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Abstract 

Acoustic Resonance Characteristics of Rock and Concrete 

Containing· Fractures 

by 

Seiji Nakagawa 

Doctor of Philosophy in Materials Science and Mineral Engineering 

University of California, Berkeley 

Professor Ronald Gronsky, Chair 

In recent years, acoustic resonance has drawn great attention as a quantitative tool for 

characterizing properties of materials and detecting defects in both engineering and 

geological materials. In quasi-brittle materials such as rock and concrete, inherent fractures 

have a significant influence on their mechanical and hydraulic properties. Most of these 

fractures are partially open, providing internal boundaries that are visible to propagating 

seismic waves. Acoustic resonance occurs as a result of constructive and destructive 

interferences of propagating waves. Therefore the geometrical and mechanical properties 

of the fracture are also interrogated by the acoustic resonance characteristics of materials. 

The objective ?f this dissertation is to understand the acoustic resonance characteristics 

of fractured rock and concrete. Chapter 2 and 3 show that the spatial distribution and the 

elastic and viscoelastic properties of fractures in one-dimensional systems have a significant 

effect on their resonance frequencies and the attenuation. A numerical code that simulates 

the resonance of three-dimensional bodies containing fractures is developed in Chapter 4 

and used to determine the anisotropic elastic moduli of rocks (Chapter 5) and the stiffness 
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of a fracture in concrete (Chapter 6) from measured resonance frequencies. In Chapter 7, 

the dynamic stiffnesses of concrete bridge columns are determined from their resonance 

frequencies and good agreement with the changes in the static stiffness is found. Chapter 8 

shows that a sheared fracture converts a part of normally incident P-waves to polarized S­

waves and vise versa, which can be used as a powerful tool for detecting and measuring 

shear stress on fractures. A sheared fracture is also shown to have a significant effect on 

the velocity and particle motion of the waves propagating along the fracture (Chapter 9). 

Chapter 10 unifies the effects of dynamic coupling (dilation) of a sheared fracture and wave 

propagation and resonance in an infinite series of multiple parallel fractures in a dispersion 

equation for anisotropic frequency-dependent wave propagation. This equation provides 

complete solutions for elastic wave propagation in the media which includes such wave 

phenomena as generalized Rayleigh-Lamb plate waves, fracture interface waves, and 

acoustic resonances. 

Ronald Gronsky, Professor, Department of Materials Science and Mineral Engineering 
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General Introduction 

1.1 Introduction 

The mechanical and hydraulic properties of rock and concrete are significantly 

influenced by fractures that range in size from millimeters in a single crystal and mineral 

grains in rock to meters in infrastructure such as tunnels, buildings, and bridges. Fractured 

materials typically exhibit decreased stiffness and strength. Slip along a fracture may cause 

a catastrophic failure of a structure. A fracture also serves as a major conduit of fluid. A 

large number of fractures in a reservoir rock can be a source of hydrocarbon production. 

Cracking in a reinforced concrete structure may result in a short service life as corrosive 

materials (water, oxygen, chloride ion, etc.) can easily access the steel reinforcement. 

For a variety of reasons mentioned above, there is a great deal of interest in detecting 

and characterizing fractures in rock and concrete. Most of the fractures that affect the 

mechanical and hydraulic properties of materials are fully or partially open. Such fractures 

are seismically visible depending on their compliance that arises from locally enhanced 

deformation of the medium around the fracture (e.g., Pyrak-Nolte et al., 1990a). 

1 
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Conventionally, propagating seismic waves have been used for detecting and 

characterizing fractures. A propagating wave interacting with a fracture exhibits changes in 

velocity, amplitude, spectral content, and direction of propagation. In most cases, the first­

arriving part of the observed waves is of interest, as relatively straightforward interpretation 

can be made on the effect of the fracture on the characteristics of the wave. However in 

many cases a wave measured in a medium including fractures contains complicated later­

arriving waves (seismic coda) that are expected to carry additional information about the 

internal structure of the medium. This coda is essentially reverberation generated by 

acoustic resonances within the medium due to waves being multiply reflected by fractures. 

Therefore, an understanding of the acoustic resonance behavior of media containing 

fractures is of great value for detection and characterization of fractures. 

Acoustic resonance is a phenomenon wherein the dynamic response of a material 

becomes significantly amplified undercertain physical conditions. The amplified response 

occurs for discrete frequencies (resonance frequencies) that constitute the "sound" or "tone" 

of the medium if they are in audible range. Acoustic resonance is used for examining the 

properties of materials and structures in daily life. For example, a physician taps on a 

patient's chest to examine his or her physical condition from the sound in the chest cavity. 

A worker at a ceramics factory tries to determine if a piece of china contains any invisible 

flaws from the tone it makes. These practices are based on the knowledge that changes in 

material properties and structure result in different resonant characteristics. Qualitative 

· diagnoses are made by "hearing" the changes in the sound. 

In recent years, many attempts have been made to use acoustic resonance as a 

quantitative tool for determining material properties and diagnosing defects in both 

engineering and geologic structures. A large number of infrastructures such as buildings, 

bridges, and dams are suffering structural damage due to fractures caused by their extended 

service time and natural seismic activities. For example, according to the statistics released 

by the Federal Highway Administration, 24% of the nation's bridges (7 .5% in California) 

were structurally deficient in the year of 1989 (Tarricone, 1990). Although the statistics are 

now becoming old, the ratio of deficient structures is expected to have risen rather than 

dropped during the past decade. Techniques based on acoustic resonance are among the 

most promising as a cost effective non-invasive inspection method for assessing damage 

and performance of the infrastructure. Resonant characteristics of structures have been 

examined for deterioration of bridges (e.g., Mazurek et al., 1990) and dams (e.g., Olson 

et al., 1990). On the other hand, locating and characterizing fractures in rock mass are also 
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important in petroleum engineering, groundwater hydrology, and civil engineering. 

Geologic structures often manifest themselves as thin slabs or blocks compartmentalized by 

subparallel and intersecting fractures (Chernyshev and Dearman, 1991). Resonance of 

such structures potentially provides valuable information about the geometry and 

mechanical properties of these blocky rock masses. 

The primary objective of this research is to understand the acoustic resonance 

characteristics of fractured rock and concrete using a combination of laboratory testing and 

numerical modeling. A fracture introduces an internal boundary that scatters and distorts 

propagating waves. This distortion results in altered resonance frequencies and mode 

s~apes of the fractured rock mass. 

For propagating waves, a fracture acts as a frequency-dependent filter that preferentially 

passes low-frequency waves and reflects high-frequency waves (Schoenberg, 1980; 

Pyrak-Nolte et al., 1990a). Many researchers have shown that a simple set of boundary 

conditions called the displacement-discontinuity boundary conditions can be used for 

modeling the dynamic behavior of a fracture. The applicability of the model was 

demonstrated numerically by Angel and Achenbach ( 1985) using a dynamic boundary 

element method and experimentally by Pyrak-Nolte et al. (1990a). The model has been 

used extensively for simulating a variety of wave phenomena. Buck et al. ( 1982) used the 

model for examining the contact stiffness of fatigue cracks from transmitted and refracted 

ultrasonic waves. Rehbein et al. (1982) used similar techniques to estimate contact 

stiffness of the interface between metal couplers. Gu et al. ( 1996a, b) used the model for 

examining the waves propagating along a fracture analytically and numerically using a 

boundary element method. Nihei et al. ( 1998) examined the behavior of channel waves 

propagating between parallel compliant fractures analytically and experimentally. Pyrak­

Nolte et al. (1990b) examined wave propagation in regularly spaced, multiple, parallel 

fractures experimentally and Yi et al.(1997) simulated the anisotropic wave propagation due 

to the fractures using the finite difference method. For the above examples, both the 

stiffness of the fracture and the wave frequency showed a large effect on the behavior of 

propagating waves. 

Hesler (1995) showed the effect of fracture stiffness on the resonances of a fractured 

one-dimensional system using the displacement-discontinuity model for the fracture. 

Hesler's results are analogous to the results obtained by other researchers including 

Gudmundson (1982), Kam and Lee (1992), and Man et al.(l994) for cantilever beams 
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including cracks and notches: an increase in the compliance of a structure due to defects 

decreases the resonance frequencies and alters the mode shapes. Hesler's results are 

significant because they show that the localized compliance that arises from the imperfect 

contact between mating fracture surfaces (unlike open voids or notches like other 

researchers) has a large effect on the resonances of fractured media that are similar to their 

effect on the propagating waves. 

This research extends Hesler's work to the resonance of more general systems 

including multiple fractures, elastic anisotropy, and three-dimensional geometry. The 

research includes a determination of material properties such as elastic moduli and fracture 

stiffness from experimentally measured resonances. Acoustic resonance is also used to 

assess the damage due to fractures in concrete sub-structures. 

1.2 Overview of this Work 

This research examines the resonance characteristics of media such as rock and concrete 

containing fractures. Following this chapter, Chapter 2 discusses the resonance 

characteristics of fractured one-dimensional systems. Analytical and numerical methods are 

employed to examine quantitatively the resonance behavior of a system including single and 

multiple fractures. Attenuation due to fracture is found to have different effects from 

dissipation of energy in an intact medium. Resonance behavior of finite and infinite, and 

regularly and irregularly fractured systems are compared. An infinite system shows similar 

resonance behavior as an equivalent finite system but the attenuation is larger due to 

radiation of energy into the surroundings. Resonance of an irregular system is 

characterized by spatial localization of vibration motion, especially for small fracture 

stiffnesses. 

Part of the results from Chapter 2 is demonstrated by laboratory experiments on 

fractured rock bars in Chapter 3. Stiffness of the fracture is altered by applying axial stress 

to the specimens through compliant plastic rings. Application of axial stress to the fracture 

results in an increase in fracture stiffness, leading to an increase in resonance frequencies. 

A specimen with a fracture injected with water and filled with attenuative material shows an 

increase in attenuation for predicted resonance modes. 

In Chapter 4, a numerical code that can simulate resonance of a three-dimensional 

object including fr11ctures and material anisotropy is developed based on the Rayleigh-Ritz 

method. Spectral response of the mode (frequency response function, FRF) and mode 
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shape of vibration for specified locations of the source and ~eceiver are computed. The 

code can also be used for determining anisotropic elastic moduli and fracture stiffnesses 

from experimentally measured resonance frequencies. In subsequent chapters, the 

numerical techniques developed in this chapter is used to simulate experimentally observed 

resonances and to determine elastic properties of specimens. 

One of the common characteristics of rock are its anisotropic elastic properties. Chapter 

5 discusses the resonance of anisotropic rocks whose anisotropy arises from different types 

of rock microstructures. Both static and high-frequency dynamic behavior of the rocks are 

measured to characterize the specimens. The numerical code developed in Chapter 4 is 

used to determine the anisotropic elastic moduli of approximately transversely isotropic 

rocks. The resulting elastic moduli are found to range between moduli from static and 

ultrasonic measurements. The result may suggest a frequency dependent behavior of the 

stiffness of the rocks due to compliant microcracks and grain contact. Mode shapes of the 

resonances are also measured using a scanning laser Doppler vibrometer and their basic 

agreement with the normalized simulati:ons is confirmed. 

Anisotropy in granite specimens in Chapter 5 is due to uniformly distributed 

microcracks in rock. For this microstructure, resonance of the medium could be examined 

by approximating the compli<:tnce introduced by the microcracks as a reduced bulk elastic 

moduli. However, such an approach cannot be used if the medium contains a distinct 

fracture. In Chapter 6, resonance of a concrete cylinder including a single through-going 

fracture is examined experimentally and numerically. The stiffness of the fracture is 

changed to see its effects on the resonance of the specimen. Measured and simulated 

resonances for the fractured specimen show shifts in the resonance frequencies and 

localized resonances as predicted in the analyses of Chapter 2. The numerical code is used 

to determine the dynamic stiffness of the fracture from measured changes in resonance 

frequencies. The inverted dynamic normal stiffnesses of the fracture show good agreement 

with statically measured stiffnesses. 

To apply the acoustic resonance technique to assess damage and the effect of repair of 

civil infrastructure, field resonance measurements on semi-site scale concrete bridge 

columns are performed in Chapter 7. High-frequency stress wave measurements reveal the 

distribution and difference in orientation of fractures in the directions normal and 

perpendicular to the loading direction. However, due to the strong sensitivity of the wave 

to compliant fractures, the repaired structures do not always show changes in their seismic 
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signatures even though the stiffness and ultimate strength of the structures are significantly 

improved. Measured resonance frequencies and attenuation show good correlations with 

the measured changes in the static stiffness before and after the destruction and repair of the 

structures. Dynamic stiffnesses of the structures are determined from measured resonance 

frequencies and show good agreement with the statically measured stiffnesses. The results 

demonstrate that the resonance of a fractured structure is a good indicator for assessing the 

degree of damage and the effect of repair. 

Throughout this research, the stiffness of a fracture plays an important role in 

determining the dynamic behavior of materials and structures. Therefore it is important to 

understand the fundamental properties for the stiffness of a fracture. In Chapter 7, the 

dynamic behavior of a fracture subjected to shear stress is examined using propagating 

seismic waves. Although the discussion is focused on propagating waves, these results are 

equally important for the resonance of a medium including such fractures. A novel 

discovery is .made for conversion between P- and S-waves normally incident on a sheared, 

fracture during laboratory experiments. The observed conversions of waves are due to 

dynamic dilation of fracture whose local contact stiffness is systematically redistributed by 

an applied shear stress. The dilation behavior can be modeled by cross-coupling 

components of fracture stiffness that are used for the displacement-discontinuity boundary 

conditions. Transmission and reflection of seismic waves across a sheared fracture are 

examined analytically and numerically using a dynamic two-dimensional boundary element 

method. The results demonstrate distinct changes in the waves interacting with a sheared 

fracture that can be used for detecting and potentially measuring shear stress on a fracture. 

Beyond the seismic waves incident on a sheared fracture in Chapter 8, Chapter 9 

discusses the behavior of interface wave propagation along a sheared fracture. A 

generalized dispersion equation is derived for fracture stiffness with dilation components 

(coupling fracture stiffnesses). The introduction of the coupling fracture stiffness changes 

the phase velocities and particle motions for two possible types of fracture interface wave. 

The changes in the particle motion are clearly visible as a phase lag between waves on 

opposite sides of the fracture. The observed behavior of the fracture interface wave can be 

used for detecting and characterizing shear stress on a fracture. 

Chapter 10 discusses wave propagation in media that contain parallel, regularly-spaced 

fractures. Unlike the discussion in Chapter 1 where only the one-dimensional case is 

treated, a general dispersion equation for fully coupled P-SV -SH waves is presented. 
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Waves propagating in the fractured system exhibit transversely isotropic behaviors due to a 

large compliance in the direction normal to the fractures as is seen from the experimental 

results in Chapter 5. Fractures in the system can have coupling stiffnesses as discussed in 

Chapter 8. When the wavelength of the wave propagating in the system is comparable to 

or shorter than the fracture spacing, both velocity surface and spectrum of the wave exhibit 

distinct pass and stop band structures for the propagation direction normal to the fractures. 

Such behavior is analogous to the results for one-dimensional systems (Chapter 1). Within 

a stop band, the wave amplitude decays exponentially away from a source. As a result, 

waves propagating parallel to the fractures localize near the source. At boundaries between 

pass and stop bands, group velocity in the normal direction approaches zero, indicating that 

the system is at resonance. It is shown that the general dispersion equation degenerates to 

the SH-plate wave equation and Rayleigh-Lamb plate wave equations (Graff, 1975) for 

vanishing fracture stiffness, and to a generalized interface wave equation that includes 

results in Chapter 9 if the layer thickness is much greater than wavelength. 

The final chapter summarizes important findings and conclusions in this thesis. 

Suggestions for possible future research are provided as well. 



Analytical Study on the Effects of 
Fracture Properties on 

One-Dimensional Resonance 

2.1 Introduction 

This chapter examines the acoustic resonance of one-dimensional systems containing 

single and multiple fractures using analytic and semi-analytic methods. One-dimensional 

resonance is often encountered in real situations. Some of the examples are the resonant 

bar tests used for testing materials in laboratory, vertical vibration of structural beams, 

reflections of seismic pulses in the impact-echo tests (Carino et al., 1986), and multiple 

reflection of seismic waves normally incident on layered geological structures (Banik et al., 

1985a,b; Burridge et al., 1988). Understanding the resonance behavior of fractured one­

dimensional systems is not only beneficial for interpreting the resonance of the above 

examples but also provides valuable insights to the resonance of more complicated multi­

dimensional systems. 

The objective of this chapter is to develop basic understandings of the effects of single 

and multiple fractures on the resonances of one-dimensional systems. The primary effects 

are the shift of resonance frequencies, change in attenuation, and change in mode shapes 

8 



2 Analytical Study on 1-D Resonance 9 

that can lead to localization of vibration energy. These effects are related to boundary 

conditions and mechanical and geometric properties of fractures such as stiffness, viscosity 

(due to fluid and filling), number, and locations. 

Dynamic behavior of a fracture has been modeled by the displacement-discontinuity 

boundary conditions (Kendall and Tabor, 1971; Schoenberg, 1980; Pyrak-Nolte et al., 

1990a). The model has been successfully used for analyzing wave propagation across and 

along a compliant interface between solid halfspaces. Frequency response functions 

(FRF's) of fractured systems were derived by a one-dimensional version of the propagator 

matrix method (Kennett, 1983). Resonance in a one-dimensional system can be treated in a 

relatively straightforward manner due to lack of mode conversions between propagating 

waves (e.g., P-wave, S-wave, and surface wave). A concise summary of the propagator 

method is given in Appendix A. 

In the following discussion, the resonance of a finite system including fracture(s) is 

first examined, followed by that of an infinite system. The relation between spectral 

characteristics of waves propagating in the fractured infinite systems and resonance 

characteristics of their finite counterparts are compared. 

2.2 Finite System Including Single Fracture 

2.2.1 Resonance frequency shift 

The type of frequency response functions (FRF's) used in this chapter is the mobility, 

defined as the velocity response of a system against unit force excitation (e.g., Newland, 

1989). A dimensionless mobility is defined by multiplying the mobility by the acoustic 

impedance of the system. For a slender bar including a single fracture (Figure 2.1 ), an 

analytic expression for the power of dimensionless source mobility (both source and 

receiver located at the top) is derived as 

• [2cos ¢0 ·sin ¢1 - f3 cos(¢0 + l/>1)Y 
M(M( = 2 ' 

[ 2 sin ¢0 ·sin l/>1 - f3 sin( l/>0 + l/>1)] 

(2.1) 

where m is the angular frequency. The derivation ofEq.(2.1) is shown in Appendix B. f3 
is the dimensionless acoustic impedance of a fracture defined by 

/3
=27<:/()) 
~ z ' (2.2) 
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Figure 2.1 Waterfall plot of FRF(Mobility)'s for a finite bar with a single fracture. The fracture 
separates the bar by a ratio of 1:3. Both frequency and stiffness are dimensionless in the plots. (a) In the 
first segment (LofL=0.25), several ofthe resonance peaks disappear as the fracture stiffness is decreased. (b) 
There is no vanishing of resonance peaks in the second segment (L11L=0. 75). 
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where 1<: is the specific fracture stiffness and Z is the acoustic impedance of the intact 
medium, and l/J0 and l/J1 are the phase angles defined by 

(2.3) 

where 4 and ~ are the lengths of the first and second segments in the bar, and c is the 

velocity of the wave in the intact medium. Mobility at the bottom of the bar (receiver 

located at the bottom) is given by (derivation shown in Appendix B) 

MM* = {3
2 

• 

[ 2 sin l/Jo . sin tPt - f3 sin( l/Jo + tPt) r (2.4) 

For a high fracture stiffness, f3 in Eq.(2.1) approaches infinity. Resonance occurs at 

frequencies that satisfy sin( </J0 + l/J1) =0. Therefore, 

c 
mhigh = L . nn . n=0,1,2, ... (2.5) 

where L = L0 + ~ . If the stiffness of the fracture is low, resonances of the first segment 

occur for sin( l/J0 ) = 0, while the second segment resonates both for sin( l/J0 ) = 0 and 

sin( l/J1) = 0. Corresponding resonance frequencies are 

no=0,1,2, ... (1st segment) (2.6a) 

n1, nz=O, 1 ,2, ... (2nd segment) (2.6b) 

This result is particularly interesting because the second sets of solutions in (2.6b) indicate 

that these modes are localized in the second segment of the bar. Figure 2.1 illustrates the 

resonance behavior of a system consists of two segments separated by a fracture with 

length ratio of L0: L1=1:3. The plot shows several modes that vanish in the first segment 

for small fracture stiffnesses. 

From Figure 2.1 it can be seen that the shift in the resonance frequency of each mode 

occurs for a limited range of fracture stiffnesses. The center of the shift can be examined 
by a "center resonance frequency" me defined as follows 
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resonance frequency 
curve for m th mode 

frequency 

Figure 2.2 The center resonance frequency, roc. is defined by an average of resonance frequencies for an 
infinitely stiff fracture and a zero stiffness fracture. The center fracture stiffness, l(c , is defined as a 
corresponding stiffness of the fracture stiffness-resonance frequency type curve of the mode. 

(2.7) 

where mhigh and m 1ow are the resonance frequencies for infinitely high and low fracture 

stiffnesses, respectively. The corresponding "center fracture stiffness" x::c and impedance 

ratio f3c can be determined from a fracture stiffness-resonance frequency type curve for 

each mode (Figure 2.2). 

To understand the effect of the location of a fracture on resonance frequencies, a finite 

1-D system of length L divided by a fracture into two segments is examined. The length 

ratio between the segments is Lo: L1=mo:m1 where mo/m1 is assumed to be a rational 

number. An intact bar of length L and the separate segments (length Lo and L1) have 

common resonance frequencies only at (J)Iow =lj£MTC·n (n=0,1,2, .... ; M=mo+m1) 

corresponding to every M th, m0 th, and m1 th modes, respectively. As the stiffness of the 

fracture decreases, the first M resonance frequencies of the initially intact bar (mode 0 to 

mode M-1) decrease and become the first m0 and m1 modes of the separated segments. 

These frequency shifts repeat every M th mode: all the n = i + M · j (i,j=O, 1 ,2, .... )th modes 

shift by an equal amounts as the stiffness of the fracture decreases from infinity to zero. 

For example, if a fracture is introduced in a bar such that Lo: L1=3:7, the resulting center 
frequencies are obtained as in Table 2.1. In this table, only (J)c 's for j=O are shown· 

because the shift of resonance frequencies repeat cyclically for larger j's. The last column 
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in the table yields different f3e 's, Therefore, there are 10 different types of modes that are 

distinguished by characteristic f3e 's. The resulting 1Ce 's (dimensionless) and f3e 's are 

plotted against dimensionless me in Figure 2.3. This result also implies that if a fracture 

separates a bar into segment lengths with a ratio that is not a rational number, an infinite 

number of f3o's result for the resonances of the system. 

--.. 
l:;j ..... 
o...l 
).:!" 

II 
'-
..(> 

Table 2.1 Computation of Center Resonance Frequency 

Intact bar Block No.1 Block No.2 
m l/J = mhighLI c mtow. Ll c mtow. Ll c me· L I c 

0 0 * * * 
1 7r (0) (0) n/2 
2 27r lOn/7 * 12n17 
3 37r 207r/7 * 2n+ 13n/14 
4 47r * lOn/3 2n+5nl3 
5 57r 30n/7 * 4n+ 9n/14 
6 67r 40n/7 * 4n+ 13nl7 
7 77r * 20n/3 6n + 5nj6 
8 87r 50n/7 * 67r+ 117tj_7 
9 97r 60 1tj_7 * 8n+ lln/14 

Note: The fundamental mode for an intact bar becomes one of the rigid body modes 
( mz0 w=O) for separate segments. Center resonance frequencies cannot be obtained for m=O 
(or n=lO•j, j=0,1,2, ... ) th modes as they do not show a resonance frequency shift. 
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Figure 2.3 The (a) center fracture stiffness l<c and (b) corresponding impedance ratios f3c for the 
resonances of a fractured bar. A fracture separates the bar by a ratio of 3:7. There are 9 different f3c 's that 
yield 9 groups of modes which are distinguished by the slope of l<c -me plots. 
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If a fracture is at the middle of the bar such that Lo= L1=0.5 L, all the odd modes of an 

intact bar have decreasing resonance frequency with decreasing fracture stiffness and form 

pairs with even mode resonances. The even modes are not affected by the fracture. 

Mobilities for the system are plotted for a range of frequencies and locations along the bar 

in Figure 2.4. The dark lines in the plot show resonance peaks and the light curves show 

nodes. Stiffness of the fracture is made dimensionless by the length L and the Young's 

modulus of the system E to yield a stiffness parameter b = KLINE, where N is the· 

number of fracturesin the system (here, N=1). Center resonance frequencies can be 

obtained only for the odd modes as 

w = !!.._ · (2k + !)n (k=O, 1 ,2 ... ). 
c L 2 

(2.8) 

From Eq.(2.4) and Hesler's (1995) work, the following equation must be satisfied at 

resonance 

f3 = 2sin ¢0 ·sin t/>1 

sin(¢0 +¢1)' 
f3?::. 0. (2.9) 

For the case considered here, t/>0 = ¢1 from Eq.(2.3). By introducing Eq.(2.8) into (2.9), 

it is found that the resulting f3's are identical for all modes (f3c=l.0). Therefore the 

corresponding K:c 's are exactly proportional to the me's. 

2.2.2 Attenuation due to material damping and fracture viscosity 

If a medium (intact part of the bar) is attenuative, it has a finite seismic quality factor Q. 

For a finite Q, a phase term used in the propagator matrix (Appendix A) becomes complex 

_, _ mz (1 . 1 ) _ mz (1 . r) 
'f'-- +t- -- +l':>. 

c 2Q c 
(2.10) 

Where ~ is the vibration damping ratio (e.g., Newland, 1989). Q can be either a constant 

or a function of frequency. For a bar with a single fracture at the middle, the mobility 

distribution in the bar is computed for a variety of Q's (Figure 2.5, left half). The plot 

shows that both even and odd mode resonances attenuate (width of the peak broadens) as 

the attenuation of the system increases. 
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Figure 2.4 Computed mobility distribution in a finite bar with a single fracture at the middle. Dark 
lines show high amplitude (resonance) and the light curves show low amplitudes (nodes). As the fracture 
stiffness decreases, the resonance frequencies of the odd modes decrease while the even modes do not shift. 
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If fluid is present in the fracture, attenuation of resonance occurs as a result of viscous 

shear within the fracture. For a clean fracture with partial surface contact surrounded by 

fluid, an adequate rheological model would be the Kelvin-Voigt model (parallel spring and 

dashpot model). Pyrak-Nolte (1990a) used the model to explain the viscoelastic effect of 

fluid-filled fractures on transmitted seismic waves. The effect can be examined by defining 

a complex specific fracture stiffness (Rokhlin and Wang, 1991) 

(2.11) 

where 1J is the specific viscosity of fluid. In many cases, however, 1J may not 

correspond to the intrinsic viscosity of the fluid . This is because the resonance loss 

mechanism of a fracture may have many causes such as damping due to a small amount of 

clay at the contact surface (Smirez-Rivera, 1992) and local squirting of fluid out of 

contacting asperities (Mavko and Nur, 1979; Dvorkin et al., 1995). Therefore, the 17 in 

Eq.(2.11) should be considered as a structural parameter of a fracture rather than the 

intrinsic viscosity of the fluid. The effect of an increasing viscous component in fracture 

stiffness on a single fracture system is shown in Figure 2.5 (right column). Viscosity of 

the models is represented by the viscous relaxation time defined by a specific viscosity 

normalized by the real part (elastic component) of the fracture stiffness. The fundamental 

mode's resonance frequency in an intact system (b==) for these examples is assumed to 

be f 0 = m0 j2n=11.6kHz.(L=0.203m, p=2470kgfm3, and c=4710rnlsec). Unlike an 

intrinsic attenuation in the matrix (Q or S), a viscosity of the fracture only increases the 

attenuation of the odd modes. This effect can be explained by the difference in the 

accompanying mode shapes of the resonances (Figure 2.6). For even modes, the fracture 

is located on an anti-node of vibration. As the motions of the surfaces on the opposite 

sides of the fracture are in-phase, the fracture has no effect on the attenuation of resonance. 

Odd modes, on the other hand, experience the maximum effect as the fracture is located on 

a node where the amplitude of the opening and closing motion of the fracture is the largest. 

A close examination of Figure 2.5 reveals increases in the resonance frequencies of odd 

modes with increasing viscosity. The changes in resonance frequencies and attenuation 

with increasing viscosity are examined for a range of fracture stiffnesses. For this 

purpose, the first and second odd modes (ol and o2 modes, respectively) were used. In 

Figure 2.7(a), each type curve repres~nts a different fracture stiffness shown by the 

dimensionless stiffness parameter b. When the stiffness of the fracture is high, an increase 

in viscosity increases the resonance frequencies of a system with a large fracture stiffness. 
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Figure 2.5 Computed mobility distribution in a finite bar with a single fracture at the middle. Fracture 
stiffness is constant (b=lO). Increase in material damping (Q-1) attenuates both even and odd modes while 
fracture damping (Kelvin-Voigt model, viscous relaxation time 'f=hl 1() attenuates only odd modes. 
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Figure 2.6 Mechanism for the selective attent~ation of odd modes. For each mode pair, the odd mode 
attenuates as it invokes a large relative motion between the surfaces of a fracture . The even mode, on the 
other hand, does not cause any relative motion across the fracture as the fracture is located on the anti-node 
of the resonance. 



ID 

2 Analytical Study on 1-D Resonance 19 

[o1 mode] [o2 mode] 
1.2 .-----,------,----.,.._...,--- -,.-----, 3.2 .-----------------------~ 

b=io' b=io' 

a.8 

b=la
2-+"'"""-{., [ fb=ltT' b=la· 2 b=l0" 1 

b= 10 ! f"_l ! : : 
·················:--······ ·······r················r················:··· 

3[%[ .6. b=ia2 
! ! b=Ja· ' b=J(T 2 b=l0" 3 
! b=l! 2.8 .............. ; ................. ; ....... ................... . 

s"' 
~ a.6 ···· ···b=l ···!·················]· r '·' b:l" r· : 8 ,....... ! 

a.4 -- ~ --- ---- -- ··.- .. - ~- .. ... ----·- ... -~ ___ _______ , _________ _ 
2.4 ·················;·················r·········· ·······r····· ··i·· ···· ········ · 

b=la·\ 
a.2 1-----... , .. , ............. j················,··· ······· ·······,····· ······ ······ 

b=IO·~ 
a ~;;;;~;;;;;;==~b~Ia~-1~---l_ __ j 

2.2 r-;;·t;;;"j"· ... ~ ........................ . 

