb interaction

V C,scrαβλσ (q,k,k′) =
VC(q)

ε(q)
[Fq(k)]αβ [F−q(k′)]λσ (23)

=
e2

2ε0ε

tanh(Dq)

q + ks(q)
[Fq(k)]αβ [F−q(k′)]λσ .

In the last line, we have defined a q-dependent inverse
screening length ks(q) given by

ks(q) =
e2

2ε0ε
Π(q) tanh(Dq). (24)

In Fig. 5, the inverse screening length ks(q) is plotted,
both in the q-plane and along the two cuts in the qx− and
qy−directions. We see that ks(q) decays as a function of
|q| and becomes negligibly small when |q| ∼ 4π/LM .
This is a result of the decay of the form factors Fq(k).
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FIG. 5. (a) Inverse screening length ks(q) as a function of q. (b) Inverse screening length ks(q) along a cut in the qx− and
qy−directions. The results were obtained at filling ν = 1/4 on a 24 × 24 momentum grid using θ = 1.09◦, ε = 10, and D = 15
nm.

V. INTERACTIONS IN THE COOPER
CHANNEL AND SUPERCONDUCTING

INSTABILITIES

In this Section, we examine both the screened Coulomb
interaction and the Goldstone mode-mediated interac-
tion in the Cooper channel to perform the standard
BCS-type analysis of superconductivity. The screened

Coulomb interaction V C,scrαβλσ (q,k,k′) was defined previ-

ously in Eq. (23). As for the attractive interaction me-
diated by the Goldstone modes, we find that it is given
by

HG =
1

2A

∑
q,k,k′

V Gαβλσ(q,k,k′) (25)

×ψ†α,s,k+qψ
†
λ,s′,k′−qψσ,s′,k′ψβ,s,k ,

where the summation over band indices α, β, λ, σ and
spin indices s, s′ is implicit. Note that similarly to the
Coulomb interaction the sum over q in Eq. (25) runs over
all mini-BZ in the repeated zone scheme. The potential
V G(q,k,k′) is given by

V Gαβλσ(q,k,k′) = gαβ(k,q)D(0,q)gλσ(k′,−q) , (26)

where D(0,q) = −K(q)−1 is the Goldstone mode propa-
gator defined in Eq. (5) evaluated at zero frequency and
gαβ(k,q) is the coupling function defined in Eq. (16).

The fact that the interaction mediated by the Gold-
stone mode at charge neutrality and at finite doping
have approximately the same form, Eq. (25), is a non-
trivial result. We discuss it in detail in Appendix C,
where we use the path-integral formalism to integrate
out the valence band fermionic degrees of freedom and
derive the effective low-energy theory that couples Gold-
stone modes and the conduction band fermions. After
carefully summing up certain sets of diagrams we end up
with the conclusion that, to good accuracy, the effective

interaction between the electrons on the Fermi surface
mediated by Goldstone modes is given by the same ex-
pression that one would obtain by integrating out Gold-
stone modes at charge neutrality, i.e., Eqs. (25)-(26). We
emphasize that this interaction should not be viewed as
some low-energy starting point that need to be further
renormalized by, e.g., particle-hole modes. Instead, it is
an effective interaction that already takes into account
important renormalization effects and will be used di-
rectly to calculate superconducting instabilities. This is
somewhat similar in spirit to the Eliashberg theory of su-
perconductivity, where one self-consistently solves for the
electron Green’s function, while taking electron-phonon
interaction as an input parameter (we, however, do not
study the frequency dependence of the gap function in
this paper, but do a BCS-type analysis instead). An-
other important result that we obtain and discuss in de-
tail in Appendix C is that the Goldstone mode-mediated
attraction (25) is very weakly screened by the Coulomb
interaction.

From Fig. 4, we see that for filling factors 0 < ν < 0.5,
the Fermi energy is smaller than the Goldstone mode
bandwidth, which we previously established to be around
10 meV. This implies that we cannot invoke retardation
effects to decrease the Coulomb pseudopotential. We
therefore inevitably arrive at the conclusion that to ob-
tain conventional s-wave superconductivity purely from
the Goldstone mode exchange we need an attractive in-
teraction which is larger than the repulsive Coulomb
interaction. This seems hard to achieve, which moti-
vates us to also explore higher-harmonics superconduct-
ing channels.

To study the superconducting instabilities, we focus on
the Cooper channel of the effective interaction given by
the sum of Eqs. (23) and (25):

V̂ Cαβ(k′,k) =
∑
G

V C,scrαβαβ (k′ − k + G,k,−k), (27)

V̂ Gαβ(k′,k) =
∑
G

V Gαβαβ(0,k′ − k + G,k,−k) , (28)
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where the sum over moiré reciprocal lattice vectors G
takes into account the umklapp process due to the su-
perlattice potential. In our numerical calculations, we
restrict G to lie within the first three shells of mini-BZ.

In Appendix D, it is shown that because of the Kramers
time-reversal symmetry of the K-IVC state, the interac-
tions in the Cooper channel can be written as

V̂ Cαβ(k′,k) = eiϕα(k′)

(∑
G

VC(|k′ − k + G|)
ε(k′ − k + G)

∣∣ [Fk′−k+G(k)]αβ
∣∣2) e−iϕβ(k), (29)

V̂ Gαβ(k′,k) = eiϕα(k′)

(∑
G

D(0,k′ − k + G)|gαβ(k,k′ − k + G)|2
)
e−iϕβ(k) , (30)

where eiϕα(k′) and e−iϕβ(k) are gauge-dependent phase
factors. These phase factors do not play an important
role in our analysis of the superconducting instabilities
and we can simply omit them for now. At the end of our
discussion, we will reintroduce these phase factors.

Next, we define the total interaction potential in the
Cooper channel for electrons on the Fermi surface as

Vαβ(θ′, θ) = V̂ Cαβ [kF,α(θ′),kF,β(θ)]

+ V̂ Gαβ [kF,α(θ′),kF,β(θ)] , (31)

where θ and θ′ are polar angles in momentum space and
kF,α(θ) is the (angle-dependent) Fermi momentum on
the Fermi surface of band α.

We will look for superconducting instabilities with gap
functions of the form

∆̃s
k =

(
∆̃1,k 0

0 ∆̃2,k

)
⊗ isy, (32)

∆̃t
k =

(
∆̃1,k 0

0 ∆̃2,k

)
⊗ isys , (33)

where ∆̃s
k and ∆̃t

k correspond to spin-singlet and spin-

triplet gaps, respectively, and ∆̃α,k (or ∆̃α,k) is the gap
function in the band labeled by α. Note that we use
a tilde to distinguish the superconducting gap from the
K-IVC order parameter.

