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ABSTRACT 

As the momentum of climate action continues to shift from top-down, nation-state action to 

decentralized action by corporations, cities, and utilities, these actors are working to decarbonize their 

energy consumption and help drive the transition to a carbon-free grid. However, the current frameworks 

and metrics that drive voluntary decision making—GHG inventories and renewable energy procurement 

goals—do not always reflect the reality of the evolving power system, and thus can lead to decisions that 

do not effectively reduce emissions or address grid needs. This research seeks to fill the gaps in knowledge 

about how both regulatory and voluntary approaches to decarbonizing the electric grid can maximize their 

effectiveness and accurately measure and attribute emissions from electricity consumption. This 

dissertation draws upon power system engineering and industrial ecology research and applies data 

science and optimization methods to 1) identify whether there is a need to account for grid carbon 

emissions on an hourly basis, 2) introduce a comprehensive dataset of validated hourly emissions from 

the U.S. power sector, and 3) introduce a new modeling tool that enables greater understanding of the 

role of different voluntary clean energy procurement goals in the broader energy transition.  
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Introduction 
In order to avoid global temperatures rising more than 1.5°C, the Intergovernmental Panel on 

Climate Change (IPCC) has forecasted that renewables will need to generate 37-80% of global electricity 

by 2030, and 59-97% of global electricity by 2050.1 However, the main challenge to reliably and cost-

effectively integrate high penetrations of renewables on the grid will be managing the temporal 

variability of renewable resources in order to maintain the real-time balance between electricity supply 

and demand.2  

Although climate change is a global challenge, a centralized and coordinated global response has 

not materialized. Although the success of the 1987 Montreal Protocol limiting ozone-depleting gases 

seemed to be a model for future top-down policies tackling global environmental problems, a series of 

failures to replicate it for greenhouse gases (GHGs) has led to a slow but steady shift in the momentum 

of climate action from nation-states to non-state and substate actors like corporations, utilities, and 

local governments.3,4  This shift was enshrined in the 2015 Paris Accord, which recognized that action by 

nonstate actors would be necessary to achieve the ambitious target of limiting global warming to 1.5°C.5  

The years since the Paris Accord have seen increasingly aggressive commitments and actions from 

subnational and nonstate actors meant to accelerate the decarbonization of the electric power 

system.6,7 

Ensuring that this decentralized and bottom-up climate action can collectively accelerate and 

sustain the transition to a decarbonized electricity system over the next three decades will require the 

use of a common framework and set of metrics to inform effective decision-making. Standardized and 

scientifically rigorous frameworks are necessary to help ensure that these actions are driving real-world 

emissions reductions and not resulting in double-counting, leakage, or shuffling of emissions. Luckily, 

there are already two well-established and widely utilized frameworks for guiding this action: GHG 

inventories and renewable energy procurement goals. GHG inventories, which follow accounting 
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standards such as The GHG Protocol, quantify each institution’s responsibility for GHGs emitted into the 

atmosphere, including indirect, or “scope 2,” emissions from consuming electricity from the grid. These 

inventories inform GHG reduction goals or climate action plans, which typically involve a pledge to 

reduce annual emissions by some percentage below a baseline year, or to eliminate the institution’s 

emissions footprint entirely. Approximately 600 global corporations, 600 U.S. colleges and universities, 

and 325 U.S. cities have committed to reduce their carbon footprints.7,8  In addition to these GHG 

reduction goals, many institutions commit to procuring a certain percentage of their annual energy use 

from renewable resources. Enabled by restructured electricity markets that allow for consumer access, 

these institutions can own or contract with renewable energy facilities for power. More than 700 U.S. 

corporations, universities, and local governments have joined the EPA’s Green Power Partnership, and 

nearly 300 global corporations have pledged to go “100% renewable.”7,9,10 

Despite the successes of these existing frameworks, they are not adequate for guiding 

decentralized action to achieve a rapid and complete transition to a carbon-free electricity system, as 

they ignore one of the fundamental dynamics necessary to the success of this transition: timing. More 

specifically, these frameworks and metrics ignore the temporal variability of renewable resources, and 

thus provide incomplete information to decisionmakers about how to optimize the impacts of their 

actions on grid decarbonization. As we are already witnessing in regions such as California, higher 

penetrations of renewables lead to new operational and reliability challenges which require adding 

different supply- and demand-side resources with the right operational characteristics in the right 

locations.11 

Current GHG accounting protocols only require the use of annual average grid emissions factors 

for quantifying the scope 2 emissions footprint from consumed electricity. However, these annual 

averages ignore the fact that emissions intensity can vary significantly throughout the day or seasons 

with the variability of renewable resources.12–14 These time-invariable emissions factors not only 
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inaccurately account for emissions, but they make decision-makers blind to the time value of different 

emission mitigation strategies. Likewise, current renewable procurement goals allow corporations to 

claim that they are 100% renewably powered, even if they buy renewable energy from a completely 

different grid at times when they are not consuming energy. This is because these goals only require the 

total annual volume of electricity generated by contracted renewable projects to equal the total annual 

volume of electricity consumed. As structured, these goals and metrics provide no incentive for 

decision-makers to value energy demand flexibility, beneficial electrification, energy storage, or around-

the-clock sources of renewable energy, even though these will be critical tools for decarbonizing the 

electric system. 

Thus, the goal of this research is to identify how each of these frameworks need to evolve to 

effectively guide decentralized action that collectively helps accelerate and sustain the transition to a 

renewable power system. To do this, the research must evaluate how to align these frameworks with 

the needs of the evolving electric power system, and how doing so will change the incentive structure 

and resulting decisions made. The balance that must be struck with this research is on one hand defining 

metrics that are accurate and lead to real emissions reductions, but on the other hand are simple 

enough that they remain practical and intuitive to accurately apply to decision making.  

This dissertation draws upon theoretical contributions from power system engineering, 

industrial ecology, and energy economics and applies data science and mathematical optimization 

methods to answer three main research questions:  

 

1. Chapter 1: How would increasing the temporal resolution of attributional grid emissions factors 

affect the accuracy and practicality of GHG accounting?  

2. Chapter 2: Is it possible to create a high-quality and comprehensive dataset of hourly generation 

and emissions data for the U.S. power sector? 
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3. Chapter 3: What are the grid and emissions impacts of time-coincident voluntary renewable 

energy procurement relative to other types of voluntary goals, and can achieving such goals be 

practical and cost-effective?  
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Chapter 1: Hourly accounting of carbon emissions from electricity 

consumption  

Note: This chapter is adapted from Miller, G. J., Novan, K. & Jenn, A. “Hourly accounting of carbon emissions from 

electricity consumption.” Environmental Research Letters 17, 044073 (2022), https://doi.org/10.1088/1748-

9326/ac6147. This article was published open-access and is reproduced here under a Creative Commons 

Attribution 4.0 license. 

 

Introduction 
Greenhouse gas (GHG) emissions from electricity generation are a significant contributor to 

climate change and can comprise a large share of the carbon footprint of an individual activity, product, 

building, company, or city. Accounting and attributing these emissions to specific end-users of the 

electricity is a common practice and important tool to help understand the sources of climate-changing 

emissions and enable action to mitigate them. Once limited to academic life-cycle assessment studies 

and voluntary carbon disclosure initiatives, carbon accounting and disclosure is increasingly being used 

to guide financial investments, inform policymaking and business decisions, and measure compliance 

with regulations.  

Current GHG accounting protocols account for “scope 2” emissions (those associated with the 

consumption of grid electricity) by applying an annual-average, attributional grid carbon intensity factor 

to all electricity consumed by an entity each year. This annual-level accounting represents the carbon 

intensity of grid-supplied electricity as a single, static value throughout the year. However, because the 

mix of generators supplying electricity to the grid  is constantly changing, grid carbon intensity also 

varies across seasons and the hours of each day.12–31 While there are benefits to the simplicity of annual-

level accounting, ignoring this hourly heterogeneity may come at the cost of accuracy, which can have 

real effects both on academic analyses and the effectiveness of our policies in curbing climate change.14 

However, it is unclear from previous studies whether this potential bias is a substantial or widespread 

problem. Existing studies, primarily in the field of life-cycle assessment, focus on specific building GHG 

https://doi.org/10.1088/1748-9326/ac6147
https://doi.org/10.1088/1748-9326/ac6147
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inventories as case studies, demonstrating that annual accounting may bias emission inventories 

anywhere between 0.2% and 26% when compared to hourly accounting, as summarized in Table 1.1. 

17,19–22,28,32,33* 

Table 1.1. Summary of literature evaluating bias resulting from annual carbon accounting. Bias calculations have 

been standardized using [(annual – hourly) / hourly] for all papers. The carbon intensity types are defined as: 

Produced: emissions per unit electricity generated, Delivered: emissions per unit electricity consumed, not 

accounting for imports/exports of emissions, Consumed: emissions per unit electricity consumed, accounting for 

imports/exports of emissions, Direct: only considers combustion emissions from the generator, Lifecycle: considers 

direct and indirect emissions (e.g. mining and transport of fuels) from the generator 

Paper Geography 
Data 
Years 

Temporal 
Resolutions 
Analyzed 

Carbon 
Intensity 
Type Case Study 

Electric demand 
data 

Bias due to 
annual 
accounting  

Bristow et al. 
2011 17 

Ontario, 
Canada 

2007 Annual 
Hourly 

Produced 
Direct 

Mid-rise residential building 
with five efficiency scenarios 

Simulated, single 
building 

-3.5% to +0.2% 

Cubi et al. 2015 
19 

Alberta and 
Ontario, 
Canada 

2011, 
2013 

Hourly Produced 
Direct 

Office and residential buildings 
with different efficiency 
variations 

Simulated, two 
reference building 
types in two regions, 
with six efficiency 
variants (36 
simulations) 

-11% to +6 (one 
outlier at -44%) 

Kopsakangas-
Savolainen et 
al. 2015 32 

Finland 2011 Annual  
Hourly 

Produced 
Lifecycle 

Two residential buildings in 
Helsinki 

Metered data, two 
buildings 

+1% and +6% 

Spork et al. 
2015 20 

Spain 2012 Annual  
Hourly 

Delivered 
Lifecycle 

Generic commercial buildings 
with constant high load during 
operating hours and constant 
low load during non-operating 
hours  

Synthetic data, 
fifteen operating 
hour scenarios and 
different high to low 
demand ratios 

-5% to + 3% 
(special cases at -
6% and -8%) 

Roux et al. 2016 
21 

France 2013 Annual 
Hourly 

Delivered 
Lifecycle 

Single family research house in 
Chambery, France 

Metered data, single 
building 

-26% 

Vuarnoz and 
Jusselme 2018 
22 

Switzerland 2015 Annual 
Hourly 

Consumed 
Lifecycle 

Proposed mix-use building in 
Fribourg, Switzerland 

Simulated, single 
building 

+1.9% 

Donti et al. 
2019 28 

PJM Inter-
connection, 
U.S.  

2017 Annual 
Monthly 
Monthly TOD  
hourly 

Produced 
Direct 

Systemwide summer load in 
PJM 

Measured data, 
aggregate region 
demand 

Underestimated, 
numerical value 
not reported 

Müller and 
Wörner 2019 33 

Germany 2017, 
2030, 
2050 

Annual 
Quarter-hourly 

Delivered 
Lifecycle 

Use phase of residential single-
family home 

Simulated, single 
building 

-4.2% (2017) 
-7.7% (2030) 
-17.9% (2050) 

 

To understand whether annual accounting leads to widespread bias in emission inventories, this 

study calculates scope 2 GHG emission inventories for approximately 113,000 simulated residential and 

commercial buildings in fifty-two grid balancing areas across the United States, using annual-average, 

monthly-average, monthly time-of-day (TOD) average, and hourly grid emission factors. We also 

 
* A separate body of literature has focused on comparing the accuracy of using of average, attributional emission 
factors to marginal, consequential emission factors for quantifying the avoided emissions of grid interventions. 
However, it is important to note that marginal emission factors are not appropriate for use in attributional carbon 
footprinting and are thus not relevant to this paper. 
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examine a specific case study of a high-renewable region in California, utilizing a dataset of actual 

metered load representing over thirteen million residential, commercial, industrial, and agricultural 

facilities in the state. Our results suggest that the magnitude and direction of the bias introduced by 

annual accounting depend on when and how you consume electricity and where you are located: 

specifically, activities with more variable electric demand located in grids dominated by clean and 

renewable energy will see a larger relative bias from annual accounting than activities with flat demand 

in grids dominated by traditional fossil generation. We also find that these biases can only be 

meaningfully reduced by using emission factors that reflect both the seasonal and time-of-day variation 

in grid carbon intensity. 

Background 

The carbon intensity of the grid can vary continuously in response to changes in generation at 

the minute or second timescale. Thus, even hourly emission factors may not capture the full variability 

in grid carbon intensity. Indeed, some previous studies evaluating the variability of grid carbon intensity 

have utilized half-hourly or quarter-hourly emission factors.12,23,24,33 However, in this study, we use 

hourly-average carbon intensities as the baseline rather than sub-hourly values, first because hourly grid 

data is more widely available than sub-hourly data, and second due to the relatively low variation in grid 

carbon intensity within a single hour.  Previous studies note that the variability of wind and solar power, 

which contribute to the variability of grid carbon intensity, is much less at the hour or shorter timescale 

than it is across several hours or days.34  We confirmed this by analyzing a dataset of 5-minute resolution 

carbon emissions data published by the California Independent System Operator (ISO), finding that even 

in this renewable-heavy region, the mean coefficient of variation of grid carbon intensity within a single 

hour was only 2.4%, compared to 31% across the entire year. 
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Because we calculate actual carbon emissions as the product of hourly energy demand (𝐷ℎ) and 

the hourly regional carbon intensity (𝐶𝑟,ℎ), the bias resulting from using an averaged carbon intensity 

value (𝐶𝑟̅,ℎ,𝑙) at some aggregation level 𝑙 is the product of the hourly energy demand and the residual 

carbon intensity (𝜇𝑟,ℎ,𝑙 = 𝐶𝑟̅,ℎ,𝑙 − 𝐶𝑟,ℎ). Thus, the expected bias introduced into an annual inventory by 

using an averaged carbon intensity value can also be expressed as the following equation (see the 

supplementary information [SI] for a full derivation): 

 𝐸[𝐷ℎ ⋅ 𝜇𝑟,ℎ,𝑙] = 𝐶𝑜𝑣(𝐷𝑏,ℎ, 𝜇𝑟,ℎ,𝑙) = 𝜎𝐷 ⋅ 𝜎𝜇 ⋅ 𝜌𝐷,𝜇 Equation 1 

In this equation, 𝜎𝐷 is the standard deviation of hourly energy demand, 𝜎𝜇 is the standard 

deviation of the residual hourly carbon intensity, and 𝜌𝐷,𝜇 is the correlation coefficient between hourly 

energy demand and the residual hourly carbon intensity. This relationship suggests that the magnitude 

and direction of bias is driven by the variability in both carbon intensity and energy demand, as well as 

the correlation between demand and carbon intensity, and it has three important implications. First, in 

regions with substantial variation in hourly emissions rates (high 𝜎𝜇), there is a potential for larger bias, 

and vice versa. Second, end-uses of electricity with sizable hourly variation in energy demand (high 𝜎𝐷) 

would expect to see larger biases than an end-use with flat energy demand. Finally, the sign of the bias 

(whether the inventory is over- or under-estimated) will depend on the sign of the correlation 

coefficient between demand and the residual carbon intensity (𝜌𝐷,𝜇). An end-use whose demand is 

correlated with times of high carbon intensity (and is thus negatively correlated with the residual carbon 

intensity), will have their emissions under-estimated by using an averaged carbon intensity value.  

As shown in Figure 1.1, hourly consumption-based carbon intensities in certain regions can be 

highly variable throughout the year, depending on the fuel mix of generated and imported electricity 

consumed in the region. While production-based carbon intensities only reflect emissions from 

generators that operate within each region, consumption-based carbon intensities reflect emissions 
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from electricity imported into a region as well. Because imported electricity represents a substantial 

portion of consumed electricity in many regions and can have a carbon intensity that differs from that of 

in-region generation, this paper focuses on consumption-based carbon intensity throughout.  

 
Figure 1.1. Distribution (top panel) and standard deviation (middle panel) of hourly consumption-based carbon 

intensities, as well as the source of energy (bottom panel) for fifty-two balancing areas in the U.S. in 2019. Hourly 

carbon intensities can vary significantly from the annual average value, especially in regions with a diverse mix of 

resources that include carbon-free generation. 

Data and Methods 

This study examines carbon inventories for thousands of building load profiles across the United 

States at different temporal resolutions. To demonstrate the impact that the intra-regional variability in 

carbon intensity has on the magnitude and direction of the bias resulting from annual-average accounting, 

this study first examines annual and hourly inventories for approximately 113,000 simulated residential 
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and commercial buildings across different climate zones in fifty-two different grid regions in the U.S. Then, 

to demonstrate the impact that variability in electricity demand profiles has on this bias, this study 

examines inventories for thousands of residential, commercial, industrial, and agricultural building 

profiles located in the California ISO. Finally, we explore how well the use of monthly and monthly time-

of-day average carbon intensity values mitigates the inventory bias compared to using an annual average. 

Hourly building demand data. 

Although as of 2019, over 60% of all electric meters nationwide included advanced metering 

infrastructure (AMI), which collect hourly or sub-hourly electricity demand data, wide-scale hourly 

demand datasets are not publicly available due to privacy concerns.35,36 

However, NREL recently published a dataset of approximately 900,000 simulated end-use load 

profiles which  have been calibrated and validated using actual meter data and statistically represent the 

U.S. residential and commercial building stock.37,38 Each of the fourteen unique commercial building 

types and 9 unique residential building types (summarized in the SI) are represented by individual 

building variants with different combinations of physical and operational characteristics that affect the 

load profile. To keep the volume of data computationally manageable while representing the diversity of 

actual load profiles that would be found in each grid region, we select a stratified random sample of 10% 

of the buildings of each type located in each climate zone in each grid region, resulting in a sample of 

112,717 unique load profiles. 

However, the NREL dataset does not include load profiles for agricultural, industrial, and certain 

common commercial (e.g., data center) end uses. Thus, for our California ISO case study that examines 

the impact of different building load profiles on bias, we utilize a dataset from Lawrence Berkeley 

National Lab (LBNL). This LBNL dataset contains actual hourly AMI data representing over 13.1 million 

individual residential, commercial, industrial, and agricultural electricity customers (aggregated into 
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2,766 building profiles) across the three major investor-owned utility territories in the California ISO 

territory (see SI for details).39  The choice of CAISO as a case study is also useful because the region is on 

the vanguard of renewable energy deployment and may be more representative of the carbon intensity 

variability of more and more grids as the energy transition continues.  

Grid carbon intensity data 

We source hourly average, consumption-based emission factors for each grid balancing area in 

the U.S. from Carbonara, a carbon analytics platform developed by Singularity Energy.40 This study 

utilizes carbon intensity values for 53 of the 75 grid balancing areas (BAs) in the United States, which 

represent a spatial resolution  that reflect actual power system boundaries and operations.41,42 To 

calculate its production-based emission estimates, Singularity uses data on hourly net generation by fuel 

type for each BA from EIA Form 930, and multiplies it by the fuel-specific, annual-average, adjusted CO2 

output emission rate for that BA, from the EPA’s eGRID2019 database.43  To calculate consumption-

based emissions, which account for imports and exports of electricity between BAs, they solve a multi-

region input-output model which utilizes hourly BA-to-BA net interchange data from EIA-930.14 Using 

these hourly values, we then calculate annual, monthly, and monthly time-of-day averages. 

Carbon inventory methodology 

A carbon inventory 𝐼 for each building 𝑏 in each grid region 𝑟 is calculated by summing the 

product of the building’s hourly electricity demand 𝐷 and the actual hourly grid carbon intensity 𝐶 at 

each temporal aggregation level for each hour ℎ in year: 

 𝐼𝑏,𝑟 = ∑ 𝐷𝑏,ℎ ∗ 𝐶𝑟,ℎ

8760

ℎ=1

 Equation 2 
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An estimated carbon inventory 𝐼 ̅is then calculated in the same manner, but using an averaged 

grid carbon intensity 𝐶̅, which can have one of three levels of temporal aggregation 𝑙 (annual, monthly, 

or monthly time-of-day): 

 𝐼𝑏̅,𝑟,𝑙 = ∑ 𝐷𝑏,ℎ ∗ 𝐶𝑟̅,ℎ,𝑙

8760

ℎ=1

 Equation 3 

The relative carbon inventory bias from using averaged carbon intensity values is calculated as 

the percentage error compared to the hourly inventory. 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑎𝑠𝑏,𝑟,𝑙 =
𝐼𝑏̅,𝑟,𝑙 − 𝐼𝑏,𝑟

𝐼𝑏,𝑟
 Equation 4 

Results 

Regional differences in carbon inventory bias 

The results of the 112,717 carbon inventories that we calculated for residential and commercial 

buildings around the country reveal that the use of annual-average carbon accounting can result in an 

overestimation up to 33% and underestimation up to 22% when compared to hourly-average accounting, 

although most bias falls in the range of +/- 5%. Importantly, as Figure 1.2 demonstrates, the magnitude 

and direction of this bias depends on where you are located and who you are.  

In certain regions, clustered near the center of Figure 1.2, annual accounting introduces 

negligible bias for all inventories. Referring to Figure 1.1, we can see that these low-bias regions tend to 

rely more heavily on fossil fuel generation and have low standard deviations in their hourly carbon 

intensity, which confirms what we would expect to see based on Equation 1 (see the SI for a direct visual 

comparison of these two figures). In a region like Duke Energy Florida, which is supplied mostly by 

methane gas and has a small standard deviation in carbon intensity, we see a correspondingly low 

amount of bias, within the range of +/- 0.7%.  
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In contrast, in regions where the variability in hourly carbon intensity is higher, annual-average 

accounting results in higher inventory bias, although the magnitude and direction of the bias depends 

on the variability of the building load, and how highly correlated that load is with periods of high or low 

carbon intensity on the grid, both on a seasonal and daily basis. If building energy demand tends to peak 

during seasons or times of day that coincide with peaks in grid carbon intensity, annual accounting will 

tend to underestimate emissions. For example, in the New York ISO, where emissions peak seasonally in 

the summer and daily during daylight hours, annual accounting underestimates commercial building 

emissions because commercial building load follows a similar seasonal and daily pattern.  

Because residential building demand profiles can peak at different times than commercial 

buildings, we see that in some regions annual-average accounting underestimates residential emissions 

while at the same time overestimating commercial building emissions. This can again be explained using 

Equation 1, since we identified that the direction of the bias is driven by the sign of the correlation 

coefficient between demand and the residual carbon intensity. 