1 a' 1 a0 1 a' 1 a2 1 a• 

(a) Resonance frequency shift due to increase in viscosity 

1 a' 
[o1 mode] 

1 a' 
[o2 mode] 

..... b,;,J(T ' .. b=la: 2 
.. b=la 1 

: : 

0 1 a0 ----b=l ) ............. ) .. .. b=Ja·· 
0 1 a0 

~ C'll b=l0" 3 
1 a·' ..... 1a"1 ,.... ,.... 

..!!.. ..!!.. 
>..J' 1 a·2 

>..J' 1 a·2 

c: c: 
0 1 a·3 0 
~ ~ 
Ill Ill 
::J 

1 a·• 
::J 

1 a·• c: c: 
.S! Cll .. .. .. 
Ill 1 a·s Ill 1 a·s ... 

1 a·6 1 a·6 

1a·' 1 a0 1 a' 1 a2 1o' 1 a• 1 a' 1 a0 1 a' 1 a2 1o' 1 a• 
"t (1)0 "t (1)0 

(b) Attenuation due to increase in viscosity 

Figure 2.7 Effect of viscosity on the resonance frequency and attenuation of the 1st and 2nd odd modes. 
Resonance frequency and viscous relaxation time are normalized by the resonance frequency ofthe 1st mode 
for an intact system ( WQ). (a) Increase in viscosity for the high-fracture stiffness system increases the 
resonance frequency while it decreases-the resonance frequency for the low-fracture stiffness system. (b) 
Attenuation maximizes at an intermediate viscosity. The location of the peaks shifts from high viscosity 
(large relaxation time) to low viscosity for low fracture stiffnesses. At high fracture stiffnesses, attenuation 
decreases without changing the peak relaxation time. 
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On the contrary, resonance frequencies decrease for a system with a small fracturestiffness. 

Further increase in viscosity in the low fracture stiffness system results in a vanishing 

resonance peaks. When the viscosity becomes even larger, the resonance peak recovers. 

The recovered resonance shows a higher frequency than the original system. Once the 

peak is recovered, the resonance frequency monotonically increases with increasing 

viscosity. 

Attenuation behavior of the single-fracture system is also shown in Figure 2.7(b). 

Quality factor Q and damping coefficient t; are computed by the half-power method : Q is 

computed from a ratio between the resonance frequency and the bandwidth of the 

resonance peak with amplitude (power) greater than half-power of the peak (e.g., 

Newland, 1989). Each type curve shows a single peak. The slopes on both sides of the 

peaks are 1 and -1 for the low-viscosity and high-viscosity sides, respectively. It should 

be noted that the half-power method is not accurate for determining the damping coefficient 

when the attenuation is large (typically, s >O.l) (Boubie et aL, 1987). 

2.3 Finite System Including Multiple Fractures 

2.3.1 Resonance frequency shift and mode localization 

The results obtained in the previous section are extended to a system including periodic 

multiple fractures . The mobility distribution in Figure 2.8 shows changes in the resonance 

frequencies and mode shapes in a system containing 9 fractures . Plots on the left side 

represent constant fracture spacing and fracture stiffness. The resonance frequency shifts 

in the periodic system (constant fracture spacing) with increasing fracture stiffness are 

shown in Figure 2.9(a). From the discussion in the previous section, the difference in the 

frequency shifts among the modes can be related to how close the fractures are located to 

the nodes of each mode. Similar to the single fracture case, each 10 modes comprise a 

single mode group. In these mode groups, the lowest order mode does not change 

resonance frequency as its anti-nodes are located exactly on the fractures (i.e., they are 

insensitive to changes in fracture stiffness). A group of resonance peaks is called a "pass 

band" and a frequency range absent of resonance between adjacent pass bands is called a 

"stop band" (Ziman, 1964; Hodges and Woodhouse, 1983). In a pass band, vibration can 

propagate far from a source without attenuating. On the other hand, vibration attenuates 

exponentially away from a source in a stop band. Such behavior is well known for waves 

propagating in a regularly stratified heterogeneous media (Bedford and Drumheller, 1994). 
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Figure 2.8 Computed mobility distribution in a finite bar with nine fractures. Dark lines show high 
amplitude (resonance) and the light curves show low amplitude (node). As the fracture stiffness decreases, 
the odd modes exhibit a decrease in resonance frequencies while the even modes do not shift. 
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Table 2.2 Fracture Spacings in Finite One-dimensional Systems 

layer 
number 1 2 3 4 5 6 7 8 9 10 
Regular 
system 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Irregular 
system 0.081 0.119 0.087 0.158 0.098 0.113 0.084 0.113 0.117 0.032 

When fractures are not regularly spaced, the resonance behavior of the system changes 

dramatically. The right half of the Figure 2.8 shows the resonance of a system containing 

9 fractures with simulated random layer thicknesses. The average fracture spacing of the 

system is identical to the regularly spaced fractures . The thickness of the layers normalized 

by the total length of the system is shown in Table 2.2. 

For a system with intermediate fracture stiffness (b = "KL/ NE=10, N=9), the pass and 

stop band structure is not evident. As can be seen from Figure 2.9(b), all the modes 

experience changes in their resonance frequencies as the fracture stiffness is varied for the 

irregular system in contrast to the regular system. However, modes that do not show 

changes in resonance frequency for the regular system show relatively small frequency 

shifts. When the fracture stiffness is further decreased (b=1), the internal layers exhibit 

locally enhanced resonances (Figure 2.8). This is the same phenomenon observed for a 

single fracture system with different segment lengths. 

The observed localization of resonance is due to perturbation of acoustic impedance in a 

nearly periodic system, and is known as Anderson's localization (Anderson, 1958). For 

example, Hodges and Woodhouse (1983) showed that a system of a stretched spring with 

masses attached to it exhibits strongly localized modes when a small perturbation in the 

spacing between the masses is introduced into a regular system. Luongo (1992) also 

showed that the axial vibration of a continuous beam with distributed restraining 

longitudinal elastic springs exhibits localized mode shapes when a small perturbation in the 

stiffness of the beam is introduced. 

Mode shapes of resonances for regularly and irregularly spaced fractures are shown for 

intermediate (Figure 2.1 0) and low (Figure 2.11) fracture stiffnesses (b= 10 and b= 1, 

respectively). The amplitudes of the mode shapes are normalized by the maximum 

amplitude. Both regular and irregular systems' modes exhibit discontinuities in mode 
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Figure 2.9 Resonance frequency shifts for finite bars with regularly and irregularly spaced fractures . 
Each resonance frequency fn is normalized by a corresponding intact bar's resonance frequency fn * (a) For 
regularly spaced fractures, systematic decreases in the resonance frequencies can be seen. Multiples of the 
1Oth mode do not change the resonoan~e frequency. (b) Although a systematic shift is present, the system 
with irregularly spaced fractures does not show the modes that do not change the resonance frequency . 
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Figure 2.10 Mode shapes for resonances in a bar with regularly and irregularly spaced fractures with 
a normalized fracture stiffness b= lO. For finite fracture stiffness, mode shapes become discontinuous 
across the fractures . For the irregular case, mode shapes are weakly localized for high frequency modes 
(3rd mode group (m=lO to 29th modes) 
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Figure 2.11 Mode shapes for resonances in a bar with regularly and irregularly spaced fractures . With a 
normalized fracture stiffness b= l. For the regular case, the amplitude of vibration is more or less even for 
the entire bar. The irregular case, on the other hand, except for the modes that degenerate to the rigid body 
motion of each block (0 to 9th mode), ca,uses strongly localized mode shapes to result. 
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shapes across fractures (locations of fractures are shown by vertical dotted lines) except for 

the Qth, lOth, and 2Qth modes of the regular system. The continuous mode shape across 

the fractures is realized as the locations of fractures coincide with anti-nodes of the modes 

where no stress is introduced at resonance. As the mode shape of these modes is identical 

to that of an intact system, resonance frequencies are not changed by the fractures. 

For an intermediate fracture stiffness (b= 10, Figure 2.1 0), mode shapes of the irregular 

system become asymmetric and start to show locally enhanced amplitude for higher order 

modes. For a very small fracture stiffness (b= 1, Figure 2.11 ), the higher order modes in 

the irregular system are strongly localized. In the regular system, in contrast, amplitude of 

mode shape is more or less uniform throughout the system. 

2.3.2 Attenuation behavior 

Attenuation due to the viscous behavior of a fracture in a multiply-fractured system is 

shown in Figure 2 .12. For the regularly fractured system, modes with a resonance 

frequency that is insensitive to a change in the fracture stiffness are not affected by the 

introduced viscosity. This behavior is analogous to the result in Section 2.2.2. In each 

mode group, modes that exhibited a large frequency shift tend to show large attenuation. 

This is because such modes involve a large opening and closing displacement across the 

fracture surface that leads to large energy dissipation. For an irregular system, in contrast, 

the systematic grouping and attenuation behavior of the modes are not evident. This is 

because irregularly spaced fractures sample the nodes and anti-nodes of the mode shape 

randomly, which makes their contribution to the attenuation approximately equal for all 

modes. 
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Figure 2.12 Effect of fracture viscosity on the resonance of a multiple fracture system. The FRF 
plots at the bottom are computed for a receiver located at the bottom of the fractured bar. For a 
regularly-spaced fracture system, the first mode in each pass band does not attenuate while the other 
modes attenuate in increasing order with increasing resonance frequency . An irregularly-spaced fracture 
system shows an increasing trend in attenuation for higher order modes, but does not show the 
systematic attenuation seen for the regular system. 
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2.4 Resonance of a Delaminated Halfspace 

Before discussing resonance of fractures in an infinite system, the effect of an infinite 

boundary (half space) is examined by studying resonance of a delaminated layer on a half­

space. When the surface of a half-space is detached by a compliant interface (e.g., a 

fracture), this system can resonate by a uniform dynamic load applied on the surface. For a 

source and a receiver located on the surface of the delaminated layer (Figure 2.13), the 

power of the dimensionless mobility is 

MM* = 2(1 + cos(2¢J)) + /3 2 + 2f3sin(2¢J) 
2(1- cos(2¢J )) + /3 2 

- 2/3 sin(2¢J)' 
(2.12) 

where M is the dimensionless mobility (complex FRF) and the superscript* represents its 

complex conjugate. The derivation of Eq.(2.12) is given in Appendix B. For the 
delaminated layer of thickness L0 , a phase angle ¢> is defined by 

q> = OJLo . 
c 

(2.13) 

From Figure 2.13, it can be seen that an increase in the fracture stiffness increases both 

the resonance frequencies and attenuation. It is also noticed that the increases in the lower 

order modes' resonance frequencies and attenuation are greater than the higher order 

modes'. To examine the mode dependent behavior of the resonance frequency shift, the 

center resonance frequency me (Figure 2.2) and corresponding K:c and f3c are examined. 

When the stiffness of the fracture is very small, f3 approaches zero and Eq.(2.12) becomes 

MM*(K:-70)= 1+cos(2(j>0 ). 

1- cos(2(j>0 ) 
(2.14) 

This equation shows that peaks of the FRF (resonances) appear periodically in frequency 

satisfying cos(2¢>0 ) = 1, or sin( ¢>0 ) = 0. This is a classical solution for the resonance of a 

continuous slender bar with finite length (Graff, 1975). As the fracture stiffness increases, 

the resonance frequencies increase and asymptote to frequencies that satisfy 

tan(2¢>0 ) = -2¢>0 . This condition is found by searching for local maxima (resonances) of 

Eq .(2.13) with a large f3. Simultaneously, attenuation of resonance increases and, for an 

infinitely high fracture stiffness, the mobility, becomes constant (=1) for all frequencies. 
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Figure 2.13 FRF's of a delaminated layer on a half space for different fracture stiffnesses . Both 
frequency and the fracture stiffness are dimensionless. An increase in the stiffness of the fracture introduces 
an upward frequency shift and a broadening (i.e., attenuation resulting from radiation damping) of the 
resonance peaks. The shifting and attenuating behavior of the resonance is the largest for the lower order 
modes. 
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Figure 2.14 The (a) center fracture stiffness Kc and (b) corresponding impedance ratios f3c for the 
resonances of the delaminated halfspace. Kc increases in proportion to the We (or normalized frequency l/Jc 
), which results in approximately constant f3c for all modes. f3c asymptotes to 0.732 for the high order 
modes. 

Figure 2.14(a) and (b) show the center resonance frequencies me's and corresponding 

K:c 's and f3e's . It can be seen that the shift of resonance frequencies occurs for similar 

impedance ratios that asymptote to a constant (=0.732) for higher resonance frequencies. 

This indicates that the shift of a higher order mode resonance occurs for proportionally high 

fracture stiffness. 

Attenuation of the resonances in the delaminated layer is due to the radiation of wave 

energy across the fracture. Therefore, the magnitude of attenuation is determined by the 

transmission coefficient of the fracture . The seismic quality factor Q and the damping 

coefficient s are defined as a ratio between energy dissipated in a single cycle of vibration 

( 11£) and the total energy ( E: sum of strain energy and kinetic energy) in the system as 

Q-1 = 2s = _1 -11£. 
2n E 

(2.15) 

To derive an analytic expression for the damping parameters, vibration in the system is 

decomposed to waves traveling downward and upward in the delamination and halfspace 

(Figure 2.15). A time-averaged flux of wave energy escaping from the system is 

F = l_pcmzlu(hs)lz 
0 2 d ' 

(2.16) 
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Figure 2.15 Decomposition of vibration to upgoing and downgoing wave components. Amplitudes of 
the decomposed waves are used to derive expressions for time-averaged wave fluxes . The total energy of 
vibration is computed by integrating the fluxes of up going and downgoing waves in the delamination over 
travel time t=Lic and the energy loss across the fracture is computed from the downgoing flux integrated 
over a single period (2 7T:I (J) ). 

where u~hs) is the displacement of the downgoing wave in the halfspace. During a single 

cycle of vibration, the amount of the escaping energy is 

Au F 2n 1 21 (hsl l2 2n - LJ..L:, = 0 ·-= -pcw ud · - . 
(J) 2 (1) 

(2 .17) 

The total energy of vibration in the delaminated layer is also obtained from the fluxes of the 

waves in the system. The fluxes of the downgoing and upgoing waves are 

1 21 12 1 21 12 Fd = - pcm ud , Fu =- pew uu , 
2 2 

(2.18) 

where ud and uu are the displacements of upgoing and downgoing waves, respectively . 

The energy of vibration in the layer of length L equals the total energy by a flux for a period 

of Vc (cis the phase velocity of the waves) . Therefore, the total vibration energy is 

(2 .19) 

Displacements are related to each other by 

(2.20) 
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where T and R are the transmission and reflection coefficients. By introducing the 

expression (2.20) into (2.17) and (2.19) with a relation IRI2 
= 1-ITI2

, the Q and ~ are 

computed by 

Q = _1 = 2 -ITI
2 

mL = (1 + 2/3-2)"' . 
. 2~ ITI2 c 'I' 

(2.21) 

In the above expression, the phase angle ¢ = mL I c. T is the transmission coefficient of a 

fracture for a normally incident wave given by (e.g., Schoenberg, 1980) 

T = __!1!_ 
1 + if3' 

(2.22) 

where f3 is the impedance ratio of a fracture defined by Eq.(2.2). Eq.(2.21) can be 

rewritten as 

Q = _1 = [1 + _!_( mZ)
2

] mL . 
2~ 2 K: c 

(2.23) 

The above expression reveals that attenuation decreases monotonically with increasing 

frequency. 

Comparison between analytically determined Q's using Eq(2.23) and Q's measured 

from the source mobility (Eq.(2.12)) using the half-power method is shown in Figure 

2.16. The slight difference between the analytic and measured Q's for large attenuation is 

due to the inaccuracy of the half-power method. 
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Figure 2.16 Comparison of analytically and numerically (using the half-power method) determined 
attenuation of vibration in a delamination. Horizontal axis is normalized frequency ( ¢=wUc). Both results 
show very close agreement. A slight difference in attenuation for large t; (or small Q) is due to the 
inaccuracy of the half-power method. 
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2.5 Infinite System Including Finite Number of Fractures 

2.5.1 Transmission and reflection coefficients 

When the finite fractured system discussed in the Section 2.3 is embedded in an infinite 

one-dimensional medium, vibration inside the system attenuates even in the absence of 

material and fracture damping because of the radiation of vibration energy into the 

surrounding halfspaces. The seismic behavior of such a system is particularly interesting 

for characterizing a zone of parallel fractures in a geologic unit. Multiple parallel fractures 

are common features found in almost all rock types, including igneous, sedimentary, and 

metamorphic rocks. For example, Figure 2.17a shows multiple parallel fractures observed 

in a sandstone basin by Laubach (1991 ). Figure 2.17b is a sketch of parallel fractures in a 

basalt unit by Peterson et al. (1993). Peterson et al. examined characteristics of seismic 

waves transmitting through fractures between boreholes and demonstrated that changes in 

the waveform can be modeled by the displacement-discontinuity boundary conditions with 

good agreement. 

A wave normally incident on a zone of parallel fractures is multiply scattered within the 

fractured zone, changing its velocity, amplitude, and spectral characteristics. These 

changes are expected to have a close relation with the resonance of a finite system. To 

study this effect, the finite fractured systems examined in Section 2.3 are embedded in an 

infinite medium (Figure 2.18) and responses of the systems to steady state waves were 

examined using the displacement transfer function of the system. A displacement transfer 

function is defined by a displacement spectrum of transmitted or reflected waves 

normalized by a displacement spectrum of incident waves. The propagator matrix method 

was used to compute the transfer function. Computed transfer functions for transmitting 

and reflected waves are essentially the transmission and reflection coefficients of the 

fractured zone, respectively. These, in turn, are the spectra of the transmitted and reflected 

waves for an incident impulse. 

Transmission and reflection coefficients of regularly and irregularly fractured zones are 

shown in Figure 2.19. The stiffness of the fractures is identical to the medium stiffness 

case (b=lO) for a finite fractured system used in the previous section. The transmission 

and reflection coefficients have a complementary relation (T2+R2= 1) as the total energy of 

the waves has to be conserved. As can be seen from the plot, the regular system exhibits 
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' 'rethfrt ltwell • c-.f ..... ,........., . 
(a) Multiple fractures in a sandstone unit. Little Coal Creek (Hill) outcrop, Wyoming. 

(After Laubach, 1991) 

(b) Multiple fractures in a basalt unit. Boreholes used for the cross-hole seismic measurements are also 
shown. (After Peterson eta /. , I 993) 

Figure 2.17 Examples of multiple parallel fractures observed in the field. 
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Figure 2.18 Schematics for regularly and irregularly spaced fractures embedded in an infinite medium. A 
wave is incident on the fractured zone from infinite distance. Transmitting waves and reflected waves are 
computed and examined for their velocities and spectral characteristics. 
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Figure 2.19 Transmission (T) and reflection (R) coefficients of (a) regularly and (b) irregularly spaced 
fractures. ITI2 and IRI2 are complementary (IT12+1RI2=1) as the energy of the wave has to be conserved . 
Regularly spaced fractures show distinct pass and stop bands. The band structures are not clear for the 
irregularly spaced fractures. 

distinct pass and stop bands that are not evident in the irregular system. As shown in 

Figure 2.20, the transmission coefficients of the fractured zone have a close relation to the 

FRF of the finite systems. The most significant feature is that the structure of the pass and 

stop bands for the fractured zone is identical to those for the finite system. This indicates 

that changes in the spectral characteristics of a wave propagating through a zone of 

fractures reflect resonance characteristics of the internal fractures. 

2.5.2 Spectrum of the first-arriving pulse 

The power spectra of the first-arriving part of the transmitting pulses are shown in 

figure 2.21 along with their phase and group velocities in Figure 2.22. The phase and 

group velocities are computed fro!ll the phase spectra of the wave as follows 

cphase = Ljtphase' c8roup = LJtcroup' (2.24) 
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Figure 2.20 Comparison of FRF's (power of mobility for finite system and power of transmission 
coefficient for an infinite system) for finite and infinite systems with 11 fractures _ Frequency is normalized 
with an average fracture spacing L\.L=0.1L (L= thickness of the fractured zone) and an intact material 
velocity _ The stiffness of the fractures is constant (b=lO). Both regular and irregular systems show strong 
correlation between the pass and stop band structures for the finite and infinite systems. 
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Figure 2.21 Transmission coefficient for the first-arriving pulse through regularly and irregularly spaced 
fractures. Due to the frequency-dependent low-pass filtering of the fractures, transmission coefficients 
become small with increasing frequency. · 
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Figure 2.22 Phase and group velocities for the first-arriving pulse through regularly and irregularly 
spaced fractures. The velocites were computed from phase spectra of the pulses. For both cases, velocities 
increase with increasing frequency. Such behavior is predicted by the seismic displacement-discontinuity 
model for transmission across a single fracture (Pyrak-Nolte et al., 1990a). Decrease in group velocity for 
the irregular system at high frequency is due to the distortion of the pulse by scattered waves within a thin 
layer. Due to the frequency-dependent low-pass filtering of the fractures, transmission coefficients become 
small with increasing frequency. 
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wh~re Lis the thickness of the fractured zone, and tphase and tgroup are the phase and group 

time delays of the pulse between a source and a receiver computed from 

(} d(} 
tphase = (J) ' tgroup = dm' (2.25) 

where (} is a phase spectrum of the transmitting pulse. 

As can be seen from the plot, the spectral amplitude of the transmitting pulse decreases 

monotonically with increasing frequency. Phase and group velocities, on the other hand, 

are the slowest at zero frequency and increase with increasing frequency. This is caused by 

the accumulation of the frequency-dependent time delay across each fracture (Pyrak-Nolte 

et al., 1990b ). Due to the filtering effect of the fractures, amplitude spectra for both regular 

and irregular systems decrease monotonically with increasing frequency. 

2.5.3 Coda spectrum 

Strong multiple reflections within a fractured zone in an infinite medium can be studied 

by examining the spectrum of seismic coda for a time-domain impulse response. Figure 

2.23 shows impulse responses and coda spectra for the regular and irregular systems. A 

transmitted pulse for the regular system exhibits rimch larger energy than the irregular 

system while the reflected pulse for the irregular system shows mor;e energy than the 

regular system. This can be interpreted as a time-domain realization of Anderson's 

localization; perturbation of the acoustic impedance in an irregular system prohibits the 

propagation of the waves. It can be seen that for the regularly spaced fractures, both codas 

for transmitted and reflected waves have similar band structures as those for the entire wave 

train of the transmitted waves. Although the irregularly spaced fractures do not show clear 

band structures, locations of peaks in the coda spectra are identical to those observed for 

the transmitted waves. These results indicate that the coda part of the waves are generated 

by resonances within the fractured zone that radiate the vibration energy to the surrounding 

halfspaces. One marked characteristic of the coda spectra for the regular system is that 

there are distinct peaks (resonances) in the spectra at boundaries between pass and stop 

bands. This phenomenon is further examined in the following section. 
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Figure 2.23 Time domain impulse response and spectra of the coda (as indicated in the diagrams) for (a) 
regularly and (b) irregularly spaced fractures. From the waveforms, it can be seen that the irregular system 
reflects more wave energy than the regular system. (a) The spectra of the transmitted and reflected wave 
codas for the regular system have pass and stop bands that are similar especially for high frequencies. (b) 
Although the band structure is not clear, coda spectra are similar for transmitted and reflected wave codas. 
These results indicate that the coda (for both reflected and transmitted waves) is the reson11nces of the 
fractured zone that radiates the vibration energy into surrounding half spaces. Some of the corresponding 
peaks (and valleys) for the irregular system are labeled for comparison with Figure 2.19(b ). 
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2.6 Infinite System Including Infinite Number of , Regularly 
Spaced Fractures 

2.6.1 Derivation of dispersion relation 

In this section, one-dimensional wave propagation in a medium with an infinite number 

of regularly spaced fractures is examined. This is a limiting case of wave propagation in a 

multiply fractured system. Wave propagation in an infinite system with welded alternating 

layers has been studied by many researchers including Brillouin (1953), Rytov (1956), and 

Helbeig (1984). By taking advantage of structural periodicity, displacement and traction, 

an infinite system can be analyzed using a unit cell that consists of a minimum unique 

sequence of alternating layers with different acoustic impedances (e.g., Bedford and 

Drumheller, 1994). The method used for analyzing the wave propagation in impedance­

contrast periodic structures is applied for fractured periodic systems to derive a dispersion 

relation of waves. 

Using the propagator method and the displacement-discontinuity boundary conditions 

for a compliant interface, particle displacement of a steady state wave in an infinite medium 

with regularly spaced fractures is derived as follows. 

Displacement of one-dimensional waves propagating in an intact segment is described 

by 

u(z) = Aei(kz-mr) +Be -i(kz+mt), (2.26) 

where k is the wave number and m is the angular frequency of the wave. The stress is 

obtained from Eq.(2.26) by applying the spatial derivative as 

(2.27) 

where Z is the acoustic impedance of the intact medium. These expressions are valid 

within each segment but do not describe the global behavior of the wave. Expressing a 

wave number for the global (or effective) wave propagation in a single direction by k, the 

above expression can be rewritten as 

u(z) = U(z)ei(fz-mt) 

( ) T( ) 
i(kz-mr) 

az = ze , 

(2.28) 

(2.29) 
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in which, 

U(z) = Aeirz + Be-;K+z 

T(z) = imz( Ae;K-z- Be-;K+z ). 

where 

(2.30a) 

(2.30b) 

(2.31) 

Eq.(2.30a) and (2.30b) are independent of time. Applying Floquet's theorem (Floquet, 

1883; Brillouin, 1953) requires that U(z) and T(z) be periodic functions of layer thickness 

M, so the following relations are satisfied 

U(M + o+) = U(O+) 

T(M+O+) = T(O+). 

The displacement-discontinuity boundary conditions at z= M are 

T(M+O+) = k(U(AL+O+)- U(M+O-)) 

T(M+O+) = T(M+O-). 

Using Eq.(2.32a) and (2.32b), Eq.(2.33a) and (2.33b) become 

T(O+)= K(U(O+)-U(M+O-)) 

T(O+) = T(M+O-), 

(2.32a) 

. (2.32b) 

(2.33a) 

(2.33b) 

(2.34a) 

(2.34b) 

respectively. By introducing the Eq.(2.30a) and (2.30b) into Eq.(2.34a) and (2.34b), the 

following matrix equation is derived 

(2.35) 

where f3 = 2K/ mZ is the impedance ratio of a single fracture. The condition for·· a non­

trivial solution to exist is satisfied by equating the determinant of the matrix to zero, which 

yields 

(2.36) 
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This is a dispersion equation of the waves propagating in a regularly-spaced infinite one­

dimensional fractured medium. 

2.6.2 Limiting behaviors of velocities 

When stiffness of the fractures approach infinity (high fracture stiffness limit), 

Eq.(2.30) becomes 

cos(fM) = cos(kM)_ 

·2 -2 -c ' • phase - group - • 

(2.37) 

(2.38) 

Therefore, the wave velocity becomes that of an intact medium. 

When the frequency of wave approaches zero (static limit), a Tayler series expansion of 

Eq.(2.30) becomes 

(fM)
2 

(fM)
4 

1_ + ..... = 1- (kM)
2 

+ (kMt 
2! 4! 2! 4! 

_ kM{kM _ (kM)
3 

} 
..... 2b 1! 3! + ..... ' 

(2.39) 

where b is defined by 

b= K:M. 
E 

(2.40) 

The first order terms of the expression are 

(2.41) 

(2.42) 

Therefore, the phase velocity is 

cphase =c/ ~1+i. (2.43) 

The group velocity is obtained by taking the derivative of Eq.(2.42) with respect to ro as 
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(2.44) 

which is identical to the phase velocity. Both velocities are related to a static stiffness of the 

fractured system as follows 

1 _1+)-t_ 1 1 
------+--
pc2 pc2 pc2 K~ 

(2.45) 

1 1 1 
:. ---;;-- =-+ --, 

M M K~ 
(2.46) 

where M is the elastic modulus. Eq.(2.46) shows that the compliance of the system 

derived from a zero-frequency limit of velocities is equal to the static compliance that is 

given by a sum of the compliances in the intact medium and the fractures (i.e., .the Backus 

average). 

2.6.3 Phase and group velocities 

The phase (or the wave number)-frequency relation given by the dispersion equation 

Eq.(2.36) is shown in Figure 2.24(a). The dimensionless fracture stiffness is assumed to 

be b= K~/ £=10. Only real solutions are shown as an imaginary term in a complex 

solution leads to exponential decay of the wave. Therefore, frequency bands devoid of real 

solutions are the stop bands that prohibit propagation of waves. Figure 2.24(b) shows 

phase and group velocities of the wave computed from the dispersion relations. Within 

each pass band of the infinite system, phase velocity shows weak negative dispersion while 

group velocity shows both positive and negative dispersion that becomes zero at 

boundaries between the pass and stop bands. As a wave with zero group velocity is a 

standing wave, this,indicates that the system resonates at these frequencies. 

For a system with a finite number of fractures, phase and group velocities are computed 

from the phase spectra of the transmitting waves. By comparing Figure 2.25 with Figure 

2.24, it can be seen that the 10-layer (11-fracture) system has similar dispersion behavior 

as the system with an infinite number of fractures. For a regular finite system, the group 

velocity approaches zero at pass and stop band boundaries. This result verifies that the 

peaks in the coda spectra in Figure 2.23 are indeed resonances caused by the periodicity of 

the structure in the system. The irregular syst~m also shows sharp decrease in group 
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velocites at the boundary between large and small transmission coefficient ranges, which 

implies that the system is close to a resonant state. 
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Figure 2.24 Dispersion in a regularly spaced infinite series of fractures. In Figure 2.22(a), only the real 
solutions of the dispersion equation are shown as a complex solution cannot propagate in an infinite 
system. Regions where the real solution exists are the pass bands (all energy propagates without 
attenuating). The shaded regions where no real solution is found are the stop bands. (b) In each pass band, 
the phase velocity shows a negative dispersion (velocity decreases with increasing frequency) while the· 
group velocity exhibits both positive and negative dispersions, with zero velocity at the boundaries between 
the pass and the stop bands. , 
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Figure 2.25 Dispersion in regularly and irregularly spaced finite fractures. The regular system exhibit a 
similar dispersion behavior as the infinite system. The peaks and valleys of group velocity within pass 
bands are due to the finite number of fractures. The valleys essentially corresponds to the resonances of the 
finite system. At boundaries between pass and stop bands, there is a sharp decrease in the group velocity. 
These corresponds to the peaks in the coda spectra observed in Figure 2.23. Small group velocity indicates 
that the wave in the system is becoming a standing wave (wave with zero group velocity) and the system is 
near resonance. Although the pass and stop band structures are not clear, the irregular system also shows a 
sharp decrease in the group velocity at pass and stop band boundaries. 
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2.7 Summary 

This chapter has discussed the effects of fractures on the resonance characteristics of 

finite and infinite one-dimensional systems. 

