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Abstract Stroke is an important risk factor for bone fracture.
We showed previously that bone fracture at the acute stage of
ischemic stroke worsens, and activation of α-7 nicotinic ace-
tylcholine receptor (α-7 nAchR) improves, stroke recovery by
attenuating inflammation. We hypothesized that activation of
α-7 nAchR also improves the blood-brain barrier (BBB) in-
tegrity. Permanent distal middle cerebral artery occlusion
(pMCAO) was performed on C57BL/6J mice followed by
tibia fracture 1 day later. Mice were treated with 0.8 mg/kg
PHA 568487 (PHA, α-7 nAchR-specific agonist), 6 mg/kg
methyllycaconitine (MLA,α-7 nAchR antagonist), or saline 1
and 2 days after pMCAO. Brain water content, the expression
of monoamine oxidase B (MAO-B), and tight junction protein
(claudin-5) were assessed. We found that tibia fracture in-
creased water content in the ischemic stroke brain
(p = 0.006) and MAO-B-positive astrocytes (p < 0.001).
PHA treatment reduced water content and MAO-B-positive
astrocytes and increased claudin-5 expression in stroke and
stroke + tibia fracture mice (p < 0.05), while MLA had the

opposite effect. Our findings suggest that in addition to
inhibiting inflammation, activation ofα-7 nAchR also reduces
brain edema, possibly through diminished astrocyte oxidative
stress and improved BBB integrity. Thus, the α-7 nAchR-
specific agonist could be developed into a new therapy for
improving recovery of patients with stroke or stroke + bone
fracture.
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Introduction

Stroke is one of the leading causes of death and disability world-
wide and an important risk factor for bone fracture [1]. Stroke
patients have a two- to four-fold higher risk of bone fracture than
the general population. Post-stroke bone fracture increases mor-
tality in older patients [2, 3]. Our previous studies showed that in
mice, bone fracture after ischemic stroke exacerbates stroke-
related brain injury and behavioral deficits [4], suggesting that
post-stroke bone fracture has a negative impact on stroke out-
comes. Understanding the underlying mechanisms of brain inju-
ry caused by post-stroke bone fracture can lead to a novel target
for developing neuroprotective strategies.

Ischemic stroke causes neuronal injury through a complex
pathological process involving multiple biological pathways
[5]. A major and severe complication of ischemic stroke is
brain edema, which exacerbates the brain injury and promotes
clinical deterioration [6]. Themain cause of brain edema is the
loss of the blood-brain barrier (BBB) integrity that results in
water accumulation in the brain [7]. The effect of post-stroke
fracture on brain edema has not been analyzed.

Astrocytes are one of the important components of BBB.
Alternation of monoamine metabolism in astrocytes can cause
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oxidative stress and alter function, leading to BBB dysfunc-
tion and brain edema [8]. Maintaining BBB integrity is crucial
to prevent the influx of monoamines into the brain parenchy-
ma [9]. Monoamine oxidases (MAOs) are a family of en-
zymes that catalyze the oxidative deamination of monoamines
and regulate the monoamine levels in the brain. A high level
of monoamine can also increase MAO activity. There are two
types of MAO in the brain (A and B); MAO-B activity is
linked to oxidative stress in tissues [10].

Stroke triggers a cascade of inflammatory pathways.
Excessive inflammation during the acute phase of ischemic
stroke exacerbates brain damage; conversely, reducing the in-
flammation decreases brain damage and improves functional
recovery [11]. We showed in our previous study that tibia
fracture shortly before or after ischemic stroke enhances in-
flammation in the peri-infarct region [4, 12, 13]. Therefore, we
chose to analyze whether inhibition of inflammatory pathway
will reduce stroke injury in stroke-only and stroke + bone
fracture subjects.

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated
ion channels, consisting of multiple, diverse subtypes. Alpha-7
(α-7) nAChR is one of the most widely distributed subtypes
throughout the central nervous system and on the surface of
systemic macrophages [14–19]. Modulation of α-7 nAchR reg-
ulates inflammation [20, 21] and oxidative stress [22]. We have
previously shown that α-7 nAchR agonist treatment attenuates
neuroinflammation, oxidative stress, and brain injury in mice
with stroke, or stroke and bone fracture [12, 23].