As reviewed in more detail in Appendix E, to find
superconducting instabilities with gaps as in Eqs. (32)
and (33) we need to solve the following eigenvalue equa-
tion [55]

∑
β

∫
dθ

2π
Vαβ(θ′, θ)Nβ(0)∆̃β(θ) = −λ∆̃α(θ′) , (34)

where λ > 0 and Nβ(0) is the density of states per spin
at Fermi surface β, which is given by

Nβ(0) =

∫
dθ

2π

kF,β(θ)

2π

∣∣∣∣∂Eβ(k, θ)

∂k

∣∣∣∣−1

k=kF,β(θ)

. (35)

Note that N1(0) + N2(0) = N(0)/2, since we previously
defined N(0) to contain a spin degeneracy factor. While
Eq. (34) is written for the spin-singlet gap function, equa-
tion for the spin-triplet pairing has exactly same form
with ∆̃α(β) being replaced with ∆̃α(β).

To find the solutions of Eq. (34), we go to the angular
momentum basis and define

Vαβ(m,n) =

∫
dθ′

2π

∫
dθ

2π
eimθ

′
Vαβ(θ′, θ)e−inθ. (36)

Because Vαβ(m,n) is real (recall that we ignore the
gauge-dependent phase factors for now), it follows that
V ∗αβ(m,n) = Vαβ(−m,−n). Also, because the K-IVC

state is invariant under the mirror symmetry (x, y) →
(x,−y), it follows that Vαβ(−θ′,−θ) = Vαβ(θ′, θ). This
implies that Vαβ(m,n) = Vαβ(−m,−n) = V ∗αβ(m,n),

such that that the components Vαβ(m,n) are real. And
finally, since the K-IVC state is invariant under six-fold
rotations, it also follows that Vαβ(m,n) = 0 if m 6= n
mod 6.

For the numerical calculations, we restrict ourselves
to angular harmonics einθ with |n| ≤ 6. This converts
the eigenvalue equation (34) to a set of decoupled finite-
dimensional matrix eigenvalue equations

∑
β,M

Vαβ(n+6N,n+6M)Nβ(0)∆̃n
β,M = −λn∆̃n

α,N , (37)

labeled by n ∈ {0,±1,±2, 3}. In Eq. (37), we have de-

fined ∆̃n
α,N ≡ ∆̃α,n+6N , and ∆̃α,n =

∫
dθ
2π e

inθ∆̃α(θ). Nu-
merically, the summation over M is restricted by the re-
quirement that |n + 6M | ≤ 6 (same holds for N , i.e.,
|n + 6N | ≤ 6). Solutions to Eq. (37) with n = 0 de-
scribe instabilities in the s-wave channel, solutions with
n = ±1 are instabilities is the degenerate p-wave chan-
nels, n = ±2 correspond to the degenerate d-wave chan-
nels, and n = 3 is the f -wave channel. Of course, so-
lutions with even (odd) angular momentum necessarily
correspond to spin-singlet (spin-triplet) gaps.

The gap functions on the Fermi surfaces corresponding
to the different λn are determined by the eigenvectors
∆̃n
α,N :
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FIG. 6. Dimensionless interaction strengths of the supercon-
ducting s−, p−, and d−wave channels as a function of the
gate distance D.

∆̃n
α(θ) =

∑
N

∆̃n
α,Ne

−i(n+6N)θ. (38)

At this point, it is straightforward to reintroduce the
gauge-dependent phase factors eiϕα(θ). One finds that
these phase factors do not change the values of λn, but
only modify the gap function to take the form

∆̃n
α(θ) = eiϕα(θ)

∑
N

∆̃n
α,Ne

−i(n+6N)θ (39)

In Fig. 6, we plot the numerically obtained values for
λs, λp, and λd as a function of gate distance D. We
omit λf since we do not find a non-trivial solution for
the gap equation in this channel. The results in Fig. 6
were obtained using N1(0) = 2.9× 10−2 meV−1 L−2

M and

N2(0) = 1.1× 10−2 meV−1 L−2
M .

We see that for small values of D, the d-wave solu-
tion is the strongest one. Remarkably, we find that this
d-wave instability purely follows from the momentum de-
pendence of the screened Coulomb interaction, similarly
to the Kohn-Luttinger mechanism [47, 48]. In particu-
lar, we find that the d-wave solution survives with ap-
proximately the same strength if we completely ignore
the effect of the Goldstone modes. However, it disap-
pears once we replace the polarization operator Π(q) in
Eq. (24) with its momentum independent value at q = 0,
Π(0) = N(0). Therefore, we conclude that the effective
attraction in the d-wave channel originates from the mo-
mentum dependence of the screening.

We also see from Fig. 6 that the p-wave solution in-
creases rapidly with D and becomes comparable to the
d-wave solution at D ≈ 25 nm. For larger values of the
gate distance, the p-wave solution becomes the dominant
instability. We find that the attraction in the p-wave
channel comes from the Goldstone-mediated interaction,
while the Coulomb interaction tends to suppress it.

For small values of D, we also find a subleading insta-
bility in the s-wave channel, corresponding to s+− pairing

with different signs of the superconducting gap on differ-
ent Fermi surfaces. However, this instability quickly de-
creases as D increases and it never becomes competitive
with either the d- or p-wave channel.

In the experiments of Ref. [40], the gate distance of
the device displaying superconductivity around charge
neutrality was approximately 12 nm, which according to
Fig. 6 puts us in the regime where the d-wave channel is
the strongest one, with λd ≈ 0.08. Using the standard
BCS analysis (see Appendix E), one obtains an estimate
for the critical temperature given by

kBTc ∼ εF × e−1/λ . (40)

Using εF = 3.2 meV and λ ≈ 0.08, one finds Tc ≈
1.3 × 10−4 K, which is too low compared to the exper-
imental values of Tc ≈ 0.3 K. However, because of the
exponential dependence of Tc on λ, we would obtain a
value for the critical temperature which is comparable
to the experimental values if λd was larger by a factor of
only 2−2.5. There can be many reasons for why our sim-
plified analysis is off by a factor of this magnitude. For
example, we have not taken the mass renormalization of
the electrons near the Fermi surface into account. Both
the Coulomb and the Goldstone mode-mediated interac-
tion will lead to a higher effective mass m∗, and therefore
also to a higher density of states, resulting in enhanced
values for λ in all channels.