Re-framing these results in terms of the regional energy supply mix, regions with higher bias 

tend to have higher shares of renewables, as renewables introduce more variability into the hourly 

carbon intensity (see figure S9 in the SI). Additionally, emissions from buildings whose demand is 

positively correlated with the timing of generation from the predominant renewable energy source in 

the region will be over-estimated using annual-average accounting. For example, for buildings that 

consume energy more heavily during the day, annual average accounting will over-estimate emissions in 

solar-dominated regions and under-estimate emissions in wind-heavy regions where wind tends to be 

stronger at night.   
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Figure 1.2. The relative bias that annual-average carbon accounting introduces compared to hourly accounting, for 

both residential and commercial buildings in each grid region. Each box plot shows the distribution of these biases 

for all building inventories in each region. The regions are ordered from lowest to highest median bias for all buildings 

in a region. The results for two regions were omitted from this figure (but can be found in the SI) for the readability 

of the results, as their relative biases ranged from -29% to +182%. 
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California ISO case study 

While the national results primarily demonstrate how regional carbon intensity characteristics 

affect the bias introduced by annual-average carbon accounting, it also showed how the bias can differ 

for different building types with different energy demand profiles. To further explore these demand-

driven impacts for a more complete set of electricity end users (including industrial and agricultural loads), 

this section focuses on a case study located within the California ISO, using a demand dataset representing 

millions of actual buildings in the state. 

 

 
Figure 1.3. For each of the 2,766 building load clusters in California, we calculated a carbon inventory using both a 

single annual average emission factor and hourly emission factors and evaluated by what percent the annual 

average over- or underestimated emissions compared to the hourly resolution inventory. These results are 

summarized by the box plots of these biases by building category. This shows that even within buildings of a single 

type in a single region, energy load profiles display large heterogeneity which impact the magnitude and direction 

of bias in emission inventories. 

 

From the results presented in Figure 1.3, we can see that the heterogeneity in the energy 

demand profiles of individual buildings within a single category of buildings means that it is not always 

possible to generalize conclusions about the magnitude and direction of bias of annual-average 

accounting. Commercial office buildings, for example, may have their inventories overestimated as 

much as 15% or underestimated as much as 10%. For data centers in California, we could conclude that 
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annual-average carbon accounting overestimates emissions, although the magnitude of this bias ranges 

anywhere from 0.5% to 8% for an individual data center.  

In the California ISO, which has a high penetration of solar generation, the carbon intensity 

tends to dip during the mid-day, which shapes the bias trends that we see in Figure 1.3. Most 

commercial buildings, whose energy demand also peaks during the day, will have their emissions 

overestimated by annual-average accounting.  

Industrial facilities, which can have larger swings in energy consumption between on-shift and 

off-shift times, and thus larger variability in energy demand (𝜎𝐷), tend to have higher emissions inventory 

bias resulting from annual-average accounting than commercial buildings. The exception is industrial 

processes which consume energy on a relatively continuous, 24/7 basis, like petroleum refining, for which 

the inventory bias is much closer to zero. For energy demand that is more intermittent or seasonal in 

nature, like agricultural water pumping and irrigation, annual-average carbon accounting can introduce 

much larger biases, in the range of +/- 30%, especially if the carbon intensity during the seasons or times 

of day when the pumping is occurring do not reflect the annual average, leading to a high correlation 

between demand and residual emissions (𝜌𝐷,𝜇).  

Inventory bias at different temporal resolutions 

While hourly accounting using 8,760 unique emission factors for each hour of the year will more 

precisely quantify the emissions attributable to each end user, it also introduces greater data 

management complexity for accounting practitioners. Thus, this study also examines whether the use of 

twelve monthly average emissions factors, which reflect annual seasonality, or 288 monthly time-of-day 

average emission factors, which reflect both annual and daily seasonality, could improve accuracy while 

limiting complexity. From a practical standpoint, monthly-average carbon accounting would be 
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convenient because most end-users of electricity are billed monthly and thus have easy access to monthly 

electricity consumption data.  

Figure 1.4 plots the absolute percentage bias resulting from the use of annual average emission 

factors versus the absolute bias resulting from using twelve monthly average or 288 (12x24) month-by-

hour-of-day average emission factors for each end-user in each grid region. Panel (a) shows that monthly-

average accounting can reduce bias by over 50% on average for residential buildings, while having no 

substantial impact on the bias for commercial buildings. Monthly-average accounting does not, however, 

lead to a systematic reduction in bias: approximately one-quarter of buildings showed no improvement 

or even an increase in bias when using monthly-average accounting. In panel (b), we can also see that for 

facilities with highly seasonal energy demands, such as water pumping and irrigation, monthly-average 

accounting may substantially reduce inventory bias compared to annual-average accounting, because 

these monthly averages reflect the predominant seasonality of the energy demand. These results suggest 

that monthly-average accounting could be beneficial for certain types of buildings in certain regions, but 

it does not represent a substantial improvement on a systematic basis. 
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Figure 1.4. Each plot compares the absolute percentage bias for inventories calculated using monthly-average 

carbon intensities (top row) and monthly-time-of-day-average carbon intensities (bottom row) compared to the 

bias from using annual-average carbon intensities for both the national results (left column, N=112,717) and the 

California case study (right column, N=2,766). Any points below the 45-degree line in each plot mean that the 

higher resolution carbon intensity decreased bias compared to the annual resolution, and vice versa. For the 

California ISO case study (right column), the results are broken out by residential loads, commercial and industrial 

(C&I) loads, and agricultural and water pumping loads. 

 

The bottom panels of Figure 1.4 demonstrate that monthly time-of-day average accounting 

substantially reduce, though do not eliminate, carbon inventory bias compared to annual-average 

accounting for all building types. This is because monthly time-of-day averages reflect both seasonal and 

daily patterns which are present in most energy demand profiles. These results suggest that the use of 
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monthly time-of-day average emissions factors for accounting may strike a reasonable balance between 

simplicity and accuracy. However, in practice, monthly time-of-day average data may not be that much 

simpler to use than hourly emissions factors, because hourly energy demand data would still need to be 

collected and analyzed to use these emission factors.  

Discussion  
Recommendations 

Accuracy is one of the fundamental GHG accounting and reporting principles described by The 

GHG Protocol. As noted in the Protocol’s Corporate Accounting and Reporting Standard, “data should be 

sufficiently precise to enable intended users to make decisions with reasonable assurance that the 

reported information is credible. GHG measurements, estimates, or calculations should be systemically 

neither over nor under the actual emissions value, as far as can be judged, and that uncertainties are 

reduced as far as practicable.”44 The GHG Protocol Corporate Standard suggests as a rule of thumb that 

an error of 5% or more in an emissions inventory is considered “materially misleading” and would 

require the organization to recalculate their inventory (and perhaps even their base year inventory) to 

address the error.44 As the results of this research show, this 5% materiality threshold may be exceeded 

in many cases by using annual average emission factors, especially if an organization’s emissions 

inventory is primarily driven by its scope 2 emissions. 

As explained through Equation 1, the results illustrate how the bias in carbon inventories is 

based on a combination of factors including the variability in hourly building demand, the variability in 

hourly carbon intensity, and the correlation between building demand and grid carbon intensity. If any 

one of these factors is small (close to zero), whether because building demand is relatively flat, grid 

carbon intensity is relatively flat, or the variation in either is mostly random and uncorrelated with the 

other, then the bias introduced by using annual accounting will be small.  
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However, the results of this study make clear that in today’s electricity system, annual-average 

emissions accounting yields imprecise emission inventories in most regions and for most end-users. In 

addition, this study shows that monthly average emission factors do not reliably or substantially address 

this bias. Thus, we recommend that hourly or sub-hourly accounting be adopted as the best practice for 

attributional GHG accounting of grid-consumed electricity and for location-based Scope 2 GHG 

inventories. 

Implications and urgency 

These results have broad implications for many fields including voluntary climate disclosure, 

building performance regulations, carbon pricing, community-scale climate action planning, climate-

based investing, and general business decisions. As emissions accounting is increasingly incorporated 

into regulations, carbon pricing, and business decisions, the bias from annual-average carbon accounting 

could have real-world legal and financial implications. For example, New York City’s Local Law 97 set a 

carbon emissions cap (enforced with a substantial fine of $268 per ton in exceedance) for 50,000 

buildings in the city and will go into effect in 2024. If this law were to use annual-average grid emissions 

factors for accounting, the results of this study suggest that the emissions for commercial buildings 

located in the New York ISO could be underestimated by up to 7%, eroding the efficiency and 

effectiveness of this law.  

These findings are also relevant to crafting effective transportation policies, especially those that 

require accurately quantifying air pollution related to charging electric vehicles relative to pollution from 

internal combustion engines. For example, California’s Low Carbon Fuel Standard (LCFS), which is 

designed to decrease the carbon intensity of the state’s transportation fuels, currently calculates its 

base EV charging credits based on annual-average grid carbon intensity, which may be eroding the 

efficiency of this credit market.45,46 
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This research has several important implications for the academic research community, 

especially in the fields of lifecycle assessment (LCA), energy and climate policy research, and 

transportation research. Due to the ubiquity of electricity as an input to the manufacturing and use 

phase of many products, our findings suggest that hourly emissions factors should be used whenever 

possible for conducting attributional LCAs, especially when evaluating emissions from individual plug 

loads or end uses whose demand profile can be more variable than those of entire buildings. Although 

this study focused on the bias introduced in carbon inventories, future research should evaluate 

whether these biases also translate to other criteria pollutants (such as NOx, SOx, and particulate 

matter), which are also relevant to many LCAs.  

Beyond the implications of this bias on scope 2 emissions inventories, these results also have 

implications for the accuracy of an organization’s scope 3 inventory, which focus on upstream sources of 

emissions, such as the emissions of raw materials or products. Especially for organizations who rely on 

energy-intensive raw materials such as aluminum, annual-average accounting could lead to inaccurate 

calculations of the lifecycle emissions associated with those inputs into their products.  

Although this study focused on carbon inventories for individual buildings, and thus do not tell 

us about the annual accounting bias for community-scale or company-wide emissions inventories (which 

include buildings of many different types, possibly across many grid regions for a company with a 

national or international footprint), it nonetheless has important implications for how emissions are 

allocated within the inventory. For example, a community-scale inventory may seek to identify whether 

residential or commercial buildings represent a larger share of emissions, or a corporate-wide inventory 

may seek to identify which business region is responsible for the most emissions, so that funding and 

resources can be allocated to mitigate the largest sources of emissions. These results suggest that the 
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bias introduced by annual accounting could potentially mis-allocate emissions between building sectors 

or regions, thus mis-informing these types of prioritization efforts. 

Annual accounting can also limit effective decision-making about individual carbon-mitigation 

efforts, such as energy efficiency investments. Using annual-average accounting would lead a decision-

maker to believe that whichever project reduces the greatest number of kWh will reduce the 

organization’s carbon footprint most effectively. However, using hourly accounting might reveal that if 

that project mostly reduces energy consumption when grid emissions are low, then the value 

proposition of that project would be undermined compared to a project that reduces consumption 

during hours of high carbon intensity.  

The findings of this paper, and in particular the drivers of bias explained through Equation 1, 

lead us to believe that these annual accounting biases will only get worse, based on current trends in 

building energy demand and grid carbon intensity. As grids continue to integrate more variable and 

intermittent renewable energy sources to meet state RPS targets and other climate goals, the variability 

in hourly carbon intensity will likely increase, increasing 𝜎𝜇 and inventory bias.24,33,47  On the demand 

side, as more and more large end-use loads are electrified, such as vehicle charging, water heating, and 

space conditioning, building the total facility load profiles may become spikier and more variable, 

increasing 𝜎𝐷 and inventory bias.17 Furthermore, efforts such as time-of-use rates, managed charging, 

and carbon-aware demand response, which seek to shape and shift load to better match the times 

when carbon-free resources are available, may strengthen the magnitude of the correlation between 

energy demand and grid carbon intensity (𝜌𝐷,𝜇), also increasing inventory bias. These three trends in 

combination, suggest that the continued use of annual carbon accounting will lead to inventories that 

become increasingly biased in the future.  
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Chapter 2: Modernizing power sector emissions data to inform 

deep decarbonization of the electric grid 
 

Introduction 
Accurate, comprehensive, and high-resolution data for tracking power sector emissions 

is becoming increasingly important for climate policy and voluntary climate action. An increasing 

number of policies and regulations, including New York City’s Local Law 97 and the U.S. Security 

and Exchange Commission’s proposed rule on climate risk disclosure, are based on accurately 

tracking the GHG emissions that each end user of electricity is responsible for. Additionally, a 

record number of actors, including corporations, cities, and other institutions, have made 

voluntary decarbonization pledges that are informed in part by inventorying and tracking their 

emissions. However, recent research has shown that the emissions factors that have historically 

been available to inform these efforts may be inadequate to meet the needs of today’s end users. 

The main public emissions factor datasets for the U.S. include annual-average emissions factors 

that reflect the emissions intensity of generated electricity, but do not provide any information 

about how the emissions intensity of consumed electricity (which depends on imports of 

electricity from other regions) varies across time. The time-varying emissions intensity of 

consumed electricity is important for accurately describing emissions: recent research has shown 

imported electricity can account for 20-40% of emissions consumed in a region, and that annual 

accounting of emissions can significantly over- or underestimate end-use emissions 

inventories.14,27,48 

Comprehensive hourly emissions data is also important for academic research. Over the 

past decade, many of the most prominent studies of the consequential emissions impact of 

electric vehicles and renewable energy deployment, as well as the broader study of marginal 
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emissions, have relied on hourly generation and emissions data from the EPA Clean Air Markets 

Division’s (CAMD) continuous emissions monitoring system (CEMS) dataset.28,49–62 The major 

limitation of this dataset is that it only covers fossil-fueled generators >25MW nameplate 

capacity, some of which only report data for part of the year. The authors of these studies have 

generally assumed that generators that did not happen to report data to CEMS could not be on 

the margin, or represented an insignificant proportion of generation in the regions under analysis, 

although some authors acknowledge that this is not always an appropriate assumption.28,54,63 

Another limitation of the CEMS dataset is that it only reports hourly gross generation, and not net 

generation, which represents the electricity actually injected into the grid and ultimately used by 

consumers. Many previous studies using this dataset used the gross generation data directly in 

their calculations of emission factors.28,50,51,58,59 The continued use of this dataset could be biasing 

our understanding of the climate impacts of the power sector and electricity end uses. 

As of yet, no comprehensive, high-quality, and high-resolution dataset of grid emissions 

exists. Existing hourly datasets are either incomplete (CEMS) or are estimates that have not yet 

been validated based on high-quality measured or reported data. Existing comprehensive and 

high-quality datasets, such as the EPA’s eGRID database, only publish low-resolution, annual data. 

The challenge of producing data that is both comprehensive and high-resolution is that the data 

source that is used to fill in generation and fuel consumption data that is missing from CEMS, EIA’s 

Form 923, only provides data at the monthly and annual resolutions. Thus, overcoming this 

challenge requires a robust method for imputing the hourly profile of data that is only reported 

at the monthly or annual level. 

This paper presents a method for estimating hourly generation, emissions, and emissions 

intensity data for the entire U.S. power sector at the regional and individual plant level, developed 
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as part of the Open Grid Emissions Initiative.64 The goal is to provide accurate, comprehensive, 

and high-resolution data that represents both emissions generated by the power sector and 

emissions from consumed grid electricity. Our method uses publicly available data from the U.S. 

EPA and EIA and introduces several novel methods and applications of existing open-source 

methods for working with these data. Our open data, code, and methodological documentation 

are freely available at the Open Grid Emissions Initiative website.65  We believe that the OGE 

dataset is the most comprehensive, most accurate, and highest resolution dataset of historical 

U.S. power sector emissions and electricity emissions factors available to date.66 To our 

knowledge, it is also the first comprehensive hourly dataset of NOx, SO2, CH4, and N2O emissions 

from the U.S. power sector, and of total CO2 emissions resulting from electricity generation. 

Background and literature review 
Recent research has demonstrated that as the power sector continues to decarbonize, 

hourly or higher resolution data is needed to accurately characterize power sector emissions 

intensity and attribute emissions to end uses of electricity.48 Previous research has also 

indicated that consumption-based emissions factors, which account for the interchange of 

electricity between regions, are increasingly necessary to accurately characterize the 

attributional emissions of electricity end uses.14,27  

To date, most publicly accessible datasets of power sector emissions and electricity 

emissions factors do not include consumed emissions factors or hourly-resolution data. The U.S. 

EPA’s Emissions and Generation Resource Integrated Database (eGRID) is the oldest and most 

comprehensive dataset of power sector emissions, primarily relying on measured emissions 

data from continuous emissions monitoring systems (CEMS).67 However, the eGRID data is 

published at the annual resolution. In an attempt to reflect consumption-based emissions, the 

EPA also aggregates its data into “eGRID subregions”, the boundaries of which are defined to 
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limit the import and export of electricity, but do not explicitly account for power flows between 

balancing areas.68  Likewise, the U.S. Energy Information Administration’s published “Emissions 

by plant and region” dataset, which relies on fuel consumption data reported to EIA Form 923, 

only includes generated emissions factors at the annual resolution.69 Because of delay involved 

in collecting and verifying the data that serve as the inputs to these two datasets, another factor 

that limits their potential usefulness is that they are released on a 1-2 year lag: data for 2021, 

for example, will not be released until autumn 2022 or winter 2023.68,69   

Generally, power sector datasets from the EPA and EIA include data for both power 

plants (which only generate electricity) and combined heat and power (CHP) plants (which 

produce both electricity and useful thermal output for applications such as district heating or 

industrial steam). Thus, in addition to reporting total “power sector” emissions, in order to 

calculate emissions factors for generated electricity, these datasets must adjust their emissions 

totals for CHP plants, to exclude fuel consumed for non-electricity purposes.  

These datasets generally apply an adjustment that treats biomass emissions as carbon-

neutral, which means that to date none of these existing datasets include emissions factors that 

represent all CO2 emissions of generated electricity. This assumption that biomass emissions are 

carbon neutral has been widely refuted by the academic literature.70–77 The major flaw of this 

assumption is that it selectively applies lifecycle accounting to a single fuel source, and also 

selectively defines the system boundaries and temporal scope of this analysis. The implication of 

this limitation is that these existing datasets are systematically underrepresenting carbon 

dioxide emissions in grid that include bioenergy generation.  

Several recent academic efforts have improved upon certain limitations of the existing 

EPA and EIA data. The Power Sector Carbon Index, based on 2018 research by Schivley et al., 



 

 

27 
 

now publishes monthly-resolution power sector CO2 emissions data on only a 3-6 month lag.13 

Because this dataset is focused on tracking long-term trends in power sector carbon emissions, 

it does not include consumed emissions factors or data for emissions other than CO2. Work by 

de Chalendar et al. in 2019 and de Chalendar and Benson in 2021 led to the creation of the 

GridEmissions dataset, which was the first publicly-available dataset of both generated and 

consumed, hourly CO2 emissions factors for the U.S., published on only a one-day lag.14,78,79  

Instead of relying on measured emissions data and reported fuel consumption data, the 

GridEmissions dataset makes use of a relatively new source of near-real-time hourly generation 

and interchange data available for each balancing authority through EIA Form 930 (published as 

part of the EIA’s “Hourly Electric Grid Monitor”).43 Several additional commercial datasets of 

hourly, consumed grid emissions factors exist, and are based on similar data sources and 

methods to the GridEmissions dataset, so are not discussed in this paper.40,80  

To date, there has been no way to validate how well these real-time estimates reflect 

actual hourly emissions from the power sector, and there are several factors that may affect the 

accuracy of these estimates based solely on EIA-930 data. First, the reported EIA-930 data 

includes multiple known issues with data quality, which while seem to be improving over time, 

may still affect the accuracy of resulting emissions estimates.81 These issues include incorrect 

reporting of the prevailing local time of datapoints, accounting discrepancies in reported 

interchange values, inconsistent categorization of generation  into fuel categories, and missing 

data. Additionally, the emissions factors used to convert net generation to emissions are 

generic, historical annual averages and may not reflect the current, time-varying emissions 

intensity of specific regional fleets. This means that while such datasets might be useful 

estimates for real-time operational decision making, they might not be of sufficient quality to 

base accurate emissions inventories on. 
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The Open Grid Emissions Initiative (OGEI) dataset, introduced in this paper, addresses 

many of the limitations of these previous datasets by providing hourly, generated and 

consumed emissions factors for multiple greenhouse gases and air pollutants, as well as 

generation and fuel consumption data, using primarily measured and reported data. We believe 

that the OGEI dataset is the most comprehensive, most accurate, and highest resolution dataset 

of historical U.S. power sector emissions and electricity emissions factors available to date.66 To 

our knowledge, it is also the first comprehensive hourly dataset of NOx, SO2, CH4, and N2O 

emissions from the U.S. power sector, and of total CO2 emissions resulting from electricity 

generation.  
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Table 2.1 Comparison of existing publicly accessible sources of power sector emissions and electricity emissions factor 
data 

Dataset: 

eGRID67 EIA69 Power 
Sector 
Carbon 
Index13 

GridEmissions14,78 Open Grid 
Emissions 
Initiative 

Temporal 
Resolution 

Hourly    ✓ ✓ 
Monthly   ✓  ✓ 

Seasonal ✓  ✓   

Annual ✓ ✓ ✓  ✓ 

Emission 
Factor Type 

Generated ✓ ✓ ✓ ✓ ✓ 
Consumed    ✓ ✓ 

Data 
Sources 

CEMS Annual  Hourly  Hourly 

EIA-923 ✓ ✓ ✓  ✓ 
EIA-860 ✓ ✓ ✓  ✓ 
EIA-930    ✓ ✓ 

CO2 
emissions 
data 

Power 
sector 

Mass    Mass 

Biomass-adj. 
power 
sector 

 Mass & 
EF 

  Mass 

Electricity     Mass & EF 

Biomass-adj. 
electricity 

Mass & EF  Mass & EF Mass & EF Mass & EF 

Pollutants 
Tracked 

CO2 ✓ ✓ ✓ ✓ (lifecycle) ✓ 

CH4 ✓    ✓ 
N2O ✓    ✓ 
CO2e ✓    ✓ 
NOx ✓ ✓   ✓ 
SO2 ✓ ✓   ✓ 
Hg ✓     

Spatial 
Aggregation 

Plant ✓ ✓   ✓ 
Balancing 
Area 

✓   ✓ ✓ 

NERC ✓ ✓ ✓   

State ✓ ✓ ✓   

National ✓ ✓ ✓   

Approximate Data 
Release lag 

1-2 years 1-2 
years 

3-6  
months 

1 day 1-2 years 

Historical Coverage as of 
Sept 2022 

1996-
2020 

2013-
2020 

2001- 
March 
2022 

July 2018 – June 
2022 

2019-2020 
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Methods and Data 
The Open Grid Emissions Initiative builds on many of the same data sources and 

methods that have previously been explored in the academic literature for cleaning and 

analyzing power plant operational data. Many of the underlying assumptions and methods for 

cleaning the data are adapted from the U.S. EPA’s eGRID methodology.68 The methods for 

cleaning the EIA-930 data come from Chalendar and Benson 2021 and Ruggles et al 2020.78,82 

The multi-region input output model used for calculating consumption-based emissions come 

from Chalendar et al 2019.14 Although this research includes many smaller, incremental 

improvements to existing methods, the main novel methodological contribution is a method for 

imputing the hourly profile of monthly-resolution EIA data. 