In the present study, we tested the hypothesis that post-
stroke bone fracture aggravates BBB disruption, brain edema,
andMAO-B expression in astrocytes, and that activation ofα-
7 nAchR reduces astrocyte MAO-B level and brain edema.

Materials and Methods

Animals

All experimental procedures involving animals were ap-
proved by the Institutional Animal Care and Use Committee
of the University of California, San Francisco, and conformed
to the National Institutes of Health Guidelines for the Care and
Use of Laboratory Animals.

C57BL/6J male mice (10–12 weeks old; Jackson
Laboratory, Bar Harbor, ME) were randomly assigned to each
treatment group. The experimenters were blinded to the treat-
ments and data analysis.

Permanent Distal Middle Cerebral Artery Occlusion
for Stroke Model

The left middle cerebral artery was permanently occluded
through electrocoagulation using the method described in

our previous study [4, 12]. Briefly, animals were anesthetized
with 2% isoflurane inhalation. A 1.0-cm vertical skin incision
was made between the left orbit and ear to expose the temporal
bone. A 2.0-mm2 hole was drilled precisely over the region of
the middle cerebral artery (MCA) followed by removal of
dura mater. The MCA was then permanently occluded using
electrical coagulation just proximal to the pyriform branch.
Animals were placed on a thermal blanket (37 ± 0.5 °C
feedback-controlled by rectal temperature) for maintenance
of body temperature throughout the surgical procedure.
Successful occlusion of MCA was confirmed by laser
Doppler flowmeter (Vasamedics Inc., Little Canada, MN).
Animals were excluded from subsequent experiments if the
surface cerebral blood flow in the ischemic core was >15% of
the baseline or if a massive bleeding caused by artery injuries
occurred. Two intraperitoneal injections of buprenorphine
(0.1 mg/kg of body weight, 0.3 mg in 100 μl saline) were
given at the beginning of the surgery and 4 h after. Animals
were allowed to recover spontaneously under warm condi-
tions. Control mice were subjected to craniotomy without ar-
terial occlusion but with the same amount and duration of
anesthesia and the same amount of buprenorphine used for
stroke mice.

Tibia Fracture Surgery for Bone Fracture Model

Twenty-four hours after the permanent middle cerebral artery
occlusion (pMCAO) procedure, animals were anesthetized
with 2% isoflurane inhalation. Under aseptic surgical condi-
tions, animals received an open tibia fracture of the right hind
limb with an intramedullary fixation, as reported previously
[12]. Animals were placed on a thermal blanket (37 ± 0.5 °C
feedback-controlled by rectal temperature) for maintenance of
body temperature throughout the surgical procedure. Two in-
traperitoneal injections of buprenorphine (0.1 mg/kg of body
weight, 0.3 mg in 100 μl saline) were given at the beginning
of the surgery and 4 h after.

Experimental Groups and Design

Mice were randomly assigned to 10 groups listed in Table 1, 6
mice per group. Mice subjected to sham pMCAO and sham
tibia fracture (wild type), pMCAO and sham tibia fracture
(stroke) or tibia fracture with sham pMCAO (tibia fracture)
served as control. An α-7 nAchR selective agonist, PHA
568487 (PHA, Tocris Bioscience, Bristol, UK), or α-7
nAchR antagonist methyllycaconitine (MLA, Sigma, St
Louis, MO, USA), was administered to the mice. PHA and
MLAwere diluted in 0.9% saline. Based on the findings in our
previous study, we injected PHA (0.8 mg/kg) or MLA
(6 mg/kg) on days 1 and 2 after pMCAO (Fig. 1), because
we found in our previous study that injection of PHA and
MLA after pMCAO with these doses and at these time points
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yielded the best effect on infarct volume and behavior tests
[12]. Several studies have shown that PHA-568487 has rapid
brain penetration [24–26]. In humans, PHA-568487 was ex-
creted within the first 48 h after a single dose of [3H]1 (40 mg,
163 μCi) [27, 28].