It has been shown that an impedance ratio between a fracture and intact medium {3 is 

the controlling parameter for both resonance frequency shifts and attenuation due to 

rheological and radiation damping. This result provides the link between the resonance 

characteristics and the mechanical properties of the fracture. For finite fractured systems, 

the relative locations of the fracture and the nodes of vibration modes are shown to have 

significant effects on the resonance frequency shift and the attenuation of the resonance. 

Due to mismatched locations of fractures and vibration nodes and antinodes, resonances of 

a medium containing irregularly spaced fractures can spatially localize the modal energy 

between the fractures. These results potentially provide valuable knowledge for detecting 

and locating fractures in geologic structures built in the subsurface and above ground. 

Particularly, localized resonance can be a powerful diagnostic tool for detecting motions of 

a rock mass that is isolated within the structure by fractures. · 

For interpreting seismic waves propagating through· multiple parallel fractures, both 

regularly and irregularly spaced fractures were embedded in an infinite medium. Computed 

transmission and reflection coefficients showed that the pass and the stop band structures 

were identical to those in the FRF of the finite systems. An important implication of this 

result was that by examining transmission coefficient and reflection coefficient spectra of 

propagating waves, the resonance characterisitcs of the embedded fractured system can be 

determined. From the determined resonance characteristics, properties of the fractures 

(stiffness of fractures, spacings, etc.) might also be determined. 

Another important implication is the relation between resonances (standing waves) and 

propagating waves. In a multiply fractured system, distinction between a propagating 

wave and a resonance in the system becomes obscure. If a finite system containing 

fractures is embedded in an infinite medium, perfect resonance (without attenuation) cannot 

occur due to radiative loss of the energy into surrounding halfspaces. On the other hand, 

propagating waves show large group time delays and attenuation due to multiply reflected 

and trapped energy between fractures. Whether wave propagation or resonance dominates 

the system is determined by the stiffness of the fracture. Perfect wave propagation occurs 

for infinite fracture stiffness (welded interface) and perfect resonance occurs for zero 
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fracture stiffness. For intermediate fracture stiffnesses, resonances of a system can be 

identified from sharp decreases in group velocities. Therefore, by examining such 

characteristics in a wave spectrum, the internal structure of a fractured medium can be 

determined. 

This chapter also presented an analytic expression for the dispersion relation associated 

with an infinite series of regularly spaced fractures. The dispersion relation predicted both 

pass and stop band structures in the wave spectrum. Within each pass band, a wave 

propagated at a reduced velocity without attenuating. The group velocity of the wave 

approached zero at boundaries between pass and stop bands. At these frequencies, the 

behavior of waves in the system change from that of propagating waves to standing waves. 

Many of the above results indicate that acoustic resonance can be used to identify the 

internal structure of fractured solids. However, for quantitative detection and 

characterization of fractures, further research should be performed to incorporate the results 

from this study into techniques such as modal analysis utilizing the finite element method 

(FEM). The FEM has become a common technique to locate a defect or fracture from 

resonance with recent advent of computer technology. For example, Cawley and Adams · 

( 1979) used the shifts in the resonance frequencies of a structure to determine the location 

of damage with a finite element model. However, the use of the numerical model without 

understanding the underlying mechanics may lead to inaccurate or incorrect results. With a 

basic understanding of the effect of fractures, information contained in the measured 

resonances can be utilized to their full extent. 

In the following chapter, some of the results obtained in this chapter for a finite system 

including a single fracture will be demonstrated by laboratory experiments using resonant 
I 

bar tests on thin rods of rock. Resonance and wave propagation in periodically fractured 

media is revisited at the end of this thesis for the case of multi-dimensional wave 

propagation in fractured media. 
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The resonant bar test has been conducted to measure the elastic and attenuation 

properties of rock and concrete in laboratory for decades. It is sometimes preferred over 

ultrasonic transmission tests for several reasons. Among these reasons are the relatively 

low frequency range employed for the tests (1kHz-100kHz) that is close to the range used 

for borehole acoustic logging of geological structures and the accuracy 'of the method in 

determining attenuation properties (Boubie et al., 1987). Most resonant bar tests, 

however, are conducted to assess the resonance of intact and homogeneous specimens. As 

rock and concrete generally contain fractures at many scales, treating a specimen with a 

fracture as a homogeneous medium may lead to erroneous material properties. Therefore, 

it is important to understand the effect of fracture properties on the resonance of bar 

specimens. Furthermore, for detecting and characterizing fractures in situ, dynamic 

properties of a fracture under a variety of conditions are required. Using a resonant bar 

test, low-frequency mechanical properties of fractures can be examined in the laboratory. 
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Hesler (1995) examined the resonance of rock specimens containing fractures. The 

specimens used by Hesler were rock cylinders containing healed natural fractures and rods 

of engineered materials such as plexiglass and aluminum with a notched cross section and a 

glued interface between the two intact pieces. A similar experiment was conducted by 

Bamnios and Trochidis (1995) using longitudinal and vertical vibrations of a cantilever 

beam with a notched cross section. The notched and glued cross sections provided a 

strong acoustic impedance contrast in the specimens that altered resonance frequencies and 

mode shapes significantly. By applying the displacement-discontinuity boundary 

conditions used for modeling wave propagation across and along a compliant interface 

between two elastic halfspaces (Kendall and Tabor, 1971; Schoenberg, 1980; Pyrak-Nolte 

and Cook, 1987), Hesler developed a simple equation deriving the effect of fracture 

stiffness on the resonance frequencies of fractured bars. 

It is well known that the stiffness of a fracture increases significantly with application 

of normal stress due to the increase in the contact between surface asperites (Greenwood 

and Williamson, 1966; Goodman, 1976; Brown and Scholz, 1985). Therefore a fracture 

in situ exhibits stiffnesses ranging from zero (open fracture) to infinity (welded fracture). 

In order to study the effect of fracture stiffnesses on resonance, a range of stresses have to 

be applied to the fracture. Resonant bar tests are usually conducted on specimens under 

atmospheric pressure. To test a specimen under high confining pressure similar to field 

conditions, an elaborate testing setup and corrections of obtained results are required (Lucet 

et al., 1991), including the use of compressed Helium gas to minimize the acoustic 

coupling between a specimen and its surrounding media. 

The focus of the experiments performed in this chapter is on the effects of fracture 

properties on the resonances of rock bars. As the stiffness of a fracture created 

perpendicular to a rod specimen can be changed by applying an axial load, only uniaxial 

compression is necessary to observe the effects of fracture stiffness on resonances. 

Vibrations inside the specimen are isolated by compliant plastic rings attached to the ends of 

the rod. Due to the large acoustic impedance contrast between the specimen and the rings, 

boundary conditions for the resonance become approximately stress-free. Because the 

boundary conditions are only approximately stress-free, fracture stiffness on resonance 

frequencies are not exactly predicted by the theory developed in Chapter 2. However, 

these results do show basic agreement with the theory presented in the previous chapter. 
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3.2 Experimental Setup 

3.2.1 Sample description 

The resonance tests were conducted on thin rods of plexiglass, aluminum, and rock 

(Sierra White Granite and Berea Sandstone). The rod specimens were 32.8cm in length 

and 5.08cm in diameter. The granite specimen contained a large number of microcracks 

that were aligned roughly parallel to a single plane. Detailed measurements on the granite 

will be shown later (Chapter 5). The sandstone specimen contained bedding structures that 

were visible as thin, red stained layers, possibly iron oxide formations. These 

microstructures lead to transversely isotropic elastic properties of the rocks. In preparing 

the specimens, the rods were cored perpendicular to the plane of anisotropy (microcrack or 

bedding planes) and oven-dried at 103 OC for at least 48 hours before the tests. Static and 

high-frequency dynamic properties of the specimens are shown in Table 3.1. 

Table 3.1 Static and Dynamic Properties of Specimens 

dynamic dynamic static static 
specimen density Young's Poisson's Young's Poisson's 

modulus ratio modulus ratio 

aluminum 2.70 kgfm3 71.7 GPa 0.34 70GPa 0.35 

plexiglass 1.18 kgfm3 6.17 GPa 0.33' 4.19 GPa 0.36 

Sierra White 2.62 kgfm3 19.9 GPa assumed 21.1 GPa 0.038 
Granite ( ovendried) to be 0 

Berea 2.10 kgfm3 9.22 GPa 0.066 9.36 GPa 0.055 
Sandstone ( ovendried) 

Note: Static Young's moduli were determined from the initial slope of the stress-strain curves at 
OMPa axial stress after a single cycle of load was applied to the specimens. Dynamic Young's 
moduli were determined from ultrasonic transmission tests using lMHz sources. For the granite 
specimen, the dynamic Poisson's ratio was assumed to be zero to obtain the Dynamic Young's 
modulus from the P-wave modulus. This was done because the elastic properties of the rock could 
not be properly determined from the P- and S-wave velocities due to the strong elastic anisotropy. 
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3.2.2 Free vibration test setup 

Conventional free vibration tests were conducted to measure the resonance frequencies 

and attenuation of rod specimens without confinement. The specimens were held in 

styrofoam rings to isolate the vibration (Figure 3.1a). A small piezoelectric crystal with a 

resonance frequency of 1MHz was attached to one end of the specimen using adhesive wax 

(Petro Wax, PCB Piezotronics). Either swept sine waves (chirp signal) or continuous sine 

waves (stationary waves) sweeping a range of frequencies were used to drive the crystal 

and resonate the specimens after amplification of the signals by a voltage amplifier (Krohn­

Hite 7602). The resulting accelerations were measured by a miniature accelerometer (PCB 

Piezotronics, 309A, resonance frequency>120kHz) attached to the other end of the 

specimen with the adhesive. The mass of the crystal and the accelerometer used for the 

tests were 3.5g and 1.5g, respectively. The measured signals were displayed, analyzed, 

and stored using a spectrum analyzer (ONO SOKKI CF6400). 

3.2.3 Axially confined vibration test setup 

Axially confined vibration tests were conducted using a similar experimental setup as 

the free vibration tests, but with the specimens under axial load. The load was applied to 

the specimens through a pair of PVC rings (Figure 3.1 b). The dimensions of the rings 

were 7.02 em in length and 2.66 em and 3.28 em in inner and outer diameters, 

respectively. The density of the rings was 1.07 g/cm3. The accelerometer and the 

piezoelectric source were housed inside the rings during the tests. 

3.2.4 Measurement of frequency responses 

The force applied to a specimen by a piezoelectric crystal decreases with decreasing 

frequency of the applied electric signal. Therefore measured acceleration has to be 

corrected for this effect. An experimental frequency response function (FRF) is obtained 

as a spectral ratio between measured accelerations on a specimen and accelerations on the 

source piezoelectric crystal suspended in the air. To measure the acceleration on the 

crystal, an accelerometer was directly attached to the surface of the crystal. As the 

measured acceleration on the crystal is roughly proportional to the force applied to a 

specimen, the computed FRF is essentially an accelerance (acceleration response to unit 

force excitation). A typical acc~leration response measured for a source piezoelectric 

crystal is shown in Figure 3.2. 
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Figure 3.1 Experimental setup used for vibration tests on rod specimens. Free vibration tests were 
conducted with specimens suspended on styrofoam rings to acoustically isolate the vibration. For axially 
confined vibration tests, the specimens were loaded through plastic rings. 
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Figure 3.2 Acceleration spectra measured on a source piezoelectric crystal suspended in the air. An 
accelerometer was directly attached to the crystal with wax. The crystal was driven by single frequency sine 
waves that swept from 0 up to 32kHz. Amplitude of the acceleration increases with increasing frequency. 
The phase spectra show approximately constant phase for the frequency range shown above. 

3.3 Free Vibration of Rod Specimens 

The dynamicYoung's modulus along the axis of a thin finite rod can be measured from 

resonance frequencies of the longitudinal vibrations. If the vibration is truly one­

dimensional, the resulting resonance frequencies consist of harmonics of the primary mode 

that are equally spaced in frequency. From any of the harmonics, Young's modulus is 

determined by 

2 CE = f(n) . 2L . E=pcE, (3.1) 
n 
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where p is the density, c E is the velocity of the wave propagating along the rod, L is the 

length of the rod, n is the mode number, and fnl is the resonance frequency of the nth 

mode (overtone) in [Hz]. For a circular rod with a finite diameter, waves propagating 

along the rod become dispersive, decreasing the phase velocity from a "bar velocity" 
computed by ,}Ejp to a Rayleigh wave velocity with increasing frequency of the wave 

(Pochhammer, 1876; Graff, 1975). Corrections of Eq.(3.1) for a finite rod diameter and 

length are made by many researchers including Bancroft (1941), Love (1944), Rayleigh 

(1945),and Spinner and Tefft (1960). The corrected equation has a generic form 

2 1 
E=pcE x-, u 

(3.2) 

where U is the correction factor that accounts for the effect of Poisson's ratio and the 

diameter to wavelength ratio (D/A.) of a specimen. Rayleigh ( 1945) derived an approximate 

expression known as Rayleigh's correction for small D/A.. Love (1941) derived the 

complete governing equation of the resonance problem based on the variational principle. 

Bancroft (1941) derived the correction factor for a:n infinitely long rod by numerically 

solving the involved differential equations. Spinner et al. (1960) experimentally tested 

these results and found good agreement between predicted and measured resonance 

frequencies. A summary of the methods is provided by Spinner and Tefft (1961). 

As the specimens used for the tests are relatively short (length to diameter ratio 

LID=6.46), to avoid the buckling of the bar during the axially loaded tests, waves 

· propagating along the rod can be dispersive even for the lowest order mode. To examine 

the effect of dispersion, wave velocity in the bar is calculated by Eq.(3.1) for the first 

several longitudinal mode resonances. The resulting velocities are normalized by the 
Young's modulus velocity ,) Ej p determined by a statically measured Young's modulus 

for a very small axial stress. Wave velocities for the aluminum and plexiglass specimens 

shown in Figure 3.3a (except for the static result) exhibit strong negative dispersion 

(velocity decreases with increasing order of mode). The large difference between the static 

and dynamic results for the plexiglass may be due to the viscoelastic behavior of the 

material. In contrast, the sandstone and granite specimens show much smaller dispersion. 

The different dispersion behaviors among the specimens are due to small Poisson's ratios 

of the rocks. Static stress-strain measurements reveal that the Poisson's ratios of the 

granite and sandstone specimens determined from their lateral expansion during uniaxial 
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(a) Phase velocity measured by resonant bar test. 
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Figure 3.3 Young's modulus determined from resonant bar tests. Top figure shows phase velocities 
computed from measured resonance frequencies and normalized by the phase velocities for the static 
properties of the specimen. Bottom figure shows the determined Young's modulus normalized by the static 
Young's modulus of the specimens after applying Bancroft's (1941) correction for Poisson's ratio and rod 
radius to wavelength ratio (alA-). The moduli obtained from ultrasonic transmission tests are shown on the 
far right (a/A, is not equal to 0.4 for these results). 
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loading are negligibly small (less than 0.06). The marked low Poisson's ratios are 

attributed to the closure of thin flat microcracks in granite and loose grain contact in 

sandstone. Due to these small Poisson's ratios, waves propagating along the rod do not 

involve large surface motion in lateral directions. Therefore, dispersion due to the inertia 

effect of lateral motion does not occur. Aluminum and plexiglass specimens exhibit strong 

velocity dispersion due to their large Poisson's ratios (0.35 and 0.36, respectively, from 

static loading tests). 

The results were corrected for the geometry and Poisson's ratio (determined from static 

tests) of the specimens using Bancroft's. correction (Figure 3.3b). The same figure also 

includes the results obtained from ultrasonic transmission tests with lMHz P- and S-wave 

sources for comparison. Although Young's modulus along the axis of the rod cannot be 

determined from the two velocities for transversely isotropic material, approximate values 

are obtained by assuming a zero Poisson's ratio for the granite (Young's modulus equals 

P-wave modulus) and elastic isotropy for the sandstone. The corrected results should give 

Young's modulus of the specimens that includes only the effect of velocity dispersion due 

to the dissipation of wave energy. Young's modulus of the aluminum specimen is constant 

for all the resonances. The modulus for the plexiglass specimen shows a large increase 

from 0 th mode (static) to the frequency for the first mode of resonance. Although the 

increase in velocity (or modulus) is small, a positive dispersion can be seen for most of the 

observed resonances. Young's modulus determined from the ultrasonic tests was the 

largest, which is consistent with the positive dispersion trend. The correction hardly 

changes the results for the rock specimens as the small Poisson's ratios make the correction 

factor U very close to unity. 

Attenuation of the specimens was measured by the half-power method for each 

resonance peak (Figure 3.4). Attenuation in aluminum appears to be rather large especially 

for higher order modes (Q becomes as low as 160). The other specimens exhibit roughly 

constant attenuation for all the observed resonances except for the highest order mode. 

This relatively high attenuation in aluminum is possibly due to the energy loss at the 

contacts with the external environment (coupling with source piezoelectric crystal, foam 

rings, air). As the attenuation in rock and plexiglass rods is much larger than the aluminum 

rod, the attenuation caused by the external coupling for rock and plexiglass rods is 

negligible. Therefore the measured att~nuation for the rock and plexiglass specimens is 

approximately the intrinsic attenuation of these materials. 



-

3 Resonant Bar Test 59 

1 o-1 

-0 
~ .,... 
a.. 1 a·2 

0 -
IPiexiglassl 

·····-~-~~:-~.:.:~t-.:.~.:.~~.:.·.~J .. Sandstdne ... : ........... J. ..................... . 
l l (ovendry) l 
: : Jf : 
: :, : 

.......... f ..•...• ---•"\ Granite \ .• 
i i (ovendry) _ •. 0 )-• 

••••••··c;·::::·;;o·;1-:::o·"~'·~-~.:.•.•~~w-••0·"·'·'Q:~~.::.~··:·;•·JI(~.-... [ ..................... . 
i i ~--··· aluminum 
: : .. ·: 
1 j l 
: : ... - : 
: L· : 
j _ .. • "'j j 

.1 a·4 '-----:-----'•;;_·_...-<""'-·.:..:· ....... ...._:..--'-' -----''---:-----'------' 
0 10 20 30 40 50 

resonance frequency (kHz) 

Figure 3.4 Attenuation of the specimens determined by the half-power method. Aluminum specimen 
shows rather large attenuation for metal possibly due to the coupling loss to the external environment. 
Rock and plexiglass specimens exhibit approximately constant attenuation for most of the observed 
resonances except for the last modes. 

3.4 Resonance of Axially Confined Rod Specimens 

3.4.1 Effect of end coupling on resonance 

Typical crystalline rocks with microcracks and granular rocks with compliant grain 

contact exhibit an increase in elastic moduli when a compressional load is applied. The 

increase in moduli results in higher velocities of the propagating elastic waves that can be 

determined from the resonance frequencies of the rocks. Resonance measured using the 

experimental setup described in Section 3.2.3, however, may be affected by the mechanical 

coupling between the specimen and the surrounding load frame through the plastic rings. 

To examine this effect, resonance frequencies and attenuation of the plexiglass and 

aluminum rods were first measured with increasing axial stress. Figure 3.5(a) and (b) 

shows the FRF's of the rods measured for a range of axial stresses. Shifts in the 

resonance frequencies due to the end coupling is shown in Figure 3.6(a) and(b). Measured 

resonance frequencies are norma~ized by those obtained for free vibration. The aluminum 

rod shows very small change in resonance frequencies for increasing axial stress. 

Although most of the resonances for the plexiglass specimen show only a small change in 
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Figure 3.5 Frequency response spectra of uniaxially confined aluminum and plexiglass rods. (a) 
Resonance frequencies of the aluminum rod show very small changes while (b) some of the modes for the 
plexiglass rod show a large resonance frequency shift and changes in the structure of the FRF (e.g., e2 mode 
disappears as the load was decreased and is replaced by an emerging e2' mode). For both specimens, 
attenuation of the resonances changes significantly with applied load. 
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Figure 3.6 Effect of axial confinement on the resonance frequency (or phase velocity) of aluminum and 
plexiglass specimens. Resonance frequency of each mode is normalized by the mode's free vibration 
frequency. The aluminum specimen shows only a small change in the resonance frequency while the 
plexiglass resonance frequencies scatter around the free vibration frequencies. For botfi specimens, a large 
change in the resonance frequency occurs up to about 0.05MPa of the axial load. For higher axial loads, the 
effect becomes constant and the resonance frequencies do not show a large change, 

[Aluminum] 
10"1 ....---~--~---,-----~~-~-~ 

0 
~ 
'P"" 2 ..!!.. 1 o· ----

s:: 
0 

:;:: 
g: 1 o·3 

s:: 

i 

. . . .................................................. 

~:-o2 

10"4 L--~--~--~-~--~-~ 

0 0.5 1.5 2 2.5 3 

axial stress (MPa) 

(a) attenuation change in aluminum 

[Piexiglass] 
10"1 ---~--,---,---,---,---, 

0 
~ 
"ii 1 o·2 
....... . 

e~l 

-------------·t·----------·-·j----···------·[--------------L------·-----L ........... . 

, I ! ( , 
1 o·4 L-----'---~--~----'--~-~ 

0 0.5 1.5 2 2.5 3 

axial stress (MPa) 

(b) attenuation change in plexiglass 

Figure 3. 7 Effect of axial confinement on the attenuation of aluminum and plexiglass specimens. The 
aluminum specimen shows a large increase in attenuation possibly due to the radiation of the vibration 
energy through the plastic rings. The plexiglass specimen shows relatively small change in attenuation 
except for the highest order mode (e3) shown here. Attenuation for the e2' mode is shown only up to 
0.2MPa of axial stress after which it switches to the e2 mode. The seemingly small increase in attenuation 
in the plexiglass specimen is due to a large intrinsic attenuation of the specimen that overwhelms the 
additional radiation damping. For both specimens, a large change in the attenuation occurs for small axial 
loads. 
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the resonance frequencies, a few modes exhibit erratic behaviors such as a large frequency 

shift, and vanishing and emerging peaks (Figure 3.5). The erratic resonance behavior of 

the plexiglass rod is caused by a relatively weak impedance contrast between the specimen 

and the plastic rings. In contrast, the aluminum specimen has a much larger impedance 

contrast (impedance ratio between aluminum and plexiglass is 38 for the static moduli). 

Change in the attenuation is also shown in Figure 3.7 (a) and (b). As can be seen from the 

plot, attenuation of the aluminum rod increases significantly compared with the attenuation 

measured for free vibrations (Figure 3.4), and is not equal for all the modes. The 

plexiglass specimen, on the other hand, shows relatively small changes in attenuation 

except for the highest order mode ( e3 mode) in the plot. The seemingly small increase in 

attenuation in plexiglass is due to the large intrinsic attenuation of the material. 

The results indicate that the determined stiffness of a rock from the resonance 

frequencies may not be accurate if the acoustic impedance of the rock is relatively small 

compared with the impedance of the load-bearing plastic rings. Attenuation of a specimen 

is also affected by the coupling with the surrounding media especially when the intrinsic 

attenuation of the specimen is small compared with the energy loss through the plastic 

rings. 

3.4.2 Resonance of intact rock specimens 

Frequency response functions (FRF's) of rock specimens are shown in Figure 3.8 (a) 

and (b) for increasing axial stress. From the plots, it can be clearly seen that the resonance 

frequencies of the rocks increase significantly with increasing axial stress. For relatively 

low axial stresses ( < 0.1 MPa), the shifting behavior of the resonance peaks is severely 

disturbed by the improvement of the specimen-ring-frame coupling. The improved 

coupling both increases and decreases resonance frequencies. The behavior possibly 

depends on the relative contribution of the coupled mass (frequency decrease) and stiffness 

(frequency increase). 

The normalized resonance frequencies are shown in Figure 3.9(a) and (b). Neglecting 

the effect of the dispersion due to the geometry and Poisson's ratio of the specimens, these 

results show an increase in Young's modulus of the rocks during uniaxial compression. 

For the granite specimen, the correction for the dispersion due to the inertia effect discussed 

in Section 3.3 is negligible because Poisson's ratio is as small as 0.06 at the maximum 

(measured statically). The modulus for the sandstone specimen, however, may include 
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Figure 3.8 Measured FRF's of intact rock bars. Resonance frequencies of the specimens increase 
significantly with increasing axial stress. (a) ol mode of the granite specimen shows slightly irregular 
behavior. (b) Resonances of the sandstone specimen show quite erratic behavior possibly due to the small 
acoustic impedance. 
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Figure 3.9 Increase in phase velocity of rock specimens with increasing axial stress determined from 
resonance frequencies. Velocities are normalized by the phase velocities computed from resonance 
frequencies of free vibrations. Increased axial stress increases the resonance frequencies, resulting in the 
increase in the phase velocity. Due to the small acoustic impedance, the velocities for the sandstone scatter 
around the mean. 

significant error as Poisson's ratio increases up to 0.1.at 3MPa of axial stress. According 

to Bancroft's correction (Bancroft, 1941) with a Poisson's ratio of 0.1, the 5th and 6th 

modes include 1.2% and 2.4% of dispersion in modulus, respectively. Although there is 

significant scattering among the velocities obtained from different modes, increase in the 

velocities with increasing axial stress is clearly seen for both rock specimens. Young's 

moduli measured from static stress-strain measurements and ultrasonic velocity 

measurements are also shown in Figure 3.10(a) and(b) for comparison. To compute 

Young's modulus from the ultrasonic velocity measurements, Poisson's ratio of the granite 

specimen was assumed to be zero, i.e., the P-wave modulus was assumed to be identical to 

the Young's modulus, and the sandstone was assumed to ~e isotropic (Young's modulus 

can be determined from P- and S-wave velocities). The results obtained from the resonant 

bar tests show a basic agreement with the static tests. Results from the ultrasonic 

transmission tests, however, deviate from the static and resonant bar tests as the load is 

increased. This may be due to an increase in Poisson's ratio and the stress-induced 

anisotropy in the specimens. 
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Figure 3.10 Comparison of phase velocities determined by static tests, ultrasonic transmission tests, and 
resonant bar tests. Results are normalized to the phase velocities at 0 MPa. Note that the normalized 
vertical scale is equivalent to the Young's modulus of the specimens. The averaged results for the resonant 
bar test show basic agreement with increase in statically determined Young's modulus. Phase velocities 
determined from the ultrasonic velocity measurements are consistently higher than the other results, 
possibly an effect of the increasing Poisson's ratio and stress-induced anisotropy in the specimens that are 
riot taken into account in computing the phase velocity. 

3.4.3 Resonance of fractured rock specimen 

A single tensile fracture was introduced at the center of a granite rod specimen by 

Brazilian point loading. The orientation of the fracture was perpendicular to the rod axis 

and parallel to the average microcrack plane. The surfaces of the fracture were mated 

during the tests. The frequency response spectrum of the specimen is shown in Figure 

3.11 for a range of axial stress. By comparing the resonance frequencies in Figure 3.11 

and Figure 3.8(a), it can be seen that resonance frequencies of even modes were not 

affected by the introduced fracture while odd modes showed a decrease in frequencies. 

The difference in behaviors of resonance frequencies yields pairs of even and odd modes 

that were predicted in the analyses in the previous chapter (Section 2.2.1). 

The dynamic stiffness of the fracture can be determined from the difference in the 

resonance frequencies of the odd modes between fractured and intact specimens. As the 

elastic moduli of the rock change with stress, the Young's modulus for the intact part of the 

fractured specimen was determined from the longitudinal resonance frequencies of the 

intact specimen at each stress. The density of the specimen was assumed to be constant 

during the test. For measured resonance frequencies, rod length, diameter, density, and 
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Figure 3.11 FRF's of granite bar specimen containing a single through-going fracture at the middle of 
the bar. As the axial stress decreases (as does the fracture stiffness), even and odd modes merge together. 
Comparison of this plot with Figure 3.8(a) reveals that the effect of the fracture is only on the odd modes 
and the even modes are not affected. Mode ol and o2 seem to be affected rather strongly by the improved 
coupling with the surrounding media through the plastic rings. 

- 5 1012 .-----~----~----~----~----~-----. 

! 4 1012 ________________ _j __________________ L_ _______________ ) __________________ L. .............. ) ................. . 
::! i i : : : 
~ : . : 6 

- '2 : : : ;: 3 1 0 I ·················+-·····----·-····+·······--·--····+·········- -~---·············---~---··············· 

i 2 10'' ................. ! .................. ' ............... :............. : T ............... . .. : - . 
. 2 
E 1012 ---------------- -······-----------~-------------·-----r------------------~-------------------~------------------

K =1.58•10 11+ 2.01•10 1~cr -2."52•1.011 x<J
2 as 

r:: 
>­
"C 

0~----~----~----~----~----~----~ 
0 0.5 1 1.5 2 2.5 3 

axial stress (MPa) 
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The fracture stiffness increases as the specime_n is loaded, resulting in the nonlinear load-displacement 
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dynamic Young's modulus of the specimen, the dynamic fracture stiffness was calculated 

using -Eq.(2.9) at each stress (Figure 3.12). For modes that showed erratic behaviors 

(splitting of resonance peaks), the most dominant resonance peak was chosen for 

computing the fracture stiffness. The plot shows the stiffness of the fracture increasing 

with applied axial stress. The increase in stiffness results in a nonlinear load-displacement 

(closing displacement) behavior of the fracture. An experimentally determined fracture 

stiffness-axial stress relation is: 

1( = (1.58 + 20.1· a- 2.52 · a 2
) x lOu [Palm], (3.3) 

where a is the applied axial stress given in [MPa]. 