This dataset relies on combining multiple sources of data including the EPA’s CEMS data 

and data from EIA Forms 860, 923, and 930. Because these datasets are released in non-

standardized formats, sometimes contain incomplete or anomalous data, and can be 

challenging to cross-link, we build upon several existing open-source projects for standardizing 

and cleaning these data. The first of these is Catalyst Cooperative’s Public Utility Data Liberation 

(PUDL) project, which provides standardized and unified relational databases of the raw CEMS, 

EIA-860, and EIA-923 data, as well as analysis tools for further cleaning and cross-walking the 

data.83  Because EPA and EIA datasets do not always use consistent plant identifier codes or 

units of analysis, we also rely on the EPA’s open-source Power Sector Data Crosswalk project, 

which provides a table for linking these datasets together.84 Finally, the raw EIA-930 data 

includes data quality issues that result in the reported demand, generation, and interchange 

data not obeying energy conservation laws, so we utilize the physics-based reconciliation code 

as part of the GridEmissions package to produce a cleaned and physically realistic version of the 

EIA-930 data.78,79 
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The OGE dataset primarily relies on hourly emissions data from the CEMS dataset, and 

data gaps are filled using monthly and annual-resolution EIA-923 data, which is assigned an 

hourly profile based on hourly fleet-specific net generation data reported in EIA-930. Whenever 

emissions data is missing (in the case of individual hours in the CEMS data) or not reported (in 

the case of the EIA-923 data), it is imputed based on reported fuel consumption, fuel-specific 

emissions factors, and boiler-specific design parameters and emissions control equipment. Total 

emissions from both CEMS and EIA data are adjusted for combined heat and power plants to 

reflect only the portion of emissions associated with power generation. Hourly gross generation 

data from CEMS is converted to hourly net generation based on the ratio of reported gross 

generation to net generation (reported in EIA-923) for each subplant (which are described in the 

next section). Monthly EIA-923 data for subplants that do not report data to CEMS is assigned an 

hourly profile based on the shape of the residual net generation profile between the total 

fleetwide net generation in a region reported in EIA-930 and the portion of net generation 

reported in CEMS for that fleet. Hourly generated emissions factors are calculated by dividing 

hourly emissions mass by hourly net generation. Consumption based emissions are then 

calculated using the multi-region input output model introduced in Chalendar et al 2019, based 

on calculated generation and emissions rates, and reported hourly interchange values between 

regions in EIA-930.  
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Figure 2.1 Flow diagram of the major steps of the open grid emissions data pipeline 
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Crosswalking data from multiple sources 

Because our emissions calculations rely on data from multiple data sources, matching 

these data accurately is crucial to identifying data gaps, calculating conversion factors, and 

ensuring that we are not double-counting data. The main challenge to matching data from each 

source is that data from each source is typically reported at different aggregations: EIA reports 

some data at the boiler level (where the fuel is combusted and steam produced) and some data 

at the generator level (where the electricity is generated), while the CEMS data is reported at 

the unit level (which represents a collection of boilers and smokestacks). Complicating this is 

that the EIA also uses the term “unit” to describe multiple generators that operate together. 

Sometimes boilers, generators, and EPA units are related in simple one-to-one relationships 

(i.e., a single boiler powers a single generator, and emits pollution via a single stack), but in 

other cases these units and generators can be configured in complex one-to-many, many-to-

one, or many-to-many relationships. To identify these relationships, we use the EPA’s power 

sector data crosswalk and the EIA-860 boiler-generator association table, supplemented by 

further associations that the PUDL project added based on string matching and the EIA unit 

codes.85 Once all of these relationships were identified, we applied a method developed by 

Catalyst Cooperative that uses network analysis to create a graph of all connections between 

boilers, generators, EPA units, and EIA units, and assign a unique “subplant ID” to each 

connected subgraph. These subplants represent the smallest unit of analysis to which we 

aggregate data and allows us to accurately identify where data from each source overlaps or is 

missing. 
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Hourly Gross to Net Generation 

Gross generation represents the total amount of electricity generated as measured at 

the terminal of a generator. However, the amount of electricity that a plant injects into the 

power system, referred to as net generation, is lower than gross generation due to parasitic 

electrical loads at the plant and electrical losses between the generator and the point of 

interconnection. Net generation is what is used for calculating generated emissions factors. 

Although EIA-923 reports monthly net generation totals, the hourly generation data in CEMS 

represents gross generation, which must be converted to hourly net generation to be used in 

our analysis. The method that we use to convert gross to net generation involves comparing 

monthly total gross generation data for each subplant to monthly reported net generation and 

calculating a gross-to-net ratio.54,86,87 Wherever monthly reported net generation is negative, we 

preserve the hourly shape of the gross generation profile but shift it down until the monthly 

total matches the reported negative total from eIA-923. If plant-specific conversion factors are 

not available, we use a fuel-specific, national-average gross to net ratio. For year 2020, over 99% 

of the gross generation data in our dataset was converted using a subplant- or plant-specific 

gross to net ratio. 

Imputing hourly profiles for monthly-reported data 

The major novel methodological contribution of this work is a method for imputing the 

hourly profile of the monthly-resolution data for plants that do not report to CEMS. This method 

includes a series of three broad approaches that are applied to the monthly data depending on 

the most specific observed hourly data that is available for each subplant.  

The first two approaches apply to plants where only certain units report hourly data to 

CEMS. If only a subset of units that make up a subplant report hourly data to CEMS, we use the 
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complete monthly data for that subplant from EIA-923 to scale the hourly data from the units 

that do report to CEMS. If only certain subplants at a plant report hourly data to CEMS, we use 

the combined hourly profile of all CEMS-reporting subplants to shape the monthly EIA-923 data 

for the subplant(s) that do not report to CEMS. These two approaches assume that the 

operational profile of different units within a single subplant, or of different subplants within a 

single plant will be similar. This assumption may not always be accurate, but it is applied to only 

a very small segment of the overall data.88 

For plants that do not report any hourly data to CEMS (which generally includes all clean 

and renewable generators, as well as any plants less than 25 MW nameplate capacity) or for 

large emitting plants that only report data to CEMS during ozone season (May-September), we 

can reasonably estimate their aggregate hourly generation profile using observed fleet-wide 

hourly generation data. Starting in 2018, the U.S. EIA started collecting hourly net generation 

data by plant primary fuel type (coal, natural gas, petroleum, nuclear, hydro, wind, solar, and 

other) for each balancing authority in the U.S. as part of their Hourly Balancing Authority 

Operations Report (Form 930).  

To calculate the hourly net generation profile for all subplants that do not report to 

CEMS in each month, we subtract the aggregate hourly net generation profile of the CEMS data 

from the total hourly net generation profile for all plants of that fuel category in each region. 

This residual hourly profile should represent, in aggregate, the hourly profile of all plants that do 

not report data to CEMS. This hourly residual profile for each fleet-month is then normalized as 

a percentage of monthly total net generation for that fleet, and used to shape the monthly total 

net generation, fuel consumption, and emissions data for all plants in that fleet. 
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In some regions and periods, the hourly net generation from CEMS exceeds the total 

reported net generation in EIA-930, due to inconsistencies in which balancing authorities or fuel 

categories individual plants are assigned to in EIA-930. In the cases where the amount by which 

the CEMS generation exceeds the EIA-930 generation is small, we shift the CEMS profile down 

until no hours exceed the reported EIA-930 generation, then calculate the residual. This 

approach prevents the residual profile from including negative net generation, while preserving 

residual shape of the two profiles as much as possible. 

 

Figure 2.2 Comparing natural gas generation data for the Balancing Authority of Northern California (BANC) reveals 
that operational patterns for plants that report to CEMS (red line) differ quite significantly from smaller plants that do 
not report to CEMS (green line). The residual profile shown by the green line was used to shape the May generation, 
fuel consumption, and emissions totals reported in EIA-923 for the natural gas plants in BANC that did not report data 
to CEMS. 

In the case when a high-quality residual profile cannot be calculated, alternate methods 

are used to impute the missing hourly profile. If available, the total EIA-930 fleet profile is used, 

as it represents the generation-weighted average profile of all generators in the fleet. If there is 

no EIA-930 data, but there is CEMS data that represents at least three different plants in a fleet, 

the CEMS profile is used as a proxy, even though the generation profile of these larger 

generators may not necessarily represent the profile of smaller generators. In the case that no 

hourly data is available for a specific fleet, we apply a flat hourly profile, which is equivalent to 
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using the monthly average value for all hours. This fallback method is only applied to about 2% 

of the total net generation (see Table 2.5), but for certain types of generation that operate as 

baseload resource (e.g. nuclear, geothermal, petroleum) this may be a reasonable 

approximation of their actual hourly profile if there are not significant periods of scheduled 

maintenance.  

If hourly wind or solar net generation profiles for a region are not reported in EIA-930, 

we impute a profile by averaging the wind or solar profiles for all directly interconnected 

balancing authorities (BA) located in the same time zone as the missing BA. Solar and especially 

wind generation tends to vary geographically, so this approach has limitations, but attempts to 

use wind and solar data from regions that are as geographically proximate to the missing BA as 

possible to minimize these differences. If data is not available from neighboring regions, we use 

national-average wind and solar profiles for each local hour. Cross-validating this method for 

regions where wind and solar data is available reveals that both methods work quite well at 

estimating the shape of solar generation (median correlation coefficients ~0.9), but as expected 

perform much worse for estimating local wind generation shapes (median correlation 

coefficient of 0.45 for the neighboring method and 0.11 for the national method). However, as 

shown in Table 2.5, this method is used to shape less than 0.5% of all generation data.  
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Figure 2.3 Results of cross-validation of our method for imputing missing wind and solar profiles by averaging data 
from neighboring regions (directly interconnected balancing authorities – DIBA) and the entire country. A correlation 
coefficient of 1 means that the shape of the imputed profile matches the actual profile exactly. 

Results 
Validation compared to other datasets 

The first data quality metric is how well the magnitude of our annual totals match 

estimates from other data sources. We expect some differences due to methodological 

differences between the datasets, but we expect that the order of magnitude should be the 

same and that results are relatively close, within +/-5% of previous estimates. 

We compared the annual total results of the OGE dataset for year 2020 with the results 

of the other previous datasets. The results in the below table validate that on an annual level, 

our results are consistent with other previous estimates. The largest differences are in NOx and 

SO2 emissions outputs, where our NOx totals are 4% higher than eGRID’s totals, and our SO2 

totals are 13% lower than those in eGRID (although less than 1% different from EIA’s totals). 

These discrepancies in SO2 emissions totals primarily result from the EIA and eGRID using 

different SO2 emissions factors for coal and landfill gas combustion (OGE uses the EIA factors). 
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Table 2.2 Comparison of total annual results from each emissions dataset 

Metric OGE eGRID EIA PSCI 

Net Gen (TWh) 4,021 4,021 4,007 4,048 

CO2 (trillion lb) Power Sector 3.864 3.816 N/A N/A 

Biomass-adj. electricity 3.290 3.291 N/A 3.276 

NOx (billion lb) Power Sector 2.781 2.636 2.670 N/A 

Biomass-adj. electricity 2.273 2.046 N/A N/A 

SO2 (billion lb) Power Sector 2.270 2.595 2.255 N/A 

Biomass-adj. electricity 1.778 1.908 N/A N/A 

 

Quality of input data 

The second data quality metric evaluates what percent of annual total generation and 

emissions is derived from data from each of our input source, which range in quality. We 

consider CEMS to be the highest quality because it represents measured data, monthly EIA-923 

as the next best because it is based on reported monthly values, and annually reported EIA-923 

data as the worst, since although it represents reported data, there is less certainty about how 

to distribute the data to individual months to ensure that no data is double-counted or under-

counted. 

The below metadata for our results indicate that most of the emissions data in the OGE 

dataset come from measured hourly CEMS data. A smaller but significant portion of the results 

(one-third of the generation, 7% of CO2e emissions, and 19% of NOx data) come from monthly 

EIA-923 records that we have assigned hourly profiles to using the methodology described in 

this paper. An even smaller portion of the results (9% of the net generation and 17% of the NOx 

emissions) come from annually reported EIA-923 data.  
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Table 2.3 Percentage of final OGE data from each input source 

 
 

Metric: 
Total Net 

Generation 

Combustion 
Net 

Generation 

Total Emissions 
Electricity 
Emissions 

Quality Method: CO2 NOx SO2 CO2 NOx SO2 

Highest 
↑ 
↓ 

Lowest 

Hourly CEMS 57% 90% 84% 55% 70% 92% 64% 88% 

Monthly 
EIA-923 

34% 
8% 

14% 29% 28% 7% 19% 10% 

Annual EIA-
923 Only 

8% 
1% 

1% 13% 2% 0% 13% 2% 

Mixed CEMS 
& Annual 
923 

1% 
0% 

1% 3% 0% 1% 4% 0% 

 

This table also shows why previous academic studies that relied only on CEMS data may 

be missing a substantial portion of generation and emissions data. While in 2020, CEMS 

accounted for 92% of all electricity-related CO2 emissions and 90% of all combustion net 

generation, it only reflects 57% of all net generation, only two-thirds of all NOx emissions. On a 

regional level, this assumption that CEMS data represents a complete picture is shown to break 

down further. While in some regions, CEMS represents a nearly complete picture of certain 

types of GHG emissions and combustion generation, it generally misses a large amount of total 

generation and air pollution data. In CAISO, for example, CEMS data represents less than two-

thirds of CO2 emissions, only one-third of generation, and less than 10% of all NOx and SO2 

emissions.  

Table 2.4 Percent of data for the seven major ISO/RTOs that is represented in CEMS 

ISO 
Total Net 

Generation 

Combustion 
Net 

Generation 

Electricity Emissions 

CO2 NOx SO2 

CAISO 35% 69% 64% 4% 7% 

ERCOT 59% 87% 92% 60% 98% 

ISONE 52% 85% 70% 12% 12% 

MISO 63% 89% 93% 69% 88% 

NYISO 41% 90% 82% 30% 50% 

PJM 57% 96% 95% 67% 94% 

SPP 57% 94% 97% 83% 97% 
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Quality of hourly profile 

The final data quality metrics evaluates the quality of the hourly values, based on the 

source and method used to identify the hourly value. The highest quality hourly profile data is 

represented by a measured hourly value from CEMS, while the lowest quality hourly datapoint 

represents a monthly average value assigned to each hour. 

A majority of the hourly data represent actual measured values from CEMS, or values 

derived from hourly CEMS data (in the case of net generation). The next most used method is 

the residual EIA-930 profile. While this value is not necessarily accurate for a specific, individual 

plant, it should be relatively accurate at the fleet level since it is derived from subtracting two 

observed hourly values. Based on this metric, the quality of hourly CO2 values is the highest, 

followed by SO2, and the quality of specific hourly NOx values is lowest quality. 

Table 2.5 Percentage of hourly data that was shaped using each method. 

 
 

Metric: 
Net 

Generation 
Total Emissions Electricity Emissions 

Quality Method: CO2 NOx SO2 CO2 NOx SO2 

Highest 
 

↑ 
↓ 

 
 

Lowest 

CEMS reported 57% 84% 54% 69% 92% 64% 88% 

Partial CEMS 1% 1% 3% 2% 1% 3% 1% 

Residual EIA-930 
profile 

38% 6% 18% 6% 3% 12% 3% 

EIA-930 profile 2% 0% 1% 0% 0% 1% 0% 

CEMS-avg profile 0% 3% 8% 8% 1% 7% 3% 

Imputed wind/solar 
profile 

0% N/A N/A N/A N/A N/A N/A 

Assumed flat (monthly 
avg) 

2% 7% 16% 14% 3% 13% 6% 

 

Comparing non-biogenic electricity emissions to total electricity emissions 

Nationally, our results show that excluding biomass underestimates total electricity-

related emissions from the U.S. power sector by 3%. However, the impact of excluding biomass 
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from CO2 emissions factors has an even bigger impact at a regional scale. One extreme example 

is the emissions factor for Alaska Municipal Light and Power (AMPL), which at 0.701 lb/MWh (in 

eGRID) makes it among the lowest-carbon balancing areas in the county (the national average, 

according to eGRID, is 818 lbCO2/MWh). The biomass-adjusted electricity emissions factor in 

OGEI is similarly low (0.645 lb/MWh), but if you consider the carbon emissions from biomass 

combustion, the AMPL emission factor increases over 2000% up to 1,319 lb/MWh, making 

among the dirtiest regions in the country. This is likewise a significant issue in some of the 

largest balancing areas in the country: we found that the use of a biomass-adjusted emissions 

factors would underestimate CO2 emissions in ISONE by 22%, in CAISO by 14%, and in NYISO by 

8%.  

Table 2.6 Comparison of biomass-adjusted generated electricity emissions factors to total electricity-related emissions 
for four grid regions 

Balancing Area Electricity CO2 EF 
(lb/MWh) 

Biomass-Adjusted 
electricity EF 
(lb/MWh) 

% by which adjusted EF 
underestimates 
emissions 

Alaska Municipal 
Power & Light 

1,319.3 0.7 100% 

ISO New England 671.7 526.8 22% 

California ISO 487.8 419.6 14% 

New York ISO 489.4 449.6 8% 

 

Discussion 
The research presented in this paper has potentially far-reaching implications for future 

academic research, GHG accounting, policymaking, and voluntary decarbonization efforts.  

The Open Grid Emissions Initiative dataset includes hourly, monthly, and annual-

resolution data for each of its three outputs types which cover a wide variety of potential use 

cases: consumed emissions factors, regional power sector generation and generated emissions, 

and individual power plant data. The consumed hourly emissions factors are applicable to scope 
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2 GHG accounting, attributional lifecycle assessment studies, and validation of near-real-time 

estimates of consumed emissions factors. The regional power sector emissions and generation 

data can be used by policymakers and regulators to track progress toward climate goals, for 

calculating state or national emissions inventories, or as part of next-generation energy 

attribute certificates. Finally, the individual power plant data can enable more complete 

academic research and modeling of the power sector, and could be useful to environmental 

justice advocates for pinpointing hourly point sources of air pollutants in local communities 

across the country. 

Our results suggest that lifecycle assessment studies and studies of marginal emissions 

may be mis-representing impacts if they rely solely on CEMS data in their analyses. As shown in 

Table 2.3 above, although CEMS data covers over 90% of CO2 emissions nationally, it represents 

less than 60% of total generation, and only about two-thirds of all NOx emissions. In specific 

regions, such as CAISO, ISONE, and NYISO, the coverage of CEMS is even less representative of 

the entire regional power system. Previously, studies of marginal emissions that relied only on 

CEMS data assumed that generators that did not report to CEMS were unlikely to be on the 

margin. However, data from ISOs suggests that non-combustion fuels that don’t report to CEMS 

are increasingly marginal resources.89–93 Furthermore, we found that over half of all combustion-

based generation not represented in CEMS has a capacity factor less than 0.25, suggesting that 

these resources are likely operating in a peaking capacity on the margin. In the future, we 

recommend that such studies incorporate complete hourly emissions and generation data into 

their analyses. 

Our results also suggest that the use of biomass-adjusted CO2 emissions factors from 

existing datasets may significantly underestimate the emissions intensity and impact of 
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electricity end uses in certain regions. Besides being widely used in the academic literature, 

biomass-adjusted emissions factors are ubiquitously used for policies, markets, and emissions 

tracking systems. These uses include the ENERGYSTAR Portfolio Manager (the most-used energy 

tracking tool for commercial buildings), fueleconomy.gov (the official U.S. government source 

for vehicle fuel economy information), and any GHG inventory that follows The Climate Registry 

or the Greenhouse Gas Protocol recommendations.68 Our results, in combination with the 

existing academic literature on biomass emissions, suggest unless there is a specific policy need 

to treat biomass emissions as carbon-neutral, CO2 emissions factors that represent total 

electricity-related emissions should be used.  

Although recent research on carbon accounting and time-coincident electricity 

procurement has driven much interest from stakeholders in understanding grid emissions on an 

hourly basis, there have been four primary barriers to the wider adoption of hourly accounting 

of emissions, three of which we believe the research presented in this paper helps address: 1) 

the availability of hourly electricity metering data, 2) the availability of high-quality hourly grid 

emissions data, 3) the lack of guidance on standardized approaches for performing hourly 

accounting, and 4) the real and perceived complexity of working with hourly data. While this 

research does not affect the first barrier, this barrier is slowly being removed with the growing 

deployment of advanced metering infrastructure (AMI), which is capable of hourly or sub-hourly 

readings, from 39% of all meters in 2013 to 65% of all meters in 2020.35 This paper directly 

removes the second barrier by making high-quality, hourly consumed emissions factors publicly 

and easily available. We believe that this work will also make an especially timely contribution to 

addressing the third barrier around lack of standardization. The Greenhouse Gas Protocol has 

announced that it will begin a stakeholder process to revise the scope 2 GHG accounting 

guidance starting in late 2022 or early 2023, and by making these data available, we believe that 
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it reframes the discussion of hourly GHG accounting from a theoretical exercise to a practical 

discussion of how to implement it. Finally, the increased complexity of working with hourly data 

suggests that third party software platforms and inventory tools will become increasingly 

necessary to help users manage the data. By releasing our code and data under a permissive, 

open-source MIT license, we hope that this will enable this data to be widely integrated into 

these software tools. 

Another implication of this work is how it might enable higher-quality, real-time 

estimates of grid emissions. One factor that limits the relevance and usefulness of the Open Grid 

Emissions data is that because it relies on the same high-quality, validated data inputs as eGRID, 

it is subject to the same 1–2-year lag in releasing data. However, the OGE data presents a novel 

opportunity to validate real-time emissions estimates, and refine the methods used for 

estimating real-time emissions. Once validated and determined to be of high enough quality, 

these real-time estimates could enable more timely analysis, reporting, and regulation of 

consumed emissions from electricity consumption.  