Determination of Brain Edema

Brain edema was evaluated by measuring the brain water con-
tent, as previously described [29]. Briefly, the brain samples
were collected 3 days after the pMCAO or sham pMCAO
procedure. Both hemispheres were weighed before and after
drying at 100 °C for 48 h. The percentage of water content was
calculated as 100 × (wet weight − dry weight) / wet weight.

Immunofluorescent Staining

Mice were anesthetized with isoflurane inhalation and 4%
paraformaldehyde (PFA) perfusion. Brain samples were col-
lected, frozen in dry ice, and cut into 20-μm-thick sections
(CM1900 Cryostat, Leica, Wetzlar, Germany). Three coronal
sections (200 μm apart) from each brain were immunostained
with primary antibodies against glial fibrillary acidic protein
(GFAP, astrocyte marker, 1:500, Invitrogen, Carlsbad, CA),
MAO-B (1:100, Santa Cruz Biotechnology, Santa Cruz,
CA), claudin-5 (1:25, Invitrogen, Carlsbad, CA), and lectin
(endothelial cell marker, 1:100, Vector Lab, Burlingame,
CA). Following overnight incubation, the samples were incu-
bated for 90 min with secondary antibodies: Alexa-594 or
Alexa-488 IgG (Alexa 594 for red and Alexa 488 for green,
1:2000; Invitrogen, Carlsbad, CA). Vessels were stained by
incubating sections overnight at 4 °C in 2 g/ml with fluores-
cein Lycopersicon esculentum lectin (Vector Laboratories
Burlingame, CA). Negative controls were performed on sec-
tions collected frommice subjected to stroke and tibia fracture
without applying any primary antibodies (refer to
Supplementary Material Fig. 1). Images were taken using a
fluorescent microscope (Nikon Microphoto-SA, Melville,

NY) and analyzed using ImageJ software (National Institutes
of Health, Bethesda, MD).

Statistical Analysis

Group-level summaries of brain water content, MAO-B-
positive astrocytes, and claudin-5 are expressed asmean± stan-
dard deviation (SD). We compared the brain water content of
the four saline groups (Table 1) using one-way ANOVA. For
each of the three outcome measures, we performed a two-way
ANOVA with an interaction term; injury and treatment were
the two independent variables tested. Groups 2–10 (Table 1)
were included in the brain water content analysis, and groups
5–10, in the MAO-B-positive astrocytes and claudin-5 analy-
ses. For post-hoc pairwise comparisons of groups, we adjusted
for multiple comparisons via Tukey’s method. We considered
p values less than 0.05 to be significant. Data analysis was
conducted using Stata 13.1 (StataCorp. 2013. Stata Statistical
Software: Release 13, College Station, TX: StataCorp LP).

Results

Tibia Fracture Increased Brain Edema in the Ischemic
Stroke Brain

To analyze whether post-stroke tibia fracture enhances brain
edema, we measured the brain water content. The water

Fig. 1 Experimental design. Tibia fracture was performed 1 day after
pMCAO. Drugs were injected intra-peritoneally (i.p.) 1 (first injection)
and 2 (second injection) days after pMCAO. Brain samples were
collected 3 days after pMCAO. D day

Table 1 Experimental groups
Group Injury type Treatment Number

1 Sham pMCAO + sham tibia fracture (wild-type) Saline 6

2 Sham pMCAO + tibia fracture (tibia fracture) Saline 6

3 Sham pMCAO + tibia fracture (tibia fracture) PHA 6

4 Sham pMCAO + tibia fracture (tibia fracture) MLA 6

5 pMCAO + sham tibia fracture (stroke) Saline 6

6 pMCAO + sham tibia fracture (stroke) PHA 6

7 pMCAO + sham tibia fracture (stroke) MLA 6

8 pMCAO + tibia fracture (stroke + tibia fracture) Saline 6

9 pMCAO + tibia fracture (stroke + tibia fracture) PHA 6

10 pMCAO + tibia fracture (stroke + tibia fracture) MLA 6
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content in the uninjured contralateral hemisphere was similar
among groups (p = 0.24; refer to Supplementary Material
Fig. 2). In the ipsilateral hemisphere of stroke brain, tibia
fracture alone did not increase brain water content
(80.1 ± 0.5% of wet brain weight versus 80.5 ± 0.8%,
p = 0.324, Fig. 2). The stroke group (83.0 ± 0.6%) had more
brain water content than the WT group (80.1 ± 0.5%,
p < 0.001, Fig. 2). Post-stroke tibia fracture further increased
water content in the stroke brain (84.4 ± 0.6%, p = 0.006),
thereby indicating that tibia fracture after stroke does increase
brain water content.