VI. DISCUSSION

A. Comparison to other pairing mechanisms

Numerous other pairing mechanisms for superconduc-
tivity in tBLG have been discussed previously in the liter-
ature. In Refs. [3, 4, 6, 7, 13] it was proposed that tBLG
is a conventional phonon-driven superconductor. Refer-
ences [2, 5, 8–10, 14–28, 46], on the other hand, have put
forward a pairing mechanism which originates from the
repulsive Coulomb or Hubbard interaction. There are
several points which distinguish the results obtained in
this paper from these previous works. First, our main fo-
cus is on doping regimes close to charge neutrality, while
the majority of the previous works considered supercon-
ductivity near ν = ±2. Secondly, many previous works
which connect the superconducting domes in tBLG to a
parent insulating state at integer filling start from an ef-
fective (Hubbard) model which is assumed to capture the
same physics as the BM model. Here, on the other hand,
we have used the actual BM Hamiltonian, keeping not
only the flat bands but also some of the remote bands.
And finally, many of the previous works which did use
the BM model as a starting point considered Fermi sur-
face instabilities of the “bare” nearly flat bands, while
in this work we have studied Fermi surface instabilities
of the self-consistent K-IVC bands. One advantage of
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the latter approach is that the density of states in the
K-IVC bands is much lower than the density of states of
the original BM bands, which opens up the opportunity
to meaningfully apply a weak-coupling approach.

Of all previous studies, Refs. [28] and [46] are most
closely related to the present work. In particular,
Ref. [28] also starts from the K-IVC insulator as the par-
ent state for superconductivity, but it invokes a topologi-
cal pairing mechanism, which is different from the weak-
coupling superconducting instabilities discussed here.
Additional study is required to better understand the
interplay/competition between these two pairing mecha-
nisms. Ref. [46] also considered valley Goldstone mode
exchange as a mechanism for superconductivity in tBLG,
but the inter-valley coherent insulator of Ref. [46] is dif-
ferent from the K-IVC insulator we consider in this work.

B. Outlook

To summarize, we have studied the potential connec-
tion between the insulating state observed in tBLG at
charge neutrality [31, 38, 40] and the neighboring super-
conducting domes [31, 40]. Our starting point was to
identify the insulating state with the K-IVC insulator
of Ref. [42], which spontaneously breaks the valley-U(1)
symmetry. We have coupled the charge carriers at fi-
nite doping to the valley Goldstone modes and combined
the resulting attractive interaction with the screened
Coulomb interaction. We have then analysed the differ-
ent weak-coupling superconducting instabilities resulting
from the combined interaction. Depending on the dis-
tance between the tBLG device and the metallic gates,
we found that the dominant pairing instability is either
in the two-component d−wave or p−wave channel. Inter-
estingly, pairing in the d−wave channel is generated by
the Kohn-Luttinger-like mechanism via the momentum-
dependent screening, while pairing in the p−wave chan-
nel is the result of Goldstone-mode exchange.

There is still a lot of room for improvement on the
results presented here. Firstly, our starting point is a
self-consistent Hartree-Fock band spectrum, and there-
fore ignores many-body correlation effects of the insu-
lating state. Secondly, our analysis of the interactions
that lead to the superconducting instabilities relies on
the RPA approximation and thus ignores the effects of
quantum fluctuations. Thirdly, our numerics were done
on a 24×24 momentum grid, which introduces unknown
finite-size errors in the numerical values for the different
superconducting instabilities. And finally, the values for
the critical temperature obtained via the standard BCS
formula are too low compared to the experimental val-
ues [31, 40]. However, we hope that the approach put
forward in this paper can be used as a starting point for
future theoretical analytical and numerical works. For in-
stance, a natural generalization of the present work would
be to include the dynamical effects within the Eliashberg
theory and investigate the role of the vertex corrections

to it, which were completely neglected in this study.
The present work also leaves several other questions

unanswered, which deserve further theoretical investiga-
tion. For example, a better physical understanding of the
numerically obtained net attractive interaction in the p-
wave and d-wave channels is required. Also, it would
be interesting to understand whether the same pairing
mechanism for superconductivity could also be operative
near ν = ±2, as a spin polarized K-IVC state is expected
to be a good candidate ground state at these even inte-
ger fillings [42]. In particular, if the same mechanism is
at play near ν = ±2, then it would be interesting to see
whether the competing instabilities in the p-wave and d-
wave channels could lead to nematic superconductivity,
which was observed in Ref. [56] and discussed theoreti-
cally in Refs. [15–18].

The Hamiltonian of tBLG restricted to the nearly flat
bands has an approximate U(4)×U(4) symmetry [42, 52],
which is responsible for the close competition between
many different symmetry-broken phases in self-consistent
Hartree-Fock studies [34, 42, 57–59]. Because of this ap-
proximate symmetry, we expect the existence of many
nearly soft bosonic modes corresponding to fluctuations
within the low-energy U(4)×U(4)-manifold. In principle,
all these modes can be important for superconductivity.
One of these modes even becomes massless at the contin-
uous phase transition between the K-IVC state and the
valley-Hall state, which occurs when the microscopic sub-
lattice splitting induced by the hexagonal boron nitride
substrate is around 10 meV [42]. In Appendix F, we
argue that non-Fermi liquid physics is expected at this
critical point, but that deviations from Fermi liquid the-
ory will only manifest themselves on very long distance
and time scales. A very interesting topic for future work
is to further study the role of these nearly soft or critical
bosonic modes.

We also expect that the development of numerical
methods such as DMRG [60], quantum Monte Carlo [53,
61], or the functional renormalization group [21, 62, 63]
will be invaluable to shed further light on the above men-
tioned questions.
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Appendix A: Calculation of K(q) and ρs at charge neutrality

In this Appendix, we demonstrate how to calculate function K(q) and parameter ρs introduced in Eq. (5) at charge
neutrality, i.e., at zero doping. We start by defining the operator which generates spatially dependent valley rotations

Q̂ =
1

2

∫
dr φ(r)f†r τzfr (A1)

and write it in the band basis of the BM model to obtain

Q̂ =
1

2
√
A

∑
k,q

φqc
†
k+qΛq(k)τzck , (A2)

where A is the area of the system and Λq(k) are the form factors defined in Eq. (11). Next, we choose a particular
gauge for the K-IVC order parameter and define the following Hamiltonian:

H[φ] = H0 + e−iQ̂H∆e
iQ̂ , (A3)

where, in accordance with the main text, H0 is the valley symmetric part of the K-IVC Hamiltonian and H∆ is the

K-IVC order parameter, H∆ =
∑

k c
†
k∆(k)ck.