Limitations 

Although we believe that the Open Grid Emissions Initiative dataset represents the most 

comprehensive and accurate dataset of hourly generation and emissions data for the U.S. power 

sector available to date, it is still far from perfect. A complete list of known issues and future 

work can be found on the online code repository (https://github.com/singularity-energy/open-

grid-emissions/issues), but some of the largest limitations are discussed briefly here. The OGEI 

data does not yet include a methodology for estimating hourly charge and discharge patterns 

from energy storage, nor a method for accounting for emissions from stored electricity. Second, 

when residual net generation profiles cannot be calculated from the EIA-930 data, we impute 

https://github.com/singularity-energy/open-grid-emissions/issues
https://github.com/singularity-energy/open-grid-emissions/issues
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generation profiles for wind and solar, and assume flat generation profiles for all other 

resources. This may result in reasonable approximations of the hourly shape in some cases but is 

not necessarily robust in all cases. Finally, in some limited cases, only annually reported data is 

available, which increases the chances of double-counting or under-counting data if used in 

combination with partial-year data from other sources. As an active open-source initiative, we 

expect that these limitations will be improved upon over time.  
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Chapter 3: Evaluating the cost and impact of voluntary renewable 

procurement goals using the MATCH model 
 

Introduction 
Voluntary renewable energy procurement by corporations, municipalities, and utilities makes up 

over one-third of total renewable energy procurement in the United States.94 Over the past decade, 

much of this procurement has been driven by voluntary goals that seek to procure a certain percentage 

of the entity’s annual electricity consumption from clean or renewable generation sources. This annual 

volumetric based procurement has been effective at adding new renewable energy capacity to grids. 

However, the challenge of fully decarbonizing the electric grid is not only a matter of how much clean 

and renewable energy is built, but when it is available to meet load. In recent years, the concept of 

“24/7” or “time-coincident” clean energy procurement has gained significant attention as a way to help 

ensure that voluntary procurement leads to around-the-clock availability of clean energy that matches 

the times when electricity is consumed. Another “next-generation” voluntary procurement approach 

that is sometimes framed as a competing approach to time-coincident procurement is emissions-

optimized procurement, which seeks to procure generation from any global location that displaces the 

greatest amount of carbon emissions. 

Previous studies and reports have hypothesized that time-coincident procurement can result in 

several types of benefits for energy buyers and the broader clean energy transition. These purported 

benefits include acceleration of clean energy deployment, incentivization of new clean energy 

technology, improving the long term affordability of the energy transition, increasing the grid’s carrying 

capacity for renewable energy, and mitigating certain types of procurement risk.95–99 However, some of 

these same studies have also called into question whether achieving time-coincident goals are practical, 
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cost-effective, or effective at decarbonizing the electric grid as quickly as possible.95,96,98,100 There are 

also open questions about how exactly to define a time-coincident procurement goal. 

Although several previous studies have attempted to start answering these questions, these 

efforts have been limited by the lack of modeling tools that can be used to simulate the resource 

portfolios that would be selected, and the costs faced by voluntary buyers of energy under each of these 

different types of procurement goals. This will be explored further in the literature review, but in 

general existing models are tailored to simulating an entire regional power system or optimizing capital 

and operating costs faced by owner-operators of power plants, rather than to voluntary buyers of 

energy, which typically contract for energy using physical or virtual power purchase agreements.  

This paper introduces a new model called MATCH (“Matching Around The Clock Hourly 

energy”), which can be used to identify the most cost optimal portfolio of contracted resources that can 

meet an organization’s energy procurement goals. In addition to this model’s focus on the voluntary 

procurement context and ability to optimize the dispatch of generation and energy storage resources to 

match load on a time-coincident basis, it is also novel in its ability to identify and compare the impacts of 

multiple types of procurement goals, including annual renewable energy targets, 24/7 procurement, or 

emissions-based procurement.  

This paper introduces the MATCH model as both a decision-making tool for voluntary energy 

buyers and as a tool for further research of questions surrounding the cost and impact of different types 

of voluntary clean energy procurement. Using the case study of a community choice aggregator (CCA) in 

California, this paper then illustrates the use of the MATCH model to answer questions about the cost 

and impact of 24/7 procurement strategies.  
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Literature Review 
There are many existing studies that examine 100% renewable or clean energy pathways for 

states, utilities, and grid regions, but very few that focus on time-coincident procurement by voluntary 

buyers.101–104 For utilities and grid regions, any renewable or carbon-free goal is inherently a time-

coincident goal since these entities are responsible for maintaining reliable, around the clock delivery of 

electricity to their service territories. However, focusing on voluntary buyers of clean and renewable 

energy enables us to evaluate several unique aspects of this energy transition that have not already 

been explored in utility and regional-focused studies. The primary difference is that voluntary buyers 

have a choice in how and where they procure energy to meet such targets: generally, they can choose to 

procure renewable energy (or renewable energy attributes) from anywhere in the world that isn’t 

necessarily generated at the same time as they consume electricity. Thus, the potential set of resources 

available to voluntary buyers, the costs of those resources, and the impact of their procurement can be 

dramatically different from the geographically and temporally constrained set of resources available to 

meet utility or state goals. Second, utility-focused modeling is often constrained by a number of 

regulatory, reliability, and physical power system constraints that voluntary buyers are often not subject 

to. Third, the costs faced by voluntary buyers are different. As opposed to many pathways studies which 

focus on the capital and O+M costs of generation and transmission infrastructure, voluntary buyers 

often procure electricity via virtual power purchase agreements, which represent contracts for 

difference between the fixed PPA price per MWh and any wholesale electricity market revenues that the 

project earns. Finally, many system-level pathways studies that use optimization are generally seeking to 

minimize system-level costs rather than the costs of individual actors, and thus may not accurately 

represent the behavior of any individual actor very well.  

There have been three previous studies that focus on modeling time-coincident procurement by 

voluntary buyers, all published in 2021. In general, the limitations of these previous studies for 
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understanding voluntary procurement fall into one or more of the following categories: they fail to 

represent realistic portfolio optimization based procurement strategies, they tend to assume non-

economic dispatch of energy storage resources, use unrealistic hourly load profiles, do not consider a 

geographically or technologically diverse set of potential generation resources, or do not represent the 

complete or relevant set of costs faced by voluntary energy buyers. Many of these limitations spring 

from the lack of existing models tailored to exploring voluntary energy procurement.  

The first is a 2021 study published by RMI that evaluated the cost and emissions impact of 

pursuing time-coincident procurement for a single commercial building or flat 1MW load in seven 

different U.S. and European electricity markets.98 This study found that time-coincident procurement 

can create demand for emerging technologies, but it only modeled up to 90% time-coincident 

procurement because they found that beyond that, hourly matching became “impractically costly” 

(more than double the cost of a 100% annual target). However, this study has several important 

limitations that affect the relevance of its results. First, it uses a simple portfolio selection model that 

iteratively optimizes the cost serving each incremental MWh of time-coincident facility load, rather than 

optimizing the total portfolio costs. Second, the study only considered wind, solar, and batteries, and 

only considered a wind and solar profile for a single location, which ignores the role that technological 

and geographic diversity of resources can play in matching load. Second, the only costs the model 

considered were the levelized costs of each resource, which does not always reflect actual PPA pricing, 

and ignores wholesale market revenues earned by the projects. The model also only dispatches 

batteries based on facility load, and not economically based on any market signals. Finally, most of the 

results focus on the case of data center load, which the study models as a flat load with no hourly or 

seasonal variation, which is not necessarily a realistic approximation of datacenter end use load 

profiles.105–108 Due to these limitations, this study likely does not provide a representative picture of the 

practicality, cost, or impacts of time-coincident procurement. 



 

 

51 
 

The second is a 2021 study published by researchers at Princeton that evaluated the system-

level impacts of 24/7 carbon-free electricity procurement.96 This study used a more sophisticated 

modeling approach, using an open-source electricity system planning model (GenX), which optimizes 

investment and operational decisions while meeting all relevant power system and policy constraints. 

The key findings of this study were that time-coincident procurement drives investment in advanced and 

clean firm resources and reduces system-level emissions more than annual procurement when the 

target was more than ~90% carbon-free energy. This study also found that achieving a 100% time-

coincident portfolio was 39-54% more expensive than 100% annual goals when considering a full 

portfolio of clean resources, but that this premium increased to 64-139% when only considering wind, 

solar, batteries, DR, and geothermal (as opposed to the RMI study, which found > 100% cost premiums 

just to achieve a 90% match). Despite the sophistication of this study and the insights that it provides 

about system-level costs and impacts, this study does not answer important questions about the cost-

effectiveness and practicality of time-coincident procurement for individual voluntary buyers. Instead of 

simulating cost-optimal time-coincident portfolios for each voluntary buyer, this modeling assumes that 

system level resources would be used to match the time-coincident load of a certain percentage of all 

C&I customers on the grid, and optimizes that portfolio to minimize system-level, rather than buyer 

costs.  

The third is a 2021 preprint by NREL that introduces a new model called Vapor that can be used 

to estimate the grid impacts and costs of corporate renewable energy procurement.109 However, this 

study, and the model it is based on, include major limitations that affect the relevance of the results for 

understanding the costs and impacts of voluntary procurement. The main limitation is that the Vapor 

model is designed to optimize the siting, technical design parameters, and battery size of a single 

PV+storage or wind+storage project based on the net cost of the system to the project offtaker. The 

model also assumes that any storage included in the project would only be dispatched to follow net 
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load, rather than be economically dispatched in response to market signals. Thus, because this model is 

not designed to model a portfolio-based approach to voluntary procurement, the relevance of the Vapor 

model is limited to cases where voluntary buyers are seeking to only procure energy from a single 

generation project.  

The modeling methodologies used in these previous studies illustrate the gap in available 

modeling tools for understanding real-world voluntary energy procurement. On one end of the 

spectrum are tools like GenX that are sophisticated but tailored to optimizing system-level costs that are 

not faced by voluntary buyers of energy. On the other end of the spectrum are tools that have been 

specifically designed to study voluntary procurement (Vapor and RMI’s model) but do not realistically 

represent the ways that voluntary buyers make procurement decisions. 

Methods and Data 
The MATCH Model 

This paper introduces a new voluntary energy portfolio planning and optimization model called 

MATCH (“Matching Around The Clock Hourly energy”), which was developed in collaboration with an 

actual voluntary renewable energy buyer to plan their time-coincident renewable energy procurement 

strategy. As opposed to previous models, MATCH realistically reflects the objectives, cost structures, and 

constraints of voluntary renewable energy buyers and is able to select a diverse portfolio of resources 

that can be economically dispatched while meeting the buyer’s voluntary procurement target. This 

model offers the flexibility for a buyer to consider any level of annual, time-coincident, or emissions-

optimized procurement, or any combination of these three goals. The model balances sophistication 

with ease of use, configurable primarily using an excel spreadsheet and able to be run by any user who 

can run simple Python code in Jupyter notebooks. 
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The MATCH model is built upon the architecture of the “Switch 2.0” model, an open-source platform 

for planning high-renewable power systems.110 Switch is a Python package which uses the Pyomo 

optimization framework to define models, load data, and solve instances. While built on the same 

architecture as Switch, the MATCH model substantially modifies the formulation and user interface of 

Switch to tailor it to the needs of modeling voluntary energy procurement. While Switch already offered 

users features such as flexible timescales, spatially and temporally resolved balancing constraints, 

modeling of inter-hour relationships, and modules for building and dispatching any generation or 

storage technology, MATCH adds several important capabilities, including: 

• The ability to flexibly define annual, time-coincident, or emissions-optimized procurement 

targets, including the ability to specify different types of limits on excess generation. 

• The ability to optimize PPA and storage capacity contract costs, nodal wholesale market 

revenues, load costs, and hedge contract costs, rather than the capital and O+M costs of 

generation infrastructure. 

• The ability to automatically simulate location and project-specific expected hourly wind and 

solar generation profiles for each project using a python-based implementation of NREL’s 

System Advisor Model (PySAM) 

• The ability to model hybrid (co-located generator + storage) projects in addition to standalone 

storage 

• The ability to automatically evaluate the grid and emissions impacts of the selected portfolio’s 

dispatch based on region-specific data from NREL’s Cambium model 

• The ability to dispatch economic curtailment of renewable resources  
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Because the MATCH model is being released under an open-source license, we hope this allows the 

functionality of model to be expanded in the future to explore a broader set of questions about 

voluntary procurement. 

MATCH Model Overview 

This section provides a qualitative description of the model features and formulation. For a 

detailed mathematical description of the model, see the supporting information. 

Objective. Given a set of possible generation and storage projects, MATCH selects the least-cost 

portfolio of these resources that can be dispatched to meet three different voluntary procurement 

targets: annual renewable % targets, time-coincident renewable % targets, or emissions-optimized 

renewable energy targets. 

Costs considered. MATCH minimizes the total annual cost of a contracted energy portfolio, which may 

include PPA contract costs, wholesale generation revenues and energy storage arbitrage at each LMP 

node, wholesale and/or retail cost of electric load, cost premium of hedge contracts for any load not 

matched by PPA contracts, cost of economic curtailment of renewable generators, the resale value of 

excess RECs or RA capacity value, and the cost of meeting any resource adequacy requirements. In 

addition to optimized costs, the model can also add into the final cost of power any fixed or non-power 

costs. 

Voluntary procurement targets. MATCH can attempt to meet any hourly or time-coincident clean 

energy target between 0-100% of annual or hourly load. All targets must be met by generation and 

storage contracts inputted into the model.  

MATCH can also select an emissions-optimized portfolio that maximizes the avoided emissions 

impact of the portfolio. The user inputs a direct CO2 emission rate for each generator, and CCS 
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information if applicable, and the indirect avoided emissions impact is estimated using the month-hour 

average Long Run Marginal Emission Rates (LRMER) for a given year and grid region from NREL’s 

Cambium model. Users also specify which resources are “additional” (generally new resources that do 

not already exist), and thus which resources may have an avoided emissions impact. The avoided 

emissions impact in each hour is calculated by multiplying the additional dispatched generation and 

storage by the LRMER and adding that to any direct generated emissions net CCS. Because MATCH 

optimizes portfolios based on cost, the avoided emissions impact must be converted to dollars so that it 

can be optimized. To do this, the user specifies an internal carbon price, which is then multiplied by the 

avoided emissions impact to allow the model to co-optimize the actual financial costs with the financial 

value that the user assigns to avoided carbon emissions. 

Load. MATCH uses an 8760 hourly load profile to optimize resource selection and dispatch based on the 

type of target selected. 

Generation Technologies. MATCH can model any dispatchable, variable, or baseload generators, as well 

as standalone or hybrid storage technologies. 

Generation profiles. MATCH can automatically simulate wind and solar generation profiles using 

PySAM, the Python version of NREL’s System Advisor Model, based on the project’s coordinates, system 

design, and a selected resource year. Users can also enter manual 8760 profiles for any variable or 

baseload resources. 

Wholesale market prices. MATCH can use hourly locational marginal prices for each generator and load 

node to simulate wholesale market costs and revenues.  

Storage Dispatch. Storage assets are dispatched to maximize wholesale price arbitrage revenue while 

meeting the specified renewable target, assuming perfect foresight across the whole year, and 
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considering roundtrip efficiency losses, hourly leakage (self-discharge) losses, and cycling constraints. 

Storage is allowed to discharge whenever it is economically advantageous, even if, in the case of a time-

coincident renewable target, there is already enough generation to meet load in a specific hour. 

Standalone energy storage charges from the grid but is required to charge only when there is 

renewable energy being generated by generators selected by the model. This is done to simplify 

accounting and ensure that all discharged storage energy can be considered “renewable” (at least on an 

accounting basis). Hybrid energy storage is required to charge only from the paired generator, and 

combined discharge and generator dispatch must be less than the project’s interconnection limit (which 

is assumed to be the nameplate capacity of the generation resource).  

Excess Generation. MATCH allows for excess generation (defined as any generation that exceeds load in 

each hour). Excess generation is assumed to be delivered to the grid but does not count toward meeting 

any time-coincident goals. Excess generation may be limited either by setting a $/MWh financial 

penalty, or by setting an explicit constraint that specifies that generation cannot exceed a certain 

percent over total annual or hourly load. 

Economic Curtailment. Variable generators such as wind and solar may be economically curtailed by the 

MATCH, which means that the model chooses not to dispatch some portion of available variable 

generation. MATCH may only dispatch economic curtailment when the generator’s nodal wholesale 

electricity price is negative. Curtailed energy still costs the normal PPA contract rate, unless there is a 

free curtailment allowance specified for a generator. 

Carbon intensity and emissions impacts. The CO2 intensity of delivered electricity is based on direct 

carbon emissions from selected resources (such as from geothermal or biogas) and based on the carbon 

intensity of any system power that is used to meet load in each hour. System unspecified carbon 

intensity is calculated based on the hourly average carbon intensity for all fossil generation in a region, 
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based on forecasted values from NREL’s Cambium model. This approach essentially approximates the 

system “residual mix” or “null” power that does not include any zero-carbon energy attribute 

certificates.  

Resource adequacy (RA). MATCH includes an optional module that can model the cost of meeting 

system and flexible RA requirements based on the RA structure in California as of 2022. Users specify 

the system and flexible RA requirement for each month, as well as the cost of procuring RA on the 

market. Users can also specify the monthly ELCC and production factor values for each type of resource 

and specify whether each resource qualifies for RA. Users can also specify a requirement for a minimum 

capacity of firm or long-duration energy storage resources that must be included in the portfolio. 

Case Study of a California CCA 

In order to demonstrate the capabilities of the MATCH model and advance the state of knowledge 

on voluntary time-coincident procurement, this study seeks to answer several research questions by 

examining a specific case study: 

• How practical and cost effective are time-coincident procurement goals to achieve? 

• Does time-coincident procurement incentivize greater investment in firm, flexible, and emerging 

technologies that can increase the grid’s renewable carrying capacity? 

• How well can time-coincident procurement reduce GHG emissions relative to other 

procurement goals? 

• Does time-coincident procurement address system peaking and ramping challenges better than 

other procurement approaches? 

• What is the role of excess generation in cost-effectively meeting time-coincident procurement 

targets? 
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To answer these questions, we examine the case study of a hypothetical Community Choice 

Aggregator (CCA) in California that is seeking to procure a cost-effective portfolio of resources that 

matches at least 100% of their customer load on an annual basis by the end of 2025. This CCA wants to 

maximize the grid and emissions benefits of their portfolio, so they are considering three different 

strategies to meet this goal: a traditional annual 100% goal, an emissions-optimized goal, or a time-

coincident goal that matches either 90%, 95%, 99%, or 100% of their load on an hourly, time-coincident 

basis. Because this CCA is a load serving entity in California, it is only considering PPAs for projects that 

exist in the state, or which can deliver into the state.  

In order to evaluate the real-world feasibility and cost-effectiveness of these options, this study 

makes use of actual project and pricing data for 59 projects which includes a mix of generation projects, 

standalone storage projects, and hybrid projects offered to Peninsula Clean Energy, the CCA for San 

Mateo County, between 2020 and 2021. This is supplemented by fifteen additional projects that 

represent emerging technologies or hypothetical projects. These projects are primarily located in (or off 

the shore of) California, but some are also located in other parts of WECC, including Arizona, New 

Mexico, Nevada, and Idaho (we assume that the hypothetical CCA has transmission rights that enable 

them to procure energy from resources outside of the CAISO footprint). Thus, the generator input data 

for all but the five offshore wind projects modeled came from proprietary and/or confidential sources. 

While the use of this data limits the reproducibility of this specific case study, it offers a unique 

opportunity to explore the real-world, rather than hypothetical cost effectiveness and feasibility of 

these procurement goals. 

Besides the resource and cost input data, all other model inputs were derived from public sources 

and created as generic examples for this case study so that the results could be more generalizable to 

CCAs in California. The load profile used, for example, represents a 1% share of the total California 
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hourly net demand for 2025 forecasted by NREL’s 2021 Cambium model.111 A full description of the 

assumptions and inputs into our case study are included in   
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Table 3.7. 

Although the results of this case study may not be generalizable to all voluntary energy buyers, the 

main intention of this case study is to illustrate the robustness of the MATCH model for future research 

related to voluntary procurement. In the first real-world application of the MATCH model, a separate 

study that applies the MATCH model and other proprietary stochastic modeling tools to evaluate 

Peninsula Clean Energy’s specific time-coincident is also currently under development. 

Grid Impact Metrics 

Due to the focus of this case study on California (and the fact that the development of the 

model was originally funded to explore voluntary procurement in California), the grid impact metrics 

included in the current version of the model are specific to some of the grid and renewable integration 

challenges in CAISO. These challenges, described by CAISO’s “duck curve,” include the magnitude of 

evening net peak demand and maximum daily ramping needs.11  

The California Independent System Operator (CAISO) has described two primary challenges to 

reliably integrating increasing amounts of renewable energy into the California grid: the need to keep 

fossil generators online to meet peak demand and the need for more natural gas to meet system 

ramping needs in the afternoon.11 Ideally, we would want our portfolio to help reduce the magnitude of 

the evening peak and decrease the steepness of the evening ramp. These three metrics are calculated 

using the system net demand profile, which traditionally is defined as the systemwide demand minus 

systemwide wind and solar generation and is a heuristic for what is required from the fossil gas 

generation fleet. However, due to the increasing role of energy storage in CAISO (and the role it plays in 

our modeling), we also calculate these metrics using a net demand profile that nets wind, solar, and 

batteries from total demand, in order to reflect the requirements put on the natural gas fleet. 
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Figure 3.4 This screenshot from CAISO’s “Today’s Outlook” page illustrates several of the grid challenges faced in CAISO, 
including the daily ramping needs between 4-7pm, and the maximum daily peak at 7pm.112 These ramping and peaking needs 
are currently for the most part met by natural gas generators. 

While the curtailment of renewable energy has traditionally been framed as a negative grid 

impact, recent research has suggested that renewable energy curtailment actually contributes to grid 

flexibility and reliability.11,113–115 Thus, we also examine how each procurement target contributes to 

renewable curtailment. 
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Table 3.7 Model inputs and assumptions for the California CCA case study 

Topic Inputs for Example 

Costs 
considered 

We use actual PPA contract prices that were offered to Peninsula Clean Energy, a California 
CCA, between 2020 and 2021. The hedge premium cost is modeled as 10% of the hourly 
forecasted LMP value at the NP15 hub. Resource adequacy costs and the resale value of 
excess RECs were not optimized. 

Wholesale 
market prices 

We use forecasted 2025 hourly day-ahead market LMP values for 20 different nodes from 
Ascend Analytics.  

Renewable 
Targets 

Because all of the generation resources we modeled are renewable, all of our modeled 
goals are “renewable” targets rather than “clean energy” targets. We tested a 100% annual 
renewable target, as well as a 90%, 95%, 99%, and 100% time-coincident renewable target. 

Emissions-
optimization 
targets 

Our emissions-optimized scenarios assume that a buyer is attempting to optimize the 
emissions of a 100% annual renewable energy portfolio. We test two different internal 
carbon prices, one set at $63.36/ metric ton CO2 (representing the inflation-adjusted 3% 
social cost of carbon used by the federal government), and one set at $191.21/metric ton 
CO2, which is the social cost of carbon for the 95th percentile of damages based on a 3% 
discount rate.116 We also test three different forecasted LRMERs based on different 
Cambium future scenarios (Mid Case, high RE cost, and low RE cost scenarios), in order to 
represent the future uncertainty about LRMERs.111 LRMERs for each resource are based on 
its location, which for this study included the CAMXc, AZNMc, and NWPPc grid regions. 