3.4.4 Effect of fluid inside the fracture 

The fractured granite specimen in Section 3.4.4 was resonated first without axial load. 

After measuring resonance frequencies and attenuation of the longitudinal mode 

resonances, the fracture was filled with distilled water injected by a syringe and changes in 

the resonance frequencies and attenuation were measured. The same test was repeated with 

0.5 MPa of axial stress. Figure 3.13(a),(b) show the change in the experimental FRF's 

before and after the water was injected into the fracture. For each pair of the even and odd 

modes, clear increases in attenuation for the odd modes are present. Figure 3.14 and 

·Figure 3.15 show the measured change in resonance frequencies and attenuation. For the 

higher fracture stiffness (axial stress=0.5MPa), odd mode resonance frequencies increased 

due to increase in viscosity of the fracture. On the other hand, even modes exhibited much 

smaller resonance frequency shifts. The resonance showed large increase in attenuation for 

odd modes and small increase for even modes. For the low-stiffness fracture, the 

resonance behaviors followed an opposite trend to the high-stiffness fracture: resonance 

frequencies of odd modes decreased while even modes exhibited increases. Attenuation 

behavior of the resonance was similar to the high fracture stiffness case, showing a large 

increase in attenuation for the odd modes. 

The observed behaviors of the resonance are consistent with the theoretical prediction in 

the previous chapter (Section 2.2.2). As odd modes generate maximum stress amplitude at 

the center of the rod where the fracture is located, large relative motion results between the 

two partially contacting surfaces ,of the fracture. This motion leads to a squirting flow of 

fluid around the contacting asperities. The viscous drag between the fluid and the fracture 
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Figure 3.13 FRF's of fractured granite bar showing the effect of fluid in the fracture. The fracture is 
saturated with distilled water. Increase in viscosity of the fracture attenuates odd mode resonances (labeled as 
ol-o3). The tests are conducted on a low-stiffness fracture (axial stress=OMPa) and a high-stiffness fracture 
(axial stress=0.5MPa). The surfaces of the fracture are mated. 

surface dissipates vibration energy. In contrast, vibrations for even modes do not generate 

stress at the center of the rod and attenuation remains small. 

As was shown in Section 2.2.2, for high fracture stiffness, an increase of viscosity in 

the complex fracture stiffness leads to an increase in resonance frequency with increasing 

attenuation and a decrease in resonance frequency for a low-stiffness fracture. Theoretical 

curves that describe the behavior of resonance frequency versus relaxation time are plotted 

for fracture stiffnesses at 0 and 0.5MPa of axial load (Figure 3.16). The fracture 

stiffnesses are computed using the experimentally determined fracture stiffness-stress 

relation in Eq.(3.3). Although the mode ol for low-stiffness fracture (axial stress OMPa) 
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Figure 3.14 Shift of resonance frequencies for a fracture injected with water. (a) For the low stiffness 
fracture, odd mode resonance frequencies decrease. Increase in the even mode frequencies cannot be explained 
by the model but may be due to the stiffening effect of water penetrated into the intact part of the specimen. 
o 1 mode shows a different behavior than the other odd modes, showing an increasing resonance frequency. 
(b) For the high stiffness fracture, odd mode resonance shows opposite behavior to the low stiffness 
fracture, and shows an increase in resonance frequency by injected water. 
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Figure 3.15 Change in attenuation for a fracture injected with water. For both high and low fracture 
stiffnesses, odd mode attenuation increases much more than the even mode. Increase in attenuation is 
related to the amount of resonance frequency shift. (a) For the low stiffness fracture, even modes show an 
increase in attenuation corresponding to the resonance frequency shift while (b) the even modes of the high 
stiffness fracture show very small increase in attenuation. 
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shows a different behavior than predicted, the experimental results show qualitative 

agreement with the theoretical predictions; odd mode resonance frequencies tend to increase 

for a high-stiffness fracture and decrease for a low-stiffness fracture due to a fluid induced 

increase in fracture viscosity. 
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Figure 3.16 Resonance frequency shifts due to an increase in fracture viscosity. Experimentally 
determined phase velocity and fracture stiffness are used to compute the curves. The resonance frequency of 
each odd mode (on) is shifted by the paired even mode (en)'s resonance frequency W2n and normalized by the 
fundamental mode's resonance frequency ro* for~an intact bar. (a) For the low stiffness fracture, an increase 
in viscosity (shown by the normalized relaxation time in horizontal axis) results in a decrease in the 
resonance frequencies. On the other hand, (b) for the high stiffness fracture, an increase in viscosity 
increases the resonance frequencies. 
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3.4.5 Effect of attenuative filling 

A latex membrane was placed between two surfaces of a fracture in the specimen and 

axially loaded up to 3.0MPa. As the load was decreased, resonance frequencies and 

attenuation were measured. FRF's measured during unloading are shown in Figure 3.17. 

Change in the attenuation of the observed modes is shown quantitatively in Figure 3.18. 

As can be seen from the plots, attenuation of odd modes is maximum at an intermediate 

stress. Differences in the attenuation .behavior between even and odd modes can be 

explained by the same mechanism described in Section 2.2.2. The non-monotonic increase 

and decrease in attenuation of the odd modes are due to the frictional and viscous 

dissipation in the latex membrane. A possible mechanism is shown schematically in Figure 

3.19. When a large axial stress is applied, the stiffness of the fracture is high and only 

small relative motion between the surfaces of the fracture occurs during vibration. For this 

reason, attenuation of the odd modes for high axial stresses is small. When the stress is 

decreased, large shearing motion is introduced in the membrane as the closing motion of 

the fracture extrudes the latex out of the contact between asperities. For a very small axial 

stress, the stress introduced by passage of a wave becomes even within the membrane. As 

the shearing motion in the membrane is small, attenuation becomes small again. 
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Figure 3.17 Attenuation of odd mode resonances due to a latex membrane in the fracture. Attenuation is 
relatively small for high and low axial loads (or fracture stiffnesses) while it is maximum for intermediate 
loads. 
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Figure 3.18 Attenuation in a fractured granite specimen with an inserted latex membrane. The 
attenuation coefficient was determined by the half-power method. For an intermediate stress range 
(0.01-0.lMPa), attenuation is maximum. Note that some of the resonance peaks for the odd modes vanish 
for maximum attenuation. 
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Figure 3.19 Possible mechanism for non-monotonic attenuation behavior of odd modes. For high 
stiffness fracture, asperities on two surfaces of a fracture are in contact and only a small stress change is 
caused in the latex membrane. At intermediate stresses, a large stress concentration is caused in the 
membrane between asperities, resulting in flow of the latex with a large shear motion. This shear motion 
causes large attenuation of resonance. For a small stress, stress concentration in the membrane becomes 
small and a passing wave ca~ses a uniform fluctuation of stress. As the shear motion in the membrane is 
small, resulting attenuation decreases. 

3.5 Summary 

This chapter examined the resonance characteristics of rock specimens including a 

single fracture using the resonant bar test. To study the effect of fracture stiffness on 

resonance behavior, a bar specimen including a fracture was axially loaded through 

compliant plastic rings. The use of plastic rings made the boundary condition of the 

specimens approximately free-end although measured resonance frequencies and 

attenuation were affected by the coupling with the surrounding media to varying degrees 

depending on the acoustic impedance contrast between the specimen and the rings. 

Axially loaded intact rock specimens exhibited a significant increase in velocity (or 

Young's modulus) with increasing axial load. This is due to the changes in rock 

microstructure by stress such as' closing of microcracks and stiffening of grain contact. 

Although the measured resonances were affected by the improved end-coupling with 
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increasing stress, the observed changes were significantly greater than the changes in 

resonance frequencies measured for aluminum and plexiglass specimens. For the range of 

frequencies used for the resonant bar tests, the results showed good agreement with the 

statically measured changes in Young's modulus. Dynamic Young's modulus values 

determined from high-frequency ultrasonic transmission tests were consistently greater than 

the moduli determined from other measurements especially for large axial stresses. 

Although the cause of such behavior is not known, changes in elastic behavior of the 

specimens such as increased Poission's ratio and stress-induced anisotropy may be 

responsible. The resonant bar test using longitudinal vibrations is essentially limited to 

measuring the dynamic Young's modulus along the bar axis, and Poisson's ratio, if the 

specimen is isotropic. Determination of elastic moduli for anisotropic rocks will be 

discussed in a later chapter (Chapter 5). 

The effects of a compliant fracture on the resonance of a bar specimen were examined 

using a granite bar including a through-going center fracture. The stiffness of the fracture 

was changed by applying axial load to the specimen. Resonance frequencies of the odd 

modes changed significantly in contrast to the even modes that showed only a small shift, 

similar to the intact specimen. Although the resonance behavior was affected by end 

coupling to some degree, the behavior of experimentally measured resonances show 

qualitative agreement with the predictions of the analytic model described in the previous 

chapter. From the frequency shifts of the odd modes, dynamic fracture stiffness was 

determined for each axial load. 

The fracture in the granite specimen was also filled with water and a latex membrane to 

see the effect on the attenuation of resonance. For both cases, attenuation of the odd modes 

increased as predicted in the previous chapter. The resonance frequency shift due to the 

water in the fracture varied depending on the stiffness of the fracture: for low fracture 

stiffness, an increase in viscosity of fracture lead to a decrease in the resonance frequencies 

while the resonance frequencies for the high-stiffness fracture showed the opposite 

behavior. These changes in behavior can be qualitatively predicted by using a rheological 

model (Kelvin-Voigt model) for fracture stiffness. A fracture with a latex membrane 

showed attenuation of resonance that changes as a function of stress applied to the fracture. 

The attenuation is maximum for intermediate stresses for which it is postulated that a large 

shear motion within the membrane occurs. 
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The effects of the fracture stiffness on the resonance of the bar specimens predicted by 

the one-dimensional analyses in the pervious chapter were demonstrated successfully. 

Although some of the results presented in this chapter were affected by the boundary 

condition of the specimens, measured and predicted resonance behaviors for varying 

fracture stiffness and viscosity showed good qualitative agreement. This in turn indicates 

that the model (displacement-discontinuity boundary conditions) can be used for describing 

the dynamic behavior of a fracture during resonance. For a more quantitative measurement 

for relationship between fracture stiffness and characteristics of resonance such as 

resonance frequency shift and attenuation, an experimental setup that provides better 

acoustic isolation to the specimen while allowing application of axial stress is necessary. 

Some of the problems with the resonant bar test that arise from the one-dimensionality 

of the vibration field can be solved by examining the resonances of arbitrarily shaped 

specimens. By examining resonance frequencies and mode shapes, anisotropic elastic 

moduli and fracture stiffness can be determined with the help of numerical models. In the 

following chapter, a numerical code that analyzes the normal mode vibration of arbitrarily 

shaped bodies with elastic anisotropy in their bulk material properties and with fractures is 

introduced. 



Numerical Model for 
of 3-D Anisotropic 

Resonance 
Body 

Fractures Containing 

4.1 Introduction 

Fractures in materials often cause serious structural hazards. As the introduction of a 

fracture in a solid body changes its vibration characteristics, attempts have been made to 

assess the presence and the degree of damage caused by fractures using the acoustic 

resonance of structures. Acoustic resonance has been used for characterizing bulk elastic 

properties of solids for many years. For solids of simple geometries such as slender bars 

(Birch & Bancroft, 1938; Powers, 1938) or spheres (Soga & Anderson, 1967; Birch, 

1975), determination of elastic properties from measured resonance frequencies is based on 

the application of known analytic solutions. However, for many solid structures that have 

complex three-dimensional geometry, their resonance can hardly be analyzed by analytic 

methods. For this reason, numerical techniques such as finite element (FE) modeling are 

performed to simulate the effect of damage on resonance of structures. FE modeling is 

especially powerful for analyzing the vibration of beam and shell structures as it can make 

use of computationally efficient structural elements (e.g., Petyt, 1990). However, for 

massive solid structures such as dams, concrete bridge piers, and laboratory scale test 

76 
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specimens, the FE modeling loses its advant~ges as true three-dimensional modeling using 

three-dimensional elements is required. 

In this chapter, a numerical technique is introduced for simulating the effect of 

compliant interface(s) and elastic anisotropy on the resonances of a body with a general 

three-dimensional geometry. Using this technique, anisotropic elastic constants and the 

stiffness of a fracture are determined from experimentally measured resonance frequencies. 

For intact solids, many researchers including Ekstein & Schiffman (1956), Holland 

( 1967), and Demarest ( 1969) have investigated computationa1 methods for determining 

elastic properties from resonance measurements. They showed that numerical techniques 

based on a variational method with the Rayleigh-Ritz discretization of the displacement field 

very accurately predicts resonance frequencies of small anisotropic elastic crystals with 

rectangular geometry. Ohno (1976) applied the method to crystals with rectangular 

geometry and determined their anisotropic elastic moduli by numerical inversion. Visscher 

et al.(l991) demonstrated that use of a truncated polynomial series instead of Legendre 

polynomials made it possible to analyze the normal mode vibrations of anisotropic elastic 

bodies with more complex geometries. These methods are important because they 

constitute fast and accurate forward analysis techniques that can be used in the back 

analysis of resonance measurements for general elastic moduli and mechanical properties of 

mat~rials containing fractures. 

To formulate the numerical technique presented in the following sections, a fracture is 

introduced as an interface between intact solid bodies with imperfect contact. The load 

displacement behavior of the fracture is described by the displacement-discontinuity 

boundary conditions (Schoenberg, 1980; Pyrak-Nolte et al., 1990a). A matrix equation 

that is to be solved for the normal modes of vibration is derived by applying the variational 

technique used by the researchers mentioned previously. The formulation of the problem is 

essentially an extension of Vissher et al.(1991)'s work. ~numerical code developed for 

this model computes resonance frequencies, mode shapes, and frequency response 

functions for specified geometry and mechanical properties of a fractured elastic body 

(Nakagawa et al., 1996). Using the results of the forward computation for resonance 

frequencies and mode shapes, the numerical code can also be used for iterative inversions 

for anisotropic elastic moduli and fracture stiffness from observed resonance frequencies. 
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4.2 Theory 

4.2.1 Hamilton's principle. 

For an elastic body undergoing a steady-state vibration, a Lagrangian is defined by 

(4.1) 

where KE and PE are the kinetic and potential energies, respectively (Vissher et al., 1991). 

When a fracture is introduced into the volume V, the potential energy term now consists of 

two parts: elastic strain energy stored in the bulk part of the body ( P~ ) and energy stored 

in the fracture ( Pf ). If the body is separated by Nfrc fractures into Nbtk(=Nfrc+ 1) blocks, 

noting that the Pf is distributed over the surface of the fractures, the Lagrangian becomes 

(4.2) 

As subsequent discussion is made in the frequency domain, eimt dependence of 

displacement is assumed. Behavior of the fracture is described using the displacement­

discontinuity boundary conditions. With a mass density function p( x E Vb) , a general 

elasticity tensor Cijkt(x E Vb), and a fracture Stiffness matrix K"ij(x E Sf), energy density 

terms are expressed as 

b 1 2 T KE = -pm u. u. 2 I I 
(4.3a) 

b 1 
PE = -u .. c .. ktuk t 2 1,] I} ' 

(4.3b) 

f 1 
PE = 2[uJK"ij[uj] (4.3c) 

where [uJ= u;- u; represents a displacement-discontinuity across the fracture. A 

conceptual model for a fractured body is shown in Figure 4.1. For a fracture with a normal 

vector { ni} T =(0,0, 1 ), the diagonal form of the fracture stiffness matrix is 

0 

K"ry 

0 

(4.4) 
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v VI 

displacement discontinuity 

<intact body> <fractured body> 

Figure 4.1 Modeling fractured elastic material with displacement-discontinuity boundary conditions. 

where K,x and Kry are the tangential stiffnesses, and Kn is the normal stiffness of fracture. 

In general, fractures may also have non-zero off-diagonal stiffnesses. The physical 

meaning of the off-diagonal fracture stiffnesses for the above coordinate system is 

discussed in Chapter 8. It is noted that a rotation of the coordinate system can also make 

the fracture stiffness matrix fully populated. 

Taking a variation of the Lagrangian with respect to displacement vector yields 

where 

Eq. I= pmzui + CiJkluk,lJ 

Eq. II= CiJkluk,lnJ = aiJni = ti 
Eq. III= K"iJ[u). 

(4.5) 

(4.6a) 

(4.6b) 

(4.6c) 

The surface of each block Sb can be separated into an external surface Sb,ext and an internal 

surface (fracture surface) Sb,int· By combining a pair of displacement variations on the 
internal surfaces of adjacent blocks, a displacement-discontinuity variation 8[ ui] is formed. 

Consequently, the variation of the Lagrangian is modified as 

Nblk Nblk Nf" , 

8L = IJ (Eq.I)8uidV +If (Eq.II')8uidS +If (Eq.ill')8[uJiS (4.7) 
b Vb b Sb,ext f Sf 

where 

Eq.II' = ti 
Eq. ill'= K"iJ[ui] + ti. 

(4.8a) 

(4.8b) 
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In Eq.(4.7), variations of displacement in each term are independent. Therefore, requiring 

a stationarity of the Lagrangian is equivalent to solving the following boundary value 

problem 

Eq. I = pm
2
ui + Cijktuk,lJ = 0 

Eq. ll' = ti = 0 or oui = 0 

Eq.ill'= K'ij[uj]+ti =0. 

.... Wave equation 

.... Homogeneous B.C. 

. ... Constitutive relationship for a fracture 

(4.9a) 

(4.9b) 

(4.9c) 

This is a wave propagation problem in multiple intact blocks whose resulting surface 

displacements on the fracture are related by displacement-discontinuity boundary 

conditions. The above result demonstrates applicability of the variational technique to 

vibration problems of a solid elastic body with fractures. 

4.2.2 Rayleigh-Ritz method 

Using notations similar to those used by Visscher et al. (1991), a displacement field 

inside each block is expressed by a truncated polynomial series with unknown coefficients 

A.b 

ui(x E Vb) = u[b) = 'Lai~Jcp).b) (4.10) 
A.=O 

where ll is defined for a combination of the order of polynomials 

A--7 {l,m,n} ll = 1,2, .... ,R l+m+n'!{,N. (4.11) 

. If the maximum order of the polynomials N is identical for the three directions (x, y, and 

z), R is calculated from theN by 

R = 3(N + 1)(N + 2)(N + 3)/6. (4.12) 

This type of descretization is known as the Rayleigh-Ritz method. As pointed out by 

Visscher et al., this simple polynomial series is better suited than Bessel functions or 

Legendre polynomials used by other researchers for modeling mode shapes of a body with 
an arbitrary geometry. The set of basis functions { ct>~J }can be chosen independently for 

each block. As { ct>~J .}is a complete set, i. e., any polynomial of order less than N can be 

expressed as a linear combination of ct>~J 's , it can express any continuous displacement 

field if N is sufficiently large. 
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By utilizing the equations (4.3a)-(4.3c), a discrete version of the Lagrangian with a 
· • { (I) (I) ( Nbtk) }T · · global coefficient vector a = a11 , a12 , ... , a R3 IS obtamed as 

Nbtk 

M= IM(b) 
b 

Nbtk 

G= LG(b) 
b 
Nfrc 

GF = IGp(f). 

f 

(4.13) 

(4.14a) 

(4.14b) 

(4.14c) 

where M is the global mass matrix, G is the global bulk stiffness matrix, and GF is the 

global fracture stiffness matrix. These are sums of submatrices M(b),G(b), and GF(f), 

respectively, that are defined for each block or fracture as. 

(b) s: I n.(b) (b)n.(b)dV 
MA.iA.'i' = uii' vb 'PA. p 'PA.' 

G~b!,., = f <J><,b)c~.~~.<J><,b),dv 
Alllo l v, llo,] l}l 1 llo,] 

and 

for the base functions for single blocks, and 

(4.15a) 

(4.15b) 

(4.16a) 

(4.16b) 

(4.16c) 

(4.16d) 

for the base functions in separate adjacent blocks. Through Eq.( 4.16a) to ( 4.16d),J+ and 

p represents blocks on the positive and negative sides of a fracture, respectively. For 

numerical implementation, pairs of indices (A.,i) and (A.',i') in the above expressions are 

expressed by single indices so that the equation can be written in a matrix form. 

Variation· of the discrete Lagrangian with respect to the coefficient vector a yields 
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Mass matrix Block stiffness Fracture stiffness 

Symm. Symm. 

Figure 4.2 Structure of mass (M) and stiffness (G) matrices for a 3-block, 2-fracture system. Mass and 
block matrices are block-diagonal. The fracture stiffness matrix consists of block-diagonal intra-block terms 
and off-block-diagonal inter-block terms. 

(4.17) 

(4.18) 

This is a matrix equation for a generalized eigenvalue problem. The mass matrix M is 

symmetric positive definite and the stiffness matrices G+GF are symmetric. Therefore, the 

matrix equation can still be solved by standard eigenvalue solvers such as the Householder 

tri-diagonalization and the QR algorithm (Press et al., 1988). An example of the structure 

of the matrices for a 3-block, 2-fracture system is shown in Figure 4.2. 

The numerical solution of Eq.(4.18) can be used to produce a frequency response 

function for a specified combination of source and receiver locations and directions. By 

employing a standard modal superposition technique (e.g., Newland, 1989), the 

displacement response (FRF) of a fractured body for a unit sine wave force excitation is 

given by 

N A. (x<rl) A. (x<sl) 
( 

(r) (s)) _""' 'l'n . 'l'n 
W X 'X - ::: ( (Jy1 """" m~ )a<nlTMa<nl ' 

(4.19) 

where x(r) and x(s) are location vectors for a receiver and a source, respectively, mn is the 

angular resonance frequency for mode n, and a(n) is the nth eigenvector. Weight functions 

l/Jn are defined as 
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i=l 
(4.20a) 

i=l 
(4.20b) 

where n}'l and n?) are unit orientation vectors for receiver and source, respectively. 

4.2.3 Rigid and finite stiffness boundary conditions 

Resonance of a body on a rigid foundation with a compliant interface can be simulated 

by the same technique as the previous subsection: an elastic body is attached to a fixed 

(immobile) rigid body with displacement-discontinuity boundary conditions. As there is no 

displacement in the rigid body, assuming the rigid body is on the negative side of the 

interface, Eq.(4.16b-d) vanish. The resulting mass and stiffness matrices are identical to 

those of the elastic body with traction-free boundaries except for additional intra-block 

terms in the stiffness matrix computed by Eq.(4.16a) (Figure 4.3). The stiffness of the 

interface between the elastic body and the rigid foundation can be specified by the fracture 

stiffness. A rigid boundary condition is realized by making the fracture stiffness of the 

boundary very large. 

Symm. 

Figure 4.3 Structure of stiffness matrix for stiffness boundary (connected to rigid foundation). 
Modification of the matrix is required only for the block-diagonal intra-block terms of the QFI submatrix. 
QFO submatrix for the rigid foundation is not required as the displacement is always zero. 
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4.2.4 Symmetry of the problem 

When a problem has certain degrees of symmetry either in material properties or 

geometry, time and memory required for the computation can be greatly reduced by 

decomposing the eigenmodes into mutually independent groups. Demarest ( 1971) showed 

that normal modes of a cube specimen that exhibit elastic behavior symmetric with respect 

to the three mirror planes (planes that are parallel to the surfaces of a cube, cut through the 

center of the cube, and intersect each other at right angles) can be decomposed into eight 

mutually independent mode groups by selecting a certain combination of even and odd 

orthonormal basis functions for displacements. A detailed discussion is given by Ohno 

(1976). Although the current method does not use orthonormal basis functions employed 

by researchers such as Ohno, identical modal decomposition techniques can be used to 

rewrite the mass and the stiffness matrices into independent submatrices as long as the 

problem has a sufficient degree of symmetry. 

When a fracture is introduced symmetrically into a symmetric elastic body, the 

symmetries of the problem can still be exploited with some modifications in the way the 

base functions are defined. These modifications are necessary because the displacement­

discontinuity boundary conditions between adjacent blocks break the symmetry of each 

block. For example, if a free vibration problem of a fractured body is to be solved, a block 

at a free end has a stress-free boundary at one end, but has a displacement-discontinuity 

boundary on the other end. To solve this problem, base functions for all the blocks are 

collected together to redefine global base functions. Odd and even global base functions 

are defined not by the order of power for the polynomial within each block but by the way 

the base functions are combined. For an even number of blocks (odd number of 

fracture(s)), an even global base function is constructed such that identical local base 

functions are chosen in the corresponding blocks across the plane of symmetry (Figure 

4.4). Odd global base functions are constructed in the same way but with base functions 

with an opposite sign across the symmetry plane. If the number of the blocks is odd, base 

functions for the center block have to be either even or odd depending on the types of the 

global base function. 
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N=even odd even N=odd odd even 
mode mode mode mode 

(1) 
<1>. 

<1>(1) <1>(1) <1>(1) 

<1>(2) <1>(2) 

(2) 

<I> odd 
(2) 

<!>even 
<1>(2) 

<1>(1) -<1>(1) q,<l) 

Figure 4.4 Examples of structure for global base functions for fracture(s) introduced symmetrically in a 
symmetric body. For even numbers of blocks, global odd and even base functions are defined using local 
base functions that can be either even or odd. For odd numbers of blocks, an even global base function 
requires an even local base function for the center block and odd global base functions require odd local base 
functions. 

4.3 Resonance Inversion 

4.3.1 Perturbation of stiffness - Rayleigh's Quotient 

When the stiffness of an elastic system such as the elastic moduli of the intact part and 

the fracture stiffness changes, both resonance frequencies and related mode shapes are 

affected. The effects of a small change in the stiffness can be examined by applying small 

perturbations to the eigenvalue and eigenvector of the Eq.( 4.17). 

For an arbitrary mode k, the matrix equation for the elastic system is given by 

(4.21) 

When a small perturbation 8r is added to the stiffness matrix r, for the perturbed 

resonance frequency and mode vector, the following matrix equation has to be satisfied. 

(4.22) 

Subtracting Eq.(4.21) from (4.22) and ignoring small higher order terms yields 
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(4.23) 

By multiplying the mode vector to Eq.(4.23) from left hand side of the equation and using 

the Eq.(4.21) to eliminate the first term, we get 

(4.24) 

(4.25) 

Eq.(4.25) is called Rayleigh's quotient and explicitly shows a change in resonance 

frequency due to a small perturbation in the stiffness of the system. This relation is 

particularly useful as the perturbation in the resonance frequency can be calculated without 

the knowledge of the perturbation in mode vector. 

4.3.2. Determination of elastic moduli for anisotropic material 

Suppose that the bulk stiffness matrix G contains n elastic constants of the generalized 
Hooke's law ( aij = Cijkt£k1). First of all, an initial guess for the elastic constants is made 

and resulting resonance frequencies and mode vectors are computed. Assuming the initial 

guess is close to the elastic moduli of real material, Eq.(4.25) can be used to update the 

elastic constants of the system from differences between measured and computed resonance 

frequencies given by 

(4.26) 

The superscript (obs) means a quantity from observation and (i) is an iteration counter. For 

the initial stage, i=O. By introducing Eq.(4.26) into Eq.(4.25) 

(4.27) 

As the left hand side of the equation is linear in terms of the perturbation of elastic 

constants Ci> the equation can be rewritten as 

(4.28) 

where 
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(4.29a) 

b
(i) _ 2Ul 2(obs) 
k - mk - mk • (4.29b) 

When m resonance frequencies are observed, the following matrix equation is obtained 

A (il(m x n)8C = b(i). (4.30) 

This is a generalized inverse problem for an increment in the elastic constants Ci.When the 

number of observations are more than unknowns (m~n), assuming the matrix product has 

its inverse, the increment 8C is computed by 

8C = ( A(iJT A(iJ rl b(iJ. (4.31) 

This is a least square solution of Eq.( 4.30). The meaning of the least square minimization 

is graphically shown in Figure 4.5. The assumed elastic constants of the system are 

improved by 

c(i+l) = oc + c<i) (4.32) 

As the above discussion assumes infinitesimal perturbation of stiffness, elastic moduli 

computed from Eq.( 4.32) do not yield resonance frequencies that agree with the observed 

resonance frequencies. The solution is obtained by iteratively applying the above 

procedure and minimizing the difference between observed and computed resonance 

frequencies. At each iteration, resonance frequencies and mode vectors are computed using 

updated elastic constants. 

The iterative inversion method presented above is essentially identical to the method 

used by Ohno (1976) and Migliori et al. (1993). Migliori et al. derived the matrix equation 

Eq.(4.30) by minimizing the following subjective function 

(4.33) 

where wk is a weight reflecting the confidence and accuracy of each mode. The iteration 

procedure used here is known as Newton's method and the initial estimate for the elastic 

constants should be close to the final solutions for convergence. To improve the 

convergence of solution when an initial guess is relatively far from the final solutions, 
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Migliori et al. employed the Levenberg-Marquardt method (e.g., Press, 1988) that 

combines the above with the steepest-descent method, which seeks the fastest-decreasing 

direction of the subjective function in the solution space. Increment of moduli by the 

Levenberg-Marquardt method is given by 

8C = [A (i)T A (i) + .Q. Diag( A (i)T A (i)) r b(i) (4.34) 

where .Q is a dimensionless positive parameter and Diag( ) is an operator that extracts a 

diagonal part of the matrix. When a solution is far from the final solution, a large .Q is 

taken to assure that the subjective function is decreased. When the solution becomes close 

to the final solution and the subjective function becomes small, .Q is brought to zero and 

Newton's method is used to achieve the converged solution. 

Although implementing the Levenberg-Marquardt method to a computer code is not 

difficult, current research employed only the Newton's method to update solutions during 

iterations. 

4.3.3. Determination of anisotropic fracture stiffness 

The procedure shown in the previous subsection can be directly applied to determine 

anisotropic fracture stiffness. Noting that a perturbation in the stiffness is introduced only 

in the fracture component of the stiffness matrix, Eq.(4.27) becomes 

(4.35) 

Again, as the left hand side of the equation is linear in terms of the fracture stiffness, the 

above equation becomes 

(4.36) 

where 

(4.37) 

Note that the components of the fracture stiffness vector do not have to be for a single 

fracture. For m ( m ;?:: n) observations for resonance frequencies, the increment for the 

fracture stiffness vector is given as 
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(4.38) 

Using Eq.(4.38), a similar iterative procedure as in the previous section is taken. 