PHATreatment Reduced Brain Edema in Mice Subjected
to Stroke Alone or Stroke + Tibia Fracture

To assess if activation of α-7 nAchR reduces brain edema and
inhibition of α-7 nAchR enhances brain edema of mice sub-
jected to stroke or stroke + tibia fracture, mice were treated
with PHA or MLA 1 and 2 days after stroke. Brain water
content was measured 3 days post-stroke (Fig. 1). The two-
way ANOVA analysis showed a significant interaction be-
tween injury type and treatment (p < 0.001). The treatments
had no noticeable effect on the brain water content of the tibia
fracture group (p = 1.00; refer to Supplementary Material
Fig. 3) but strongly affected the stroke and stroke + tibia frac-
ture groups (Fig. 3). Compared with the saline-treated group
(83.0 ± 0.6%), PHA reduced (81.5 ± 0.8%, p = 0.023) and
MLA increased water content in the ipsilateral hemisphere
(84.5 ± 0.6%, p = 0.021) in stroke-only mice. A similar pattern
was also observed in the stroke + tibia fracture groups.
Compared with the saline-treated group (84.4 ± 0.6%), the
PHA group had significantly lower (82.2 ± 1.0%, p < 0.001)
water content, while that of the MLA-treated group was sig-
nificantly higher (85.8 ± 0.5%, p = 0.042) (Fig. 3). Therefore,
activation of α-7 nAchR reduced brain edema in stroke and
stroke + tibia fracture mice.

Tibia Fracture Increased and PHATreatment Decreased
MAO-B-Positive Astrocytes

We next determined whether bone fracture increased astrocyte
oxidative stress by quantifying MAO-B-positive astrocytes in
the peri-infarct region. The overall ANOVA F test for this
outcome was significant (p < 0.001). Compared with stroke-
only mice (75.4 ± 4.3%), stroke + tibia fracture mice had more
MAO-B-positive astrocytes (81.7 ± 3.9%, p = 0.045, Fig. 4).
PHA treatment reduced MAO-B-positive astrocytes in the
peri-infarct regions in both mice subjected to stroke-only
(PHA vs. saline: 65.1 ± 3.7 vs. 75.5 ± 4.3%, p < 0.001,
Fig. 4) and mice subjected to stroke + tibia fracture (PHA
vs. saline: 74.0 ± 2.9 vs. 81.6 ± 3.9%, p = 0.007, Fig. 4).
However, stroke + tibia fracture mice still had more MAO-
B-positive astrocytes than stroke-only mice after PHA treat-
ment (p = 0.001), suggesting that the oxidative stress in
stroke + tibia fracture mice was more severe. MLA treatment
increased the number of MAO-B-positive astrocytes in the
peri-infarct region of stroke (MLA vs. saline: 81.7 ± 2.2 vs.
75.5 ± 4.3%, p = 0.038) and stroke + tibia fracture (MLA vs.
saline: 87.6 ± 2.9 vs. 81.6 ± 3.9%, p = 0.049) mice (Fig. 4).