Load We created a synthetic hourly load profile that represents 1% of the total California 
demand net behind-the-meter solar, forecasted for 2025 by NREL’s Cambium model. This 
load represents about 2.7 TWh of annual load, or an average of 308 MW in each hour. 

Generation 
Technologies 
Assessed 

We include both commercial and emerging technologies located around California and 
adjacent states including utility-scale solar PV, utility-scale hybrid solar + storage, onshore 
and offshore wind, geothermal, run-of-river hydro, biogas, solar thermal, and wave energy. 
Commercial project characteristics were taken from PPA offers, and data for offshore wind 
came from a 2020 NREL study.117  

Variable 
resource 
profiles 

We calculate expected wind and solar profiles by averaging multiple simulated profiles 
based on three different years (2008-2010) of historical resource data. All other variable 
and baseload resources (small hydro, geothermal, wave) use a manually inputted 8760 
profile based on historical or modeled data from third party sources.  

RA We do not model any resource adequacy in this case study. 

Storage 
Dispatch 

We model both short-duration (<= 4 hours) and long-duration (>= 8 hours) standalone 
storage from multiple technologies, including lithium-ion batteries, chemical batteries, 
compressed air storage, pumped storage hydro, and gravity storage. We also model 
multiple hybrid solar + storage projects. 

Excess 
generation 

Our modeled time-coincident scenarios are allowed to include any volume of excess 
generation that is cost-optimal. For each of our time-coincident renewable targets, we also 
model scenarios that limit the volume of annual excess generation to 20%, 10%, and 0% of 
load. Setting the constraint to 0% for a 100% time-coincident target means that the 
portfolio must be exactly balanced in each hour.  

Economic 
Curtailment 

Many of the forecasted wholesale prices we use include negative prices during some hours, 
so economic curtailment is possible for these variable generators.  

Carbon 
Emissions  

All model resources except biomass and certain geothermal generators have no direct 
emissions. The system carbon intensity is based on 2025 forecasted values for the CAMXc 
region from Cambium. 

 

  



 

 

63 
 

Results and Discussion 
Next generation procurement can be economically feasible 

 

Figure 3.5 The total cost of energy for each portfolio as a percentage of the cost of a 100% Annual portfolio, compared to the 
time-coincident renewable percentage achieved by each goal. The “worst-case” costs in red represent the energy cost if no RECs 
from excess generation can be sold to other buyers. Dollar per MWh results from the model were normalized by the annual 
portfolio cost to protect potentially sensitive input data.  

In contrast to previous studies, the results of our modeling suggest that high levels of time-

coincident procurement (90-100%) can be achieved for only a 5-17% cost premium over 100% annual 

procurement. Consistent with previous studies, we find that the marginal cost of achieving the last 1% of 

time coincident matching, from 99% to 100% time-coincident, is significant, jumping from a 9% cost 

premium for 99% time-coincident to a 17% cost premium for 100% time-coincident. All of these time-

coincident portfolios include some volume of excess annual generation, and the portfolio costs shown in 

blue in Figure 3.5 assume that all excess RECs could be sold to other buyers. To be conservative, we 

assume that these excess RECs could be sold at approximately 70% of their market value. As a worst 

case, we also calculated the portfolio cost assuming that none of the excess RECs could be sold (shown 
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in red in Figure 3.5). In this case, the premium of achieving a 90-100% time coincident porfolio ranges 

from 6% to 23%.  

We also find that our two emissions-optimized scenarios could be achieved at a 3-5% cost 

premium over a 100% annual goal. The high internal carbon price emissions optimization achieves 

approximately 75% time-coincidence for about the same cost as the 90% time-coincident scenario. 

 

Time-coincident procurement encourages greater investment in firm, flexible and emerging (FFE) 

technologies 

 

Figure 3.6 The portfolio composition in MW of nameplate capacity selected under each goal by technology type. The black dot 
represents the total amount of firm, flexible, and emerging technologies selected under each scenario. 

Our results confirm that time-coincident procurement encourages greater investment in firm, 

flexible, and emerging technologies than annual procurement or emissions-optimized procurement. 

Firm and flexible resources, like geothermal and energy storage, generally increase the grid’s carrying 

capacity for additional renewable energy, which enables broader adoption of clean energy.95 We also 

found that time-coincident procurement encouraged investment in new and innovative technologies 

like offshore wind, innovative shaped products, and dispatchable solar thermal. Our results suggest that 

generally higher time-coincident targets better incentivize investments in these types of technologies 



 

 

65 
 

than lower targets (our 100% time-coincident model selected over twice as much of these technologies 

as the 90% time-coincident target).  

These results also illustrate that higher levels of time-coincident procurement generally result in 

larger amounts of generation and storage capacity being procured overall. The exception to this is the 

drop in procured capacity from 99% to 100% time-coincidence, due to the inclusion of geothermal in the 

100% portfolio, which has a much higher capacity factor than variable resources.  

Time-coincident procurement can result in emissions reductions comparable to emissions-optimized 

procurement 

One previous criticism of time-coincident procurement is that it may not maximize GHG 

emissions reductions compared to emissions-optimized procurement.96,98 However, the results of our 

modeling suggest that high-levels of time-coincident procurement can reduce GHG emissions just as 

effectively as emissions-optimized procurement, on an absolute and per $ basis. In this case study, the 

avoided emissions impact of the 100% time-coincident scenario performed worse than all of the other 

next-generation goals (and about the same as the 100% annual goal) due to its reliance on non-

additional geothermal generation with non-zero direct carbon emissions. 
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Figure 3.7 Avoided emissions impacts for each scenario on an absolute, per MWh, and per $ basis. Each of the three bars shows 
the avoided emissions results based on the long-run marginal emission rates forecasted under three different future scenarios in 
Cambium. 

While emissions-optimized procurement with the high $191/metric ton internal carbon price 

performed the best on all three metrics, our results show that 95%-99% time-coincident procurement 

actually performed better than emissions optimized procurement on an absolute and per $ when the 

lower $63/metric ton internal carbon price was used. These results suggest that when emissions-

optimized procurement is used, unless a buyer sets a relatively high internal carbon price, this 

procurement strategy may not always maximize emissions reductions once weighted against the other 

financial considerations that go into energy procurement decisions. For reference, a 2019 survey of 

2,600 global companies found that for most sectors, the median internal carbon price was under $30 

per metric ton, with the highest prices hovering around $100 per tonne.118  

We note that one limitation of this case study in examining the relative effectiveness of time-

coincident and emissions-optimized procurement in maximizing emissions reductions is that the buyer 

in our case study was only allowed to procure resources from within a limited geographic boundary, 

including California, the Northwest, and the Southwest. If a voluntary buyer’s load is located in a 
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relatively low-carbon grid region, and the buyer was able to procure generation from anywhere in the 

world, it is likely that an emissions-optimized approach could more effectively maximize emissions 

reductions than a time-coincident approach, since it could choose from resources in much dirtier grid 

regions.  

 

Time-coincident procurement results in greater grid benefits than other goals 

 

Figure 3.8 The change in system-wide (CAISO) net peak demand and maximum 3-hour ramping needs due to the contribution of 
additional wind, solar, and energy storage dispatch from each portfolio.  

Our results suggest that in California, time-coincident procurement can help address the duck 

curve better than other approaches by reducing the net system peak the most and contributing the least 

to increasing the steepness of the maximum daily 3-hour ramping needs. Time-coincident procurement 

and emissions-optimized procurement perform about equally as well when only considering the impact 

of additional wind and solar on the net demand curve. However, if the impact of storage is also 

considered, time-coincident procurement does much better than both annual procurement and 

emissions-optimized procurement. For example, while both next generation procurement strategies 

increase ramping needs between 300 and 360 MW, when considering how storage is dispatched, time-
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coincident procurement has the potential to have negligible impact on ramping needs, or even slightly 

decrease ramping needs.  

 

Figure 3.9 Total annual MWh of economically-curtailed renewable energy from contracted projects in each portfolio. 

Our results show that time-coincident procurement results in a much greater annual volume of 

economic curtailment being dispatched than either annual procurement or emissions-optimized 

procurement. This suggests that in this case, time-coincident procurement results in the deployment of 

more renewable energy in areas where there are a greater number of hours of negative LMP pricing. 

Despite this, these resource’s inclusion in the cost-optimal portfolio indicate that it was still more cost 

effective for the model to build resources that are curtailed more often. While curtailment is not 

necessarily a desired outcome of time-coincident procurement, research suggests that it also represents 

a ”new normal” that does not necessarily have a negative grid impact and may, in fact, contribute to 

grid flexibility and reliability.113–115 

Excess generation is currently a necessary feature of cost-effective time-coincident procurement 

Our modeling suggests that practically achieving a cost-optimal time-coincident portfolio will 

require some volume of annual excess generation – that is, generation that not only exceeds the load 

being matched in some hours, but generation in excess of the annual volume of load. This excess 

generation ranged from 9% of the annual load in the 90% time-coincident scenario, to 35% of the annual 

load in the 99% time-coincident scenario.  
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Table 3.8 As the amount of excess generation is limited in each of the time-coincident portfolios, the portfolio cost increases, 
and several scenarios become infeasible. 

Goal Excess 
Generation 
Limit 

Annual 
Renewable % 

Cost Premium 
over no limit 
portfolio 

90% Hourly No limit 109% N/A 

No excess 100% +2.7% 

95% Hourly No limit  120% N/A 

10% excess 110% +2.6% 

No excess Infeasible 

99% Hourly No limit 135% N/A 

20% 120% +3.4% 

10% Infeasible 

No excess Infeasible 

100% Hourly No limit 130% N/A 

20% 120% +1.7% 

10% Infeasible 

No excess Infeasible 

 

We also found that attempting to limit excess generation negatively impacts the feasibility and 

cost-effectiveness of achieving a time-coincident target. Every 10% decrease in the amount of annual 

excess generation led to a 2-3% increase in portfolio cost. In addition, the model was unable to find 

feasible portfolios that could achieve above a 95% hourly match with no annual excess generation. 

 

 

Figure 3.10 In a 95% time-coincident portfolio, there is a large amount of excess generation in the summer, while in the winter, 
almost all generation is stored or consumed, and there is a greater reliance on unspecified grid energy (shown in red). In 
contrast to previous models, note that MATCH allows storage to economically dispatch, charging even when there is not enough 
generation to meet load, and discharging even when there is excess generation.  
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As shown in Figure 3.11, we found that attempting to achieve exactly time-coincident portfolios 

leads to mixed positive and negative grid and emissions impacts relative to not limiting excess 

generation. Our results suggest that limiting excess generation helps address system ramping needs 

better than non-limited time-coincident portfolios, but reduces the system peak less, increases the 

amount of economic renewable curtailment dispatched, and leads to lower and less cost-effective 

avoided emissions impacts. This suggests that limiting excess generation may not always be desirable. 
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Figure 3.11 The impact of limiting excess generation on CAISO system peak and ramp needs (A), economic renewable energy 
curtailment (B), and avoided emissions (C). 
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Sensitivity Analysis: Real-time performance of time-coincident portfolios 

The optimal time-coincident portfolios selected by MATCH for our case study are based on how 

well expected wind and solar generation (based on an average of three historical resource years), 

assisted by energy storage that has perfect foresight, could match forecasted load. In real-life, however, 

the ability of a portfolio to meet real-time demand, when faced with the uncertainty of variable 

resources and load, and energy storage with limited foresight, is likely to underperform compared to the 

optimal modeled scenario. Completely understanding the impact of such uncertainty on the 

performance of a time-coincident portfolio would require stochastic analysis that could vary resource 

profiles, loads, and wholesale market prices.  

While MATCH is not a stochastic model, it does conduct a sensitivity analysis after the 

optimization is complete to attempt to understand how the real-time performance of a selected 

portfolio would compare to the optimal performance. To do so, when exporting model results, MATCH 

loads historical wind and solar resource data from each of the years used to create the expected value 

and simulates the generation of the selected portfolio based on these single-year weather profiles. In 

addition to using a single weather year, this analysis uses a “greedy” storage dispatch algorithm that 

attempts to fill the batteries whenever there is excess hourly generation and discharges them whenever 

generation drops below hourly load, until empty. These results will not be as accurate as a full stochastic 

analysis but can help illustrate the limitations of MATCH as a planning tool. 

The results of this sensitivity analysis, shown in Figure 3.12 below, suggest that real-time 

performance of the selected portfolios is generally 1.5-3% below the planning target. The exception is 

the 100% time-coincident target, where the sensitivity results are all within 1% of the planning target, 

likely due to the volume of excess generation available and the increased reliance on firm, rather than 

variable resources relative to other scenarios. These results suggest that achieving a specific time-
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coincident percentage in real-time will likely require planning to achieve a time-coincident goal that is 

several percentage higher than the real-time goal.  

 

Figure 3.12 The selected portfolios generally underperform compared to the time-coincident target (shown by the black line) 
when simulated using single-year weather resource data and a greedy storage algorithm. 

Discussion 
The work presented in this study significantly advances the state of knowledge about and set of 

tools available to understand voluntary energy procurement. The MATCH model represents the first 

open-source model that has been developed to model portfolio-based voluntary energy procurement 

behavior under several types of procurement goals. The results presented here confirm several findings 

of previous studies, including that time-coincident procurement encourages greater investment in firm, 

flexible, and emerging technologies than other procurement goals, and that time-coincident 

procurement generally involves a cost premium over annual procurement targets. However, our results 

demonstrate that the cost premium of achieving time-coincident procurement may be much lower than 

previously estimated, at only a 5-17% premium over a 100% annual goal. Although previous studies have 

discussed the role of excess generation in voluntary time-coincident procurement, this study was the 

first to quantify the financial, grid, and emissions benefits of excess generation in time-coincident 

procurement. Our results also confirm the benefits of considering technologically and geographically 
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diverse portfolios of generation and storage technologies for cost-effectively achieving voluntary time-

coincident procurement. Our results also show that both types of “next-generation” procurement 

approaches (time-coincident and emissions optimized procurement) result in higher grid and emissions 

benefits than “traditional” annual procurement targets. 

Another significant and unexpected finding relates to the assumption that time-coincident 

procurement may not maximize emissions reductions compared to emissions-optimized procurement. 

Our findings suggest, however, in that some cases, time-coincident procurement can actually reduce 

emissions more effectively than emissions-optimized procurement on an absolute and per $ basis (while 

emissions-optimized procurement reduces more emissions per MWh). Another significant finding is that 

the effectiveness of emissions-optimized procurement at maximizing emissions reductions is dependent 

on the internal carbon price used by a buyer to value avoided emissions. We found that at least in this 

case study, the internal carbon price used by most organizations would be too low to allow for 

emissions-optimized procurement to effectively maximize emissions reductions.  

Finally, our results suggest that 100% time-coincident targets may not be the optimal target for 

organizations to pursue in all cases. Our results suggest that instead, setting time-coincident targets 

between 90%-99% may much more cost effectively achieve the same or better emissions and grid 

benefits as a 100% time-coincident target. The emissions benefits of time-coincident procurement, in 

particular, are eroded if achieving them relies on procuring generation from existing (non-additional) 

sources of firm generation.  Additionally, our results suggest that allowing for excess generation in a 

time-coincident portfolio (rather than attempting to exactly “balance” supply and demand in each hour) 

leads to better outcomes.  
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Future work 

While we believe that the results of this study present the most realistic picture of time-

coincident procurement based on the most sophisticated modeling of individual voluntary procurement 

conducted to date, our results are still subject to several limitations that may affect the generalizability 

of the results. As previously mentioned, the choice to use an hourly load profile that is 1% of the system 

load profile means that the time-coincident procurement of the case study buyer will align with system 

needs better than a buyer whose load is not correlated or anti-correlated with system demand. While 

this choice may over-estimate the beneficial grid impacts of our results compared to some users, we feel 

that this choice of load profile is more realistic in many respects than the completely flat load profile 

used by previous studies, which is almost never observed for real-life end loads.† Another limitation is 

the fact this this study does not consider how different types of demand response, such as load shaping 

or load shifting, may contribute to meeting a time-coincident target. A third limitation is that the PPA 

prices and market forwards used in this study were current as of late 2021, but there have been 

significant disruptions to the market in 2022 that have increased energy development costs across the 

board. While the future trajectory of these disruptions and their effects on prices are uncertain, if these 

disrupted prices come to represent a new normal, these results would need to be updated to remain 

relevant. Finally, as opposed to some previous studies, this modeling does not count existing grid-mix 

renewables toward meeting the procurement goals. Because we were modeling a CCA, which is a load 

serving entity responsible in part for establishing the “grid mix,” it was not appropriate to count 

renewables not directly procured by our hypothetical CCA toward meeting its goal. However, in the case 

of corporate or other end-use voluntary procurement, including existing supplier-provided renewables 

 
† These flat load profiles used in previous studies are intended to represent data center load profiles, since many of 
the leading organizations implementing 24/7 procurement operate data centers. However, even individual data 
centers exhibit some hourly and seasonal variation in loads, and if considered in aggregate as a fleet, aggregate 
data center load will vary with variable compute needs by society. 
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toward a goal would further increase the cost-effectiveness of time-coincident procurement, meaning 

that our cost results are likely on the conservative side.98  

There are many avenues for future research using the MATCH model to explore the implications 

of voluntary procurement. The biggest opportunity not addressed in this study would be to evaluate the 

costs and impacts of different voluntary procurement strategies for corporate buyers, whose 

procurement considerations may differ from those of the hypothetical CCA in this case study.119 Other 

opportunities include outstanding questions about the impact of different realistic load shapes, regional 

availability of resources, inclusion of standard-delivery carbon-free energy toward meeting a goal, and 

the inclusion of renewable versus carbon-free resources in the goal definition. Future opportunities to 

further improve the MATCH model include addition of a module for dispatching demand-side resources, 

validation of the modeling performance of multi-regional loads, expanding the grid impact metrics to 

ensure relevance to a broader set of grid regions, and building out a dataset of standard inputs using 

public data sources.  
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Conclusion 
As the electric power system continues to rapidly transform, the state of knowledge about 

power sector emissions and the impacts of voluntary action to decarbonize the electric grid has not 

always kept pace. Today, the common metrics used to define the electric grid in policy, regulation, 

business, and the academic literature largely treat it as a mostly static system. The use of static, annual 

metrics seems to be a vestige of the power system as it existed a decade ago, before the growth in 

deployment of utility-scale renewables, and before higher-resolution data existed. The research 

presented in this dissertation shows that today, however, understanding the temporal variation in 

power system operations and emissions is critical for effective climate policy and action. This research 

leverages the unprecedented access to high-resolution data that is now available about the power 

sector, as well as the proliferation of open-source data cleaning and modeling tools to help modernize 

our understanding of power sector decarbonization.  

This research is important for advancing the academic literature in a wide variety of research 

areas, including the study of marginal emissions from the power sector and attributional and 

consequential life-cycle analyses of a wide range of electricity end uses such as electric vehicles, heat 

pumps, and buildings. Chapter 3 especially contributes to advancing the relatively nascent body of 

literature on voluntary clean energy procurement. In addition to advancing the state of knowledge on 

these topics, this research contributes two new open-source projects that can be used for the continued 

study of these topics by other researchers. Chapter 2 introduces the Open Grid Emissions Initiative, 

which includes a dataset and open-source data pipeline that can be used to study hourly grid emissions 

and serve as a repository on the best available knowledge related to grid carbon emissions. Chapter 3 

introduces the MATCH model, an open-source voluntary procurement portfolio planning model that can 

be used to model individual buyer procurement behavior and understand the tradeoffs of different 

voluntary procurement goals.  
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This research also makes several practical and timely contributions for shaping the conversation 

about effective grid decarbonization policy, regulation, and action. Recently there have been numerous 

policy developments that depend on accurate accounting of grid emissions and can benefit from the 

new knowledge generated by this research: 

• In late 2021, President Biden signed an executive order requiring the federal government to 

procure 100% time-coincident carbon-free electricity by 2030.120  

• Over the past few years, several major cities in the U.S., including New York City and Boston, 

have introduced new regulations mandating the disclosure and reduction of building-related 

GHG emissions.121,122 

• The 2022 Infrastructure Investment and Jobs Act passed by Congress mandated that the U.S. 

EIA begin publishing temporally-granular electricity emissions rate data by the end of 2022.123 

• The 2022 Inflation Reduction Act (IRA) includes funding for the EPA to analyze the life-cycle 

emissions of different transportation fuels (including electricity and hydrogen), as well as for 

the White House CEQ to collect data on which communities are disproportionately harmed by 

negative environmental impacts (such as air pollution from the power sector).124  

• In 2022, the U.S. Securities and Exchange Commission proposed a new rule that would require 

all publicly-traded companies in the U.S. to disclose, among other climate risk metrics, an 

inventory of its scope 2 emissions.125 

• In 2022, the World Resources Institute began preparing for a multi-year process to update the 

GHG Protocol Scope 2 Guidance. 

• In 2022, California passed Senate Bill 1158, which requires all California retail electricity 

providers to report carbon emissions data on an hourly basis.126  
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Chapter 1 establishes a case for the growing necessity of accounting for scope 2 emissions on an 

hourly, rather than annual basis. Especially in many of the grid regions where the most progressive 

carbon regulations are being introduced, we found that annual accounting introduces substantial bias in 

scope 2 emissions inventories, which can not only erode the effectiveness of these regulations, but also 

have important implications for the equitable allocation of responsibility for carbon emissions. We 

found that annual accounting can cause accounting errors up to 35% in some regions and for some end-

uses, which is substantially higher than the 5% error threshold above which the GHG Protocol defines an 

emissions inventory to be “materially misleading.”44  Especially as existing trends such as variable 

renewable energy deployment, electrification, and carbon-aware demand response become more 

widespread, the bias introduced by annual accounting will only continue to grow.  

Chapter 2 introduces a new open-source dataset of power sector emissions which for the first 

time makes complete electricity-related emissions data (including emissions from biomass combustion) 

publicly available, as well as complete hourly GHG, NOx, and SO2 emissions factors for generated and 

consumed electricity. We find that existing emissions datasets that treat biomass combustion as carbon 

neutral are substantially underestimating power sector GHG emissions in certain regions, up to 14% in 

the California ISO and 22% in ISO New England. We also find that the existing academic literature that 

relies exclusively on hourly CEMS data to represent power sector operations and emissions may be using 

substantially incomplete data, especially in certain regions. For example, the CEMS data is missing over 

90% of SO2 and NOx emissions in the California ISO, and over 50% of these emissions in the New York 

ISO. In addition to introducing several new methods and applications of existing methods for estimating 

hourly emissions from power generation, this research also synthesizes and introduces a number of 

open questions for future academic research in this field.  
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Chapter 3 introduces a new open-source model that can be used to understand the cost and 

implications of voluntary energy procurement under several types of procurement goals. This is the first 

voluntary procurement model that considers the full range of costs and constraints optimized by 

voluntary renewable energy buyers and takes a portfolio optimization approach to modeling voluntary 

procurement. By representing voluntary procurement more realistically than has been done in previous 

studies, we showed that existing studies may have significantly over-estimated the costs and under-

estimated the practicality of achieving voluntary time-coincident procurement goals. This research also 

shows that both forms of “next-generation” procurement approaches (time-coincident and emissions-

optimized) lead to greater grid and emissions benefits than traditional annual procurement goals. 