4.4 Accuracy of Computed Resonance Frequency 

4.4.1 Lame's mode 

Accuracy of the introduced method for computing resonance frequencies of intact 

elastic bodies have been demonstrated by many researchers. Holland(l968) compared his 

results and those of Ekstein and Schiffman ( 1956) for computed resonance frequencies of 

isotropic cubes with analytically available Lame's mode resonance frequencies. Demarest 

(1969) showed that use of Legendre polynomials for base functions produces better results 

than the previous works and demonstrated the accuracy of his method by using the 

experimentally measured resonance of a steel cube. 

For rectangular parallelepipeds, there exists a family of modes called Lame's mode 

(Lame, 1866) for which an analytic expression for the resonance frequency and mode 

shape are available. For free vibration of isotropic rectangular parallelepipeds, Lame 

showed that the mode has resonance frequencies 

w = mJC ~2c66 , 
2a p 

(4.39) 

which satisfies djm = bfn, where 2a and 2b are any two lengths of the block, m and n are 

integers, c66 is a shear modulus, and p is density of material. A Lame mode does not have 

any motion in the direction of the third length and tractions are zero on any plane normal to 

it. Lame's mode for a more general type of elasticity is discussed by Mindlin (1956). For 

an isotropic cube, Eq.(4.39) becomes 

(4.40) 

where L is a length of the cube. Due to the symmetry, each Lame's mode is triply 

degenerate. 
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4.4.2 Accuracy of solution for an intact cube 

As general analytic solutions for the resonance frequency of an arbitrarily shaped elastic 

body do not exist, the accuracy of numerical solutions cannot be checked by reference to 

the analytic solution. An alternative method to check the accuracy is to examine the 

convergence behavior of the numerical solution as the order of the approximation for the 

employed base functions is increased. As any continuous displacement field can be 

expressed by a complete set of base functions with sufficiently high order ofpolynomials, 

numerical solutions can be considered to be close to the exact solutions if any change in the 

resonance frequencies with increasing order of base functions is sufficiently small. 

Changes in computed resonance frequencies of an isotropic cube with traction free 

boundaries are shown in Figure 4.5. Each curve represents the difference between 

resonance frequencies for a single mode with increasing maximum order of base function 

polynomials, n. The n is identical for three directions (x, y, and z directions). The 
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Figure 4.5 Convergence of computed resonance frequencies for an isotropic cube (E=50GPa, v=0.2, 
L=O.lm, p=2600kg/m3). Resonance frequency changes between 2k th and 2(k+ 1) th order approximation 
(n=2k+l) are shown. The theoretical resonance frequency for the 1st Lame's mode is 20.0160 kHz. Higher 
order modes require higher order base functions to compute the resonance frequency accurately. It is noted 
that the Lame mode converges faster than other type of modes. 
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accompanying mode shape is shown for each mode. It can be seen that higher order modes 

require higher order base functions for accuracy. The 12th, 13th, 14th modes form the first 

Lame's mode and exhibit faster convergence than other modes. The second Lame's mode 

(63th, 64th,65th modes) are also shown for comparison. The computed resonance 

frequencies of the Lame's modes are compared with the analytic solutions with increasing 

order of base function polynomials (Figure 4.6). It can be seen that the modes exhibit 

rapid convergence to the exact solutions as the order of approximation is increased. 

[1st Lame mode] 
1 .001 .--.,....-:;.--...,...-...,.--__,.-...,..;:.---,--, 

[2nd Lame mode] 
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Figure 4.6 Convergence of the 1st and 2nd Lame mode resonance frequencies for an isotropic cube. The 
vertical axis is normalized by theoretical resonance frequency. It is noted that 2k+ 1 th and 2k th order base 
functions result in identical resonance frequencies of the Lame's mode. The 1st mode (mode 12-14) 
resonance frequency is accurately computed even with relatively low order polynomials. 

4.4.3 Accuracy of solution for a fractured cube 

When a fracture is introduced into the cube discussed in Section 4.4.2, resonance 

frequency and mode shape are altered, depending on the stiffness of the fracture. As 

vibrations of the cube with very high and low fracture stiffness are close to free vibrations 

of intact block(s), an intermediate fracture stiffness (K=1011 Palm) is chosen to understand 

the conversion behavior of numerical solutions. The fracture stiffness is assumed to be 
isotropic ( 1\x = 1\Y = 7\2 = K:). 

Conversions of computed resonance frequencies for an isotropic cube containing a 

centered through-crack is shown in Figure 4.7. The maximum order of base function 

polynomials in each block separated by the fracture is 2m(=n) for the x andy directions and 

m for the z direction (direction normal to the fracture). All material properties are identical 



9 2 4 Numerical Modeling of 3-D Resonance 

to the intact cube in the previous subsection. From the plot it can be seen that introduction 

of a fracture does not slow down the convergence of solutions. It is also noted that 

convergence and mode shape of the 21st mode are identical to the first Lame's mode of an 

intact block. This is because a fracture introduced in parallel to the x-y plane does not have 

any effect on the resonance of the mode as tractions on the plane are zero everywhere in the 

intact cube. 

Cl) 
'i;:. 10° II u -t: 

ca 
t: 1 o-1 
0 
0 
Cl) 
1.. 

1 o·2 

4 5 6 7 8 9 10 11 12 

n (order of polynomial) 

Figure 4.7 Convergence of computed resonance frequencies for a fractured block (E=50GPa, v=0.2, 
L=O.lm, p=2600kg/m3, fracture stiffness K'=l011 Palm). Resonance frequency changes between 2k th and 
2(k+ 1) th order approximation (n=2k+ 1) are shown. 21th mode is identical to the 1st Lame's mode (20.0160 
kHz). Higher order modes require higher order base functions to compute the resonance frequency accurately. 

4.5 Accuracy of Resonance Inversion 

4.5.1 Inversion for isotropic elastic moduli 

The resonance inversion technique introduced in Section 4.3.2 was checked for its 

performance to determine isotropic elastic moduli of a cube from its resonance frequencies. 

Convergence and accuracy of determined solutions were examined. Resonance frequency 

and mode shape of the "observed" modes were computed using 12th order base functions. 
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Figure 4.8 Source and receiver locations for observed resonance frequencies of an isotropic cube. 
Direction of the source and receiver are aligned. 

Young's modulus and Poisson's ratio of the cube (O.lmxO.lmxO.lm) were assumed to be 

50GPa and 0.2, respectively. Density of the cube was 2600kgfm3. For source and 

receiver locations shown in Figure 4.8, a FRF(compliance) was computed (Figure 4.9). 

Resonance frequencies of the first five modes were used for the inversion. 

As the inversion process requires many iterations, lower 1Oth order base functions were 

used to approximate the displacement field in the cube. As initial guesses, Young's 

modulus of 25GPa and Poisson's ratio of 0.2 were chosen. Figure 4.10(a) shows changes 

in the standard deviation for the power of computed resonance frequency given by 

: : : : 
- 1 o·13 

1 rr2a ······················-r·················· T .. ·················:·· ······ ......... ··-r ................. . 
0 10 20 30 40 50 

frequency (kHz) 

Figure 4.9 Computed FRF(compliance) for forced excitation of an isotropic cube. Modes marked by 
solid triangles were used for checking the accuracy of numerical inversion for elastic moduli. 
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Figure 4.10 Convergence of the solution. The original model's Young's modulus and Poisson's ratio 
are E=50 GPa and v=0.2 (exact solutions), respectively. The initial guess is E=25 GPa and V=O.l. 
"Observed" resonance frequencies are computed using l21h order base functions. Inversions arc.< conducted 
using 1 Olh order base functions. The observed resonance frequencies are perturbed by the amount specified 
in the plot to see the effect of error in measured data on the convergence. 
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1 m 2 
_ _ ~ (J2(i) _ J2(obs)) a 1z - N L... k k , 

k=l 

(4.41) 

wherefk2(obs) andfl(i) are the power of observed and computed resonance frequencies for 

the i th iteration, respectively, and N is the number of observed modes (here, N=5). In 

the plot, the square root of ap's are shown to indicate an average difference between 

resonance frequencies of an inverted model and observed resonance frequencies. During 

the inversion, the weighting factors in Eq.(4.33) are assumed to be constant (=1). To 

examine the effect of errors in the observed resonance frequencies, the frequencies were 

perturbed by the amount specified in the plot. 

From the plot it can be seen that an increase in the perturbation leads to an increase in 

the difference between the inverted and observed resonance frequencies. A case with no 

perturbation ( l:!.f = OHz) also shows a small difference at convergence due to the difference 

in the order of base functions used for the inversion. Even though the initial guess is very 

different from the model's true elastic moduli, the convergence behavior is quite stable. 

Changes in the Young's modulus and Poisson's ratio at each iteration are also shown in 

Figure 4.10(b) and (c). It is noticed that in spite of relatively large perturbations 

( l:!.f =100Hz, 1kHz), the inverted Young's moduli are reasonably accurate. Poisson's 

ratio, on the other hand, is more sensitive to the error in the observations. 

4.5.2 Inversion for isotropic fracture stiffness 

Performance of the resonance inversion technique for determining isotropic fracture 

stiffness was examined using the same method in Section 4.4.1. A model used for the 

tests was the same cube including a fracture as in Section 4.4.3 (fracture stiffness 

K'=1011Pafm). Locations of a source and a receiver are shown in Figure 4.11. Computed 

FRF and modes used for inversion are shown in Figure 4.12. An initial guess for the 

fracture stiffness was chosen as 1012pafm. For a single case with no perturbation, an 

initial guess of K'=1012Pafm was also tested. 

During the inversion, it was found that a direct application of Newton's method does 

not converge the solutions as the initial guesses were too far from the exact solutions. To 

ensure the convergence of the solutions, a correction for fracture stiffness at each iteration 

(Eq.(4.38)) was introduced as 
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Figure 4.11 Source and receiver locations for observed resonance frequencies of an isotropic cube 
including a single through-crack. Direction of the source and receiver are aligned. 

(4.42) 

This modification decreases the speed of convergence but helps to stabilize the convergence 

process. Figure 4.13(a) and (b) shows changes in the averaged resonance frequency error 

and determined fracture stiffness, respectively. The speed of convergence is much slower 

than the inversion for elastic moduli of the intact cube discussed in Section 4.5.1. It is 

noticed that the determined fracture stiffnesses are relatively accurate except for a case with 

a large error in the observation ( 11! = 1kHz). 

Figure 4.12 Computed FRF(compliance) for forced excitation of an isotropic cube containing a fracture. 
Modes marked by solid triangles were used for checking the accuracy of numerical inversion for elastic 
moduli. 
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Figure 4.13 Convergence of solution. The original model's Young's modulus and Poisson's ratio are 
E=50 GPa and v=0.2, respectively, and fracture stiffness is 1011 Palm. The initial guess was made as 1012 

Palm for four cases with different perturbation in the observed resonance frequencies and 1010 Palm for no 
perturbation. "Observed" resonance frequencies were computed using 12x12x6 (x, y, and z-directions) th 

order base functions in each block. Inversions were conducted using 8x8x4th order base functions. 
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4.6 Summary 

In this chapter, a simple numerical method for computing normal mode vibrations of 

elastic body with fractures was introduced. Using this fast forward modeling technique, a 

numerical inversion technique for determining elastic moduli and fracture stiffness from 

observed resonance frequencies was developed. 

As analytic solutions for an arbitrarily shaped three-dimensional body with fractures are 

not available, the accuracy of the numerical model is difficult to evaluate. However, from 

the convergence of computed resonance frequencies with increasing order of polynomial 

approximations, the accuracy of the numerical model is examined indirectly. 

For a special case where analytic solutions were available (Lame's mode), computed 

solutions were compared with analytic solutions showing good agreement. Accuracy and 

conversion of the inversion technique were checked for isotropic elastic moduli and fracture 

stiffness of cubes. The results indicated that even when relatively large error was present 

in the observed resonance frequencies, the method could determine the elastic parameters 

with reasonable accuracy. However, numerical results obtained for a specific problem 

have to be viewed with caution. This is because a resonance is affected by many 

geometrical and mechanical parameters of a specimen and the accuracy of the solution is 

expected to vary for different problems. 

The numerical model developed in this chapter can be a very powerful tool for 

examining resonance of anisotropic and fractured bodies with general geometry. Using the 

forward-modeling part of the code, resonance frequencies, mode shapes, and expected 

FRF for specific source and receiver locations can be computed. Using the code, optimal 

source and receiver locations can be determined for exciting or avoiding large vibration 

motions to perform acoustic resonance tests. The inversion part of the code can determine ( · 

unknown elastic parameters from measured resonance frequencies. As the moduli and 

fracture stiffness of the material can be related to the degree of damaged introduced, the 

code can be used to make the acoustic resonance technique a quantitative tool for 

characterizing material properties and diagnosing damage in a structure. 

In the following chapters, the numerical models presented in this chapter are used for 

modeling experimentally observed resonances and determining stiffness parameters (elastic 

constants and fracture stiffness) of rock and concrete specimens. 



Resonance of Anisotropic Rock 

5.1 Introduction 

At the millimeter to submillimeter scale, rocks appear as a heterogeneous aggregate of 

crystals and mineral grains. Rocks may also contain numerous microcracks that are 

distributed uniformly within the matrix. When heterogeneities in rock occur in the form of 

systematically oriented mineral grains, bedding planes, and aligned microcracks, they result 

in anisotropic bulk stress-strain behavior. The bulk elastic behavior of the rock is 

described by elastic constants of an equivalent homogeneous anisotropic medium. These 

elastic constants can be determined either statically from load-displacement tests or 

dynamically from the velocities of P- and S-waves. Both the static and dynamic tests 

require measurements conducted in multiple directions with respect to the axes of elastic 

symmetry. For example, to determine the dynamic elastic moduli of a transversely 

isotropic rock, at least five independent P- and S-wave velocities in three directions 

(typically 0°,45°, and 90° to the axis of symmetry) have to be measured (e.g., King, 1969; 

Lo et al., 1984). Similarly, static load-displacement tests require axial compression and 

lateral expansion measurements on specimens cored in three directions (King, 1969). The 

99 
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latter approach for determination of the five anisotropic elastic constants is not common 

because it requires a cumbersome testing procedure that is susceptible to inaccuracies in 

measurements of the elastic deformation of a specimen resulting from nonelastic 

deformation (frictional slip). 

Acoustic resonance spectroscopy is a technique for determining the dynamic elastic 

constants of a specimen using steady-state vibration of a specimen of known geometry. 

The technique consists of resonating the specimen over a broad range of frequencies, 

measuring the resonance frequencies, and computing the elastic constants by nonlinear 

inversion of the measured resonance frequencies. This technique is particularly interesting 

because it can determine anisotropic elastic constants of a specimen with general geometry 

from a single measurement of the frequency response. 

The standard resonant bar technique in the Chapter 2 is restricted to longitudinal, 

flexural, and torsional resonances of a slender bar specimen with isotropic elastic 

constants. For this geometry, simple relations between the Young's modulus and the 

resonance frequencies of longitudinal and flexural modes, and the shear modulus and the 
r 

resonance frequencies of torsional modes make the determination of the elastic constants 

almost trivial. No such relations exist, however, for use in determining the anisotropic 

elastic constants for a specimen of more general geometry. This more complicated problem 

requires inversion for the elastic constants using numerical techniques. Although such 

techniques have been used for determining the elastic constants of single crystals and 

minerals (Ohno, 1976; Maynard, 1992; Migliori et al., 1993), few attempts have made to 

characterize the· anisotropic elastic properties of rocks whose anisotropy arises from the 

heterogeneous microstructures. 

In this chapter, acoustic resonance spectroscopy is applied to determine the elastic 

constants of transversely isotropic rock specimens. For comparison purposes, static and 

ultrasonic measurements are first performed to determine the zero-frequency and high­

frequency elastic moduli. These measurements are followed by acoustic resonance 

measurements on cube-shaped specimens. Measured resonance frequencies are used to 

invert for the five elastic constants using the numerical algorithm introduced in the previous 

chapter. Mode shapes of the anisotropic specimens are also measured using a laser 

Doppler vibrometer and compared with _mode shapes computed from the elastic constants 

obtained from the numerical inversion of the measured resonance frequencies. 
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5.2 Static Elastic Properties 

5.2.1 Description of specimens 

Rock specimens used in this chapter are Sierra White Granite, Berea Sandstone, and 

Tennessee Dolomite . These rocks are anisotropic due to differe nt microstructures. The 

granite specimen contains a number of sub-millimeter size microcracks that are oriented 

perpendicular to a single direction. This granite is from the same quarry as the granite 

specimen used in the Chapter 2. The sandstone specimen has bedding structures that are 

visible as red oxidized mine ·als deposited along submillimeter-spaced bedding planes. The 

sandstone also contains minor cross-bedding that cross-cuts the dominant near parallel 

bedding structures (this Berea sandstone specimen is different from the specimen used in 

Chapter 2) . The dolomite specimen contains a number of fractures that extend as long as a 

centimeter and are mostly fi lled with precipitated si lica (Opal). The precipitated. silica is 

also present in the form of millimeter size inclus ions. These microstructures give rise to 

transversely isotropic static and dynamic properties . By visual inspection, the granite 

specimen appears to be the mo t homogeneous and the dolomite the most heterogeneous 

due to the presence of large cracks and inclusions . The densities of the ovendried granite, 

sandstone, and dolomite specimens are 2.62 g/cm3, 2.15 g/cm3, and 2.70 g/cm3, 

respectively 

The specimens were prepared for acoustic resonance spectroscopy by first determining 

the axis of symmetry of the rock using ultrasonic measurements and then cutting out a 

cube-shaped specimen from the block such that two of its surfaces are perpendicular to the 

axis of symmetry . The size of the cubes were 9.40 em, 6.04 em, and 6.45 em for the 

granite, sandstone, and dolomite, respectively . The specimens are shown in Figure 5. 1. 

For the granite, cylindrical specimens (9 .81 em in length, 3.73 em in diameter) and short 

octagonal blocks (5.08cm across parallel surfaces) with their axis perpendicular to the 

surfaces of the cube specimen were also made. These specimens were used for measuring 

static and high frequency (ultrasonic) properties of the rock. 

5.2.2 Optical microscope observation for granite 

Sub-millimeter microstructures in the granite specimen such as aligned minerals , 

microcracks , and grain boundaries are not directly visible . Thin sections for optical 

microscopy were prepared from three cy lindrical specimens of the granite cored 
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(b) Sandstone cube (Berea). Distinct 
bedding structures can be seen. Layers 
of red stain are spaced rather irregularly. 
Cross bedding structures that cut the 
dominant parallel bedding structures 
obliquely can be seen on the sides of 
the cube. 

bedding planes 

mineral-filled fractures 

(a) Granite cube (Sierra White) . No 
obvious microstructure can be detected 
by visual inspection. The rock appears 
to be homogeneous. 

(c) Dolomite cube (Tenessee). 
Relatively large, mineral-filled irregular 
fractures can be seen. The specimen 
also contains inclusions of Opal that 
fill elliptical cavities in the rock. 

Figure 5.1 Rock cube specimens used for resonance spectroscopy . The three rocks have different 
microstructures that lead to transversely isotropic elastic behavior: (a) granite, (b) sandstone, (c) dolomite 
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coreD 

X 

plane of anisotropy 
(average microcrack plane) 

core C 

z 

Figure 5.2 Core orientation of specimens used for optical microscope observation, imbibition tests, and 
static uniaxial load-displacement tests. Cores A and C are taken in the direction perpendicular to the 
isotropy axis (parallel to average microcrack planes). CoreD is parallel to the isotropy axis. The reference 
direction of each core is shown by a dotted line along its diameter. 

perpendicular to each other (Figure 5.2, National Petrographic Service Inc., Houston, 

Texas) . The specimens were vacuum-impregnated with blue-dyed epoxy. Figure 

5.3(a)-(c) are the thin section optical-micrographs of microcracks observed in the three 

perpendicular directions. The observations are made using normal transmitted light. 

Microcracks impregnated by blue epoxy are best seen in the C core and are aligned roughly 

parallel in a single direction. In the A core, alignment of the microcracks are not as clear as 

in the C direction. In the D core, no preferential directions of the microcracks are 

observed. Figure 5.4(a) and (b) are the close-up photographs of the microcracks. Open 

cracks filled with epoxy are marked by solid triangles . Figure 5.5(a) is a thin section 

micrograph using polarized light. A micrograph of the same area using normal light is also 

shown (Figure 5.5(b)) for comparison. From the photographs, no obvious elongation or 

alignment of mineral grains is pre:sent. These observations indicate that the anisotropy of 

the granite is primarily due to open microcracks that are aligned in a single direction. 



1 
mm 

(a) core A (b) core C (c) coreD 

Figure 5.3 Thin section optical-micrographs of granite in three perpendicular directions. The color of the images is 
inverted to enhance the fractures. The bright white areas are the biotite grains. (a) Core A and (b) core C show 
microcracks approximately aligned in the direction perpendicular to the D direction (z-axis). (c) Microcracks in coreD are 
more randomly oriented than the other directions. Core C exhibits epoxy-filled microcracks that are aligned parallel. 
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(b) core C 

Figure 5.4 Higher magnification optical micrographs of microcracks in mineral grains. Epoxy-inpregnated 
open cracks are mostly perpendicular to the D direction. 
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(a) Thin section micrograph of core C using polarized light. 

(b) Micrograph of similar area using non-polarized light (core C) 

E 
E 
~ 
C\J 

]~ 

Figure 5.5 Shape and alignment of mineral grains in granite specimen. (a) Using polarized light, 
different types of minerals and their orientations can be distinguished. From the micrograph, no obvious 
elongation or alignment of crystals in any particular direction can be seen. (b) Using normal light, shapes 
and alignment of biotite grains (black regions) can be seen, which also show no systematic pattern that 
would lead to anisotropic behavior of the rock. 
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5.2.3 Capillary imbibition for granite 

In order to confirm that the microcracks in the granite were open, one-directional 

imbibition of water into the granite was performed using cylindrical specimens cored in 

mutually perpendicular directions. The specimens were 9.81 em in height and 3.73 em in 

diameter. The bottom of the specimens were cleaned pri?r to the experiment to expose 

fresh surfaces. After being ovendried for at least 48 hours at 103 °C, the bottom of the 

specimens were immersed in distilled water up to 5 mm deep to allow the water to imbibe 

by the capillary force of the microcracks. The volume of water imbibed into the specimen 

was monitored by periodically measuring the total weight. During the test, the specimens 

were covered by glass jars to maintain the relative humidity of the air around the specimen 

at 100% (Figure 5.6). From the weight of oven-dried and vacuum saturated specimens, 

the effective porosity of the specimens was measured as 1.02%. 

Figure 5.7 shows the time history of the water-saturation resulting from imbibition into 

the specimens. From the figure, it can be seen that core D initially shows a significantly 

slower rate of imbibition than the other specimens. Although the difference is subtle, core 

A exhibits a faster initial imbibition than core C. For much later times, saturation ratios of 

all three cores asymptote to 80%. The remaining 20% is due to the air trapped within the 

specimen. 

The anisotropic rate of imbibition can be explained by the geometry and the alignment 

of microcracks in the granite (Figure 5.8) . CoreD exhibits the slowest imbibition along 

the axis of the cylinder as the water has to flow through the most tortuous paths of 

connected microcracks. Directions along the axis of core A and C are the fastest imbibition 

directions as they have the least tortuousity. The small difference in imbibition rate for core 

A and C may be due to the larger misalignment of cracks in the C specimen. These results 

are consistent with the geometry and alignment of microcracks observed in the thin 

sections. 

5.2.4 Static behavior for granite 

Static uniaxial compression tests were conducted to examine the anisotropic elastic 

behavior of the granite core specimens. The specimens used for the static tests were 

identical to the ones used for the capillary imbibition tests (cores A, C, and D). The cores 

were tested under room-dry conditions (density of 2.62 g/cm3). The experimental setup is 
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(a) Capillary imbibition test setup 

(b) Condition of specimens 50 hours after starting imbibition 

Figure 5.6 Oven-dried core A, B, and C were placed in glass jars with their bases immersed in distilled 
water. Changes in their weight were measured as the water imbibed into the specimens. The bottom picture 
(Figure 5.6(b)) shows the specimens after 50 hours of imbibition. Water has reached the top of the 
specimens A and C, but not core D. 
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Figure 5.7 Time history of capillary imbibition into granite cores. All the cores are of equal size and 
shape. Core D exhibits much slower increase in the saturation ratio compared with the other two cores, 
indicating that the primary orientation of microcracks is not aligned with the core axis. Core A shows 
slightly faster imbibition than core C. Saturation ratios for the cores asymptote to approximately 80% 
after 10 days. 
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id~alized crack 
geometry 

Figure 5.8 Idealized microcrack geometry and orientations from microscope observation and capillary 
imbibition tests. Open microcracks in 'the granite specimen are preferentially aligned perpendicular to 
the D direction. Larger variations in the spatial distribution of the microcracks in the A surface of the 
block may be the reason for the slightly faster imbibition in the A direction than in the C direction. 
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shown in Figure 5.9. A core specimen was uniaxially loaded in a load frame using a hand­

operated hydraulic jack. Both vertical and horizontal L VDT's were mounted on the 

specimen to measure vertical compression and lateral expansion of the specimen. The 

applied load was measured using a loadcell. Readouts from L VDT's and the loadcell were 

displayed and stored on a computer. 

The static stress-strain relation of the rock also displays strong anisotropy. Figure 

5.10(a) shows the axial stress-strain relations for three mutual perpendicular directions. 

Core D (z-axis direction) exhibits a significantly larger compliance than the other two 

directions. Small excursion loops from the main stress-strain loops are measured to obtain 

the elastic moduli of the rock free of frictional slip (e.g., Walsh, 1965; Cook and Hodgson, 

1965). Figure 5.11(b) shows the relations between axial strain and radial strain. The 

direction of the measured expansion is 90° from a reference direction (for core A and C, in 

the direction parallel to the average rnicrocrack planes; for coreD, in the direction parallel to 

core A). All specimens show very small Poisson's expansion for small axial load. This is 

due to the closing of microcracks oriented in the direction perpendicular to the loading 

direction. Core D shows the smallest radial strain versus axial strain ratio due to a large 

number of microcracks preferentially oriented perpendicular to the specimen axis. The 

difference between the Poisson's ratios for the specimens becomes small for larger axial 

stresses. As the hysteresis of the major loops is small, the slope of the curves is assumed 

to be identical to the slope of the small excursion loops that provides the elastic Poisson's 

ratio of the specimens. 

Variations in Poisson's ratio around the axis of each specimen are shown in Figure 

5.11(a)-(c) . For core A (Figure 5.11(a)), basic agreement between the Poisson's 

expansions for the Oo and 90° can be seen on the loading part of the curves. The unloading 

curve for Oo shows a large amount of slip between the specimen and radial L VDT mount. 

In the Figure 5.11 (b), core C exhibits similar behavior of Poisson's ratio for all directions 

around the axis. Radial strains in different directions are shifted for comparison. Unlike 

the other directions, core D exhibits small variations in the behavior of Poisson's expansion 

around its axis. This indicate that the behavior of the granite is not truly transversely 

anisotropic. Poisson's ratio is the smallest in the directions parallel to core C (90° and 

270°, along y-axis). Although the difference in Poisson's ratio is large for large axial 

strains, all curves seem to have similar slopes for very small axial strain. Therefore, the 

granite is assumed to be transversely isotropic in the analysis of elastic moduli at zero 

confining stress presented in Sections 5.3 and 5.4. 
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load frame 

hemispherical 
mount 

load cell 

specimen 

hydraulic jack 

D 

data aquisition system 

Figure 5.9 Experimental setup for static load-displacement test. Axial load is applied by a hydraulic 
jack. Both vertical displacement and lateral expansion are measured using L VDT's. Measured displacements 
are displayed and recorded on a data acquisition system on a computer running Lab View software (National 
Instruments, Inc.). 
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Figure 5.10 Uniaxial compression tests on granite specimens cored in three mutually perpendicular 
directions. (a) coreD shows much larger compliance than the other two cores due to closure of aligned 
microcracks. (b) Poisson 's expansion was measured in the direction 90• from the reference direction 
(direction parallel to the plane of anisotropy for core A and C, direction parallel to core A for core D, see 
Figure 5.2) . Permanent offset at zero axial strain is due to the slip between specimen and LVDT mount. 
Initial Poisson's ratio for the specimens are quite small ( V=0.033-0.066) due to the closing of 
microcracks. Young's moduli and Poisson's ratios for different specimens increase and become similar for 
high axial stresses. 
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Figure 5.11 Poisson's expansion of specimens around the core axis . For core A, unloading curve foro· 
orientation deviates from the 90" orientation due to large slip between specimen and the L VDT holder. 
Core A and C do not show significant difference in Poisson's expansions for different orientations. Core D, 
however, exhibits small variations in Poisson's expansion, showing maximum expansion in the o· 
direction. 
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Young's moduli of the specimens determined from small excursion loops in Figure 

5.10(a) are shown in Figure 5.12. Due to the frictional slip in the rock and the limited 

resolution of the data, the accuracy of the determined Young's modulus and Poisson's ratio 

at low stresses is rather poor. By extrapolating the obtained modulus-stress relations, the 

Young's modulus at zero axial stress is estimated to be 19 GPa for coreD (E3) and 30 GPa 

for core A and C (E1=E2). From the plot, Poisson's ratios are approximately 0.099 for 

core A and C (V12=V13=Y21=Y23) and 0.033 forD core (V31=Y32). The upper left of the 

elastic compliance matrix for the measured elastic parameters are 

1 _ Y21 _ V31 

{""} 
EI E2 E3 t"} l 0.0333 -0.00333 ~00174r·} _ Y12 1 - v32 ()22 = -0.00333 0.0333 -0.00174 ()22 X 10-9 

£22 = 
£33 

EI E2 E3 
()33 -0.00333 -0.00333 0.0526 ()33 _ vl3 - v23 1 

EI E2 E3 

(5.1) 

The above compliance matrix S is not symmetric, possibly due to the experimental error 

and data resolution. Assuming the error is caused by the measurements for the Poissons 

ratios, the compliance matrix is redefined by 

- S+ST 
S=--

2 (5.2) 

where the superscript T is a matrix transpose operator. The stiffness matrix is obtained as 

l 
0.0333 -0.00333 -0.00252]-l 

c = -s- ~ = -o.oo333 o.o333 -o.oo252 x 1o9 

-0.00252 -0.00252 0.0526 

l30.4 3.16 1.61] 
= 3.16 30.4 1.61 X 109 [Pa] 

1.61 1.61 19.2 

(5.3) 
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Figure 5.12 (a) Young's modulus determined from small excursion loops in Figure 5.10(a) and ((b)-(d)) 
low-axial stress load-displacement tests. Young's moduli at zero axial stress are estimated as 30 GPa and 19 
GPa for directions parallel and perpendicular to the microcracks, respectively. The square regions in the 
above plots show the initial nonlinear behaviors due to compliant contact between specimen and loading 
plates. Young's modulus for all three directions increases with increasing axial stress. Difference between 
directions parallel to the microcracks (core A and C) and perpendicular to the cracks (core D) gradually 
decreases as the stress increases. 
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5.3 Ultrasonic Transmission Test 

5.3.1 P-wave anisotropy for granite 

To check for the anisotropy of transmitted P-waves, the granite cores were vacuum 

saturated and placed in a water ba~h (Figure 5.13(a)). The water bath has a turn table at the 

bottom and a pair of immersion ultrasonic transducers (central frequency of lMHz) 

attached to the side walls. The P-wave anisotropy of the specimen can be examined by 

rotating the table and measuring transmitted P-waves as a function of angle (Figure 5.14). 