PHATreatment Increased Tight Junction Protein
Expression

To investigate the effect of PHA on tight junction protein
expression, we analyzed claudin-5 expression in the peri-
infarct region. The overall ANOVA F test for this outcome
was significant (p < 0.001).We found that in stroke-only mice,
PHA treatment increased claudin-5 expression (PHA vs. sa-
line: 1122 ± 156 mm2/mm of vessel length vs. 767 ± 104,
p < 0.001, Fig. 5). MLA treatment did not change claudin-5
expression (p = 0.62 compared with saline-treated). Neither
PHA nor MLA altered claudin-5 expression significantly in
the peri-infarct region of mice subjected to ischemic stroke +
tibia fracture (Fig. 5b), which could have been the result of

Fig. 2 Tibia fracture increased water content in the stroke brain. WT:
mice subjected to sham pMCAO and sham tibia fracture. TF: mice
subjected to sham pMCAO and tibia fracture. Stroke: mice subjected to
pMCAO and sham tibia fracture. Stroke + TF: mice subjected to both
pMCAO and tibia fracture. *p < 0.001 compared with WT group;
#p = 0.006 compared with stroke group

Fig. 3 PHA treatment reduced brain edema. Stroke: mice subjected to
pMCAO and sham tibia fracture. Stroke + TF: mice subjected to both
pMCAO and tibia fracture. *p = 0.023 and #p = 0.021 vs. saline-treated
stroke mice. $p < 0.001 and &p = 0.042 vs. saline-treated stroke + tibia
group
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more severe inflammation and BBB breakdown in mice with
stroke + tibia fracture.

Discussion

In this study, we found that tibia fracture exacerbates brain
edema and increases MAO-B expression in astrocytes in the
ischemic stroke brain. Activation of α-7 nAchR through PHA
treatment significantly ameliorated brain edema, which is as-
sociated with reduction of MAO-B expression in the peri-
infarct region. PHA treatment increased the expression of
claudin-5 in the peri-infarct region of mice subjected to stroke
only.

Clinical reports indicate that many stroke victims (approx-
imately 70,000 in the USA) suffer from bone fracture within
the first year after their stroke [30] and have a poorer outcome

than those without bone fracture [4]. Our previous studies in
mice demonstrate that tibia fracture after ischemic stroke ex-
acerbates stroke-related brain injury and behavioral deficits
[4]. We showed in this study that tibia fracture after ischemic
stroke increases brain edema, which has been observed to
occur as early as 3 h after MCA occlusion in a rat MCAO
model, reaching the maximum level on the third day and then
gradually diminishing thereafter [31]. Bone fracture has also
been shown to exacerbate brain edema and worsen the out-
comes of traumatic brain injury in a multitraumamouse model
[32, 33]. Brain edema plays a critical role in neuronal damage,
and clinical deterioration is often associated with brain ische-
mia. Therefore, reduction of brain edema could improve the
outcomes of patients with stroke or stroke + tibia fracture.

Oxidative stress is an important element in the brain injury
at the onset and progression of ischemic stroke [34, 35]. We
showed previously that tibia fracture after ischemic stroke

Fig. 4 Fewer MAO-B+

astrocytes in the peri-infarct
region of PHA-treated mice. a
Representative images. GFAP
(green): glial fibriallary acidic
protein (astrocyte marker). Scale
bar 50 μm. Nuclei were
counterstained blue using Dapi. b
Quantification of MAO-B+

astrocytes. TF tibia fracture.
@p = 0.045 compared to saline-
treated stroke mice; *p < 0.001
compared with saline-treated
stroke mice; #p < 0.038 compared
with saline-treated stroke mice;
$p = 0.007 compared with saline-
treated stroke + tibia fracture
mice; &p = 0.049 compared with
saline-treated stroke + tibia
fracture mice
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exacerbates oxidative stress by increasing the level of
NADPH oxidase and NF-κb activity and reducing the expres-
sion of anti-oxidant genes [12]. In this study, we found that
tibia fracture increases MAO-B expression in astrocytes in the
peri-infarct region. Many studies have shown that MAO-
derived H2O2 contributes to the oxidative stress and ischemic
brain injury. Reduction ofMAO-B expression has a neuropro-
tective effect. MAO-B inhibitors prevent the production of
reactive oxygen species and brain injury after ischemia/
reperfusion [36, 37].