Using the Hamiltonian in Eq. (A3) we obtain the free energy F [φ] as

Z[φ(r)] = e−βF [φ(r)] = Tr
(
e−βH[φ(r)]

)
, (A4)

where the trace is over fermionic degrees of freedom. We can now do an expansion of the free energy in φ and write

F [φ(r)] = F0 +
1

2

∫
d2rφ(r)K̂φ(r) + . . . , (A5)

where K̂ is a general differential operator. Going to momentum space, we obtain

F [φ(q)] = F0 +
1

2

∑
q

φ(q)K(q)φ(−q) + . . . , (A6)

In our discussion in the main text, we are interested in the function K(q), which we can obtain as

K(q) =
δ2F [φ]

δφ(q)δφ(−q)

∣∣∣∣∣
φ=0

= − 1

β

δ2 lnZ[φ]

δφ(q)δφ(−q)

∣∣∣∣∣
φ=0

. (A7)

To obtain a more convenient formula for K(q) from Eq. (A7), we first expand the Hamiltonian to second order in φ,
which gives

H[φ] = H0 +HK − i[Q̂,H∆]− 1

2
[Q̂, [Q̂,H∆]] + . . . (A8)

Writing this in the K-IVC band basis, we obtain

H[φ] =
∑
k

∑
α

Eα,kψ
†
α,kψβ,k +

1√
A

∑
k,q

∑
α,β

φ(q)gαβ(k,q)ψ†α,k+qψβ,k, (A9)

+
1

2A

∑
k,q,q′

∑
α,β

φ(q)φ(q′)g̃αβ(k,q,q′)ψ†α,k+q+q′ψβ,k , (A10)
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where

gαβ(k,q) =
i

2
〈uα,k+q| (∆(k + q)Λq(k)τz − τzΛq(k)∆(k)) |uβ,k〉 (A11)

g̃αβ(k,q,q′) = −1

4
〈uα,k+q+q′ |

(
∆(k + q + q′)Λq(k + q′)Λq′(k) + Λq′(k + q)∆(k + q)Λq(k)

+Λq(k + q′)∆(k + q′)Λq′(k) + Λq′(k + q)Λq(k)∆(k)

)
|uβ,k〉 , (A12)

and |uα,k〉 are the eigenstates of the K-IVC Hamiltonian. Next, we write the partition function as a path integral

Z[φ] =

∫
Dψ̄Dψe−S , (A13)

where the imaginary-time action is given by

S =
∑

k=k,iωn

ψ̄α(k) (−iωn + Ek,α)ψα(k) +
1√
A

∑
q

φ(q)gαβ(k,q)ψ̄α(k + q)ψβ(k) (A14)

+
1

2A

∑
q,q′

φ(q)φ(q′)g̃αβ(k,q,q′)ψ̄α(k + q + q′)ψβ(k).

This action contains the vertices

q

α, k + q

β, k

= igαβ(k,q)

(A15)

and

q′

q

α, k + q + q′

β, k

= − 1
2 g̃αβ(k,q,q′).

(A16)

Using Eq. (A7), one finds that K(q) is given by the sum of the following two diagrams:

q −q
q −q

, (A17)

where the first diagram represents the diamagnetic contribution to the stiffness and the second diagram is the para-
magnetic contribution.

The diamagnetic contribution is evaluated to give

Kdia(q) =
2

A

∑
k

∑
α

fα,kg̃αα(k,q,−q) , (A18)

where fα,k = f(Eα,k) is the Fermi-Dirac distribution function and the factor of two comes from the spin degeneracy.
The paramagnetic contribution, on the other hand, equals

Kpara(q) =
2

A

∑
k

∑
α,β

fβ,k − fα,k+q

Eβ,k − Eα,k+q
|gαβ(k,q)|2. (A19)

Both Kdia(q) and Kpara(q) are easily evaluated numerically from the mean-field K-IVC band structure, and K(q)
is then simply given by K(q) = Kdia(q) + Kpara(q). From K(q), one obtains the K-IVC stiffness ρs by fitting (at
zero temperature) the long wavelength part of K(q) = ρsq

2 + O(q4). Note that the zeroth order term in the long
wavelength expansion of K(q) has to vanish since the bosonic field φ describes massless Goldstone modes. In the
next Appendix, we will explicitly show that this zeroth order (mass) term is indeed zero.
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Appendix B: Calculation of χs at charge neutrality

To find χs in Eq. (5), we do a calculation analogous to what we did in the previous Appendix to obtain K(q). The
difference is that now we take φ to be spatially uniform but dependent on imaginary time. As before, we start by
defining the free energy corresponding to the Hamiltonian (A3)

Z[φ(τ)] = e−βF [φ(τ)] = tr
(
e−βH[φ(τ)]

)
, (B1)

and expand it as

F [φ(τ)] = F0 +
1

2β

∫ β

0

dτ

∫
d2rχs(∂τφ)2 + · · · = F0 +

A

2

∑
νn

φ(νn)χsν
2
nφ(−νn) + . . . (B2)

From this expression we see that χs is given by

χs = − 1

Aβ

(
1

ν2
n

δ2 lnZ
δφ(νn)δφ(−νn)

) ∣∣∣∣∣
νn=0, φ=0

. (B3)

To obtain a more explicit formula for κ, we again expand H[φ(τ)] in Eq. (A3) to the second order in φ(τ):

H[φ(τ)] = H0 +H∆ − i[Q̂,H∆]− 1

2
[Q̂, [Q̂,H∆]] + . . . (B4)

=
∑
k

c†k

(
h0(k) + ∆(k)− i

2
φ(τ)[τz,∆(k)]− φ2(τ)

1

8
[τz, [τz,∆(k)]] + . . .

)
ck ,

and write the partition function as a path integral where the action contains the vertices

νm

β, k + q

α, k

= 1
2 [τz,∆(k)]α,β [q = (iνm, 0)]

(B5)

and

ν′m

νm

β, k + q + q′

α, k

= 1
8 [τz, [τz,∆(k)]]α,β [q = (iνm, 0), q′ = (iν′m, 0)].

(B6)

The quantity −(βA)−1δ2 lnZ/(δφ(νm)δφ(−νm))
∣∣
φ=0

is given by two diagrams corresponding to a diamagnetic and

paramagnetic contribution:

νm −νm
νm −νm

(B7)

The diamagnetic contribution can be written as

− 1

4βA

∑
k

∑
ωn

tr

(
[τz, [τz,∆(k)]]

1

iωn − h0(k)−∆(k)

)
(B8)

=
1

4βA

∑
k

∑
ωn

tr

(
[τz,∆(k)]

1

iωn − h0(k)−∆(k)
[τz,∆(k)]

1

iωn − h0(k)−∆(k)

)
,
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To obtain the equality in the second line we have used the identities tr([A,B]C) = −tr(B[A,C]) and [A,B−1] =
−B−1[A,B]B−1, where A,B, and C are arbitrary matrices (and B is invertible for the second identity). We have
also used the fact that [τz, h0(k)] = 0.