Both cores A and C show peaks in velocity and amplitude in the direction parallel to the 

microcracks while core D shows consistently low velocity and amplitude for all directions. 

5.3.2 S-wave anisotropy 

S-wave anisotropy was measured on the granite cores and the cube-shaped sandstone 

and dolomite specimens using the experimental setup shown in Figure 5.13(b). The 

specimens were tested under room dry conditions. To establish repeatable acoustic 

coupling between the specimen and the ultrasonic transducers, the specimen was loaded 

between the transducers through thin lead foil disks in a load frame (5MPa for granite, 

6.9MPa for sandstone, and 5.9MPa for dolomite). The measured S-wave waveforms are 

shown in Figure 5.15. The granite cores show two distinct quasi-shear waves that result 

from shear-wave splitting. For the direction of wave propagation parallel to the plane of 

anisotropy (labeled as'//'), components of an S-wave polarized parallel to the microcracks 

(labeled "H") propagate faster than the components polarized perpendicular to the 

microcracks (labeled "V"). In the direction perpendicular to the plane of anisotropy 

(labeled "_L "), the velocity and amplitude of the S-wave are constant. The sandstone 

specimen shows similar splitting of S-waves but the splitting is rather small indicating a 

smaller degree of anisotropy. Although the amplitudes of the S-waves for the dolomite 

cube show similar patterns as other specimens, the shear wave splitting was not observed. 

5.3.3 Velocity anisotropy and axial load 

Changes in wave velocities with increasing axial load are shown in Figure 5.16 for P­

waves and in Figure 5.17 for S-waves. For granite and sandstone, both P and S-waves 

initially show a rapid increase in velocity with increasing load. This is due to closing 
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Figure 5.13 Experimental setup for ultrasonic wave transmission tests . (a) For granite core specimens, 
anisotropy of P-wave transmission was measured using immersible transducers (central frequency=lMHz) . 
The specimen was rotated around its axis with a turn table attached to a water bath. (b) The granite core 
specimens and sandstone and dolomite cubes were uniaxially loaded to measure S-wave anisotropy and stress 
dependency of P and S-waves. For cube specimens, aluminum cones were used to apply a uniformly 
distributed load to the specimens. Piezoelectric crystals in the transducers were excited by a high-voltage 
pulse generator and measured waves were displayed and stored on an oscilloscope. 
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Figure 5.14 P-wave anisotropy of granite core specimens (vacuum saturated with water). A waveform 
was measured at every 15 degrees . Angles in the plots are measured from a reference direction of each 
specimen. Large positive and negative amplitude is shown in light and dark grays, respectively. P-wave 
shows maximum amplitude and velocity in the direction perpendicular to the isotropy axis (perpendicular 
to rnicrocrack planes). 
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Figure 5.15 S-wave anisotropy of granite core specimens and sandstone and dolomite cubes (room-dry). 
The polarization direction of source and receiver were rotated around each coordinate axis and transmitted S­
wave was measured for every 15 degrees of rotation. For granite and sandstone, shear wave splitting due to 
transverse isotropy of the rock is observed (SHand SV -waves). Although it shows clearS-wave amplitude 
anisotropy, the dolomite specimen does not exhibit splitting of shear waves. 
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Figure 5.16 Stress dependence and anisotropy of P-wave velocity. (a) Granite shows strong stress 
dependence due to microcracks that close under uniaxial stress. (b) Sandstone also shows strong stress 
dependence due to improved grain contact by the axial load. For both specimens, a P-wave parallel to the 
isotropy axis shows the smallest velocity . (c) 'For the axial loads shown above, the dolomite specimen 
exhibits very small stress dependence possibly because the open cracks are filled with precipitated mineral. 
The velocity anisotropy is also very small. 
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Figure 5.17 Stress dependence and anisotropy of S-wave velocity. Granite (a) and sandstone (b) 
specimens show similar stress dependence of S-waves asP-waves. Similar toP-wave velocity , dolomite (c) 
specimen shows very small stress dependence and velocity anisotropy. 
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microcracks for the granite and the stiffening of grain contacts for the sandstone. In 

contrast, the dolomite shows a very small stress dependence and a small velocity 

anisotropy. The behavior of the waves in the dolomite specimen may be caused by 

scattering of waves off the thin mineral inclusions that fill the open flat fractures. Here, the 

acoustic impedance contrast between the matrix and the inclusions causes amplitude 

anisotropy of the waves by scattering, but because they are thin relative to the wavelength, 

they have little effect on the wave velocities. 

5.3.4 High-frequency dynamic elastic moduli 

High-frequency dynamic elastic moduli of the rocks were measured using P and S­

wave contact transducers (central frequency 1 MHz). The stress applied to the specimen 

was approximately zero. Lower frequency transducers (250 kHz) were used when the 

attenuation was too severe to assess accurate first arrivals. Velocities of the granite were 

measured using both the cube specimen and the octagonal blocks (Figure 5.18). Velocities 

for other types of rock were measured using only the cube specimens. For this series of 

tests, oven dried specimens were used. Table 5.1 shows measured velocities of P and S­

waves . Propagation and polarization directions are shown in Figure 5.18. For a 

transversely isotropic elastic material, the five independent elastic constants can be 

determined from P and S-wave velocities using the following equations (Lo et al., 1985) 

Table 5.1 P and S-wave velocities for cube specimens 

granite sandstone dolomite 

density 2622 (kgfm3) 2148 (kgfm3) 2701 (kgfm3) 

VP VsH Vsv VP VsH Vsv VP VsH Vsv 
ax1s (m/sec) (m/sec) (m/sec) (m/sec) (m/sec) (m/sec) (m/sec) (m/sec) (m/sec) 

X 4285 2700 2320 2828 1914 1846 4952 2839 2637 

y 4296 2668 2290 2808 1902 1841 5070 2814 2692 
a 

z 3093 2302 2326 2602 1810 ------ 4474 2569 ------

source 500 250 1MHz 500 250 
frequency kHz kHz kHz kHz 

a. Due to strong scattering, the first arrival of this wave was not clearly observed. 
Velocities shown in bold are compared with the velocities for the octagonal specimens 
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Figure 5.18 Directions of propagation and polarization (particle motion) of P and S-waves measured in 
the cube specimens. The name for the velocity of each wave is shown in the plot. S-wave velocities with 
particle motion parallel and normal to the plane of isotropy (x-y plane) are shown with a subscript "SH" 
and "SV", respectively. For the granite specimen, octagonal blocks were also prepared for measuring P­
waves propagating obliquely to the isotropy axis (perpendicular to x-y plane) . 
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ell = pv;x = pv;y, 

el2 = ell - 2pv;Hx = ell - 2pv;Hy' 

(5.4a) 

(5.4b) 

e33 = pv;z' (5.4c) 

e44 = p v;Hz' (5.4d) 

el3 = - e44 + ~4p2v;4s" - 2pV~4s" (ell+ e33 + 2e44) + (ell+ e44)( e33 + e44), (5.4 e) 

where p is density of material, Vpx and Vpy are P-wave velocities measured perpendicular 

to the isotropy axis, Vpz is the P-wave velocity parallel to the isotropy axis. VsHx and VsHy 

are velocities of the S-waves propagating perpendicular to the isotropy axis with particle 

motion perpendicular to the axis. VsHz is the S-wave velocity parallel to the isotropy axis. 

V p45 • is the P-wave velocity in the direction oblique ( 45°) to the isotropy axis. Other 

commonly measured velocities Vsvx and Vsvy (S-wave velocities perpendicular to the 

isotropy axis, particle motion parallel to the axis) are not used in the Eq.(5.4a)-(5.4e). This 

is because these velocities are identical to VsHz . Notice that some velocities for the dolomite 

specimen are significantly smaller than the velocities measured for finite axial stresses in 

Figure 5.16 and 5.17, indicating large velocity anisotropy. This may be caused by thin, 

compliant debonding cracks between the dolomite matrix and the mineral inclusions that 

close when subjected to small axial loads. 

From the velocities in Table 5.1, four out of five elastic constants for transversely 

isotropic rocks can be determined using Eq.(5.4a)-(5.4d). Results are shown in Table 

5 .2. Average velocities were used to compute the moduli for velocities that should be 
identical (for example, VPx and VPy) . In Table 5.1, VsHz for the dolomite is much smaller 

than Vsvx and Vsvy· This is probably due to a large error in reading the arrival of the 

strongly scattered and distorted wave. Therefore, this velocity was not used for computing 

the moduli. 

Table 5.2 Dynamic Elastic Moduli (250kHz-lMHz) 

granite sandstone dolomite 

C11 48.27 17.06 67.82 

CI2 10.49 1.42 24.67 

C33 25.08 14.54 53.99 

C44 13.99 7.21 19.18 

The moduli are shown in [GPa] 
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From the velocities in Table 5.1, modulus C I3 cannot be computed. This is because it 

requires a P or S-wave measured at an oblique angle to the axis of isotropy. For granite, 

octagonal specimens were prepared for measuring waves at this orientation. Table 5.3 

shows measured velocities in the direction and polarization shown in Figure 5.18 . 

Velocities for the octagon D measured using 1MHz P and S- waves show good agreement 

with the velocities for cube specimens measured using 500kHz P and 250kHz S-sources. 

From the table, octagon C shows smaller velocities than octagon D. This is possibly due to 

local heterogeneity of the rock. Due to the anomalously low velocities, the 45° P-wave 

velocity of the octagon C cannot be directly used for determining modulus C 13. The 45° P­
wave velocity ( VP

45
.) was inferred from VPx and VPz, using the relative magnitude of 

VP
45

o compared with VPx and VPz for the octagon C. The estimated VP
45

• was 3727m/sec. 

From Eq.(5.4e) and the moduli in Table 5.2, C13 for the granite was determined to be 4.93 

GPa. 

Table 5.3 Velocities Determined for Granite Octagons 
at lMHz Source Frequency 

octagon C octagon D 

axiy8 
VP VsH Vsv axiy<!> VP VsH Vsv 

(m/sec) (m/sec) (m/sec) (m/sec) (m/sec) (m/sec) 

x / oo 4042 2582 2189 x j oo 4271 2677 2297 

X /45o 3564 2420 2191 x/45° 4271 2680 2306 

z '/90° 3008 2341 2293 y /90° 4271 2680 2326 

z /1 35° 3493 2526 21 76 Y / 135° 4164 2749 2281 

Velocities shown in bold are P, SH, and SV waves having the same directions of wave 
propagation and polarization (particle motion) as in Table 5.1. 
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5.4 Resonance of Anisotropic Rocks 

5.4.1 Experimental setup 

Resonance of the anisotropic rocks tested in both Section 5.2 for the static properties 

and Section 5.3 for the high-frequency dynamic properties was examined in the cube 

specimens. A similar setup to the resonant bar tests in the Chapter 3 was adopted (Figure 

5 .19). Specimens were suspended using thin steel wires and excited with a sine wave 

swept over a broad frequency range by the internal signal generator in an Ono Sokki 

CF6400 spectrum analyzer. This signal was amplified by a voltage amplifier (Krohn-Hite 

7602) and then passed to a small piezoelectric crystal attached to the specimen with 

bonding wax. The resulting accelerations were measured using a miniature high frequency 

accelerometer (PCB Piezotronics, 309A, resonance frequency> 120kHz) and then displayed 

and analyzed on the spectrum analyzer. 

5.4.2 Frequency response of an isotropic cube 

Before examining the resonance of anisotropic rocks, the resonance of an isotropic 

cube made of lead glass was conducted to determine the accuracy of the measurements and 

the inversion technique presented in Chapter 4. The length of the specimen was 10.16 em 

and the density was 6275 kg/cm3. As the specimen was too heavy to be supported by steel 

wires, it was placed on a foam pad to approximately simulate stress-free boundary 

conditions. High frequency ultrasonic transmission tests (central frequency of lMHz) gave 

P and S-wave velocities of 3187 m/sec and 1792 m/sec, respectively. The dynamic 

Young's modulus and Poisson's ratio computed from these velocities were 51.14 GPa and 

0.269, respectively. 

Measured experimental frequency response functions are shown in Figure 5.20(a) and 

(b) for source and receiver locations indicated in the plots. Measured accelerations were 

normalized by the values determined with an accelerometer attached to the back of the 

piezoelectric crystal suspended in air. Accelerations for the crystal were multiplied by the 

crystal's mass (3.5g) to obtain the force applied to the specimen. In the plots, frequency 

response functions ( accelerance) were computed with the numerical model introduced in 

Chapter 4 that used the measured dynamic elastic moduli. The highest order of 

polynomials used for approximating the displacement field was 12 (12x12xl2). The 

measured and computed FRF's show good agreement over the full frequency range. 
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Figure 5.19 Experimental setup used for free vibration tests of rock cubes . Specimens were suspended 
in air using thin steel wires . A small piezoelectric crystal attached to the specimen was excited by a sine 
wave. Resulting accelerations were measured by an acce lerometer attached to the opposite side of the cube. 
The measured accelerations were displayed, analyzed, and stored on a spectrum analyzer. 
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Figure 5.19 Experimental setup used for free vibration tests of rock cubes. Specimens were suspended 
in air using thin steel wires . A small piezoelectric crystal attached to the specimen was exc ited by a sine 
wave. Resulti ng accelerations were meas ured by an accelerometer attached to the opposite side of the cube. 
The measured accelerations were disp layed, analyzed, and stored on a spectrum analyzer. 
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Figure 5.20 Measured and computed (from measured ultrasonic velocities) frequency response functions. 
Both measured and computed FRF's show good agreement. 
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Resonance invers ion fo r elastic moduli was performed using the numerical algorithm 

introduced in the previous chapter. Several low frequency modes were selected for 

matching the observed and computed resonance frequencies. The types of the modes were 

identified by comparing the shape of experimental and computed (using an initial guess for 

elastic moduli) FRF's . Measured and computed resonance frequencies for converged 

numerical model are shown in Table 5.4 as well as the results of the ultrasonically 

determined resonance frequencies. Young's modulus and Poission's ratio determined by 

the resonance inversion were 50.76GPa and 0 .270, respectively . These moduli show 

very good agreement with the results from ultrasonic transmission tests. In Figure 5.2 1 (a) 

and (b), measured FRF's are compared with the computed FRF's for the elas tic parameters 

detennined from the resonance inversion . 

Table 5.4 Resonance Frequencies for the Lead Glass Cube 

mode (1 ) observed (2)resonance (3)ultrasonic (4)error 
number resonance mverswn [(2)-(1)]/(1 ) 

(kHz) (kHz) (kHz) (%) 

1 ,2a) 8.0000 7.9892 8.0220 -0.14 
3,4,5 10.740 10.736 10.779 -0.039 
6,7,8 10.940 10.935 10.979 -0.048 
9,10,11 a) 12.440 12.428 12.479 -0.093 
12, 13, 14a 12.560 12. 567 12.612 0.060 
15,16,17 13 .300 13.295 13.346 -0.041 
18, 19a) 14.900 14.892 14.945 -0.052 
20 15.380 15 .383 15.445 0.021 
30,31 ,32a 18 .140 18 .146 18.218 0.036 
34,35 ,36 20.180 20.170 20.251 -0.051 
44,45 20.840 20.840 20.922 -0.00072 
51 ,52 23.420 23.399 23.492 -0.089 
56,57,58 24.120 24 .084 24.176 -0.15 
61,62,63 24.920 24.857 24.959 -0.25 
67,68 ,69 25.480 25.499 25.597 0.073 
70.71.72 25.580 25 .511 25 .611 -0.27 

a) Modes used for resonance inversion 
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Figure 5.21 Measured and computed FRF's. The computed FRF is shown for Young's modulus and 
Poisson's ratio determined by the inversion that matches the experimentally measured and computed 
resonance frequencies . The FRF's show excellent agreement. 
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5.4.3 Frequency response of anisotropic rocks 

For conducting the numerical inversion, one type of mode has to be specified for each 

experimentally measured resonance frequency . The proper mode type is identified by 

comparing the experimentally measured FRF and simulated FRF using an initial guess for 

the elastic moduli . From Figure 5.21, it can be seen that the "twist" type source-receiver 

configuration yields a much more complicated FRF than the "face-to-face" configuration . 

This is because the latter eliminates many of the modes by the symmetries in the 

configuration such as location and orientation of the source and receiver. As mode types 

can be identified more easily with fewer modes, measurements for anisotropic rocks are 

performed primarily using the "face-to-face" testing configuration. 

Measured FRF's for each type of rock with the source and receiver located along the 

three orthogonal coordinate axes are shown in Figure 5.22(a)-(c) . The FRF's were 

measured by sweeping over 0 to 32kHz for granite and 0 to 50kHz for sandstone and 

dolomite using sine waves. Oven-dried specimens were suspended in air using thin steel 

wires . FRF's for the granite specimen (Figure 5.22(a)) show distinct differences 

perpendicular to the isotropy axis (along x- and y-axes) and parallel to the isotropy axis 

(along z-axis) . The sandstone specimen shows similar FRF's for all three directions . 

However, there are some noticeable differences between FRF's measured parallel and 

perpendicular to the isotropy axis (z-axis). The dolomite specimen shows quite different 

FRF's for all directions . This is possibly due to the strong heterogeneity of the specimen 

that disturbs the symmetry of the acoustic properties. Due to the distortion of the FRF's, 

mode types of the measured resonances could not be identified successfully . For this 

reason, resonance inversion was not conducted for the dolomite specimen. 

Using the measured resonance frequencies in the first several modes , resonance 

inversion for anisotropic elastic moduli was performed for the granite and sandstone 

specimens. Comparisons between experimentally measured and computed FRF's for the 

inverted elastic moduli are shown in Figure 5.23 for granite and in Figure 5.24 for 

sandstone. The overall shapes of the FRF's show good agreement for both rocks . 

Although the magnitudes of the computed FRF's for the granite cube overestimate the 

experimentally measured FRF, it should be noted that the inversion technique used in this 

research requires only the resonance frequencies and the general shape of the FRF for 

determining the elastic moduli . 
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Figure 5.22 FRF's for rock cubes. FRF's in each plot are shifted by 50dB for (a) and 20dB for (b) and 
(c). Although granite and sandstone cubes show clear similarities between FR.F's along x - and y-axes , 
FRF's for the dolomite cube are very different along all three directions. 
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Figure 5.23 Measured and computed FRF's for the granite cube. Computed FRF (resonance inversion) 
is for the five elastic constants inverted by matching experimentally measured and numerically computed 
resonance frequencies. Resonance frequencies of both FRF's show good agreement except for the first 
resonance (labeled as "P") in the bottom plot. This resonance is likely caused by the heterogeneity and 
higher order anisotropy of the specimen. 
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Figure 5.24 Measured and computed FRF's for the sandstone cube . Computed FRF (resonance 
inversion) is for the five elastic constants inverted by matching experimentally measured and numerically 
computed resonance frequencies . As the mass for the source and receiver was not negligibly small, 
numerical simulations were performed modeling the source and receiver as point masses on the surface of 
the cube. Only the resonance frequencies measured along the z-axis were used for inversion. Although low 
frequency resonances in the bottom plot show excellent agreement between the experimental and computed 
resonance frequencies , the top plot shows rather large differences . 
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piezoelectric source 

Laser doppler vibrometer 

1.0cmx1.0cm grids 

Figure 5.26 Experimental setup for measuring mode shapes of rock cubes. The cubes were resonated 
using a piezoelectric source swept by sine waves for frequencies ranging from 0 to 32kHz. Velocities of the 
resulting surface vibration were measured by a laser Doppler vibrometer and then displayed, analyzed, and 
recorded on a spectrum analyzer. 
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Figure 5.26 Experimental setup for measuring mode shapes of rock cubes. The cubes were resonated 
using a piezoelectric source swept by sine waves for frequencies ranging from 0 to 32kHz. Velocities of the 
resulting surface vibration were measured by a laser Doppler vibrometer and then displayed, analyzed, and 
recorded on a spectrum analyzer. 
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5.5 Summary 

In this chapter, an acoustic resonance spectroscopy technique is used for quantitative 

characterization of the bulk elastic properties of rocks . Using this technique, elastic moduli 

of an anisotropic rock are determined from a single measurement of the frequency 

response. Although such-techniques have been applied to homogeneous materials such as 

single crystals and mineral grains, application to rocks whose elastic anisotropy arises from 

a variety of inherent microstructures has not been previously reported. 

Microstructural features in rocks such as systematically oriented microcracks, bedding 

planes, and mineral inclusions result in anisotropic elastic behaviors. Using cube 

specimens of rocks, the medium to low frequency (1OkHz-30kHz) elastic moduli ofrocks 

are determined by the resonance inversion technique introduced in the previous chapter. As 

the acousic resonance spectroscopy method uses wave frequencies that are lower than those 

of the ultrasonic transmission tests (100kHz- several MHz) in the laboratory, measured 

dynamic properties of rock are closer to the properties measured in the field, especially for 

crosshole seismic measurements. Elastic moduli of a granite specimen show intermediate 

values between static moduli and moduli from high-frequency ultrasonic transmission tests. 

A sandstone specimen also shows moduli slightly lower than from the high-frequency 

wave transmission tests. Since the frequency-dependent behavior of the wave can be 

related to the micromechanical structure of rocks, such as compliant open microcracks and 

grain contacts, acoustic resonance spectroscopy can be a valuable tool for characterizing 

micromechanical rock properties if combined with other tests such as static loading tests 

and ultrasonic transmission tests . For example, oriented open microcracks that are 

indicated by frequency-dependent anisotropic dynamic properties of granite may be related 

to the rock's anisotropic hydraulic properties as is demonstrated in the experiment for 

granite specimens in Section 5.2.3. 

Although a dolomite cube appeared to be approximately transversely isotropic from its 

ultrasonic transmission tests, the frequency responses of the specimen did not show any 

transverse isotropy. This result is possibly due to millimeter to centimeter-scale cracks and 

mineral inclusions. It is interesting that resonance spectroscopy, which uses longer 

wavelengths than the ultrasonic transmission test, is more sensitive to the heterogeneity of 

this specimen. Although the current research does not examine the effect of heterogeneities 

·1. 
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on acoustic resonance, the results indicates that it can be a diagnostic tool for detecting and 

locating heterogeneites in a rock. 

Besides the measurements for frequency response, a laser doppler vibrometer was used 

to measure mode shapes of vibrations. For a homogeneous isotropic cube of lead glass, 

experimentally measured and numerically computed mode shapes showed good agreement. 

Rosults for a granite cube also showed good agreement confirming that the elastic moduli 

of the specimen used to compute the mode shapes were accurately determined from 

resonance inversion of the FRF's. Although the mode shapes for the dolomite specimen 

were not presented in this work, heterogeneity of this specimen may be characterized by 

measuring the mode shapes and inverting for distribution of elastic moduli or density. 

Development of such a technique is a topic for future research. 

This chapter has demonstrated that acoustic resonance microscopy has many aspects 

suited for characterizing unique properties of rocks, such as frequency-dependent elastic 

moduli due to microstructure and heterogeneity. Although there are still many issues to be 

resolved to make acoustic resonance spectroscopy an accurate and robust rock 

characterization tool, its potential capabilities in the future will make the development of this 

technique an important research field. 



Resonance of a Fractured 
Three-Dimensional Body 

6.1 Introduction 

Semi-brittle materials such as rock and concrete often include partially or fully open 

microcracks and macroscale fractures that can serve as fast paths for fluid and gas 

transport, pore space for their storage, and structural weaknesses that increase the 

compliance of a structure and decrease its strength. It is important, therefore, to develop 

robust geophysical methods for locating and characterizing fractures. This chapter 

examines the effect of a fracture on the acoustic resonance of a three-dimensional body. 

From changes in the acoustic resonance characteristics such as resonance frequencies and 

related mode shapes, the characteristics of the fracture such as its location and stiffness can 

be assessed. 

If fractures occur as microcracks uni~ormly distributed in a homogeneous medium, the 

bulk elastic moduli of the material decrease due to the additional compliance of individual 

cracks (Walsh, 1965a,b; Budiansky and O'Connell, 1976; Walsh and Grosenbaugh, 

148 
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1979). As was discussed in the previous chapter (Chapter 5), such an effect can be 

anisotropic if the microcracks are oriented in any preferred directions. Due to a decrease in 

elastic moduli, materials containing microcracks exhibit a decrease in wave velocities and 

resonance frequencies of vibration. Therefore, by measuring changes in the dynamic 

properties of materials, damage introduced into materials can be evaluated. For example, 

Powers (1938) measured resonance frequencies of concrete specimens to determine their 

dynamic Young's modulus and Poisson's ratio. Based on his study, Powers suggested to 

use the changes in the resonance frequencies to evaluate degradation of specimens. Such 

an approach is valid if the dynamic behavior of damaged material can be described by an 

equivalent homogeneous material with decreased elastic moduli. 

If a medium contains a distinct fracture in the form of partially contacting interface or a 

zone of locally concentrated microcracks (damage), the dynamic behavior of the medium 

cannot be explained by the behavior of an equivalent homogenous medium. Waves 

propagating in such materials exhibit attenuation and multiple arrivals due to scattering by 

the fractures as well as a decrease in wave velocity. The resonance characteristics of such 

materials are also different from a homogenous medium, showing changes in spectral 

response and mode shapes. Therefore, explicit interaction between waves and fractures 

has to be taken into account in examining the dynamic behavior of a medium with distinct 

fractures. 

Carino et al. (1984) and Lin and Sansalone (1994) experimetally and numerically 

studied the effects of fractures on the spectral characteristics of the echo for waves 

generated by a surface impact (Impact Echo method). An interval between echoes can be 

seen as a period for one-dimensional resonance of the medium between a fracture and a free 

surface. Davis and Hertlein (1987) examined the transient dynamic response of structures 

including fractures subjected to a hammer impact (Impact Response method). Unlike the 

method using wave echoes, Davis and Hertlein's method excites part of the resonance 

modes for the entire structure. Both methods examine the spectral characteristics of 

measured waves and relate them to the location and properties of fractures. In applying the 

Impact Echo method and the Impact Response method, fractures are usually considered as 

open gaps. Sakata and Ohtsu (1995) applied ultrasonic spectroscopy to concrete members 

with a notch by resonating the specimens using sine waves swept over a range of 

frequencies. The effect of the fracture on the frequency responses of the concrete members 

was studied by varying the depth of the notch from 0% to 90 % of the cross section. 

Barnnios and Trochidis (1995) performed similar measurements on a cantilever beam with 
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a notched cross section. 

If a fracture is modeled as an open notch or thin void, no mechanical coupling is 

allowed across the fracture. However, in a structure that is subjected to compressional 

load, the surfaces of a fracture can be partially in contact allowing some degree of 

mechanical coupling. In such cases, the stiffness of a fracture plays an important role in 

determining the resonance characteristics of a damaged structure. Pyrak-Nolte et al. 

(1990a) showed that the velocities and spectral amplitudes of waves transmitted through 

single fractures in rock strongly depend on the fracture stiffness. Hesler (1995) examined 

resonance of a material containing a fracture with finite stiffness. In Hesler's work, the 

dynamic behavior of a fracture was modeled using the displacement-discontinuity boundary 

conditions (Schoenberg, 1980; Pyrak-Nolte et al., 1990a). Results of the analysis showed 

that the stiffness of a fracture in a slender bar alters the resonance frequency and mode 

shape of the vibrations significantly. Hesler also conducted laboratory resonance 

measurements on a plexiglass rod with a saw-cut interface. The interface was glued with 

wax, providing a thin layer of increased compliance analogous to a fracture with an 

imperfect contact Measured resonance frequencies showed good agreement with analytical 

results, which demonstrated that the model provides a good approximation for describing 

the dynamic behavior of a fracture during resonance. 

The objective of this chapter is to extend Hesler (1995)'s work to include resonance of 

three-dimensional bodies containing single fractures. The primary focus of the research is 

on the effect of fracture stiffness on resonance. Free vibrations of a cylindrical concrete 

specimen with a through-going fracture are examined experimentally. During the 

experiment, the stiffness of the fracture is changed by applying axial load through a pair of 

compliant plastic rings. Due to the strong impedance contrast between the rings and the 

specimen, the rings have little effect on the resonance frequencies of the specimen. The 

observed resonance is simulated using the numerical model developed in Chapter 4. Froin 

measured resonance frequencies, the dynamic stiffnesses of the fracture are determined and 

agree favorably with the statically measured stiffnesses. 
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6.2 Experiment 

6.2.1 Properties of the intact specimen 

A cylindrical specimen of concrete was fabricated for a series of static and dynamic 

tests. The specimen was 10.16 em (4 inches) in diameter and 19.2 em (7.55 inches) in 

length. The water to cement ratio of the specimen was 0.5 and the volumetric ratio of the 

aggregate was 73% which included a coarse aggregate (limestone, 30%) and sand (43%). 

The specimen had been immersed in lime saturated water for several months before the 

tests. During the tests, the specimen was wrapped with a plastic film to avoid evaporation 

of the pore water. The density of the specimen was 2.47 g/cm3. 