Finally, this research suggests several practical directions for how time-coincident procurement goals 

should be designed to maximize cost-effectiveness, grid benefits, and emissions reductions. 
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Appendices 

Supporting Information for Chapter 1 
Code Repository 

The code repository for this research can be found at 

https://github.com/grgmiller/hourly_carbon_accounting or 

https://zenodo.org/badge/latestdoi/461343198  

Expanded Literature Review 

In addition to the studies summarized in Table 1 in the main text, the studies summarized in 

Table S2 have explored the temporal variation of grid carbon intensity. 

Table S1. Expanded literature review. In addition to the studies summarized in Table 1 in the main text, 
the following studies have explored the temporal variation of grid carbon intensity. 

Paper Geography Data 
years 

EF Temporal 
Resolutions 

EF Type 

Gordon and Fung 2009, 
201115,16 

Ontario, Canada 2004-
2006 

Annual 
Seasonal 
Seasonal TOD 
Monthly TOD  
Hourly 

Produced 
Direct 

Stoll et al. 201418 Great Britain  
Ontario, Canada  
Sweden 

2011-
2012 

Hourly Consumed 
Lifecycle 

Schivley et al. 201813 U.S. (8 NERC 
Regions) 

2001-
2017 

Annual 
Quarterly 
Monthly 

Produced 
Direct 

Khan 2018a, 2018b, 
201912,23,24 

New Zealand  
Bangladesh 

2015 Annual 
Monthly 
Daily 
Half-hourly 

Produced 
Direct 

Marrasso et al. 201926 Italy 2016-
2017 

Hourly Produced 
Direct 

Tranberg et al. 201927 Europe (27 
countries) 

2017 Hourly Produced and 
Consumed 
Lifecycle 

de Chalendar et al. 201914 U.S. (66 Balancing 
Areas) 

2016 Hourly Produced and 
Consumed 
Direct 

Pereira and Posen 202029 Ontario, Canada 2010-
2018 

Annual 
Monthly 
Hourly 

Consumed 
Lifecycle 

https://github.com/grgmiller/hourly_carbon_accounting
https://zenodo.org/badge/latestdoi/461343198


 

 

95 
 

Analysis of 5-minute resolution carbon intensity data from CAISO 

 
The background section of the main text explains that this study uses hourly average carbon 

intensity values as the baseline rather than sub-hourly values, partially due to the relatively low 

variation in grid carbon intensity within a single hour.  We confirmed this finding, by analyzing a dataset 

of 5-minute resolution carbon emissions data published by the California ISO, finding that even in this 

renewable-heavy region, the mean coefficient of variation of grid carbon intensity within a single hour 

was only 2.4%, compared to a 31% coefficient of variation across the entire year. 

In Figure S1 we show that the mean coefficient of variation of grid carbon intensity within a 

single hour in CAISO in 2019 was only 2.4% when utilizing a dataset of 5-minute resolution emissions 

published by the California ISO 127,128. This suggests that the hourly resolution reflects most of the 5-min 

variation in emissions, and that there are diminishing returns from using sub-hourly resolutions. 

Although these data represent a single grid region, we believe that these numbers represent the high 

end of sub-hourly carbon intensity variation, as CAISO has a relatively high percentage (~30%) of 

generation coming from variable and intermittent wind and solar resources.  

To calculate these values, we downloaded 5-minute resolution data from CAISO’s “Today’s 

Outlook” website on carbon emissions rate (mTCO2/h) and generation (MW). We divided the carbon 

rate by generation to get carbon intensity (mTCO2/MWh). We then aggregated these data to different 

temporal averages (quarter-hourly, half-hourly, hourly, monthly, quarterly, and annual) and calculated 

the mean coefficient of variation within each period.  
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Fig. S1. The mean coefficient of variation (relative standard deviation) of 5-min carbon intensity within 
each aggregation period in CAISO in 2019, based on data published directly by CAISO. The hourly 
resolution already captures most of the 5-min variation, and there are diminishing returns to using sub-
hourly temporal resolutions. 
 

Full Derivation of the bias expression (Equation 1) 

Notation: 

𝐼ℎ = 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑜𝑢𝑟 ℎ 

𝐷ℎ = 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑖𝑛 ℎ𝑜𝑢𝑟 ℎ 

𝐶ℎ = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑖𝑛 ℎ𝑜𝑢𝑟 ℎ 

𝐶ℎ̅ = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑖𝑛 ℎ𝑜𝑢𝑟 ℎ 

𝜇ℎ = 𝐶ℎ̅ − 𝐶ℎ = 𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑖𝑛 ℎ𝑜𝑢𝑟 ℎ 

𝜎𝐷 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑒𝑚𝑎𝑛𝑑 

𝜎𝜇 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 

𝜌𝐷,𝜇 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐷𝑡 𝑎𝑛𝑑 𝜇𝑡 

 

We can write the carbon emissions inventory in a single hour (𝐼ℎ) as a function of the emission rate and 

demand: 
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𝐼ℎ = 𝐷ℎ ⋅ 𝐶ℎ 

Re-writing this expression for the actual emissions in terms of the averaged emissions (𝐶ℎ̅ ⋅ 𝐷ℎ) and the 

errors: 

𝐼ℎ = 𝐷ℎ ⋅ (𝐶ℎ̅ − 𝜇ℎ) = 𝐷ℎ ⋅ 𝐶ℎ̅ − 𝐷ℎ ⋅ 𝜇ℎ 

Now reorganizing the above expression, we can see that the difference between the estimated 

emissions and the actual emissions is the product of the demand and error: 

𝐷ℎ ⋅ 𝐶ℎ̅ − 𝐼ℎ = 𝐷ℎ ⋅ 𝜇ℎ 

So the “bias” in the estimated emissions is dictated by the sign and magnitude of the 𝐷ℎ ⋅ 𝜇ℎ term. 

Taking the expectation of this term: 

𝐸[𝐷ℎ ⋅ 𝜇ℎ] = 𝐸[𝐷ℎ] ⋅ 𝐸[𝜇ℎ] + 𝐶𝑜𝑣(𝐷ℎ, 𝜇ℎ) 

We can simplify this because the 𝐸[𝜇ℎ] = 0 assuming that the estimated emission rate and the actual 

emission rate are, on average equal (for example, if you use the annual average emission rate as a 

constant value for 𝐶ℎ̅, then the differences between the actual hourly emission rates and the annual 

average emission rates will all sum to zero over the course of a year). 

Rewriting the expression above given that the 𝐸[𝜇ℎ] = 0: 

𝐸[𝐷ℎ ⋅ 𝜇ℎ] = 𝐶𝑜𝑣(𝐷ℎ, 𝜇ℎ) = 𝜎𝑑 ⋅ 𝜎𝜇 ⋅ 𝜌𝐷,𝜇 

This expression above highlights that the sign of the bias will be determined by the sign of the 

correlation coefficient – if hourly demand and the hourly errors are positively correlated, the predicted 

emissions using 𝐶ℎ̅ will be overstated (or vice versa if the sign of the correlation coefficient is negative). 

The magnitude of the bias is jointly dictated by the variation in the hourly levels of demand, the 

variation in the “errors” (or the differences between 𝐶ℎ̅ − 𝐶ℎ), and the correlation between these errors 
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and the demand. For example, for a demand profile that doesn’t vary dramatically across hours (i.e. 𝜎𝐷 

is small), then even if there is a great deal of variation in the actual emission rate around the predicted 

emission rate, and even if there is a correlation coefficient that is large in absolute value (i.e. close to -1 

or 1), the bias will be small. 

Expanded discussion of the limitations of this study 

In addition to the limitations discussed in the main text, the authors highlight the following 

limitations of the current study: 

The building energy timeseries data and the carbon intensity data are not from the same years, 

so weather-driven correlations between building load and grid carbon intensity will not be reflected in 

the results. The grid carbon emissions data is from 2019, while the national results use simulations of 

buildings based on TMY3 weather data, and the California case study represents “1 in 2” (typical year) 

building load in 2014. Given that correlation between hourly demand and hourly carbon intensity is one 

of the factors that influences inventory bias, we believe that the results in this paper may underestimate 

bias, due to the weaker correlation between demand and carbon intensity resulting from the use of 

different years. In practice, carbon intensity data used for accounting should always match the 

timeframe of the energy demand being analyzed. However, the point of this paper was to illustrate bias 

rather than to measure contemporaneous historical emissions. 

The carbon intensity data used in this study also has several potential limitations. First, it relies 

on self-reported data from balancing authorities about generation, load, and interchange. As noted by 

the EIA, there are known data quality issues with some of these data that have yet to be addressed 129.  

Although this methodology captures temporal variation in emissions based on the changing resource 

mix in each hour, there are additional sources of variation in carbon emissions that these data do not 

currently capture, including: 
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• Resource mix of specific fuels in each hour (the EIA-930 data reveals how much generation came 

from “coal” for example, but not the mix of coal generators that were burning bituminous vs 

subbituminous coal, for example, in each time period. 

• Fleet composition in each hour. Each generator that burns a specific fuel can have different heat 

rates based on factors such as its age, size, the specific generation technology used, emission 

control equipment, parasitic loads, etc. These factors are captured in the annual average fleet-

specific fuel rate from eGRID, but this method does not consider which specific generators were 

online in each hour. 

• Heat rate fluctuations. The heat rate of each individual generator changes over time depending 

on its current capacity factor, ramping, temperature, and how long it has been online. 

These factors may only result in a small difference in calculated carbon intensities, but further research 

is needed to fully understand the impacts of these factors.  

 

Grid balancing areas excluded from this study 

Of the 75 balancing areas (BAs) identified in eGRID2019, 23 were excluded from this analysis. 

Eight BAs were excluded because they are not located in the continental United States, which is the 

geographic availability of data from EIA-930: 

• Anchorage Municipal Light & Power 

• Chugach Electric Assn Inc 

• Constellation Energy Control and Dispatch, LLC 

• Hawaiian Electric Co Inc 

• Alaska Miscellaneous 

• Hawaii Miscellaneous 
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• Puerto Rico Miscellaneous 

• New Brunswick System Operator 

Two BAs were excluded because they were retired in 2018: 

• Gila River Power, LLC (GRMA) 

• Ohio Valley Electric Corporation (OVEC) 

Ten BAs were excluded because they are generation-only BAs that do not directly serve retail 

customers:81 

• Avangrid Renewables LLC (AVRN) 

• Arlington Valley, LLC – AVBA (DEAA) 

• Electric Energy, Inc. (EEI) 

• Griffith Energy, LLC (GRIF) 

• Gridforce South (GRIS) 

• NaturEner Power Watch, LLC (GWA) 

• New Harquahala Generating Company, LLC – HGBA (HGMA) 

• Southeastern Power Administration (SEPA) 

• NaturEner Wind Watch, LLC (WWA) 

• Alcoa Power Generating, Inc. - Yadkin Division (YAD) 

Two BAs were excluded because they are limited-generation BAs which did not report any net 

generation by fuel type data to EIA-930: 

• City of Homestead (HST) 

• New Smyrna Beach, Utilities Commission of (NSB) 
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One BA was excluded because no GIS shapefile of its boundaries was available, which was necessary for 

sampling buildings from the NREL End-Use Load Profile dataset: 

• Southwestern Power Administration (SPA) 

 

Example load shapes for NREL demand dataset 

The NREL End-Use Load Profile dataset contains simulated load profiles for 14 unique 

commercial building types and 9 unique residential building types. Table S3 summarizes these types and 

how we assigned them to categories and sectors for this research.  

 
Table S2. Summary of DOE reference building types and how they were categorized for this study.  

NREL Building Type Assigned 
Category 

Assigned Sector 

Full Service Restaurant 
Restaurant 

Commercial 

Quick Service Restaurant 

Hospital Hospital 

Large Office 

Office 
Medium Office 

Small Office 

Outpatient Health Care 

Large Hotel 
Hotel 

Small Hotel 

Primary School 
School 

Secondary School 

Standalone Retail 
Retail 

Retail Strip Mall 

Warehouse Warehouse 

Mobile Home Mobile Home 

Residential  

Single-family attached 
Single Family 

Single-family detached 

2 Unit 
Small Multifamily 

3 to 4 Unit 

5 to 9 Unit 
Medium 
Multifamily 

10 to 19 Unit 

20 to 49 Unit 

50 or more Unit Large Multifamily 
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Figures S2 and S3 show the month-hour average load shapes for commercial and residential 

buildings (respectively) in a representative cooling climate (Arizona Public Service). Figures S4 and S5 

show the month-hour average load shapes for commercial and residential buildings (respectively) in a 

representative heating climate (ISO New England). 
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Fig. S2. Month-hour average load shapes for each commercial building type in AZPS, normalized as a 
percentage of maximum hourly demand in the year.   
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Fig. S3. Month-hour average load shapes for each residential building type in AZPS, normalized as a 
percentage of maximum hourly demand in the year.   
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Fig. S4. Month-hour average load shapes for each commercial building type in ISNE, normalized as a 
percentage of maximum hourly demand in the year.  
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Fig. S5. Month-hour average load shapes for each residential building type in ISNE, normalized as a 
percentage of maximum hourly demand in the year.  
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Metadata for LBNL energy demand data 

The dataset used for the California ISO case study was developed by Lawrence Berkeley National Lab 

(LBNL) as part of their 2025 California Demand Response Potential Study.39  Utilizing the state’s Energy 

Data Request Program (EDRP), LBNL researchers were able to request and collect actual hourly AMI data 

representing over 13.1 million individual electricity customers from each of the state’s three major 

investor-owned utilities (Southern California Edison, San Diego Gas and Electric, and Pacific Gas and 

Electric). In order to maintain the privacy of individual electricity customers, the researchers aggregated 

these 13.1 million timeseries into 2,766 representative profiles. LBNL categorized these load profiles into 

17 facility types, which we categorized into five broader categories, which is summarized in Table S3. 

Table S3. Metadata for the hourly demand profile data included in the LBNL dataset, and how we 
assigned each building type to categories for this study. 
 

Study-
assigned 
Category 

LBNL Building Type 
# of 

aggregated 
Profiles 

# of end 
Customers 

Residential Residential 493 10,652,391 

Commercial 

Office 467 415,895 

Retail 452 192,621 

Refrigerated Warehouse 7 1,158 

Data Center 6 164 

Manufacturing 

Computer/Electronics 68 5,087 

Primary Metals 113 15,438 

Petroleum Refining 2 71 

Chemical 18 1,417 

Plastic/Rubber 28 2,166 

Food/Beverage 
Processing 

121 7,185 

Agriculture 
and Water 
Pumping 

Agricultural Irrigation 275 147,742 

Water Utility 253 50,576 

Wastewater Treatment 104 21,487 

Other 

Other Commercial 266 602,685 

Other Industrial 72 102,666 

Other 21 904,342 

Grand Total: 2,766 13,123,091 
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Full national results for each building type in each grid region 
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Fig. S6. Distribution of biases for the national results broken out by balancing authority (facets) and 
building types (x-axis) 
 
Results for regions omitted from the main text (CHPD and DOPD) 

As mentioned in the results section of the main text, the results for two regions were omitted 

from Figure 2 for the sake of readability. These two regions, PUD No. 1 of Douglas County (DOPD) and 

PUD of Chelan County (CHPD), are two hydro-only balancing authorities in Northeast Washington State.  

As shown in Figure S7, the carbon intensity in these two regions is typically zero and is 

intermittently higher when importing fossil-fuel-based electricity from other regions. Due to this, the 

annual average value will significantly misrepresent the actual carbon intensity in each hour, which leads 

to inventory biases that range from 20% to 106%, as shown in Figure S8. Although these relative biases 

are large, the absolute biases are relatively small due to the low average emission rate for these regions.  

 

 

 

Fig. S7. Hourly carbon intensity values for DOPD and CHPD in 2019. 
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Fig. S8. Bias introduced by annual carbon accounting for each building type in CHPD and DOPD. 
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Comparison of Inventory Bias and regional fuel mix and CI variability 

 

 

 
Fig. S9. Comparison of inventory bias, variability of carbon intensity and regional fuel mix. 
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Supporting Information for Chapter 2 
Documentation 

Detailed documentation of the data inputs, assumptions, and methodologies used to produce the Open 

Grid Emissions dataset can be found online at https://docs.singularity.energy/docs/open-grid-emissions-

docs. This documentation contains a step-by-step overview of the data pipeline, description of the data 

cleaning steps, the methodologies used to calculate and adjust emissions, the gross-to-net generation 

conversion, how data were aggregated, and the methodology for assigning an hourly profile to monthly 

data.  

Code Repository 

The code repository can be found at https://github.com/singularity-energy/open-grid-emissions and is 

archived at https://doi.org/10.5281/zenodo.7062460 

Dataset download 

The dataset is available to download at https://singularity.energy/open-grid-emissions/ and is archived 

on Zenodo at https://doi.org/10.5281/zenodo.7063072 . These datasets include regional consumed 

emissions factors, regional power sector data, and power-plant level data, as well as a complete set of 

data quality metrics.  

 

 

  

https://docs.singularity.energy/docs/open-grid-emissions-docs
https://docs.singularity.energy/docs/open-grid-emissions-docs
https://singularity-docs.stoplight.io/docs/open-grid-emissions-docs/pipeline_overview-overview-of-the-data-pipeline
https://singularity-docs.stoplight.io/docs/open-grid-emissions-docs/cleaning_cems-loading-data-from-pudl
https://singularity-docs.stoplight.io/docs/open-grid-emissions-docs/cleaning_cems-loading-data-from-pudl
https://singularity-docs.stoplight.io/docs/open-grid-emissions-docs/emissions_overview-overview
https://singularity-docs.stoplight.io/docs/open-grid-emissions-docs/gross_to_net-background-of-gross-generation-and-net-generation
https://singularity-docs.stoplight.io/docs/open-grid-emissions-docs/gross_to_net-background-of-gross-generation-and-net-generation
https://singularity-docs.stoplight.io/docs/open-grid-emissions-docs/subplant_aggregation-background-on-power-plant-configuration-and-data-crosswalking
https://singularity-docs.stoplight.io/docs/open-grid-emissions-docs/hourly_shaping_summary-assigning-an-hourly-profile-to-lower-resolution-data
https://github.com/singularity-energy/open-grid-emissions
https://doi.org/10.5281/zenodo.7062460
https://singularity.energy/open-grid-emissions/
https://doi.org/10.5281/zenodo.7063072
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Supporting Information for Chapter 3 

Code Repository 
The MATCH model can be found online at https://github.com/grgmiller/MATCH-model.  

Model use case 
The MATCH (“Matching Around The Clock Hourly energy”) model for planning 24/7 energy portfolios is a 

derivative of the open-source SWITCH 2.0 power system planning model.  

This model is intended to model a renewable energy portfolio for an entity that primarily procures 

power using virtual power purchase agreements. This could include a load-serving entity such as a 

Community Choice Aggregator, or a large end-use customer of electricity, such as a corporation. This 

user should be a “small” user of electricity within the balancing authority(s) within which it operates (< 

5-10% of total balancing authority load). This assumption is important because this model does not 

consider the impact of the portfolio on physical system stability (system frequency, voltage, etc.), and it 

is assumed that any power that is not generated by contracted generation will be sourced from “system 

power” which is always available from other resources on the system.  

Model Overview 
This model is a mixed-integer linear program that selects the lowest-cost portfolio of renewable and 

carbon-free resources to meet a time-coincident renewable or carbon-free energy goal in a single target 

year. The model both selects the capacity of each resource that should be included in the portfolio, and 

is able to dispatch each resource in each hour throughout the year.  

The model is coded in Python and uses the Pyomo optimization modeling language. It may be used with 

multiple different optimization solvers, including the open-source CBC, or commercial solvers such as 

Gurobi or CPLEX. 

The model is based on the architecture of an open-source power system planning model called “SWITCH 

2.0,” although has been heavily modified to simulate time-coincident (“24/7”) renewable energy 

https://github.com/grgmiller/MATCH-model
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procurement goals by entities that primarily buy energy through power purchase agreements (PPAs) 

and wholesale electricity markets. The current version of the model has been built and tested for use by 

Community Choice Aggregators (CCAs) in California, although the model is also flexibly designed to be 

used by large corporate energy buyers (although adjustments may need to be made in future versions 

to ensure full compatibility with this use case).  

The model is capable of modeling renewable energy goals for load centers and generators located in 

multiple grid regions, although to date, all of the testing has been done on single-region models, as this 

corresponds to the initial use case of CCAs.  

Model Inputs 

Model Timescales 
The model is currently configured to model all 8,760 hours in a single target year (the model treats all 

years as a non-leap year).‡ For example, if the user has a 100% renewable energy target that they are 

trying to achieve by 2030, they would be modeling the single year 2030. The target year may be 

interchangeably referred to as the “model year” or the “period.” Each of the 8,760 timepoints [t] in the 

target year are part of a single continuous timeseries spanning the entire period, each representing a 

single, unique hour. Each of the timepoints are treated as consecutive, and “wrap” around the end of 

the year (I.e. timepoint 1 is preceded by timepoint 8760). Each hour of input data should be entered in 

local standard time (not prevailing time, which shifts for daylight savings time). 

There is only a single build decision per generator for the modeled period. If the generator is 

selected/built, the model assumes that its commercial operation date (COD) is on or before the first 

 
‡ Any leap years that are modeled should be fit to an 8760 timeseries by removing the 24 timestamps on February 
29 from all timeseries inputs. This is consistent with how NREL’s System Advisor Model handles leap years. 
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timepoint of the period, meaning that the generator is available to be dispatched in every timepoint of 

the model year.  

Because we are modeling a single year, the costs that are being optimized only represent the costs that 

occur in the single model year, rather than the lifetime costs of the generator. 

Because of the way the model is currently configured, it is useful for identifying what an optimal 

portfolio would look like in the target year, but not what the investment pathway would look like (for 

example, between now and the target year, in which years should the user invest in each resource). 

Such pathways could be simulated using this model by modeling several years independently using 

interim targets along the way. For example, a user could model a 50% target in 2025, and then use the 

outputs from that model as the predetermined generator portfolio in a subsequent model of a 100% 

target in 2030.  