The paramagnetic contribution is given by

− 1

4βA

∑
k

∑
ωn

tr

(
[τz,∆(k)]

1

iωn + iνn − h0(k)−∆(k)
[τz,∆(k)]

1

iωn − h0(k)−∆(k)

)
. (B9)

We see that for νn = 0 the two diagrams exactly cancel each other, as it should be in the case of massless Goldstone
modes. Let us now rewrite Eq. (B9) in the eigenbasis of the K-IVC Hamiltonian h0(k) + ∆(k). We find for the
paramagnetic contribution

− 1

2βA

∑
k

∑
ωn

∑
α,β

〈uα,k|[τz,∆(k)]|uβ,k〉〈uβ,k|[τz,∆(k)]|uα,k〉
1

iωn + iνn − Eα,k
1

iωn − Eβ,k

=
1

2A

∑
k

∑
α,β

fβ,k − fk,α
iνn + Eβ,k − Eα,k

|〈uα,k|[τz,∆(k)]|uβ,k〉|2 , (B10)

where |uα,k〉 are again the eigenstates of the K-IVC Hamiltonian and Eα,k are the corresponding band energies.
Expanding this term in iνn we find that the first order term vanishes, while the second order term gives us χsν

2
n (the

zeroth order term is cancelled by the diamagnetic contribution). So we arrive at the following expression for χs:

χs = − 1

2A

∑
k

∑
α,β

fβ,k − fα,k
(Eβ,k − Eα,k)3

|〈uα,k|[τz,∆(k)]|uβ,k〉|2. (B11)

This formula can be simplified by noting that [τz,∆(k)] = [τz, h0(k) + ∆(k)], which allows us to write

χs = − 1

2A

∑
k

∑
α,β

fβ,k − fα,k
Eβ,k − Eα,k

|〈uα,k|τz|uk,β〉|2. (B12)

So we find that, at zero temperature, χs is given by

χs
∣∣
T=0

=
1

A

∑
k

∑
α∈occ

∑
β∈unocc

|〈uα,k|τz|uβ,k〉|2

Eβ,k − Eα,k
. (B13)

Appendix C: Low-energy effective theory at non-zero doping

At non-zero doping, we can write down an effective low-energy theory to describe the electrons at the Fermi surface
and the Goldstone modes. The total imaginary time action of this effective theory, obtained by integrating out the
electons in the K-IVC valence bands, is a sum of several terms:

S = Sψ + SC + Sψ−φ + Sψ−φ2 + Sφ . (C1)

Below, we define and discuss each of these terms one by one.
The first term Sψ is given by

Sψ =

∫
dω

2π

∫
k

ψ̄α(iω,k)(−iω + Eα,k)ψα(iω,k) (C2)

and describes the electrons in the K-IVC conduction bands, meaning that α > 0. Note that spin indices are always
implicit, and that we have introduced the notation

∫
k

=
∫

dk
(2π)2 . We will represent propagators of the conduction

band electrons diagrammatically in the conventional way, i.e., by a solid straight line with an arrow.
The second term SC is the Coulomb interaction:

SC =
1

2

∫
q

VC(q)ρqρ−q , (C3)
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where VC(q) is the gate-screened Coulomb potential defined in Eq. (19) and ρq is the density of electrons in the
conduction bands as defined in Eq. (20). Diagrammatically, we will represent the Coulomb interaction between the
electrons in the K-IVC conduction bands as

α,k + q

β,k

λ,k′ − q

σ,k′

= − [Fq(k)]αβ V
C(q) [F−q(k′)]λσ

(C4)

The third and fourth terms in Eq. (C1) describe the coupling between the electrons and the Goldstone boson field
φ. In particular, the third term is given by

Sψ−φ =

∫
dτ

∫
k,q

gαβ(k,q)φ(τ,q)ψ̄α(τ,k + q)ψβ(τ,k) , (C5)

where the coupling gαβ(k,q) is defined in Eq. (16). As before, we represent the corresponding vertex diagrammatically
as

q

α, k + q

β, k

= igαβ(k,q) .

(C6)

The fourth term Sψ−φ2 takes the form

Sψ−φ2 =
1

2

∫
k,q,q′

ḡαβ(k, q, q′)φ(q)φ(q′)ψ̄α(k + q + q′)ψβ(k) , (C7)

where k = (iω,k), q = (iν,q), and q′ = (iν′,q′) are three-vectors containing both frequency and momentum compo-
nents, and

∫
k
≡
∫

dω
2π

∫
k
. The corresponding vertex is represented diagrammatically as

q′

q

α, k + q + q′

β, k

= − 1
2 ḡαβ(k, q, q′).

(C8)

The coupling ḡαβ(k, q, q′) contains three different contributions. The first “bare” contribution comes from the second

order term in the expansion of e−iQ̂H∆e
iQ̂, which, as discussed in Appendix A, leads to the coupling g̃αβ(k,q,q′)

defined in Eq. (A12). For future convenience, we point out that this coupling satisfies

g̃αβ(k, 0, 0) = −1

4
〈uα,k| [τz, [τz,∆(k)]] |uβ,k〉 . (C9)

The other two “renormalization” contributions to ḡαβ(k, q, q′) are the result of integrating out the valence electrons.
The easiest way to represent these is to write out the different contributions to the coupling ḡαβ(k, q, q′) diagramatically
as follows:

= + 1
2

+ 1
2

,

(C10)

where we have represented the propagator of the valence-band electrons by a dotted line with an arrow. The first
diagram on the right hand side represents the “bare” coupling 1

2 g̃αβ(k,q,q′) discussed above. The last two diagrams
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on the right hand side correspond to the “renormalization” contributions involving a virtual valence band electron,
with two vertices given by gαβ(k,q). Translating these diagrams into equations, the coupling ḡαβ(k, q, q′) is given by

ḡαβ(k, q, q′) = g̃αβ(k,q,q′) +
∑
γ<0

(
gαγ(k + q,q′)gγβ(k,q)

i(ω + ν)− Eλ,k+q
+
gαγ(k + q′,q)gγβ(k,q′)

i(ω + ν′)− Eλ,k+q′

)
, (C11)

where the sum is over the K-IVC valence bands, labeled by negative integers.
The fourth term Sφ in Eq. (C1) is the “bare” quadratic boson action obtained after integrating out the valence

electrons and expanding the free energy up to the second order in φ:

Sφ =
1

2

∫
dω

2π

∫
q

φ(iω,q)K0(q)φ(−iω,−q) , (C12)

where K0(q) is given by the diagram

K0(q) =

, (C13)

which evaluates to

K0(q) = 2
∑
α<0

∫
dk

(2π)2
g̃αα(k,q,−q) . (C14)