Before a fracture was introduced, the intact concrete cylinder was loaded axially to 

measure its Young's modulus. The compression of the specimen was measured using a 

pair of L VDT's directly mounted to the sides of the cylinder. The applied axial stress was 

measured using a loadcell. Figure 6.1 shows the measured stress-strain relation for the 

intact specimen. For the measured range of axial stresses, the specimen exhibited an 

approximately linear elastic stress-strain relation with very small hysteresis. Such behavior 
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Figure 6.1 Uniaxial compression of an intact concrete cylinder. The measured stress-strain relation 
shows very small nonlinearlity and hysteresis . 
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indicates that the specimen does not contain any significant number of compliant 

microcracks that would result in non-linear and hysteretic behavior. This is possibly 

because the specimen was tested in its virgin condition (no load had been applied) . From 

the slope of the stress-strcrin curve, the Young's modulus of the specimen was determined 

to be 49.4 GPa. This value is large for concrete and is possibly due to the large volumetric 

content of the aggregate. However, actual moduli of the aggregate are unknown. 

Dynamic elastic properties of the specimen were also measured using ultrasonic waves. 

Measured velocities of P and S-wave components were 5233 m/sec and 2961 m/sec, 

respectively, yielding a dynamic Young's modulus of 54.8 GPa and a Poisson's ratio of 

0.26. Central frequencies of the source P and S- waves were 850 kHz and 500 kHz, 

respectively. The difference between dynamically and statically measured Young's moduli 

may be due to errors in the lower resolution static measurement. For this reason, the 

numerical analysis performed later in this chapter uses the results of the dynamic 

measurements. 

6.2.2 Static behavior of the fracture 

A through-going tensile fracture was created by applying a point load along the 

diameter of the cylindrical specimen (Brazilian loading). The surface of the fracture was 

perpendicular to the axis of the specimen and located 5.08cm (2 inches) from the top. To 

measure the closure of the fracture under axial load, L VDT's were attached to the sides of 

the specimen across the fracture (Figure 6.2). 

An example of the measured stress-displacement behavior of the fracture during the 

tests is shown in Figure 6.3 . Strong nonlinearity and hysteric behavior is seen as is the 

time-dependent closure of the fracture (the fracture "creeps" under constant axial load). 

Displacements measured by the two L VDT's are different for low axial stresses because of 

the uneven contact of the fracture surface. The closing behavior on both sides become 

similar for higher axial stresses as the distribution of contacting asperities becomes 

uniform. 

The nonlinear deformation of the fracture is caused by imperfect contact between 

fracture surfaces. As stress applied on the fracture increases contact between the surface 

asperities, stiffness of the fracture increases with increasing stress (Brown and Sholz, 

1985). The closure of a fracture is also accompanied by frictional slip and wear that are 

i I 
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Figure 6.2 Experimental setup used for resonance test of a concrete cylinder containing a single through­
going fracture. Axial stress was applied through PVC rings at the top and bottom of the specimen. Static 
closure of the fracture was measured by L VDT's attached to the sides of the specimen. 
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Figure 6.3 Examples of closing displacement of fracture measured by L VDT's on both sides of 
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show different displacements especially for low axial stresses. Small excursion loops are made before and 
after each resonance test at each loading stage and used to determine the elastic stiffness of the fracture. 
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seen as stress-displacement hysteresis. It was anticipated that the time-dependent slip could 

cause a change in fracture stiffness during the measurements. To avoid errors resulting 

from this effect, resonance measurements were postponed for at least fifteen minutes after 

each load increment and decrement. 

Closing displacement of the fracture can be obtained by subtracting the deformation of 

intact part of the specimen from the measured displacement across the fracture (Goodman, 

1976). As the deformation of the intact part was not measured concurrently, the Young's 

modulus of the intact specimen (49.5GPa) was used to estimate the deformation. As 

resonance of the specimen measured in this study involves only a small displacement, the 

dynamic behavior of the specimen depends only on the elastic stress-strain relation (Walsh, 

1965b; Cook and Hodgson, 1965). For this reason, slopes of the small excursion load­

displacement loops were used to estimate the elastic moduli of the specimen. The 

excursion loops were made at each loading stage before and after the resonance of the 

specimen was measured. The slope of the loops was corrected for the deformation of the 

intact part of the specimen to obtain the stiffness of the fracture. Measured static fracture 

stiffnesses are shown later in this chapter. However, it should be noted that the fracture 

stiffnesses measured for low axial stresses are not accurate due to the uneven contact of the 

fracture surface. 

6.2.3 Experimental setup for the resonance tests 

Resonance behavior was examined by vibrating the specimen with continuous sine 

waves, accomplished by the experimental setup shown in Figure 6.2. A small piezoelectric 

crystal was attached to the top of the specimen and was driven electronically over a 

frequency range of 50Hz to 50kHz. A miniature accelerometer (PCB Piezotronics, 309A, 

resonance frequency> 120kHz) was attached to the specimen to measure the resulting 

acceleration of the surface. The measured acceleration was analyzed and stored on a 

dynamic signal analyzer that was also used for generating the source signals. A range of 

axial stresses were applied from 0 to 3.0 MPa and acceleration spectra were measured at 

each stress. Two locations on the specimen were selected to measure its surface vibrations: 

For "T -configuration" tests, an accelerometer was attached to the bottom of the specimen. 

For "R-configuration" tests, it was attatched to the specimen next to the source 

(piezoelectric crystal). The T -configuration was used for measurements conducted during 

the loading cycle up to axial stress of 3.0MPa while R-configuration was used for the 

unloading cycle. 
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6.2.4 Effect of axial stress on intact specimen 

In order to change the stiffness of the fracture during the test, an axial load was applied 

to the specimen through a pair of PVC rings designed to isolate the vibrations of the 

specimen from the load frame. As the stiffness of the PVC rings is much smaller than the 

stiffness of the concrete cylinder or the fracture, the resonance behavior of the specimen 

approximates free vibrations. To examine the effect of the axial load applied through the 

PVC rings, an intact specimen was tested for its resonances with increasing axial stress. 

The result shown in Figure 6.4 compares measured frequency response functions (FRF's) 

for the specimen with axial stresses of OMPa, 1.5MPa, and 3MPa. To compute the FRF's, 

measured acceleration spectra were normalized by mass and a spectrum measured for the 

source suspended in air. As a product between mass and acceleration provides force, 

approximate frequency response functions (accelerance) are obtained by such 

normalization. Resonance frequencies of the first three modes are shown in the plot. The 

result demonstrates that the axial loading through the plastic rings did not cause significant 

effects on the resonance frequencies of an intact concrete. The insensitivity of resonance 

frequencies to stress also confirms that the intact specimen did not include compliant 

microcracks that would cause change in the overall stiffness of the material. 

6.2.5 Resonance of the fractured specimen 

Resonances of the fractured concrete specimen were measured at each load level for 

both T and R-configurations. Figure 6.5(a) and (b) show FRF's measured at the bottom 

(T- configuration) and top (R-configuration) of the specimen, respectively. Each FRF is 

plotted with 20dB· of vertical offset. Both plots show a monotonic increase in resonance 

frequencies with increasing axial stress. For the maximum applied stress (3MPa), the 

FRF's for both configurations become close to those for an intact specimen. 

Although most of the resonance peaks persist throughout the test, the FRF's measured 

at the bottom of the specimen show peaks (such as the mode "F") that can be seen only for 

low to medium axial stresses. By comparing the Figure 6.5(a) and (b), it is also noted that 

some of the resonance peaks observed for FRF\ measured at the bottom of the specimen 

disappear from the FRF's measured at the top of the specimen for small axial stresses (such 

as the mode "E2"). 

The resonance peaks observed for low to intermediate stresses with a T -configuration 

are possibly the modes associated with flexural motions. Although the accelerometer 
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Figure 6.4 Measured FRF for an intact specimen. An accelerometer was attached to the bottom of the 
specimen (T-config). Axial stress was increased from 0 to 3 MPa. Resonance frequencies of the low-order 
modes do not show a significant change. A small frequency shift for the second mode is comparable to the 
resolution of the spectra (125Hz). 

located on and along the axis of the specimen should not detect the flexural motions, 

uneven distribution of the contact stiffness along the fracture breaks the symmetry of the . 

specimen, introducing small axial motion to the flexural modes. The resonances that were 

seen only at the bottom block for small axial load are the localized resonances in the bottom 

block. Such behavior of a fractured system has also been observed in the one-dimensional 

analysis performed in an earlier chapter (Chapter 2, Section 2.2.1. Also Figure 2.1) . This 

phenomenon is particularly interesting because large vibration is occurring in the bottom 

block even though the source is located on the top block. As the stiffness of the fracture 

increases, resonance in the bottom block progressively extends its motion to the top block, 

making the vibration less localized. 

The amplitudes of FRF's measured at the bottom of the specimen become significantly 

smaller for small axial loads. On the contrary, the amplitudes of the FRF's at the top of the 

specimen either do not change or they become even greater. Some of the modes shown in 

Figure 6.5(b) become especially pronounced for low axial stresses (shown as "Ml" and 

"M2"). Such effects are due to the isolation of vibration energy in the top block. Due to 

the large compliance of the fracture, most of the energy in waves incident on the fracture is 

reflected and causes localized vibration motions in the section of the specimen near the 

source. 
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[Measured FRF at the bottom of the specimen] 
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Figure 6.5 (b) Measured FRF's of a fractured concrete cylinder. An accelerometer is attached to the top of 
the specimen (R-config.). Unlike the T-configuration tests, some of the modes (shown by solid triangles) 
seem to disappear from the FRF's for low axial stresses. As a result, the FRF's for low axial stresses 
become much simpler than those for the T-configuration. The resonance amplitude in the FRF's for low 
axial stresses become very large due to the trapped vibration energy in the top block. 
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6.3 Numerical Simulation 

6.3.1 Computed FRF's 

The numerical code developed in Chapter 4 was used to simulate the resonance of a 

fractured concrete cylinder. A numerical model was built assuming that the intact part of 

the specimen was isotropic and homogeneous, and that the fracture had a planar geometry. 

A vertical source was located at the center of the top surface as in the experiment. The 

dynamic Young's modulus and the Poisson's ratio from high-frequency seismic 

transmission tests were used for the elastic properties of the model. For simplicity, normal 

and tangential stiffnesses of the fracture were assumed to be identical. The highest order of 

polynomials used for approximating the displacement field in the block were (Z,m,n)=(5, 

5, 4) for the smaller top block and (5, 5, 6) for the larger bottom block, where the 

components of displacement are given by 

N 

"" I m 11 (' ) ui = LJaiJ..(l,m,n) · x y z , l = x,y,z . (6.1) 
?..=1 

In the above expression, ai?o. is a coefficient for each basis function . The z -axis was taken 

along the axis of the cylinder. Although the orders of the polynomials used for the 

displacement field approximation were relatively low, they were found to provide sufficient 

accuracy for low order modes. Table 6.1 shows the first three resonance frequencies of 

both torsional and longitudinal resonance (singlet modes) for models with different orders 

of the polynomial approximation. Figure 6.6 shows computed FRF's for the T­

configuration. Cases a, b, and c were computed for a single block and d was computed for 

two blocks with a welded fracture (stiffness of fracture=l020 Palm). The table shows that 

case d (low order approximation with two blocks) yields results similar to higher order 

approximations for low-frequency resonances considering the resolution of the 

experimental data (125Hz) . Doublet modes also show good results (Table.6.2) with 

slightly greater differences than the singlet modes. As the numerical inversions performed 

later in this chapter require many computational iterations for resonance frequencies and 

vectors, the use of an unnecessarily high order approximation was not desirable. 

Therefore, justified by the above results, a lower order approximation was used for 

simulating the resonance of the fractured specimen. 

I 
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Figure 6.6 Comparison of computed FRF's with different degree of approximations. Source and receiver 
are located on top and bottom in the numerical model of the concrete cylinder. The plot shows that the 
low-order approximation used for the subsequent analyses compares well with the higher-order 
approximations up to about 30kHz. 

Frequency response functions for the fractured concrete cylinder were computed for a 

range of fracture stiffnesses. Figure 6.7(a) and (b) show computed FRF's for a receiver 

located at the bottom and top of the specimen, respectively. The computed FRF's have 

very sharp resonance peaks as no attenuation was assumed in the numerical modeL From a 

comparison between numerical (Figure 6.7) and experimental results (Figure 6.5), it can be 

seen that changes in FRF's with increasing fracture stiffness of the numerical model are 

similar to those for the experimental FRF's with increasing axial stress. 

Table 6.1 Comparison of computed resonance frequencies (in Hz) for singlet modes. 

mode T1 T2 T3 E1 E2 E3 

a.(8x8x12) 7473.7 14947 22421 11722 21106 27787 
b.(8x8x10) 7473.7 14947 22421 11722 21106 27791 
c.(5x5x10) 7473.7 14947 22421 11722 21106 27795 
d.(5x5x4, 6) 7482.7 14967 22564 11735 21106 27938 
----------- ----------------------- -----------------------

d-a (Hz) 9.0 20 143 13 0 151 

Table 6.2 Comparison of computed resonance frequencies (in Hz) for doublet modes. 

mode F1 F2 F3 F4 F5 F6 

a.(8x8x12) 7485.0 13474 19034 19248 19583 19685 
b.(8x8x10) 7485.1 13474 19034 19249 19583 19693 
c.(5x5x10) 7485.1 13474 19034 19249 19584 19694 
d.(5x5x4, 6) 7499.7 '13496 19079 19286 19704 19753 
----------- -----------------------------------------------d-a (Hz) 14.7 22 45 38 121 68 
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Figure 6.7 (a) Computed FRF's of a fractured concrete cylinder. FRF's are offset by 20dB. The source 
and receiver are located on the top and bottom of the model. Increasing fracture stiffness results in changes 
in the FRF's similar to the changes in experimental FRF's with increasing axial stress. 
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Figure 6.7 (b) Computed FRF's of fractured concrete cylinder. FRF's are offset by 20dB. Both source and 
receiver are located on top of the model. Increase in the fracture stiffness results in changes in the FRF's 
similar to the changes in experimental FRF's with increasing axial stress. 
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Computed resonance frequencies for a range of fracture stiffnesses are shown in Figure 

6.7 (a). Each curve represents the behavior of a mode with varying fracture stiffness. 

Unlike the resonance of the one-dimensional system discussed in Chapter 2 and 3, the 

resonance-frequency curves for a three-dimensional body containing a fracture can intersect 

each other. In Figure 6.8(a), open circles are singlet modes (unique eigenvalues of the 

matrix Eq.(4.18)) and closed circles are doublet modes (degenerate eigenvalues). A singlet 

mode is either an axial extension (labeled 11El 11
, 

11 E2 11
) or torsion ("Tl", "T2") as is seen 

from their mode shapes shown later. Motion of the other doublet modes (for example, 

"Fl II, 
11F2 II, and 11F3 11

) are primarily flexural and shear. For comparison, experimental 

resonance frequencies for the T -configuration are shown in Figure 6.8(b ). 

The resonance frequencies of the first six modes (two singlet modes El and Tl, and 

two doublet modes) degenerate to zero as the stiffness of the fracture approaches zero. 

This is because these modes become the rigid body translation and rotation modes for zero 

fracture stiffness. For two bodies with free surfaces, there should be twelve possible rigid 

body motions. The remainder of the twelve rigid body motions are those arising from the 

two blocks being coupled. 

6.3.2 Computed mode shapes 

The shape of the individual modes can be computed from the eigenvectors (mode 

vectors) provided by the numerical code. Figure 6.9 shows mode shapes for several of the 

modes shown in Figure 6.8(a). Three representative fracture stiffnesses were chosen: 

K'=I014 (high stiffness), 1012 (medium stiffness), and 1010 (low stiffness) [Palm]. The 

corresponding nondimensional fracture stiffness defined by b = K'L/ E (L and E are the 

length and Young's modulus of the specimen, respectively) is 350 (high stiffness), 3.5 

(medium stiffness), or 0.035 (low stiffness). b can be interpreted as a ratio between static 

deformation in the intact part and the fracture. 

From the plot, torsion modes (T) and longitudinal modes (E) are singlets. The other 

modes (F) are doublets, having mode pairs with identical resonance frequency and mode 

shapes that are a mirror image of each other. When the stiffness of the fracture is high, the 

mode shapes are close to those of an intaCt cylinder. As the stiffness of the fracture 

decreases, deformations in the top block and bottom block become discontinuous. 

At low fracture stiffness, mode shapes in the two blocks are nearly decoupled. For the 

first six modes, individual intact blocks show very small deformation. Different mode 
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Figure 6.8 Comparison between experimentally measured and computed resonance frequencies for a range 
of axial stresses and fracture stiffnesses, respectively. Each curve corresponds to a normal mode and is 
labeled according to the mode shown in Figure 6.9. Fracture stiffness for an axial stress of 0.9MPa is 
determined to be about 1012 Palm from the above plot. 

shapes are due to different relative motions of the blocks across the fracture . This suggests 

that these modes become rigid body motions for zero fracture stiffness. The higher order 

modes have different behaviors, showing deformation of either one of the blocks. This is a 

three-dimensional analogue of the vibration localization discussed in Chapter 2 (Section 

2.3). For example, as the E2 mode shows, resonance localizes in the bottom block even 

though the source is located at the top of the numerical model. This behavior of the E2 

mode was also observed in the laboratory measurements (Figure 6.5). 
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Figure 6.9 Effects of fracture stiffness on the mode shapes of a fractured concrete cylinder. With 
decreasing fracture stiffness, sharp changes in the mode shapes across the fracture are observed as is the 
localization of vibration in both top and bottom blocks. 



6 Resonance of Fractured 3-D Body 16 7 

6.4 Numerical Inversions 

6.4.1 Inversion for elastic moduli 

Dynamic elastic moduli of an intact specimen can be determined by performing the 

numerical inversion described in Chapter 4. The assumed elastic moduli for a numerical 

model were changed iteratively until the differences between the experimentally measured 

and numerically computed resonance frequencies are minimized. Assuming the material 

was isotropic and homogeneous, Young's modulus and Poisson's ratio of the specimen 

were inverted from the first two longitudinal modes (El and E2) as 51.3 GPa and 0.26, 

respectively. These values were close to the result from the high frequency ultrasonic 

measurements (Young's modulus of 54.8 GPa and Poisson's ratio of 0.26). Measured 

FRF and computed FRF using the inverted elastic moduli are compared in Figure 6.10. 
Polynomials of the order of (l,m,n)=(8x8x10) were used. Although the FRF's start to 

show differences for higher frequencies, both FRF's are in good agreement for low 

frequencies. The initial misfit up to about 1 Ok.Hz is due to noise in the experimental data. 

The plot also shows an FRF computed for moduli determined from the high frequency 

measurements. Within the resolution of the plot, no significant difference between the two 

computed FRF's can be seen. 
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Figure 6.10 Comparison between experimentally measured and computed FRF's. The computed 
FRF's were obtained for the Young's modulus and Poisson's ratio that were determined from the 
resonance inversion (shown in dotted line) and high-frequency ultrasonic velocity measurements 
(shown in solid line) . The experimental FRF was measured by an acclerometer attached to the bottom 
of the specimen (T-config) . Both computed FRF's show good agreement with the experimental FRF. 
Due to the noise and limited sensitivity of the accelerometer, the experimental FRF deviates from the 
numerical FRF for low frequencies up to 10kHz. 
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6.4.2 Inversion for fracture stiffness 

Dynamic stiffnesses of the fracture were determined from measured resonance 

frequencies of the fractured specimen. Elastic moduli determined from the high frequency 

ultrasonic measurements were assumed for the intact part of the specimen. This method 

involves finding a fracture stiffness for the numerical model that yields resonance 

frequencies similar to the ones measured at each load. For example, in Figure 6.8, the 

stiffness of the fracture at an axial stress of 0.9MPa is found to be approximately 1012 

Palm by matching the resonance frequencies for the F1, F2, E1, and E2 modes. The 

numerical code performed this task automatically by changing the stiffness of the fracture 

instead of the elastic moduli. 

By assuming identical normal and tangential stiffnesses, dynamic stiffness of the 

fracture during loading and unloading stages was determined from measured resonance 

frequencies of the first longitudinal mode (El). Figure 6.11 compares inverted dynamic 

stiffnesses from resonance tests and (elastic) static stiffnesses from uniaxial loading tests. 

Erratic behavior of the static stiffness for the loading eycle is possibly due to uneven 

closure of the fracture . Although both results show stiffnesses of the same order of 

magnitude, inverted dynamic stiffnesses are significantly higher than the static stiffnesses. 

Resonance inversion for fracture stiffness was also performed assuming dissimilar 

normal and tangential stiffnesses. To invert for the two stiffnesses, measured resonance 

frequencies for the four or five lowest order modes were used. Inversion was performed 

only for resonances measured during the loading cycle (T -configuration). If modes used 

for inversion are not sensitive to changes in the fracture stiffness, inversion instability of 

can occur. In this research, such a problem was avoided by using multiple (more than two) 

modes. For all of the cases presented here, this inversion process was found to be stable. 

Inverted fracture stiffnesses are shown with static stiffnesses in Figure 6.12. Better 

agreement is noticed between static and dynamic normal fracture stiffnesses than the 

previous model with assumed identical normal and tangential fracture stiffnesses . 

Experimentally measured and numerically computed FRF's using the inverted fracture 

stiffnesses are compared in Figure 6.13 . Both FRF's show good agreement particularly 

for large axial stresses. This may be because the stiffness of the fracture has become more 

or less uniform at high axial stresses. 
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Figure 6.11 Comparison between static normal fracture stiffnesses from loading tests and dynamic 
fracture stiffnesses determined using the resonance inversion technique. Normal and tangential fracture 
stiffnesses were assumed to be identical for the inversions, and the resonance frequencies of the first 
longitudinal mode were used. 
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Figure 6.12 Comparison between static normal fracture stiffnesses from loading tests and dynamic 
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6.5 Summary 

This chapter examined the resonance of a concrete cylinder containing a single through­

going fracture both experimentally and numerically. The specimen was forced to resonate 

using a piezoelectric source. By applying an axial load, the stiffness of the fracture in the 

specimen was changed. Although the specimen was loaded on a load frame, vibrations in 

the specimen were approximated to be free vibrations since the strong impedance contrast 

between the specimen and compliant plastic rings isolates the vibrations. 

With increasing axial stress, the resonance frequencies of the fractured specimen 

increased systematically, approaching those of the intact specimen. For small axial 

stresses, FRF's measured by two accelerometers attached to the top and bottom of the 

specimen revealed different types of localized resonance in the top and bottom sections of 

the specimen. The top block on which the source was attatched exhibited strong resonance 

peaks as the fracture prohibited the transmission of vibration to the bottom section. In 

contrast, the bottom section also showed strong localized resonances even though it was 

located on the opposite side of the fracture as the source. This is experimental evidence for 

the localized resonance in a irregular system discussed in Chapter 2 (top and bottom blocks 

have different geometries, resulting in different resonance characteristics). These results 

are significant because they indicate that both types of localized resonances can be used for 

detecting a section of damaged rock and concrete structures isolated by fractures. 

The numerical code developed in Chapter 4 was used to examine the effect of fracture 

stiffness on the mode shape and resonance frequencies. With decreasing stiffness of the 

fracture, both a decrease in resonance frequencies and changes in mode shapes were 

observed. The mode shape exhibited sharp changes across the fracture, which is a good 

indicator for locating fractures. The code was also used for determining the dynamic 

stiffnesses of the fracture from measured resonance frequencies. Both statically measured 

and numerically inverted fracture stiffnesses showed good agreement. The results 

demonstrate the applicability of the resonance inversion technique for quantitative diagnosis 

of damage in rock and concrete structures. 

In the following chapter, an application of the resonance inversion technique to a semi­

site scale concrete structure is presented. Changes in the dynamic stiffness of the structures 

due to introduced damage and repair are determined from the resonance frequencies and 

compared with the measured static stiffnesses. 



Resonance 
Concrete 

7.1 Introduction 

of a Fractured 
Infrastructure 

Many elements of the civil infrastructure such as tunnels, dams, port piers, buildings, 

and highway ramps are built of rock and concrete. In these structures, severe loading from 

excessive traffic, earthquakes, and aging of building materials can cause cracking of the 

·matrix. The resultant cracks and fractures can affect the integrity of a structure by 

decreasing its stiffness and strength, thereby promoting further degradation. Earthquake­

related damage in particular has been a major problem in heavily populated urban and 

suburban areas susceptible to frequent seismic activity because the resultant damage is often 

severe, widespread, and requires prompt restoration. Consequently, delays in the 

restoration of highway and public transportation systems lead to serious traffic problems 

that could impair the function of major cities. How soon a damaged structure is restored 

depends upon both economic and techni~al factors . Demolishing and replacing the whole 

structure can be both costly and time consuming. As long as the original performance of 
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the structure (load capacity, stiffness etc.) can be restored by repair, it is desirable that a 

damaged structure be repaired on site. 

For effective and successful post-earthquake repair of the civil infrastructure, 

quantitative, accurate, and practical techniques for assessing the degree of damage and the 

effect of repair are essential. For assessing the structural damage due to microcracking and 

fracturing of building materials, non-destructive tests based on acoustic methods are among 

the most promising as they are sensitive to changes in the stiffness of a structure that are 

caused by damage. In this chapter, the acoustic characteristics of semi-site scale bridge 

columns are examined by resonance and seismic transmission tests. The tests were 

conducted before and after damage is introduced to the columns, and after the columns are 

repaired using two different repair techniques. The results presented in this chapter are 

obtained as a part of a research program conducted at the Earthquake Engineering Research 

Center at University of California, Berkeley for development of post-earthquake repair 

techniques for reinforced bridge columns (contract No. RT A-59X517). 

7.2 Experimental setup 

7 .2.1 Description of specimens 

The tested specimens are one-third scale models of actual bridge columns (Lehman, et 

al., 1996). The geometry and dimensions of the column are shown in Figure 7 .1. The 

columns have 0.25 inch (6.4mm) diameter spiral reinforcement with 1.25 inch (3.2cm) 

spacings and vertical steel reinforcement that occupies 1.5% of the total cross section. 

Specimens #415M and #415S are identical in structure and concrete mix design. 

Before the columns were loaded, #415M was tested for its dynamic properties. 

Subsequently, the specimens were loaded by both cyclic lateral load and constant axial load 

(Figure 7.2). The applied axial load was 0.653 MN (2.24 MPa in the column cross 

section: 10% of gross cross section load capacity). During the loading tests, the specimens 

were cemented and braced to the concrete floor and the load-displacement behavior of the 

column was recorded. For specimen #415S, 7 inches (17.8 em) of lateral cyclic 

displacement was applied at 8 feet (2.44m) above the surface of the concrete footing to 

introduce severe damage at the _bottom of the column. After the last load cycle, the 

specimen was accidentally displaced up to 10 inches (25.4cm), causing further damage. 
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Figure 7.1 Geometry of column specimen. The column part has both vertical reinforcement (22 No.5 
steel reinforcement bars) and spiral reinforcement (No.2 with 1.25" (3.18 em) spacing) (Lehman, et al., 
1996). The column is on a rectangular block that is longer in the loading direction. 

Specimen #415M was loaded by 3 inches (7.6 em), which lead to less severe damage than 

specimen #415S. Estimated yield displacement of the column was approximately 0.75 

inches ( 1.9 em). Both specimens experienced severe cracking over the middle to bottom 

sections of the column wall, spalling of the concrete cover, crushing of the concrete core, 

and yielding and rupturing of steel reinforcement bars at the bottom of the column (Figure 

7.3). 

After the changes in the dynamic properties were measured, the columns were repaired 

by two different techniques (Figure 7.4). For specimen #415M, the fractures were injected 

with epoxy (low-viscosity epoxy resin, Concresive TM 1360) and cementitious patching 

material (Thorite ™) was applied to the spalled concrete cover at the bottom. For specimen 

#415S, the yielded and ruptured reinforcement was replaced by new reinforcement that was 

connected to the remaining reinforcement in the column by couplers. The crushed core at 

the bottom section was removed and r_eplaced by fresh concrete. The diameter of the 

repaired cross section was larger than the original by 5.8 inches (15cm). When the epoxy 
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brace 

Figure 7.2 Experimental setup for cyclic loading tests for model columns (after Elkin et al., 1998). 
Lateral displacement was applied using a horizontal actuator attached to the center of the top block section. 
The footing was cemented and braced to the floor. 
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fracture 

concrete core yielded reinforcement 

ruptured reinforcement 

Figure 7.3 Damage introduced by cyclic loading of the column. Above photos are for the severely 
damaged column (415S). The damage localized near the bottom of the column exhibiting yielding and 
rupturing of reinforcement, crushed concrete core, and spalling of concrete cover. The middle section did not 
suffer major damage but many horizontal tensile fractures were observed. 

and concrete cured, resonance and wave transmission tests were repeated for the dynamic 

properties of columns. 

The repaired specimens were loaded once again for their ultimate strength and stiffness. 

The load-displacement behavior of the columns for the second loading test was recorded 

for comparison with the results of the first loading test. 

7.2.2 Seismic wave transmission test 

Wave transmission tests were performed along the diameters of the columns. A source 

and receiver pair was moved along the axis of the column to construct a vertical profile of 

P-wave travel times and waveforms. The propagation path between a source and a receiver 

was either parallel to or normal to the direction of the applied lateral displacement (Figure 

7.5). Waves were generated using a small calibrated hammer (Impulse Force Hammer, 

PCB Piezotronics, 086C80). The resulting accelerations were measured by an 
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(a) Repair of a moderately damaged column (415M) 

(b) Repair of a severely damaged column (415S) 

Figure 7.4 Repair of the damaged columns. (a) A moderately damaged column (415M) was repaired by 
injecting epoxy resin into the fractures at the bottom to middle sections. Spalled concrete was patched with 
cementitous material. (b) A severely damaged column (415S)was repaired by replacing damaged 
reinforcement and concrete core and increasing the diameter of the bottom cross section. 
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Figure 7.5 Source and receiver configuration for seismic transmission tests . Waves propagating along 
the diameter of the columns were measured. The source and receiver pair was moved along the length of the 
column to construct travel time and waveform profiles. 
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Figure 7.6 Response of calibrated impact hammer hit on the surface of an intact column. The spectrum 
shows that the source generates waves with frequencies of 0 to approximately 12kHz. 
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accelerometer (PCB Piezotronics, 353B68) and analyzed and recorded on a digital 

oscilloscope (LeCroy 9424E). The stress history of the applied impact was also measured 

and used to normalize the amplitude of the measured waves. The impact hammer generated 

waves containing spectra ranging from 0 to approximately 10kHz. The hammer's impact 

response and its spectrum are shown in Figure 7 .6. 