Astrocytes are the main components of the blood-brain
barrier (BBB) and participate in regulating BBB integrity
and blood flow [38]. Therefore, oxidative stress in astrocytes

can cause BBB breakdown and brain edema. We showed pre-
viously that activation of α-7 nAchR attenuates neuroinflam-
mation, oxidative stress and brain injury in mice with stroke
and bone fracture [12]. The therapeutic benefits ofα-7 nAchR
in ischemia-induced brain injury have also been observed in
other animal models [21, 23, 39] and several other neurolog-
ical disorders [40], such as Alzheimer’s disease and
Parkinson’s disease [41, 42]. It has been shown in experimen-
tal intracerebral hemorrhage models that the α-7 nAChR ag-
onists attenuates peri-hematomal edema and improves func-
tional outcome [19, 43]. In this study, we demonstrated thatα-
7 nAchR-specific agonist PHA reduced brain edema and
MAO-B-positive astrocytes in the peri-infarct regions of both

Fig. 5 PHA treatment increased
claudin-5 expression in the
stroke-only brain. a
Representative images. Vessels
were visualized by lectin staining
(green). Claudin-5 positive
staining is shown in red. Nuclei
were counterstained blue using
Dapi. Scale bar 50 μm. b Bar
graph shows quantification. TF
tibia fracture. *p < 0.001
compared with saline-treated
stroke mice
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stroke and stroke + tibia fracture mice, suggesting that reduc-
tion of astrocyte oxidative stress could be one of the underly-
ing mechanisms that contribute to PHA reduction of brain
edema.

Disruption of the BBB is considered a major cause of ede-
ma. Tight junction proteins are the main components of BBB
and play a vital role in restricting BBB permeability. Claudin-
5 is one of the important tight-junctional proteins contributing
to the Bsealing^ of the tight junctions [44]. The expression of
claudin-5 significantly decreased in a pMCAO rodent model
[45, 46], which was responsible for increased BBB permeabil-
ity and secondary brain edema. Recent studies have shown
that tibia fracture exacerbates traumatic brain BBB disruption
and edema [32, 33]. However, our study showed that tibia
fracture post-stroke did not reduce claudin-5 expression fur-
ther when compared with stroke-only mice. In addition, PHA
treatment increased claudin-5 expression in stroke-only mice,
but not in mice with stroke + tibia fracture. These results
suggest that other mechanisms, such as astrocyte oxidative
stress, are involved in the enhanced brain edema of mice with
stroke + tibia fracture.

This study was conducted only on mice with tibia fracture
1 day after stroke. Because bone fracture can happen any time
after stroke, the findings in this studymay not apply to patients
who experience bone fracture months after the stroke.
However, based on the data published by Kanis et al., the
estimated incidence of having a bone fracture within 24 h of
a stroke is 2.4–3.6/100,000, which is about 1–1.5% of stroke
patients [30]. Thus, about 7000–11,000 patients in the USA
and 167,000–250,000 worldwide will experience a fall-
fracture within the first day of the stroke. A study conducted
in the USA confirmed that, compared to a nonstroke popula-
tion, the hazard ratio of suffering from a hip fracture within the
first 24 h after stroke diagnosis is significantly higher (3.9,
95% CI of 2.1–7.3) [47]. A retrospective review of more than
400,000 surgical patients revealed that stroke is an indepen-
dent risk factor for poor outcome after orthopedic bone sur-
gery, but not abdominal aortic surgery [48]. Therefore, under-
standing the underlying mechanisms of brain injury caused by
bone fracture at the acute stage of stroke can help in develop-
ing innovative neuroprotective strategies that may benefit a
substantial number of patients. In a future study, we will de-
termine the influence of bone fracture occurring months after
the stroke on recovery.

In summary, along with our previous findings [12], the
results of this study show that in ischemic stroke-only and
ischemic stroke + tibia fracture mice, activation of α-7
nAchR reduces ischemic injury associated with the following:
(1) heightened expression of the anti-oxidant gene; (2) re-
duced microglia/macrophage infiltration and M1/M2 microg-
lia/macrophage ratio; (3) decreased pro-oxidative NADPH
oxidase [12], MAO expression in astrocytes, and NF-κb ac-
tivity; (4) increased tight-junction protein; and (5) diminished

brain edema. Thus, activation of α-7 nAchR could be a ther-
apeutic option for improving the outcomes of patients with
stroke and bone fracture. Future studies are still needed to
determine whether our findings can be successfully applied
to human situations.
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