We would like to emphasize that the bare quantity K0(q) at finite doping is very different from the quantity K(q)
which we calculated in Appendix A at charge neutrality. In particular, in general K0(0) will not be equal to zero,
such that the boson φ appears to be massive. To obtain a proper, massless Goldstone mode propagator, we need to
“dress” it with the RPA self-energy, which contains two terms. The first term originates from the φψ̄ψ coupling and
is given by

ΣpG(iω,q) =

. (C15)

The second contribution to the boson self-energy comes from the φ2ψ̄ψ coupling and is given by

ΣdG(iω,q) =

. (C16)

Using the definition of the φ2ψ̄ψ coupling in Eq. (C10), we can rewrite this as

= + +

. (C17)

Evaluating all diagrams we find that the boson self-energy is given by

ΣG(iω,q) = ΣpG(iω,q) + ΣdG(iω,q) (C18)

= 2
∑
α,β

∫
dk

(2π)2

nα,k+q − nβ,k
iω + Eα,k+q − Eβ,k

|gαβ(k,q)|2 + 2
∑
α>0

∫
dk

(2π)2
nα,kg̃αα(k,q,−q) ,

where the factors of two again come from spin degeneracy, and the indices α and β in the first term run over both
the K-IVC valence and conduction bands, i.e., α and β run over both positive and negative integers.

Including the self-energy, the “dressed” boson propagator equals

D−1
R (iω,q) = −K0(q)− ΣG(iω,q) . (C19)



16

We now claim that the properly “dressed” propagator does describe a massless boson, and therefore satisfies the
following equation:

K0(0) + ΣG(0, 0) = 0 . (C20)

To show that this condition is indeed satisfied, we start with using Eq. (17) to write

nα,k − nβ,k
Eα,k − Eβ,k

|gαβ(k, 0)|2 = −1

4
(nα,k − nβ,k)〈uα,k|[τz,∆(k)]uβ,k〉〈uβ,k|τz|uα,k〉 . (C21)

Summing over both α and β in Eq. (C21), we obtain

∑
α,β

nα,k − nβ,k
Eα,k − Eβ,k

|gαβ(k, 0)|2 = −1

4

[
tr(P ok [τz,∆(k)]Puk τz)− tr(Puk [τz,∆(k)]P okτz)

]
, (C22)

where P ok =
∑
α nα,k|uα,k〉〈uα,k| is the projector onto the occupied states in the K-IVC bands at momentum k, and

Puk =
∑
α(1− nα,k)|uα,k〉〈uα,k| is the projector onto the unoccupied states at k. Using Puk = 1− P ok , we find

∑
α,β

nα,k − nβ,k
Eα,k − Eβ,k

|gαβ(k, 0)|2 =
1

4
tr(P ok [τz, [τz,∆(k)]]) = −

∑
α

nα,kg̃αα(k, 0, 0) , (C23)

where for the last equality we have used Eq. (C9). Combining Eqs. (C23), (C18), and (C14), one finds that Eq. (C20)
indeed holds, i.e., that K0(0) + ΣG(0, 0) = 0.

Since the bare boson propagator does not describe a massless Goldstone mode, it is crucial to always use the dressed
propagator DR(iω,q) to investigate the effect of the Goldstone modes on the conductive electrons. For small enough
doping, the “dressed” propagator DR(iω,q) will be very close to D(iω,q), the propagator of the Goldstone modes at
charge neutrality. This is because D−1

R (iω,q) ≈ χR(ν)(iω)2 − ρR(ν)q2 changes continuously with doping and crosses

over to D−1(iω,q) ≈ χs(iω)2 − ρsq2 at ν = 0. We have numerically verified that D−1
R (iω,q) at ν = 1/4 is indeed

close to D−1(iω,q). In the main text, we therefore use D−1
R (iω,q) = D−1(iω,q) for simplicity. The main motivation

for this is that we found the propagator obtained at charge neutrality to be less prone to numerical error.
Using the propagator D(iω,q), the Goldstone mode-mediated interaction between the electrons is obtained from

the following tree-level diagram:

α,k + q

β,k

λ,k′ − q

σ,k′

= −V Gαβλσ(iω,q,k,k′) ,

(C24)

where

V Gαβλσ(iω,q,k,k′) = gαβ(k,q)D(iω,q)gλσ(k′,−q) . (C25)

Equations (25) and (26) in the main text are then obtained by considering the static limit of V G, i.e., setting ω = 0.
As a final step in our RPA analysis of the effective low-energy theory, we show that one can neglect the screening

of the φψ̄ψ coupling by the Coulomb interaction. The latter is given by the following series of diagrams:

+ + + · · ·

(C26)

Summing up this series, we find that the screened electron-boson coupling is given by
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g(k,q)scr = g(k,q) + 2Fq(k)
VC(q)

ε(q)

∑
α,β

∫
dk′

(2π)2

nα,k′+q − nβ,k′

Eα,k′+q − Eβ,k′

[
Fq(k′)

]∗
αβ
gαβ(k′,q)

≡ g(k,q) + Fq(k)
VC(q)

ε(q)
〈F ∗g〉(q) , (C27)

where in the last line we have introduced the notation 〈F ∗g〉 to denote the bubble diagram with a F and a g vertex.
From Eq. (C27) we see that the amount of screening of the electron-boson coupling is determined by

VC(q)|〈F ∗g〉(q)|/ε(q). We find numerically that VC(q)|〈F ∗g〉(q)|/ε(q) is small for small momentum transfers, im-
plying that the electron-boson coupling is only weakly screened by the Coulomb interaction at long wavelengths.
In particular, we find that VC(q)|〈F ∗g〉(q)|/ε(q) . 0.5 meV for |q| < π/2LM ≈ 2kF,1, where kF,1 is the average
Fermi momentum of the outer Fermi surface. This implies that the correction from screening is smaller than the
typical values of the bare coupling by a factor of 10 − 20. We therefore conclude that the Coulomb screening of the
electron-boson vertex does not play an important role, and we will simply ignore it.

We would like to point out that the insignificance of the electron-boson vertex screening is a non-trivial result. For
example, if the form factors Fq(k) and the dependence of the coupling on the incoming momenta were to be ignored,
then one would find a screened coupling g(q)scr = g(q)/ε(q). In this case, the electron-boson vertex would be almost
completely suppressed and the electrons would be effectively decoupled from the Goldstone modes. So the momentum
dependence of both Fq(k) and g(k,q) is crucial to protect the electron-boson coupling from Coulomb screening.