Because each timepoint is 1 hour, any power units occurring in a single timepoint (measured in MW), 

can also be interpreted as a unit of energy (measured in MWh): 1MW for 1 hour is 1MWh. 

Terminology 

• A “generator” is any generation or storage asset that can be built in the model. Specific subsets 

of generators will be qualified such as “storage generators,” “variable generators,” “non-storage 

generators,” “baseload generators,” etc. 

• The term “generation” or “total generation” refers to all energy output from a non-storage 

generator, not including any curtailed energy. “Dispatched generation” refers to the portion of 

total generation that is used to match time-coincident load. “Excess generation” refers to the 

portion of total generation that is generated in excess of time-coincident load. 
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• “Capacity” refers to any quantities related to generator build decisions (quantified in MW), 

while “energy” refers to any quantities related to generator dispatch decisions, generation, 

charging, or discharging (quantified in MWh) 

• Generators can be interchangeably “built” or “contracted,” which refers to the amount of 

capacity from each generator that will be included in the optimal portfolio. Regardless of 

whether the actual generator is being physically built as a results of the decision, we generally 

refer to a decision about how much capacity to contract as a “build decision”. In other words, 

there is no meaningful difference in the model between a resource being “built” and a resource 

being “contracted.” It is assumed that signing a contract will lead to the resource being built, or 

else that the contract is for an existing resource.  

• Throughout the document, the main policy goal is generally referred to as a “renewable energy 

goal”, although in this document, “renewable” can be interpreted interchangeably with 

“carbon-free” or “clean” energy goals. The model itself can model any type of 

renewable/clean/carbon-free energy target, as long as all of the generators included in the 

model meet the user’s definition of a renewable/clean/carbon-free resource. 

A note on notation 

• Decision variables are represented by names that capitalize each word in the variable name (e.g. 

BuildGen). Set names are indicated in all capitals with underscores between words (e.g. 

GENERATION_PROJECTS). Parameters are indicated with all lower-case letters, with or without 

underscores between the words (e.g. predetermined_build_capacity or 

predeterminedbuildcapacity). 

• All variables and parameters can be indexed by one or more indexes. These indexes are either 

represented in a subscript following the variable name, or in square brackets after the variable 



 

 

117 
 

name (e.g. 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 or BuildGen[g]). If the variable is indexed by more than one value, these 

will be separated by commas (e.g. zone_demand_mw[z,t]).  

• The following single letters are commonly used to represent elements in sets: 

o “g” represents a generator in GENERATION_PROJECTS or any subset 

o “z” represents a load zone in LOAD_ZONES 

o “t” represents a timepoint in TIMEPOINTS 

o “mo” represents a month in MONTHS 

o “req” represents a resource adequacy requirement in RA_REQUIREMENTS 

Decision Variables and associated constraints 

Generator Build Decisions 

𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 is a decision variable for the capacity of each generator that should be built/contracted and 

included in the optimal portfolio. Generator build decisions can be constrained by the following 

constraints: 

• BuildGen must be positive 

• A “predetermined build capacity” can be specified for each generator, which requires 

𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ≥ 𝑝𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑏𝑢𝑖𝑙𝑑_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑔. This is useful for specifying generators that 

are already an existing part of the portfolio. 

• A maximum build capacity can be specified for each generator, which requires 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ≤

𝑔𝑒𝑛_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑖𝑚𝑖𝑡_𝑚𝑤𝑔 

• A minimum build capacity can be specified, which requires the minimum amount that must be 

built if the generator is built at all. This creates a binary decision variable 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑀𝑖𝑛𝐶𝑎𝑝𝑔, 

which is activated using a linking constraint 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ≤ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑀𝑖𝑛𝐶𝑎𝑝𝑔 ∗

𝑔𝑒𝑛𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑙𝑖𝑚𝑖𝑡𝑚𝑤𝑔. This constraint is enforced by 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ≥ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑀𝑖𝑛𝐶𝑎𝑝𝑔 ∗

𝑔𝑒𝑛𝑚𝑖𝑛𝑏𝑢𝑖𝑙𝑑𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑔 
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• Multiple generators can also be specified as mutually exclusive variants of each other. This is 

useful if a generator has an offer price curve (e.g. if more capacity is built, the PPA cost is lower), 

or if there are different configurations of the same project being offered. This creates a binary 

variable 𝐵𝑢𝑖𝑙𝑑𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑔 for each project, which is activated with a linking constraint 

𝐵𝑢𝑖𝑙𝑑𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑔 ∗ 𝑔𝑒𝑛𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑙𝑖𝑚𝑖𝑡𝑚𝑤𝑔 ≥ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔. This constraint is enforced by 

∑ 𝐵𝑢𝑖𝑙𝑑𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑔 ≤ 1𝑔  for all g in each generator variant group. 

• The user can optionally specify that a generator be built in discretely-sized units, such as 10MW 

increments. If this build behavior is desired, the model includes a new integer decision variable 

𝐵𝑢𝑖𝑙𝑑𝑈𝑛𝑖𝑡𝑠𝑔, and BuildGen is constrained as 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 == 𝐵𝑢𝑖𝑙𝑑𝑈𝑛𝑖𝑡𝑠𝑔 ∗ 𝑔𝑒𝑛𝑢𝑛𝑖𝑡𝑠𝑖𝑧𝑒𝑔. 

Introducing an integer decision variable makes the model a mixed-integer linear program and 

can slow down the model solve time. 

Storage Build Decisions 

Each storage generator consists of two components that must be built: the power capacity (MWac) and 

the energy capacity (MWh). The power capacity build decision shares the same decision variable 

𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 with non-storage generators, though with additional constraints specific to storage. The 

energy capacity build decision uses a decision variable 𝐵𝑢𝑖𝑙𝑑𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝑔. All storage generators 

are contained in the set STORAGE_GENS, which is a subset of GENERATION_PROJECTS. Furthermore, the 

storage component of a hybrid/co-located resource are contained within the set 

HYBRID_STORAGE_GENS, which is a subset of STORAGE_GENS. HYBRID_STORAGE_GENS have additional 

constraints on the build decisions, in addition to those for all STORAGE_GENS. The following decision 

variables apply to all STORAGE_GENS: 
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• 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 is subject to all of the same constraints as normal generation projects: it must be 

positive, and less than 𝑔𝑒𝑛_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑖𝑚𝑖𝑡_𝑚𝑤𝑔, if specified. A predetermined build capacity, 

minimum build capacity, and variant group can also be specified for all STORAGE_GENS. 

• 𝐵𝑢𝑖𝑙𝑑𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝑔 must be built in a fixed ratio with 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔, as specified through the 

energy-to-power ratio specified as an input. This ratio represents the number of hours of 

storage that the battery has (i.e. a “4-hour battery” would have an energy-to-power ratio of 

four. This constraint is: 𝐵𝑢𝑖𝑙𝑑𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝑔 == 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑒𝑛𝑒𝑟𝑔𝑦𝑡𝑜𝑝𝑜𝑤𝑒𝑟𝑟𝑎𝑡𝑖𝑜𝑔 ∗

𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 

• Hybrid storage can also be required to be built in a specific ratio with the paired hybrid 

generator capacity. The user must specify a minimum and maximum capacity ratio between 

which the storage capacity must fall. If the storage should be built in a fixed ratio with the paired 

generator, the user can set minimum = maximum. This constraint is: 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ𝑦𝑏𝑟𝑖𝑑𝑚𝑖𝑛𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟𝑎𝑡𝑖𝑜𝑔 ∗ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ𝑦𝑏𝑟𝑖𝑑𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑗𝑒𝑐𝑡[𝑔] ≤ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ≤

 𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ𝑦𝑏𝑟𝑖𝑑𝑚𝑎𝑥𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟𝑎𝑡𝑖𝑜𝑔 ∗ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ𝑦𝑏𝑟𝑖𝑑𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑗𝑒𝑐𝑡[𝑔] 

Generator Dispatch Decisions 

Generator dispatch decisions apply to all NON_STORAGE_GENS, which is a subset of all 

GENERATION_PROJECTS. However, the specific constraints and decision variables used depend on which 

specific subset of NON_STORAGE_GENS the generator belongs to. A generator can belong to 

BASELOAD_GENS if the generator is a baseload resource that must be dispatched at its full capacity in 

each timepoint. A generator can belong to VARIABLE_GENS if it is a variable renewable resource such as 

wind or solar. If a generator belongs to neither BASELOAD_GENS nor VARIABLE_GENS, it is assumed to 

be a fully dispatchable generator.  

Dispatch decisions for dispatchable generators are controlled by 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡, which can take any 

value between zero and the generator’s nameplate capacity (controlled by the decision variable 
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𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔) derated by the gen_forced_outage_rate[g] parameter, which is applied evenly to all 

timepoints across the year. For example, if the nameplate capacity of a project was 100MW and the 

forced outage rate was 1%, then the maximum dispatch in any hour would be 99MW. For dispatchable 

generators, there are no constraints relating to unit commitment or ramp rates.  

Dispatch decisions for baseload generators are also controlled by 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡, but with additional 

constraints. Users must specify a baseload_capacity_factor[g,t] parameter for each timepoint, which 

specifies the percent of nameplate capacity at which the baseload generator must be dispatched in each 

timepoint. Indexing this parameter to each timepoint allows the user to reflect seasonal variations in the 

generator availability, such as with run-of-river hydro, which may only be available for part of the year. 

This baseload capacity factor is further derated by both the gen_forced_outage_rate[g] and 

gen_scheduled_outage_rate[g] parameters (Dispatchable and variable generators do not have 

scheduled outage rates because it is assumed that scheduled outages could be scheduled when the 

generator is not operating). Thus, for baseload generators, dispatch is constrained as 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡 =

= 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔  ∗  𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑓𝑎𝑐𝑡𝑜𝑟𝑔,𝑡 ∗ (1 − 𝑔𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑑𝑜𝑢𝑡𝑎𝑔𝑒𝑟𝑎𝑡𝑒𝑔) ∗ (1 −

𝑔𝑒𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑜𝑢𝑡𝑎𝑔𝑒𝑟𝑎𝑡𝑒𝑔). 

For variable generators, dispatch decisions are controlled by two decision variables 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡 

and 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝐺𝑒𝑛𝑔,𝑡, and one expression 𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑔,𝑡,. Users specify a variable_capacity_factor[g,t] 

parameter, which identifies the percent of nameplate capacity that can be generated in each timepoint, 

based on expected wind, solar, or other renewable resource availability. Users can either manually 

define these variable capacity factors, or allow the variable capacity factor to be automatically 

calculated by NREL’s System Advisor Model, given a geographic coordinate, set of generator technical 

characteristics, and set of historical resource years on which the user wants the expected value to be 

based. The sum of 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡, 𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑔,𝑡, and 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝐺𝑒𝑛𝑔,𝑡 must always equal the total 
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available variable generation, derated by the gen_forced_outage_rate[g]. For solar generators, the total 

available generation is also derated based on the age of the solar plant in the target year, taking into 

account a 0.5% annual linear degradation factor. The user inputs a COD year for each solar generator, 

and then a degradation factor is calculated as [1 − (0.005 ∗ (𝑚𝑜𝑑𝑒𝑙𝑦𝑒𝑎𝑟 − 𝑐𝑜𝑑𝑦𝑒𝑎𝑟𝑔))].  

𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡 specifies the portion of the generation from each generator that is matched to time-

coincident load.  

Economic curtailment 

𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝐺𝑒𝑛𝑔,𝑡 specifies the portion of generation from each generator that is economically curtailed in 

each timepoint. CurtailGen is only allowed for each generator when the nodal price is negative, which is 

consistent with how economic curtailment would be dispatched in real life. Curtailed generation is still 

subject to the normal energy PPA cost for a generator, but does pay the negative wholesale cost.  

In reality the only time that an operator would choose to economically curtail a generator is when LMP 

prices are <= 0. Enforcing this constraint also prevents curtailment from being used excessively by the 

model to satisfy other constraints. For example, when limiting the amount of excess generation allowed, 

previously the model could just curtail a lot of generation even when LMP prices were positive, even 

though this would not be realistic behavior. 

To limit curtailment, we take an approach similar to how we limit DispatchGen to be <= an upper limit 

that is defined by its variable_capacity_factor and installed capacity, in order to maintain the linearity of 

the model. We create a new variable curtailment_capacity_factor which is set equal to 

variable_capacity_factor when the LMP prices at a generator node are <= 0, and set to zero when prices 

are positive. This variable is defined in variable_capacity_factors.csv. 
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To limit curtailment, we set the constraint CurtailGen[g,t] <= GenCapacityInTP * gen_availability * 

curtailment_capacity_factor for each g, t. 

Certain renewable contracts also specify a buyer curtailment allowance, which is a number of 

MW*hours per year that a generator can be economically curtailed by an offtaker without paying the 

PPA cost. The user may specify a `buyer_curtailment_allowance` in hours for each project. So for 

example, if the allowance is entered as 10 hours, and the model builds 50MW of that resource, up to 

500MWh of generation from that project may be economically curtailed in a year without paying the 

PPA energy cost for those curtailed MWh. However, adding this as a separate decision variable would 

potentially slow the model, so instead we implemented this as a post-processing calculation in the 

summary report that credits back this allowance if used. For each generator that has a buyer curtailment 

allowance, the available credit is calculated as buyer_curtailment_allowance * GenCapacity * 

ppa_energy_cost. We then take the minimum of this total allowance and the total cost of curtailed 

energy for each generator to make sure that we are crediting back only the part of the allowance that 

was actually used. 

To reduce the number of decision variables, CurtailGen is only indexed to those generators for which a 

non-zero curtailment limit is specified. 𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑔,𝑡 represents the portion of generation that is 

neither matched to load by 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡 nor economically curtailed by 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝐺𝑒𝑛𝑔,𝑡, and thus 

represents the portion of generation that is in excess of load in each timepoint.  𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑔,𝑡 is like a 

slack variable that allows for total contracted generation to exceed load in each timepoint, even though 

the load balance constraint requires a strict equality between supply and demand. However, to reduce 

the number of decision variables in the model, ExcessGen is calculated as an expression as 

𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑔,𝑡 − 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡 − 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝐺𝑒𝑛𝑔,𝑡 . The user still pays the PPA energy cost 
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and earns Pnode revenue from 𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑔,𝑡.. The full set of constraints governing dispatch decisions 

for variable generators includes: 

• Maximum annual curtailment: ∑ 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝐺𝑒𝑛𝑔,𝑡𝑡 ≤ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ∗ 𝑔𝑒𝑛𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡𝑙𝑖𝑚𝑖𝑡𝑔, 

where gen_curtailment_limit[g] is the number of hours specified in a PPA contract that can be 

economically curtailed. 

• Dispatch upper limit: 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡 + 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝐺𝑒𝑛𝑔,𝑡 + 𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑔,𝑡 == 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ∗

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑓𝑎𝑐𝑡𝑜𝑟𝑔,𝑡 ∗ (1 − 𝑓𝑜𝑟𝑐𝑒𝑑𝑜𝑢𝑡𝑎𝑔𝑒𝑟𝑎𝑡𝑒𝑔) 

o For solar generators, the right hand side of this constraint is also multiplied by the 

solar_age_degredation[g] factor for each generator. 

Limiting excess generation: Because excess generation is allowed in the model, the cost-optimal 

solution may result in the selected portfolio generating more energy in a year than the user consumes in 

load. If the user wants to limit the amount of excess generation that is allowed in the portfolio (for risk 

mitigation reasons, for example), the user may optionally specify a constraint on the total amount of 

excess generation. The limit can be either “annual” or “hourly”, and is expressed as a percentage of 

load. For example, if the user did not want total generation to exceed 110% of load, they would specify 

the limit as 10%. If the user selects an annual limit, then the total annual volume of excess generation 

could not exceed the threshold based on the total annual volume of load. Mathematically, this annual 

limit is constrained as ∑ (𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑧,𝑡 − 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑜𝑠𝑠𝑒𝑠𝑧,𝑡) ≤𝑡

∑ 𝑧𝑜𝑛𝑒𝑑𝑒𝑚𝑎𝑛𝑑𝑚𝑤𝑧,𝑡 ∗ (1 + 𝑒𝑥𝑐𝑒𝑠𝑠𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑙𝑖𝑚𝑖𝑡)𝑡 . If the user selects an hourly limit, the volume 

of excess generation in each hour could not exceed the threshold based on load in the same hour. 

Mathematically, this hourly limit is constrained as 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑧,𝑡 ≤ 𝑍𝑜𝑛𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑀𝑊𝑧,𝑡 ∗

𝑒𝑥𝑐𝑒𝑠𝑠𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑙𝑖𝑚𝑖𝑡. An annual constraint allows for greater flexibility in matching load and 

generation shapes, as it allows seasonal mismatches in generation and load. For example, in the summer 
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when solar is generating at higher output, large amounts of excess generation may be allowed, as long 

as the total annual volume of excess generation is below the limit. An hourly limit is more useful if the 

user wants to make sure that the supply and demand shapes match closely throughout the year, while 

allowing for some flexibility for generation to not exactly equal demand in all hours. If a user seeks to 

exactly match generation and demand in every hour (in which all excess generation would have to be 

stored by a battery, and batteries could only discharge when needed to fill an open position), then they 

could set an hourly limit equal to zero. 

Because the total cost of a generator is the sum of PPA contract cost and wholesale market (Pnode) 

revenues, there is a chance that a generator may have a net negative cost if the wholesale revenue is 

greater than the PPA contract cost. In that case, because this is a cost minimization optimization, the 

model would try to build as much of that resource as possible, even if its shape doesn’t match the timing 

of load and it leads to a large amount of excess generation. For annual renewable targets, this is not an 

issue, because the time-coincidence of the generation is not a desired outcome, but for hourly 

renewable goals, this can lead to undesirable portfolio choices. To prevent this, the user can specify an 

excessgen_penalty, which is a flat $/MWh penalty applied to all excess generation. This provides a 

disincentive for negative-cost generators to build more than is needed to meet load, and to displace 

dispatched generation from another higher priced generator to excessgen. This penalty must be set high 

enough to cause negative-cost generators to have a net positive cost, so it may take some 

experimentation to find the right penalty value. Optimization outcomes may also be sensitive to this 

parameter, so if using, it is recommended to run several sensitivity parameters with the 

excessgen_penalty set to different values.  

Note on variable capacity factors for variable generators 

As noted above, a variable capacity factor (VCF) for each variable resource must be specified, which 

defines how many MWh will be generated in each timepoint for each MW of capacity built. The user can 
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manually input these VCFs, or allow them to be simulated by PySAM (v3.0.1), which is a python wrapper 

for NREL’s System Advisor Model. Currently, MATCH is set up to be able to simulate wind or solar PV 

generation. The wind simulation utilizes data from the Wind Toolkit, and the solar simulation uses 

PVWatts v8 and data from the NSRDB. The model downloads wind or solar resource data corresponding 

to the project’s geographic coordinates, and uses parameters specified by the user to simulate 

generation and calculate a VCF.  

For solar, these parameters include the project’s layout (azimuth, ground coverage ratio), array type 

(efficiency, bifaciality factor), inverter information (efficiency, DC to AC ratio), tracking information (tilt, 

tracking axes, rotation limits), losses, and optionally information about wind stow. All build capacities in 

the model are in MWac, while PvWatts simulates based on a DC capacity, so care must be taken to 

adjust the SAM inputs for this: the solar capacity should be entered as the MWac value, the DC-to-AC 

ratio should be set to 1, the inverter efficiency should be set as close to 100% as possible (which is 

limited to 99.5% in SAM), and any system losses on the DC side of the system should be removed from 

the losses. Wind inputs include details about the turbine height, power curve, losses, and layout.  

Resource data for wind and solar is currently available for 2007-2014. The user can choose to specify a 

single resource year for modeling, or multiple resource years, which will be averaged together to 

calculate an expected value of generation. Averaging too many years, especially for wind, eliminates 

much of the variability, and can make wind look more like a baseload resource, so care should be taken. 

After the model run is complete, the model will perform a sensitivity analysis to calculate the portfolio 

time-coincident performance using each single resource year from which the expected value was 

derived. 
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System Power 

Because this model assumes that the user’s load is part of a larger power system or balancing authority, 

any power that is not met by contracted generation in each hour can be met by “system power,” which 

represents electricity delivered from the grid. The amount of system power that is used in each hour is 

controlled by the decision variable SystemPower[z,t]. 

For a load serving entity, system power represents the total amount of electricity procured from 

wholesale power markets that is un-hedged by a PPA contract. To minimize risk, an LSE would typically 

procure hedge contracts to match 100% of their load, so the model allows the user to specify a 

parameter hedge_premium_cost[z], which represents the cost premium that an entity would pay to 

hedge each MWh of system power. In reality, a hedge contract has a specific shape which may not 

match the open system power position exactly, meaning that in reality, an entity is often under- or over-

hedged. For simplicity, this model assumes perfect hedging of all MWh of system power.  

In reality, a hedge contract works similarly to a PPA, where there is a contract cost paid per MWh, and a 

revenue earned from settling the hedge contract at a specific node. However, instead of optimizing 

separate hedge contract and wholesale market revenue costs, which may lead to unintended incentives 

for the use of system power, the premium cost is meant to represent a premium above the cost of 

system power. Thus, the user specifies the hedge premium cost as a percent of a specific pricing node, 

which would typically be the node at which the user’s load is located. For each load zone, the user 

specifies a `hedge_premium_percent` and `hedge_node`. Because nodal prices may be negative, the 

hedge premium cost includes a floor of $0.01. 

𝐻𝑒𝑑𝑔𝑒𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑧,𝑡 = max(0.01, 𝑛𝑜𝑑𝑎𝑙𝑝𝑟𝑖𝑐𝑒ℎ𝑒𝑑𝑔𝑒𝑛𝑜𝑑𝑒,𝑡 ∗ ℎ𝑒𝑑𝑔𝑒𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑝𝑒𝑟𝑐𝑒𝑛𝑡) 
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Storage Charge/Discharge Decisions 

Storage charging and discharging decisions are controlled by two separate decision variables 

𝐶ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡 and 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡. Additionally, the state of charge of each storage asset is 

tracked using a decision variable 𝑆𝑡𝑎𝑡𝑒𝑂𝑓𝐶ℎ𝑎𝑟𝑔𝑒𝑔,𝑡.  

Because charging and discharging decisions are represented by two separate decision variables, there is 

the possibility of a storage asset simultaneously charging and discharging in each timepoint. Because 

each timepoint in this model represents one hour, it is physically possible for a storage asset to both 

charge and discharge in the same hour (for example, if it charged for 30 min and discharged for 30 min). 

Preventing simultaneous charging and discharging altogether would require the use of a binary decision 

variable which would significantly increase the complexity of the model. Thus, as a compromise, we 

implement a constraint that doesn’t prevent simultaneous charging and discharging, but is still 

physically realistic.  This constraint takes the form 𝐶ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡 + 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡 ≤

𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔. However, the user may optionally specify if they want the model to use the strict storage 

binary discharge constraint. 