Appendix D: Interactions in the Cooper channel and Kramers time-reversal symmetry

The goal of this Appendix is to show that the Coulomb and Goldstone-mediated interactions in the Cooper channel
can be written as

V̂ Cαβ(k′,k) ≡
∑
G

e2

2ε0ε

tanh(D|k′ − k + G|)
|k′ − k + G|+ ks(k′ − k + G)

[Fk′−k+G(k)]αβ [Fk−k′−G(−k)]αβ

= eiϕα(k′)

(∑
G

e2

2ε0ε

tanh(D|k′ − k + G|)
|k′ − k + G|+ ks(k′ − k + G)

∣∣ [Fk′−k+G(k)]αβ
∣∣2) e−iϕβ(k) , (D1)

where the sum is over moiré reciprocal lattice vectors G and eiϕα(k′), e−iϕβ(k) are gauge-dependent phase factors.
We start by recalling the definition of the K-IVC form factors Fq(k):

[Fq(k)]αβ = 〈uα,k+q|Λq(k)|uβ,k〉 , (D2)

where |uα,k〉 are the K-IVC eigenstates. Because of the spinless time-reversal symmetry T = τxK of the BM model,
we can without loss of generality use BM form factors which satisfy Λ−q(−k) = τxΛ∗q(k)τx and τzΛq(k)τz = Λq(k).
Using these properties, we find that

[F−q(−k)]αβ = 〈uα,−k−q|iτyΛ∗q(k)iτTy |uβ,−k〉 (D3)

Because of the T ′ symmetry, with T ′ = τzT = iτyK, the K-IVC eigenstates satisfy

T ′|uβ,k〉 = eiϕβ(k)|uβ,−k〉 ⇒ iτTy |uβ,−k〉 = e−iϕβ(k)|uβ,k〉∗ , (D4)

where eiϕβ(k) is a gauge-dependent phase factor. Since |uα,k+G〉 = |uα,k〉, it follows that eiϕα(k+G) = eiϕα(k). Using
Eq. (D4), one finds that the K-IVC form factors satisfy

[F−q(−k)]αβ = ei[ϕα(k+q)−ϕβ(k)]〈uα,k+q|Λq(k)|uβ,k〉∗ = ei[ϕβ(k)−ϕα(k+q)] [Fq(k)]
∗
αβ , (D5)

which in turn implies Eq. (D1).
We can also show that the Goldstone-mediated interaction similarly satisfies

V̂ Gαβ(k,k′) ≡ −
∑
G

K(k′ − k + G)−1gαβ(k,k′ − k + G)gαβ(−k,k− k′ −G)

= −eiϕα(k′)

(∑
G

K(k′ − k + G)−1
∣∣gαβ(k,k′ − k + G)

∣∣2) e−iϕβ(k). (D6)
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First, we again use the properties of the BM form factors and find

gαβ(−k,−q) =
i

2
〈uα,−k−q|∆(−k− q)iτyΛ∗q(k)iτTy τz − τziτyΛ∗q(k)iτTy ∆(−k)|uβ,−k〉. (D7)

The Kramers time-reversal symmetry of the K-IVC state implies that iτTy ∆(−k)iτy = ∆∗(k), which allows us to write

gαβ(−k,−q) = − i
2
〈uα,−k−q|iτy

[
∆∗(k + q)Λ∗q(k)τz − τzΛ∗q(k)∆∗(k)

]
iτTy |uβ,−k〉. (D8)

From the transformation property of the K-IVC states in Eq. (D4), we find that

gαβ(−k,−q) = ei[ϕα(k+q)−ϕβ(k)]g∗αβ(k,q) , (D9)

which implies Eq. (D6).

Appendix E: BCS gap equation

In the main text, we look for superconducting states with an order parameter of the form

∆̃s
k =

(
∆̃1,k 0

0 ∆̃2,k

)
⊗ isy, (E1)

∆̃t
k =

(
∆̃1,k 0

0 ∆̃2,k

)
⊗ isys , (E2)

which corresponds to a spin-singlet or spin-triplet pairing of electrons within the same band. The finite temperature
gap equation is then given by

∆̃α,k = − 1

A

∑
β,k′

Vαβ(k,k′)
∆̃β,k′

2
√
E2
β,k′ + |∆̃β,k′ |2

tanh


√
E2
β,k′ + |∆̃β,k′ |2

2kBT

 , (E3)

where A is the area of the system. To find the critical temperature of possible superconducting states, we take the
BCS gap equation and apply the standard procedure by ignoring the dependence on the gap in the denominator and
the argument of the hyperbolic tangent in Eq. (E3), motivated by the fact that the gap goes to zero if we approach
the critical temperature from below. This leaves us with

∆̃α,k = − 1

A

∑
β,k′

Vαβ(k,k′)
∆̃β,k′

2Eβ,k′
tanh

(
Eβ,k′

2kBTc

)

≈ −
∑
β

∫
dE Nβ(E)

∫
dθ′

2π
Vαβ [k,k′(E, θ′)]

∆β,k′(E,θ′)

2E
tanh

(
E

2kBTc

)
, (E4)

where θ′ is a polar angle in momentum space and

Nβ(E) =

∫
dθ

2π

kβ(E, θ)

2π

∣∣∣∣∂Eβ(k, θ)

∂k

∣∣∣∣−1

k=kβ(E,θ)

(E5)

corresponds to the density of states in band β. Here, we use kβ(E, θ) to denote the inverse function of the dispersion
Eβ(k, θ), i.e., it is defined via the relation Eβ [kβ(E′, θ), θ] = E′. Note that the approximation in Eq. (E4) is justified
if the dispersion near the Fermi surfaces is close to being isotropic.

Next, focusing on the vicinity of the Fermi surface, we write

∆̃α,k ≈ −
∑
β

Nβ(0)

∫
dθ′

2π
Vαβ [k,kF,β(θ′)]∆̃β,kF,β(θ′)

∫
dE

tanh
(

E
2kBTc

)
2E

⇒ ∆̃α(θ) ≈ −
∑
β

Nβ(0)

∫
dθ′

2π
Vαβ(θ, θ′)∆̃β(θ′)

∫
dE

tanh
(

E
2kBTc

)
2E

, (E6)
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where kF,β(θ′) is the angle-dependent Fermi momentum on the Fermi surface in band β. In the last line, we have intro-
duce the notation ∆β(θ) = ∆β,kF,α(θ) for the gaps on the Fermi surfaces, and also Vαβ(θ, θ′) = Vαβ [kF,α(θ),kF,β(θ′)]
for the interaction on the Fermi surfaces. Nβ(0) is the density of states of band β at the Fermi surface.

It is now clear that to find solutions of the gap equation, we have to solve the eigenvalue equation∑
β

∫
dθ′

2π
Vαβ(θ, θ′)Nβ(0)∆̃β(θ′) = −λ∆̃α(θ) , (E7)

after which we can proceed with the solution of the gap equation in the standard way to obtain

kBTc ∼ εF × e−1/λ , (E8)

where εF is the Fermi energy.

Appendix F: Continuous transition between K-IVC and valley Hall insulator

If the hexagonal boron-nitride (hBN) substrate encapsulating the tBLG system becomes sufficiently aligned with
one of the graphene layers, it can introduce a significant C2z-breaking sublattice splitting ∆tσz via the proximity
effect [64–67]. Here, σi are the Pauli matrices acting on the sublattice index. The sublattice splitting generates a
Dirac mass at both the K and K ′ points of the mini-BZ, leading to an insulating single-particle spectrum at charge
neutrality. Depending on the sign of the sublattice splitting, the spin resolved bands in each valley have Chern
number ±1 [68–70]. Note that time-reversal symmetry is not broken and that the bands in different valleys which are
exchanged under time-reversal have opposite Chern numbers. Because only the valley-resolved Chern number of the
filled bands is non-zero, this state is referred to as the valley Hall (VH) insulator.

In Ref. [42] it was found that within mean-field theory, there is a transition from the K-IVC insulator to the VH
insulator at a critical sublattice splitting (say, on the top layer) of ∆∗t ∼ 10 meV. At this point, there is a second order
phase transition where both the UV (1) and time-reversal symmetry are restored. Importantly, the single-particle gap
does not close at the transition. We also find that the Fermi surfaces around Γ at ν = 1/4 do not change in any
significant way if we tune through the transition. However, if ∆t becomes sufficiently close to the critical value ∆∗t ,
there is an additional soft (critical) bosonic mode which can facilitate pairing.

Based on experience with other systems with a Fermi surface coupled to a critical mode one naturally expects
non-Fermi liquid behavior near the K-IVC – VH transition, even at small coupling [71–78]. We will argue that
this expectation is essentially correct, but also that the non-Fermi liquid physics follows from very small, seemingly
negligible terms. To set up the argument, let us actually start from the VH side, i.e., let us consider the system with
∆t > ∆∗t . Also, in this Appendix, we will work in the sublattice polarized basis introduced in Ref. [42]. As the precise
definition of this basis is not relevant for this work, we will not give it here and just refer to Ref. [42] for details.
The only reason why we use the sublattice polarized basis is that the K-IVC order parameter takes on a particularly
simple form. Namely, in this basis we have ∆(k) = [dx(k)τx + dy(k)τy]σy, where τi are still the Pauli matrices acting
on the valley index. The Yukawa coupling to the K-IVC modes which become soft near the critical point is then given
by

HY =
g

N

∑
k,q

c̃†k+q(q·)σy c̃k , (F1)

where q· = φxqτx + φyqτy. So the doped VH state coupled to the K-IVC modes is described by

H =
∑
k,τ,α

ετ,α,kc̃
†
τ,α,kc̃τ,α,k +

1

N

∑
k,q

∑
τ,τ ′,α,β

〈wτ,α,k+q|(q·)σy|wτ ′,β,k〉c̃†τ,α,k+qc̃τ ′,β,k, (F2)

where ετ,α,k and |wτ,α,k〉 are the band energies and Bloch states of the mean-field VH Hamiltonian. Because the
VH state preserves the valley symmetry, the eigenstates have a well-defined valley quantum number τ . The index α
distinguishes between valence and conduction bands. Since we are interested in, e.g., electron doping, we neglect the
valence bands and focus only on the conduction bands. This means that we can ignore the α index, and label the
electrons by the valley index (and spin). We can then write the Hamiltonian as

H =
∑
k,τ

ετ,kc̃
†
τ,kc̃τ,k +

1

N

∑
k,q

(
g+−(k,q)φ+

q c̃
†
+,k+qc̃−,k +H.c.

)
, (F3)



20

where in the last line we have introduced the notation φ+
q = φxq + iφyq and

g+−(k,q) = g〈w+,k+q|τxσy|w−,k〉. (F4)

For our purposes, the main question we want to address is whether the coupling g+−(k,q) becomes zero at zero
momentum transfer, i.e., whether g+−(k, 0) = 0 or not.

Before we answer the above question, we first recall that the BM model has an emergent approximate particle-hole
symmetry P [79, 80], which acts in the sublattice polarized basis as [42]

P : c̃†k → τzσy c̃−k. (F5)

If we combine the particle-hole symmetry with the time-reversal symmetry T defined in Eq. (3), we obtain an
approximate PT symmetry acting as

PT : c̃†k → iτyσy c̃k , i→ −i. (F6)

Because of this approximate PT symmetry we conclude that the dominant, particle-hole symmetric terms in the VH
Hamiltonian anti-commute with τyσy, and therefore also with τxσy. But these matrices exactly constitute the K-IVC
order parameter in the sublattice polarized basis. This implies that if the VH Hamiltonian was perfectly particle-hole
symmetric, then the coupling would vanish for zero momentum transfer: g+−(k, 0) = 0. This is because τxσy anti-
commutes with the particle-hole symmetric VH Hamiltonian, such that it maps a conduction band Bloch state to a
valence band Bloch state and vice versa. Because of this, the matrix element in Eq. (F4) is strictly zero. Note that
the full Yukawa coupling term in Eq. (F1) is not zero when q = 0, only the part projected onto the conduction bands
is. In other words, at q = 0, the Yukawa coupling only mixes the valence and conduction bands of the particle-hole
symmetric VH insulator, but it does not mix conduction bands among themselves. In part, this is a manifestation of
the fact that the hBN sublattice splitting σz and the K-IVC order parameter τxσy anti-commute, which also implies
that the electron gap at ν = 0 does not close at the critical point.

In general, we of course have to include the small particle-hole symmetry breaking terms in the VH Hamiltonian.
These terms give rise to a non-zero, but very small value for g+−(k, 0).

Similar to the analysis in Ref. [81], we can now consider the electron interaction induced by the soft K-IVC modes
for ∆t & ∆∗t . It is given by [81]

VIV C(k,q, ω) = −|g+−(k,q)|2χ(q, ω) . (F7)

Here, χ(q, ω) is the valley-U(1) susceptibility

χ(q, ω) ∼ χ0

(
ξ−2

c2q2 + ω2 + ξ−2

)1−η/2

, (F8)

where ξ ∼ |∆t − ∆∗t |−ν = |δ∆t|−ν is the correlation length of the boson field φ and χ0 ∼ |δ∆t|−γ . The critical
exponents ν, γ, and η are those of the (2+1)-d O(2) Wilson-Fisher fixed point [82].

Because g+− is non-zero at q = 0, the interaction VIV C(k, 0, 0) in Eq. (F7) diverges at the critical point, resulting
in non-Fermi liquid physics. However, because g+−(k, 0) is very small, we only expect the non-Fermi liquid physics
to manifest itself at very long distance and time scales.
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