Storage discharging in each timepoint can be any value between 0 and the nameplate power capacity of 

the storage asset, as defined by 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔. Additionally, for hybrid projects, the combined discharge 

and generation from the paired generator cannot exceed the project’s interconnection limit, which is 

assumed to be the nameplate capacity of the generator portion of the project. This is constrained as: 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡 − 𝐶ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡 + 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ𝑦𝑏𝑟𝑖𝑑𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑗𝑒𝑐𝑡[𝑔],𝑡 +

𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ𝑦𝑏𝑟𝑖𝑑𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑗𝑒𝑐𝑡[𝑔],𝑡 ≤ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ𝑦𝑏𝑟𝑖𝑑𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑗𝑒𝑐𝑡[𝑔] 

Storage Charging: For some storage assets, the charging power capacity and discharging power capacity 

can be different values. Thus the user can specify a storage_charge_to_discharge_ratio[g] parameter, 

which is used to constrain the upper limit of charging as 𝐶ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡 ≤ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ∗
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𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑡𝑜𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑔. Additionally, hybrid storage assets are required to only charge 

from dispatched generation from their paired hybrid generator, which is enforced using 

𝐶ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡 ≤ 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒ℎ𝑦𝑏𝑟𝑖𝑑𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑗𝑒𝑐𝑡[𝑔],𝑡. Finally, we constrain that all 

storage must charge from dispatched generation (rather than from system power, if available) using the 

constraint ∑ 𝐶ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡 ≤ ∑ 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡𝑔𝑔  for all generators in each load zone. We do this 

to simplify accounting of the eligible renewable/carbon-free energy content of discharged energy.  

This combination of constraints means that storage can discharge both to fill open positions when there 

is not enough generation capacity to match load in a timepoint, or can discharge when economically 

optimal even if there is already excess generation. In this latter case, because of the equality constraint 

in the load balance constraint, DischargeStorage will displace DispatchGen in the timepoint, leading to 

more ExcessGen.  

Storage charging and discharging decisions are also constrained by limits on each storage asset’s state of 

charge, which is tracked using a decision variable  𝑆𝑡𝑎𝑡𝑒𝑂𝑓𝐶ℎ𝑎𝑟𝑔𝑒𝑔,𝑡. In this model, we account for 

both roundtrip efficiency losses and storage leakage (self-discharge) losses. We split the roundtrip 

efficiency into an AC-DC conversion loss when charging and a DC-AC conversion loss when discharging, 

using the simplifying assumption that 𝐴𝐶𝐷𝐶 𝑙𝑜𝑠𝑠 = 𝐷𝐶𝐴𝐶 𝑙𝑜𝑠𝑠 = √𝑅𝑜𝑢𝑛𝑑𝑡𝑟𝑖𝑝 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦. The state 

of charge (represented in the following equation as 𝑆𝑂𝐶𝑔,𝑡 for brevity) is calculated using the constraint: 

𝑆𝑂𝐶𝑔,𝑡 == 𝑆𝑂𝐶𝑔,𝑡−1 − 𝑆𝑂𝐶𝑔,𝑡−1 ∗ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑙𝑒𝑎𝑘𝑎𝑔𝑒𝑙𝑜𝑠𝑠𝑔 + 𝐶ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡 ∗ √𝑅𝑇𝐸𝑔 −

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡

√𝑅𝑇𝐸𝑔
. The state of charge is further constrained as 0 ≤ 𝑆𝑂𝐶𝑔,𝑡 ≤ 𝐵𝑢𝑖𝑙𝑑𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝑔. 

Finally, the user can also specify a limit on the total number of cycles that are allowed in a year, using 

the parameter storage_max_annual_cycles[g]. We define a cycle as discharging the full energy capacity 
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of a battery once. This constraint is enforced using ∑
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑔,𝑡

√𝑅𝑇𝐸𝑔
𝑡 ≤ 𝐵𝑢𝑖𝑙𝑑𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝑔 ∗

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑚𝑎𝑥𝑎𝑛𝑛𝑢𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠𝑔. 

Demand Response 

There is not currently a functioning demand response module in the model, but we plan to add this 

functionality in the future. The demand response module would be able to model load curtailment, load 

shifting, energy efficiency, and electrification programs. Each of these demand-side programs would 

have an associated capacity cost and load modifying shape (positive and/or negative in each timepoint). 

Resources like load shifting and curtailment could be dispatched based on the available capacity and 

load modifying shape of the resource.  

Resource Adequacy 

The resource adequacy module is based on the current rules (which change frequently) that apply to 

Community Choice Aggregators in California.  

Each CCA is required by the CPUC to contribute a certain amount of both system RA and flexible RA each 

month of the year. This monthly requirement can be met based on resources in the CCA’s portfolio, or 

by buying RA capacity on the market. Each generator contributes qualifying capacity to this requirement 

based on the effective load carrying capacity (ELCC) value that is assigned to each type of generator in 

each month. Additionally, each CCA has been assigned a “midterm reliability requirement” which 

specifies that a certain capacity of firm (baseload) resources and a certain capacity of long-duration 

energy storage (defined as storage with an energy to power ratio >= 8 hours) must be procured.  

Based on the RA requirement and the qualifying capacity contributed by each generator in the selected 

portfolio, the model calculates an open position for each month using the decision variables 

𝑅𝐴𝑂𝑝𝑒𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑚𝑜 and 𝐹𝑙𝑒𝑥𝑅𝐴𝑂𝑝𝑒𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑚𝑜. This open position must be closed by procuring 
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capacity from the market based on the parameter ra_cost[mo] and flex_ra_cost[mo]. This open position 

cost is included in the objective function. 

Optionally, the user may also choose to include the value of selling excess RA capacity into the market in 

the objective function, based on the parameters ra_resell_value[mo] and flexible_ra_resell_value[mo]. 

Because flexible RA must be sold paired with system RA, we include a decision variable 

𝑆𝑒𝑙𝑙𝑎𝑏𝑙𝑒𝐸𝑥𝑐𝑒𝑠𝑠𝐹𝑙𝑒𝑥𝑅𝐴𝑚𝑜, which is constrained as 𝑆𝑒𝑙𝑙𝑎𝑏𝑙𝑒𝐸𝑥𝑐𝑒𝑠𝑠𝐹𝑙𝑒𝑥𝑅𝐴𝑚𝑜 ≤

min(𝑅𝐴𝐸𝑥𝑐𝑒𝑠𝑠𝑚𝑜, 𝐹𝑙𝑒𝑥𝑅𝐴𝐸𝑥𝑐𝑒𝑠𝑠𝑚𝑜). The excess values for both system and flexible RA are calculated 

as 𝑇𝑜𝑡𝑎𝑙𝑄𝑢𝑎𝑙𝑖𝑓𝑦𝑖𝑛𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑜 − 𝑟𝑎𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑚𝑜 + 𝑅𝐴𝑂𝑝𝑒𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑚𝑜. 

The midterm reliability requirement is enforced using ∑ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ≥ 𝑚𝑖𝑑𝑡𝑒𝑟𝑚𝑓𝑖𝑟𝑚𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑔  for 

all g in BASELOAD_GENS. For the LDES requirement, the model defines a new set 

LONG_DURATION_STORAGE, which is the subset of all STORAGE_GENS with a 

storage_energy_to_power_ratio >= 8. This requirement is enforced using the constraint 

∑ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ≥ 𝑚𝑖𝑑𝑡𝑒𝑟𝑚𝑙𝑑𝑒𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑔  for all g in LONG_DURATION_STORAGE. All generators 

must be eligible for RA to contribute to either of the midterm requirements. 

Objective Function 
The objective function seeks to minimize the total cost of the portfolio, considering the following costs. 

Certain types of costs may be optionally added to the objective function to test certain scenarios 

Required costs 

• Contract costs 

o Dispatched Generation PPA Cost: Contract cost of generated energy that matches load 

in each hour 

▪ ∑ 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡 ∗ 𝑃𝑃𝐴𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑔𝑔,𝑡  for all g in GENERATION_PROJECTS 
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o Excess Generation PPA Cost: Contract cost of generated energy that exceeds load in 

each hour 

▪ ∑ 𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑔,𝑡 ∗ 𝑃𝑃𝐴𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑔𝑔,𝑡  for all g in NON_STORAGE_GENS 

o Storage Capacity PPA Cost: Contract cost of storage energy capacity built 

▪ ∑ 𝐵𝑢𝑖𝑙𝑑𝐺𝑒𝑛𝑔 ∗ 𝑃𝑃𝐴𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑔𝑔  for all g in STORAGE_GENS 

o Hedge Premium Cost: Premium cost of procuring hedge contracts to match grid energy 

that isn’t matched by PPA contracted energy 

▪ ∑ 𝑆𝑦𝑠𝑡𝑒𝑚𝑃𝑜𝑤𝑒𝑟𝑧,𝑡 ∗ 𝐻𝑒𝑑𝑔𝑒𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝐶𝑜𝑠𝑡𝑧𝑧,𝑡  

• Resource Adequacy Costs 

o RA Open Position Cost: the cost of procuring RA on the market to close an open 

position left by our generation portfolio. 

▪ ∑ 𝑅𝐴𝑂𝑝𝑒𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟𝑒𝑞,𝑚𝑜 ∗ 𝑅𝐴𝐶𝑜𝑠𝑡𝑟𝑒𝑞,𝑚𝑜𝑟𝑒𝑞,𝑚𝑜  

• Wholesale market costs 

o DLAP Load Cost: Cost of procuring energy from the wholesale market at the Default 

Load Aggregation Point 

▪ ∑ 𝑍𝑜𝑛𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑧,𝑡 ∗ 𝑁𝑜𝑑𝑎𝑙𝐶𝑜𝑠𝑡𝑛𝑜𝑑𝑒𝑓𝑜𝑟𝑧𝑜𝑛𝑒[𝑧],𝑡𝑧,𝑡  

o Storage Wholesale Price Arbitrage: Net revenue from storage arbitraging wholesale 

energy prices at different times of day 

▪ ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑔,𝑡 ∗ 𝑁𝑜𝑑𝑎𝑙𝐶𝑜𝑠𝑡𝑛𝑜𝑑𝑒𝑓𝑜𝑟𝑔𝑒𝑛[𝑔],𝑡 − 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑔,𝑡 ∗𝑔,𝑡

𝑁𝑜𝑑𝑎𝑙𝐶𝑜𝑠𝑡𝑛𝑜𝑑𝑒𝑓𝑜𝑟𝑔𝑒𝑛{𝑔],𝑡 for all g in STORAGE_GENS 

o Dispatched Generation Pnode Revenue: Pnode revenue from contracted generators 

selling load-matched generation into the wholesale market 

▪ ∑ −1 ∗ 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡 ∗ 𝑁𝑜𝑑𝑎𝑙𝐶𝑜𝑠𝑡𝑛𝑜𝑑𝑒𝑓𝑜𝑟𝑔𝑒𝑛[𝑔],𝑡𝑔,𝑡  for all g in 

NON_STORAGE_GENS 
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o Excess Generation Pnode Revenue: Pnode revenue from contracted generators selling 

excess generation into the wholesale market.  

▪ ∑ −1 ∗ 𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑔,𝑡 ∗ 𝑁𝑜𝑑𝑎𝑙𝐶𝑜𝑠𝑡𝑛𝑜𝑑𝑒𝑓𝑜𝑟𝑔𝑒𝑛[𝑔],𝑡𝑔,𝑡  for all g in 

NON_STORAGE_GENS 

• Penalties (optimized, but not included in the total cost of energy) 

o Excess Generation Penalty: A flat $/MWh penalty value applied to all MWh of excess 

generation, only if the renewable goal type is an hourly (time-coincident) goal 

▪ ∑ 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑧,𝑡 ∗ 𝑒𝑥𝑐𝑒𝑠𝑠𝑔𝑒𝑛𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑧  

Optional costs (can be added to the objective function by the user using an option flag) 

• Resale value of Excess RA: the market resale value of any excess RA capacity in our portfolio 

• Resale value of excess RECs: the market resale value of any excess RECs (counted on a time-

coincident basis). Calculated as ∑ 𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑔,𝑡 ∗ 𝑟𝑒𝑐𝑟𝑒𝑠𝑎𝑙𝑒𝑣𝑎𝑙𝑢𝑒𝑔,𝑡  

Costs not included in the objective function but used to calculate total cost of energy 

• Fixed Costs: Any fixed costs paid per year (admin costs, CAISO costs, etc.).  

All input costs are rounded to the nearest whole cent ($0.01) before being loaded into the model. 

During post-processing, the REC costs or resale revenues are calculated differently based on whether 

there is an open position or long position. If there is a REC open position, only procure enough RECs to 

meet base load plus storage losses (rather than loss-adjusted load). However, if long on RECs, only sell 

RECs in excess of loss-adjusted load.  

Load Balance Constraint 
The main constraint that governs the dispatch of resources in the model requires supply to equal 

demand in all hours in each zone. A zone generally represents a balancing authority within which both 
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the load and generators are located. A model will typically have a single zone, unless you are modeling a 

time-coincident goal for an entity that has load in multiple grid regions. 

Specifically, the following decision variables must be adjusted such that 

𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑧,𝑡 + 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑧,𝑡 + 𝑆𝑦𝑠𝑡𝑒𝑚𝑃𝑜𝑤𝑒𝑟𝑧,𝑡 ==

𝑍𝑜𝑛𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑧,𝑡 + 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑧,𝑡  

Where 

• 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑧,𝑡 = ∑ 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑒𝑛𝑔,𝑡𝑔  for g in GENS_IN_ZONE[z] 

• 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑧,𝑡 = ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑔,𝑡𝑔  for g in 

STORAGE_GENS_IN_ZONE[z] 

• 𝑆𝑦𝑠𝑡𝑒𝑚𝑃𝑜𝑤𝑒𝑟𝑧,𝑡 is a decision variable describing the amount of non-contracted grid power is 

being consumed 

• 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑧,𝑡 = ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑔,𝑡𝑔  for g in STORAGE_GENS_IN_ZONE[z] 

Renewable Energy Targets 
Resources are built and dispatched in the model in order to satisfy a renewable energy target, which 

describes the minimum amount of load that must be matched by generation from contracted 

generation. A fundamental assumption of this model is that all generators inputted into the model 

count toward achieving this target, and that any load that is not met by dispatched generation from 

these projects will be served by system (grid) power. Although throughout the document and model 

these targets refer to “renewable” energy, the model can be used to analyze any type of clean/carbon-

free/renewable energy target, as long as all of the generators inputted into the model are eligible to 

meet the user’s defined target.  
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The user can specify two different types of renewable energy targets: a volumetric target or a time-

coincident (24/7) target. 

A volumetric renewable target (also known as an “annual target,” which is the status quo type of 

renewable energy accounting) is based on matching the total volume of load within the modeling period 

to the total volume of generation from contracted resources. This means that net generation (the sum 

of  dispatched and excess generation less any storage losses) must be greater than or equal to the total 

demand times the target percentage (e.g. 50%, 100%) 

∑ [𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑧,𝑡 + 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝐸𝑥𝑐𝑒𝑠𝑠𝐺𝑒𝑛𝑧,𝑡
𝑡

− (𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑧,𝑡 − 𝑍𝑜𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑧,𝑡)]

≥ ∑ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑇𝑎𝑟𝑔𝑒𝑡 ∗ 𝑍𝑜𝑛𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑧,𝑡
𝑡

 

A time-coincident target is based on matching dispatched generation to load in each hour, and ensuring 

that the total volume of time-coincident generation meets or exceeds some percentage of the total 

volume of load in the year. In each timepoint, any generation in excess of the time-coincident load does 

not roll-over or count toward meeting the goal. Likewise, in each timepoint, any load that is not 

matched by generation or storage discharge must be met by system power. Because system power is 

used to fill in any gaps when time-coincident generation is not available, we can conveniently define this 

target based on the inverse percentage of system power consumed: 

∑ 𝑆𝑦𝑠𝑡𝑒𝑚𝑃𝑜𝑤𝑒𝑟𝑧,𝑡 ≤
𝑡

(1 − 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑇𝑎𝑟𝑔𝑒𝑡) ∗ ∑ 𝑍𝑜𝑛𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑧,𝑡
𝑡

 

Grid-mix/standard delivery resources 
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The MATCH model does not currently include the functionality to automatically include grid-mix or 

standard delivery renewable or clean energy based on Cambium. However, a user may manually model 

this using the following steps: 

• Create a new GENERATION_PROJECT called something like “grid mix renewables” and specify it 

as a variable resource by setting `gen_is_variable` to 1 

• Set the `ppa_energy_cost` and `ppa_contract_cost` to zero and assign it to a `gen_pricing_node` 

that is all zero for every hour 

• Set `gen_capacity_limit_mw` and `gen_predetermined_cap` equal to the annual average hourly 

MW of load that you are trying to match.  

• Create a manual capacity timeseries that represents the percent of renewable/clean energy 

being delivered in each hour 

• Set `gen_is_additional` to zero 

Emissions Optimization Target 
In addition to renewable/clean energy procurement targets, some entities are interested in procuring 

energy from sources that will displace the greatest amount of marginal emissions from the grid. 

Emissions optimization goals are coordinated using the `match_model.optional.emissions_optimization` 

module. This module calculates the direct and indirect avoided emissions impact of all generator and 

storage dispatch, and converts these emissions impacts into a dollar figure using an internal carbon price 

so that these emissions impacts can be optimized in the objective function alongside all other financial 

parameters. 

Direct emissions and CCS 
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For each generator in NON_STORAGE_GENS, the user specifies a `gen_emissions_factor` per MWh of 

generation. Total direct emissions are calculated as the sum of `TotalGen[g, t] * 

gen_emissions_factor[g]` for each generator.  

Users can also specify a `gen_ccs_capture_efficiency` which represents what percentage of carbon 

emissions are captured if a plant as a carbon capture and sequestration system equipped. In this case, 

total direct emissions are calculated for such generators as `TotalGen[g, t] * gen_emissions_factor[g] * 

(1 – gen_ccs_capture_efficiency[g])`. 

Because CCS equipment generally consumes electricity, a user can also specify a `gen_ccs_energy_load` 

for each generator, which specifies what percent of dispatched generation the ccs equipment 

consumes. For each CCS-equipped generator, this additional load is calculated as `-1 * DispatchGen[g,t] 

* gen_ccs_energy_load[g]`, and appended to Zone_Power_Injections. 

Indirect Avoided emissions 

Avoided emissions reflect the amount of carbon emissions from other generators on the grid that a 

generator indirectly displaces. Avoided emissions are calculated based on the region-specific long-run 

marginal emission rate for each generator. For each GENERATION_PROJECT, a user must specify the 

binary parameter `gen_is_additional` to indicate whether each generator is a new/additional generator 

that does not already exist on the grid. Only generators where `gen_is_additional` is set to 1 can have an 

indirect avoided emissions impact. For each GENERATION_PROJECT the user also specifies 

`gen_cambium_region`, which indicates the name of grid region defined by NREL’s Cambium model 

where the generator is located (and thus where it would displace emissions). Because Cambium includes 

five different future scenarios, the user must also specify which `cambium_scenario` to use when 

defining the scenarios that will be run. During the creation of model input files, the script automatically 

downloads and creates input files with the relevant LRMERs for each region used in the model.  
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For additional generators, the avoided emissions are calculated as `-1 * TotalGen[g,t] * 

lrmer[gen_cambium_region[g], t]`, and for storage they are calculated as `ChargeStorage[g,t] – 

DischargeStorage[g,t] * lrmer[gen_cambium_region[g], t]` (positive generation thus has a negative 

emissions impact).  

The total emissions impact is the sum of all direct and indirect emissions impacts.  

Optimizing emissions in the objective function 

In order to optimize emissions impacts in  the objective functions, all emissions totals must be converted 

to dollars. To do this, the user specifies an `internal_carbon_price` in dollars per emissions unit when 

configuring each scenario.  

Overview of configuring and running models 
The model is configured as a “model run,” each of which can have multiple scenarios. Each of these 

model scenarios can be solved in series or parallel, depending on the capabilities of your computer.  

Each model run is configured by entering input data into a single Excel workbook with multiple tabs for 

different types of inputs. A user can specify which inputs (for example, specific generators, loads, prices, 

etc.) correspond to different named scenarios within the model run. The main element that must 

remain constant across all scenarios in a model run is the target year that is being modeled.  

Once all inputs and scenarios have been configured, a python script loads all of the data from the Excel 

workbook, simulates generation profiles for variable generators using a package called PySAM (a python 

version of NREL’s system advisor model), and repackages it into separate CSV files, formatted for input 

into the model, in separate input directories for each scenario. 

The user then runs the models using a Jupyter notebook. Scenarios can be solved in series and parallel. 

Each solver instance will be opened in a command prompt window, which will display solve progress 
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and/or identify any errors that may occur. After each scenario finishes solving, it will export results as 

csv files into output folders for each scenario, and then also run a Jupyter notebook that creates an 

interactive HTML summary report for each scenario. After each scenario finishes solving, the model will 

automatically move on to start solving the next scenario in the queue that has not yet been started.  

After all scenarios have finished solving, a scenario comparison csv file will be generated, which allows 

the user to compare key metrics/results from each scenario side by side.  

Output Metrics 
Each scenario will have an HTML summary report, which includes key results and metrics, as well as 

interactive plots of certain outputs. This section provides an overview of the metrics included in each 

summary report: 

• Percent of load met by renewable energy, both in terms of time-coincident accounting and 

annual volumetric accounting 

• Results of the sensitivity analysis for how well the portfolio would perform (in terms of time-

coincident renewable percentage) based on renewable generation in individual weather years. 

This is calculated using a simplified model that uses a greedy algorithm for storage charging and 

discharging. 

• Carbon footprint of the portfolio, including both total absolute emissions and the average 

emission factor for delivered energy (based on hourly accounting of emissions). 

• A heatmap showing the carbon intensity of delivered energy in each hour of the year 

• A sunburst plot showing the composition of the selected portfolio, by contract status, 

generation technology, and project name. 

• A stacked bar chart of average cost per MWh generated for each generator, including the 

individual cost components. 
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• Interpretations of the reduced costs for each generator 

• A pie chart showing the source of total delivered energy by generation technology  

• A table that breaks down all cost components and the total cost, expressed both in terms of 

annual real cost and cost per delivered MWh. 

• A stacked bar plot showing the quarter-hour average cost of power, including all cost 

components 

• A table showing the resell value of any excess RA or RECs 

• A table showing the monthly RA position for both system and flexible RA 

• An area plot showing load, generator dispatch by technology, and battery charge/discharge for 

all 8760 hours of the year 

• A version of the above plot averaged by month-hour 

• A line plot of wholesale electricity prices at each node for all hours of the year 

• A line plot showing the month-hour average shadow price of energy efficiency (or curtailment) 

• An area plot showing the month-hour average shape of the net position, calculated both with 

and without storage dispatch. 

• A line plot showing the aggregated hourly state of charge for both hybrid storage and 

standalone storage 

• A table with stats about storage cycles and average state of charge 

• A calculation of avoided emissions from additional generators in the portfolio, based on 

levelized long-run marginal emission rates from NREL’s Cambium model.  

• Tables showing input assumptions for both generators and storage assets. 

 