7 .2.3 Resonance test 

The specimens were vibrated using either an impact from a 5 lb. plastic sledge hammer, 

or a mechanical shaker (LDS vibrator, V102) that was driven by continuous single 

frequency sine waves sweeping over a desired frequency range. Force from the shaker 

was transmitted to the column through a thin piano wire that was connected to the top of the 

column (Figure 7.7). Resulting accelerations were measured by an accelerometer attached 

to the concrete block at the top. Measured accelerations were displayed, analyzed, and 

recorded by a spectrum analyzer (ONO SOKKI CF6400). It should be noted that damaged 

column #415S was tested on wooden blocks and the intact column #415M was tested on 

plywood laid over a concrete floor. These differences in the boundary conditions may have 

affected the results of the resonance tests. 



18 0 7 Resonance of Fractured Infrastructure 

loaded direction 

accelerometer _ , -
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Figure 7.7 Experimental setup for vibration tests. Resonance of the columns was introduced by either 
continuous sine wave excitation using a mechanical shaker or by the impact from a sledge hammer. Force 
from the shaker was transmitted to the column at approximately 45" to the loading direction. Impact from 
the sledge hammer was applied in both directions parallel and perpendicular to the loading direction. 
Resulting accelerations at the top of the column were measured by accelerometers. 
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7.3 Experimental Results 

7 .3.1 Static behavior 

The static load-displacement response of the specimens during two successive loading 

tests before and after the repair is shown in Figure 7.8. For both specimens, secant 

stiffness of the columns decreases significantly at the onset of yield. The measured load­

displacement relations are strongly hysteretic, indicating large frictional sliding along the 

introduced fractures and debonded steel reinforcement. In order to relate the static behavior 

to the dynamic response that results only from small deformation of the specimen, elastic 

properties that do not include frictional sliding in the specimen have to be measured 

(Walsh, 1965; Cook and Hudgson, 1965). For this purpose, tangent stiffnesses of the 

load-displacement curves were measured for the initial slope of small unloading loops 

(Figure 7.9). The slope provides the approximate elastic stiffness of the specimen as the 

frictional sliding "locks up" when the load is reversed. 

The initial load-displacement loops of columns #415M and #415S showed clear linear 

behavior and small hysteresis. After damage was introduced, the load-displacement curve 

became strongly hysteretic and the elastic stiffness decreased significantly. The initial 

stiffness of the repaired specimen #415M was found to be significantly lower than the 

intact column. This may be due to the crushed concrete core at the bottom section and 

cracks in the middle section of the column that were not injected with epoxy. However, 

small hysteresis in the first loading loop for the repaired column indicates the effect of the 

remaining open fractures is rather small. The low stiffness of the epoxy injected into 

fractures might also be responsible for the observed decreased stiffness. Repaired heavily 

damaged column #415S showed almost identical stiffness as the intact initial state. 

Although the cracks in the middle section of the column may have some effect on 

decreasing the stiffness of the column, increase in stiffness due to the thick concrete cover 

at the bottom section seemed to compensate for the effect. Load capacities of the repaired 

columns were similar to or even larger than those of the original intact columns, indicating 

successful repairs. 
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Figure 7.8 Load-displacement behavior of intact and repaired columns. The stiffness (secant stiffness) of 
the columns decreased significantly after the columns underwent yield. Although the repaired column 415 
M showed reduced initial stiffness, both columns showed equal or even larger maximum load capacities 
(after Elkin et al., 1998) 
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Figure 7.9 Stiffness of intact, damaged, and repaired columns. Damaged columns show 
significantly lower stiffness than intact columns. Repaired column 415S shows almost full recovery of 
the stiffness while the column 415M still shows significantly reduced stiffness. 

7 .3.2 Wave transmission tests 

The intact specimen #415M was tested for wave velocities before the first loading test. 

Waves were generated by an impact from a small calibrated hammer. As the wavelength of 

the wave generated by the hammer was relatively long (wavelength to column diameter 

ratio A, I D- 0.64 at 10kHz), scattering and fast channeling of the waves due to the steel 

reinforcement were negligible. 
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For the specimen #415M, both P and S- waves were measured along diameters while 

moving the source and receiver pair along the length of the column. An S-wave was 

generated by applying a lateral impact on a small metal piece glued on the side of the 

column. Figure 7.10 shows examples of the resultant waveforms. Besides the P and S­

waves propagating directly from the source to the receiver, strong Rayleigh surface waves 

propagating along the perimeter of the column were also present. The averaged velocities 

of the P and S-waves along the column length were 3929 rnlsec for the P-wave and 1885 

rnlsec for the S-wave. At these velocities, the theoretical velocity of Rayleigh wave is 1761 

rnlsec, and the expected arrivals of the Rayleigh waves are shown in the plots. From the 

averaged measured velocities of the intact column, Young's modulus and Poisson's ratio of 

the column were determined as 23.7GPa and 0.35, respectively, assuming that the column 

was homogeneous. The average density of the column was computed as 2473 kgfm3 using 

known densities of steel reinforcement (7832 kgfm3) and concrete (2398 kgfm3). 
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Figure 7.10 Examples of waveforms measured at the middle section of an intact column. The top 
waveform was obtained by applying an impact normal to the surface and measuring the normal particle 
motion on the other side of the column. After the arrival of the P-wave (labeled as "P"), a strong 
Rayleigh surface wave (labeled as "R") that propagates along the perimeter of the cross section of the 
column can be seen. The bottom waveform was obtained by applying a lateral impact to a small metal 
piece glued to the surface. The resulting particle motion on the other side of the column was measured by 
an accelerometer attached to the surface horizontally. The waveform shows a clear arrival of the S-wave 
(labeled as "S"). 
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Once damage was induced in the columns, the characteristics of the waves propagating 

in the specimens were significantly altered. Figure 7.11 shows profiles of the travel time 

for the first-arriving wave (propagating along the diameter of the columns). From the 

plots, changes in the travel time due to the presence of fractures and microcracks can be 

seen clearly. For both columns, travel times increased significantly in the direction parallel 

to the direction of column loading. In some cases, the travel time became as large as twice 

the travel time for the intact specimen. In the direction normal to the applied load, the 

changes in the travel time and distortion of the waveform were small for both columns. 

Figure 7.12(a) and (b) show waveforms measured along the axis of the column specimens. 

In the direction parallel to the loading direction, the amplitude of the first-arriving P-wave 

diminishes and the travel time of the wave increases significantly. In the direction normal 

to the loading direction, the P-wave shows a clear first arrival even after the columns were 

damaged. However, in the section where cracking of the concrete was observed, a large 

amplitude wave that propagates slower than the P-wave but faster than both S- and 

Rayleigh waves can be seen (Figure 7.13). 

The different characteristics of the waves propagating in the two directions (parallel and 

perpendicular to the loading direction) reflects the geometry of the fractures introduced in · 

the columns. In both directions in the columns, an increase in the travel time is caused by 

microcracks and fractures that cause frequency-dependent time delays in the propagating 

waves (e.g., Pyrak-Nolte et al. , 1990a). The extreme time delays observed in the direction 

parallel to the loading direction are possibly due to the tortuous paths through which those 

waves have to propagate. As the waves cannot directly propagate across the fractures, they 

instead are multiply reflected by the fractures and free surface of the column before 

reaching the receiver. Conversely, the large amplitude of the late-arriving wave in the 

normal direction is possibly due to the waves trapped and multiply reflected between 

approximately parallel fractures. Such a wave is known as the fracture channel wave 

(Nihei et al., 1998) and can propagate for a long distance without attenuating. The 

geometry of fractures that cause these differences in the characteristics of wave propagation 

in each direction is schematically shown in Figure 7 .14. 
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Figure 7.11 Vertical profiles of P-wave travel time along the diameter of column specimens. The 
profiles for the intact specimen (labeled "Ref.") were measured only for specimen 415M. Damaged 
specimens show large increases in travel times. For specimen 415M, travel time increases monotonically as 
it gets close to the bottom of the column. Specimen 415S exhibits a local peak at elevation H=l.Om, 
which indicates localized damage in the middle section. It is noted that the direction perpendicular to the 
loading direction exhibits a much smaller change in the travel time for the middle section than in the 
loading direction. Although the bottom section of the repaired specimen 415M showed a significant 
decrease in the wave travel time (415M), this was not true over the entire epoxy-injected section. The 
apparent increase in travel time for the repaired specimen 415S is due to the increased diameter of the 
column cross section. 
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Figure 7.12 Seismograms for specimens before and after damage introduction and repair. Large 
amplitude is shown by white (positive)' and black (negative). Damaged specimens show significant change 
in the velocity and amplitude of the first-arriving part of the wave in the direction parallel to the loading 
direction while the change normal to the loading direction is small . 
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Figure 7.13 Example of measured waveforms for column 415S. At level H=2.03m, no surface fractures 
were observed. Whereas level H=l.27m is in a section where distinct horizontal surface fractures were 
observed. (a) In the direction parallel to the loading direction, the first-arriving P-wave velocity and 
amplitude is smaller for the damaged section. (b) In the direction perpendicular to the loading direction, the 
velocity of the first-arriving P-wave does not show significant change. However, there is a distinct arrival 
of wave energy between the first-arriving P-wave and expected S-wave (circled and labeled as "G"). 
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/ 

wave propagation in 
loading direction 

• Large decrease in velocity 
• Wave is greatly attenuated 
due to reflection by fractures 

wave propagation normal 
to loading direction 

• Slight decrease in velocity 
• Strong secondary arrival of 
fracture-guided wave 

Figure 7.14 Explanation for different wave behaviors in directions normal and perpendicular to the lateral 
displacement applied to the columns. Direction normal to the loading direction shows small change in its 
velocity and generation of a fracture channel wave. In the direction parallel to the loading direction, both 
velocity and amplitude of the wave decreases significantly as the wave is scattered by fractures curving down 
in the column. · 
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7 .3.3 Resonance tests 

7 .3.3.1 Resonance frequency 

Resonance frequencies of the columns were measured either by continuous excitation 

from a mechanical shaker or by an impact from a plastic sledge hammer. For most of the 

tests, however, the sledge hammer source was preferred because a sweep with the shaker 

requires an impractically long time (typically several hours to sweep over a desired 

frequency range with sufficient resolution). The hammer source, on the other hand, 

requires only a few minutes to complete all of the measurements needed for averaging. 

Figure 7.15 shows a comparison between spectra measured by the two methods on the 

damaged column #415S. Resonance frequencies of the first mode show good agreement 

indicating that measurements made from the hammer source are sufficient for determining 

resonance frequencies of the specimens. 

Figure 7 .16( a) and (b) show measured spectra using the hammer source for the 

specimens. Amplitudes of the individual spectra are normalized by their maxima. In the 

plots, measurements conducted in the loading direction are labeled as "A" and 

measurements in the direction perpendicular to the loading direction are labeled as "B". 

From Figure 7.16(a), it can be clearly seen that resonance frequencies decrease as more 

severe damage is introduced to the specimen. Figure 7 .16(b) shows recovery of the 

resonance frequencies after repair. For the severely damaged and repaired specimens, the 

resonance frequencies are even higher than the intact specimen, possibly due to the 

increased stiffness of the column at the bottom section. 

7 .3.3.2 Splitting of resonance 

Although the frequencies of the modes "A" and "B" are different, these are essentfally 

the same type of mode. Figure 7.17 shows mode shapes of the observed resonances for 

the intact #415M and damaged #415S specimens. The mode shapes were measured by 

resonating the specimen at a single frequency using the mechanical shaker and measuring 

the resulting amplitude of acceleration along the columns. The amplitudes were normalized 

to the maximum for comparison. The measured mode shapes indicate that these are the 

first-order flexural mode. If the bending stiffness of a column is isotropic around its axis, 

the first two flexural modes are degener'!-te, having identical resonance frequencies. Non­

degenerate flexural modes with different resonance frequencies (splitting of resonance) 
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Figure 7.15 Comparison between resonances introduced by different types of sources. The tested 
specimen was damaged 415S . Although the shapes of the spectra are quite different, both sources yield 
resonances with similar resonance frequencies. 



19 2 7 Resonance of Fractured Infrastructure 

C'IS .... -(.) Q) 
a. 
(/) 

.... 
Q) 

3: 
0 
a. 
"C 
Q) 
N 

C'IS 
E .... 
0 
c 

C'IS .... -(.) 
Q) 
a. 
(/) 

.... 
Q) 

3: 
0 
a. 
"C 
Q) 

.!:::! 
C'IS 
E .... 
0 
c 

1.4 .-----~.------7. ------~.------~.------~----~ 
severely moderatel'y Intact 

. ........ damaged ......... damaged .......... column ........................... .. .. .... .. 
column column · D · d 

- amage -

. .. ...,.1ft ....... ............. , ...... ·· .. ·~~ • J ' ~ ' 
1.2 

0.8 

0.6 .... .. ................ , ......... ....... ..... c ..... .. H ......... . ; .... .. . .. ...... .. .. ; ................... ; .... .... .. .......... .. 

A 8 A Bi 3 , A , 

:: ~······· ·~~:l.::::::::::::: :::::::::::::: . Y\J \_ L 
0 5 1 0 15 20 25 30 

frequency (Hz) 

(a) before and after the first loading test 

1.4 

1.2 
j j repair~d rep'aired 

...................... r ................. ... : ... : ............ ....... ! .... (moderate) ..... (severe) ........ . 

- After Repa1r - : . . 

~ i l ~ I ~ ~B 0 .8 

0.6 

0.4 

. . 
0.2 ................... lK~A .. ............... ; ..................... + .............. ,u .. : .................. ,l .... :n ................... . 

0 ~ A!t.A. ; : j 1 ) ,J 
0 5 1 0 15 20 25 30 

frequency (Hz) 

(b) after repair 

Figure 7.16 Normalized spectra measured using a sledge-hammer source. Each spectrum has a clear 
single resonance peak. Resonance frequencies are different for directions of vibration parallel (A) and 
perpendicular (B) to the direction of the applied ~isplacement during the static loading test. 
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Figure 7.17 Normalized amplitude of mode shapes measured for the observed resonances . Shapes of 
the modes indicate these are of the same mode type (first flexural mode) . For column 415S, mode shape 
in the direction normal to the loading direction shows a relatively large amplitude at the bottom of the 
column. This may indicate a large motion in the footing supported by wooden blocks. 

indicate that the stiffness of the columns are not isotropic around their axes. For the 

damaged columns, this anisotropy is primarily due to the damage introduced by directional 

loading. As a result, stiffness of the column became lower in the loading direction, 

yielding a lower resonance frequency . The splitting of the resonance for the intact column 

is possibly due to the geometry of the footing that is longer in the loading direction. As the 

deformation of the footing on the plywood is larger in the direction perpendicular to the 

loading direction, the column exhibits a lower resonance frequency in this direction. 

Although even larger effects from the footing may be expected for the damaged column 

#415S tested on wooden blocks, resonance of the column is largely decoupled from the 

footing due to the formation of a compliant "hinge" at the bottom of the column. The mode 

shapes in Figure 7.17(b), however, indicate relatively large footing motion in the direction 

perpendicular to the loading. 
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7 .3.3.3 Attenuation (Damping) 

Assuming a linear visco-elastic response for the resonating specimens, the resonance 

frequency and attenuation were determined by fitting the following equation to the 

measured response 

(7.1) 

where f n is the undamped natural frequency (resonance frequency) of the structure and !; 

is the damping coefficient. As !; is usually small, fn ~1- C in the equation can be 

replaced by f". Although the attenuation could also be determined by the half-power 

method, it was not employed as the method resulted in unreasonably large or small 

attenuation. This inaccuracy might be due to the contamination of measured signals by the 

large transient waves that arrive before the development of resonance. Figure 7.18 shows 

> -
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.. 
•' . . i ~ ~ ~ ~ i 

'A (patallel t6 loadlng diiection) 
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time (sec) 

Figure 7.18 The measured transient vibration introduced by an impact from a sledge hammer was fitted 
with a function of unknown frequency and attenuation parameters. The above examples are for the intact 
column 415M. 

I 
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Table 7.1 Resonance frequency and attenuation of column specimens 

Specimen direction Intact Damaged Repaired 

415M parallel fn=21.15Hz fn=11 .50Hz fn=l7.64Hz 

(moderate 1;, =0.038 1;, =0.018 1;, =0.025 

damage) 
normal fn=l6.31Hz fn=12.45Hz fn=18.08Hz 

1;, =0.043 1;, =0.016 1;, =0.024 

415S parallel fn=3.53Hz fn=23.77Hz 
1;, =0.019 s =0.026 (severe 

damage) 
normal fn=5.43Hz fn=25.14Hz 

1;, =0.029 1;, =0.029 

Note: The "direction" shows the direction of vibration motions with respect to the loading 
direction. 

an example of measured acceleration response and the fitted equation. As the resonance . 

was not sufficiently developed during early times and noise prevailed during later times, the 

fitting was performed for intermediate times. The choice of the selected period was 

somewhat arbitrary. The determined resonance frequencies and attenuation are shown in 

Table 7.1 and Figure 7.19. 

In general, attenuation decreases with damage and increases with repair. The smallest 

attenuation, however, was observed for the moderately damaged specimen #415M. The 

general trend observed for the column specimens can be explained by invoking the one­

dimensional resonance of a delaminated halfspace, as discussed in Chapter 2. Because 

localized damage at the bottom of the columns serves as a compliant interface between the 

column part and the footing part of the specimen, resonance of a damaged specimen 

exhibits smaller attenuation than an intact specimen due to the trapping of vibration energy 

in the column part. The observed attenuation behavior indicates that attenuation due to the 

dissipation of vibration energy in the column from damage is overcome by attenuation due 

to radiative loss of energy into the footing and the foundation. The cause of the relatively 

large attenuation in the severely damaged specimen may be due to an increase in dissipation 

of energy within the column. 
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Figure 7.19 Resonance frequencies and attenuation (damping coefficients) for measured vibration of 
columns hit by a sledge hammer. Resonance frequency decreases as damage is introduced to the specimen 
and recovers after the repair. Although attenuqtion shows a similar trend as the resonance frequency, the 
severely damaged specimen exhibits rather large attenuation especially in the direction normal to the loading 
direction. 



7 Resonance of Fractured Infrastructure 19 7 

7.4 Static stiffnesses and resonance frequencies 

7.4.1 Displacement-discontinuity B.C. for column containing a compliant 

interface 

The degree of damage introduced into a structure is reflected by an increase in its elastic 

compliance that can be measured statically by load-displacement tests. The change in the 

compliance (or stiffness) can also be measured from the changes in resonance frequencies 

of the structure. The statically (load-displacement) and dynamically (resonance) determined 

elastic compliances of a structure should ideally be identical if the soundness of a structure 

is to be accurately determined from resonance tests. 

From measured static load-displacement behaviors, the elastic stiffness of the columns 

can be determined. Table 7.2 shows the experimentally determined flexural stiffness of the 

columns before and after the damage was introduced and repaired (see Figure 7 .9). As the 

laterally loaded columns show strongly localized damage at the bottom, a damaged 

specimen can be, to a first-order approximation, modeled by a circular column attached to a 

rigid foundation via a compliant interface. The load-displacement behavior of the interface 

is described by displacement-discontinuity boundary conditions (Schoenberg, 1980; Pyrak­

Nolte et al., 1990a) using normal and tangential specific interface stiffnesses (fracture 

stiffnesses). For an interface located on the x-y plane with lateral load applied along the x­

axis, the boundary conditions are 

t~ = 1(1 ( u; - u~), 

t; = 1(" ( u; - u;), 
t~ = - ( = 1· r, 

t- = -t- = 1 . (J 
z z ' 

(7 .2a) 

(7.2b) 

(7.2c) 

(7 .2d) 

Table 7.2 Measured static bending stiffness of columns 

Specimen Intact Damaged Repaired 

415M 161 kips/inch 45.8kips/inch 95.7kips/inch 
(moderate damage) (28.1kN/mm) (8.01kN/mm) (16.8kN/mm) 

415S 169kips/inch 7.41 kips/inch 160kips/inch 
(severe damage) (29 .5kN/mm) (1.30kN/mm) (27 .9kN/mm) 
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where 7<:11 and 7<:1 are normal and tangential specific fracture stiffnesses, respectively, ux 

and uz are displacements, tx and tz are tractions, and a- and r are normal and tangential 

stress on the interface. Superscripts 11+11 and II-II denote the column side and the foundation 

side of the interface, respectively. If the bending moment M and lateral load Q are applied 

to the interface, assuming that the interface remains plane after deformation, displacement 

in z-direction is given by 

u = 8·x z . (7.3) 

Where 8 is the inclination angle for the cross section plane of the column originally parallel 

to the x-y plane. From the above equation, 

u; - u; = ( e+ - e- )x. (7.4) 

The bending moment on the interface is given by 

M = f a- · xdA. (7.5) 
A 

From Eq.(7.3), (7.4), and (7 .5), 

M = f IC" ( u; - u; )xdA ~ 7<:11 ( e+ - e-) f x 2 dA = K n I( e+ - e-), (7 .6) 
A A 

where I is the moment of inertia for the column's cross-section. Therefore, the 

displacement-discontinuity boundary conditions in the z-direction for the interface become 

M = K:J. ( e+ - e-), 
M+ = M- =M. 

In the x-direction, 

Q= J rdA. 
A 

Therefore, 

Q = K1A · ( u; - u~), 

Q+ = Q- = Q. 

(7.7a) 

(7 .7b) 

(7 .8) 

(7 .9a) 

(7.9b) 

Using Eq.(7.7a)-(7.9b), elementary beam (Euler-Bernoulli beam) theory yields the flexural 

compliance of the column measured at the top for a lateral load applied at the center of the 

top concrete block in the form 
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1 _ /1ux _ ~ { 1 1 L- Lc 1 ( 1 2 L - Lc J} -= - -- - -+ + +a + , 
K M F £/ 3 2 Lc "KLc / E Lc 

(7.10) 

where E is the Young's modulus of the specimen, I is the cross-sectional inertia, L is the 

length of the column and Lc is the elevation of the loading point. In the above expression, 
the specific stiffness of the interface was assumed to be isotropic ( "K" = l(r = "K ). The 

parameter a is a ratio between the diameter of the column R and Lc. 

From the measured static stiffnesses of the intact columns and Eq.(7 .10) with "K = oo 

(welded interface), the Young's modulus of the columns were determined to be 21.65 GPa 

for specimen #415M and 22.72 GPa for specimen #415S. Considering the error in 

measuring the static stiffness of the column, these values are sufficiently close to the 

dynamically determined Young's modulus of 23.7 GPa from velocities of propagating 

waves. For a finite "K, Eq.(7 .1 0) is used to compute resulting bending stiffness of the 

columns. 

7 .4.2 Dynamic response of the structure 

Using the determined dynamic Young's modulus of the intact column and the assumed 

stiffness of the interface, the resonance frequency of the first flexural vibration can be 

computed using the numerical code described in Chapter 5 and Chapter 6. As the geometry 

of the column specimen is too complex to be modeled by the code, and the code cannot 

model the dynamic interaction between the specimen and the foundation, some idealizations 

of the geometrical and mechanical properties of the column were made. 

Two idealized models were examined for their resonance frequencies using the 

numerical code, assuming a simple cylindrical geometry of the column and a rigid footing 

and foundation (Figure 7.20) . The first model has an identical height and column density 

as the actual specimens. The effect of the mass added by the top concrete block was 

accounted for by placing a point mass at its center of gravity in the column. The first 

flexural mode resonance frequency for this model was computed to be 31 .2 Hz. The 

computed resonance frequency seemed to be much higher than the measured resonance 

frequency of 21.15 Hz (loading direction) or 16.31 Hz (perpendicular to the loading 

direction). The primary cause for the difference in the computed and measured resonance 

frequency is possibly the vibration within the footing and the foundation of the actual 

specimen that is modeled as a rigid half-space in the numerical model. This speculation is 
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Figure 7.20 Idealization of the damaged column. Both model I and II consist of a circular column 
attached to a rigid foundation via an interface with displacement-discontinuity boundary conditions. Model 
I includes a point mass that accounts for the effect of the additional mass due to the rectangular block at 
the top. Model II is a simple circular column but the length of the column is determined by matching the 
theoretical resonance frequency of the intact model and the experimentally measured resonance frequency. 

also supported by the measured mode shape of the flexural resonance (Figure 7.17(a)). The 

amplitude of the measured vibration does not become zero at the bottom of the column, 

indicating that there are finite vibrations in the footing part of the specimen. 

To account for the vibration within the footing and the foundation, the effective length 
of the column Leff was defined by matching the resulting resonance frequency of the intact 

column. For this model, the effect of the mass added by the top concrete block was also 

accounted for by introducing the effective length of the column. Using a solution for the 
resonance frequency of a cantilever beam (Graff, 1975), LeJf is computed from 

f = (f3tLeff r gil f3 L = 1.875. 
"2L2 A' t eff 

1r eff P 
(7.11) 

For the measured resonance frequency of the intact column in the loading direction 

(21.15Hz), the effective length of the column was determined to be 3.52 m. 

-, 
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Computed resonance frequencies of the first flexural mode for a range of interface 

stiffnesses are shown in Figure 7 .21. For resonance frequencies measured in the loading 

direction, the corresponding stiffnesses of the interface are determined. It should be noted 

that for a resonance frequency higher than the resonance frequency of an intact column, no 

solution for the interface stiffness exists. Interface stiffness determined in this way is not 

necessarily the same as the stiffness used in Eq.(7.10), since deformation of the footing 

and foundation are accounted for in defining the length of the column. However, it should 

still approximate the stiffness of the damaged section that causes a decrease in the bending 

stiffness of the column. By introducing this value of stiffness into the Eq.(7.10), the 

resulting bending stiffness of the columns is determined (Table.2.3). Figure 7.22 

compares the measured static bending stiffnesses and dynamic stiffnesses determined from 

measured resonance frequencies. The stiffnesses for damaged specimens and repaired, 

moderately damaged specimens show very good agreement. The stiffness of the repaired, 

severely damaged column cannot be determined as the resonance frequency is higher than 

the intact column. 

The above results demonstrate that the elastic stiffness of a column can be determined 

from its resonance frequency. As the level of damage and the effect of repair can be 

directly related to the bending stiffness of the column, the above analysis provides a 

technique to assess the soundness of a structure quantitatively from its resonance 

frequency. 

Table 7.3 Bending stiffness of columns determined from resonance frequency 

Specimen Intact Damaged Repaired 

415M 29.5kN/mm 8.61kN/mm 20.7kN/mm 
(moderate damage) 

415S 0.8lkN/mm 
a 

>29.5kN/mm 
(severe damage) 

a Bending stiffness could not be determined as the resonance frequency of the repaired 
column was higher than the intact column 
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Figure 7.22 Comparison between measured static bending stiffnesses and determined bending 
stiffnesses from measured resonance frequencies. Intact (415M) and damaged columns show very good 
agreement between the stiffnesses obtained by the two different methods. A repaired column (415M) 
shows a rather large difference but the relative magnitude of the stiffness compared with other columns 
is consistent. Dynamically determined stiffness of the repaired 415S column is not shown as the current 
method cannot determine the stiffness if the measured frequency is larger than the resonance frequency of 
an intact specimen. 
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7.5 Summary 

It is found that the velocities and waveforms of a propagating wave (-1OkHz) are 

sensitive to the fractures and microcracks introduced into a damaged column. Amplitudes 

and velocities both decrease. Waves measured for different directions along the diameters 

of the columns show different velocity, amplitude, and time of anival. Such characteristics 

can be used for assessing the geometry of fractures in a structure that in turn may be used 

to examine the load applied to the structure when the fractures are created. Although 

propagating waves show good sensitivity to the introduced damage, the effect of repair is 

not clearly seen from changes in wave velocity and wave amplitude. 

Low frequency vibration tests were conducted to measure the change in elastic bending 

stiffness of the column specimens. Resonance frequencies and attenuation decreased 

significantly as the damage was introduced. Attenuation increased because the localized 

damage at the bottom of a column isolated vibration within the column, reducing the 

radiation damping. Resonance frequencies decreased corresponding to the degree of 

damage (moderate and severe damage). Repaired columns showed significant increase in 

resonance frequencies and attenuation. Localized damage at the bottom of the columns was · 

modeled as an interface with displacement-discontinuity conditions and used to determine 

the bending stiffness of the columns from measured resonance frequencies. Attenuation of 

the vibrations was not examined quantitatively because the dynamic interaction between the 

columns and the foundation that resulted in radiative loss of vibration energy were too 

complicated to be analyzed by the cunent model. 

Although high-frequency measurements using transmitted waves are good for detecting 

small cracks and mapping the location of damage in a structure, they did not reflect the 

overall integrity of a structure. In contrast, results from low-frequency acoustic resonance 

measurements correspond remarkably well to the degree of introduced damage, repair, and 

measured static stiffness of the structure. Moreover, the dynamic stiffnesses determined 

from resonance frequencies show very good agreementwith statically measured stiffnesses 

except for a column that had a resonance frequency higher than the original intact column. 

These results demonstrate that the acoustic resonance technique can be used as a 

quantitative diagnostic tool for assessing the degree of damage and the effect of repair in 

concrete infrastructure. 
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In conclusion, damage in the concrete structure discussed in this chapter can be 

thoroughly diagnosed using either local seismic transmission tests or global vibration tests. 

However, the degree of damage introduced and the effect of repair can be measured by the 

acoustic resonance tests more accurately. Therefore, if the primary objective of any test of 

a structure is an assessment of its global performance, the acoustic resonance test is highly 

recommended. 

'· 
j 



Dynamic Behavior of a sheared 
Fracture and the Extension of 

Displacement-Discontinuity Theory 

8.1 Introduction 

The strength and elastic moduli of materials such as rocks, ceramics, and concrete are 

significantly influenced by inherent fractures. As the load required to cause slip along a 

fracture is usually much less than the strength of an intact material, the shear strength of the 

fracture often determines the material's overall strength. Many researchers including Jaeger 

(1959) , Byerlee (1967a, b) , and Jaeger and Rosengren (1969) examined the frictional 

behavior of fractures to understand the behavior of rocks under shear. For a rock mass 

containing distinct fractures Uoints ), the stability of structures such as rock slopes and mine 

pillars depends greatly on the shear strength and stress of the inherent fractures (Hoek, 

1970; Jaeger, 1971). At a much larger scale, stick-slip behavior of faults that involves the 

accumulation of shear strain and resultant slip failure is claimed to be a major cause of 

earthquakes (Byerlee and Brace, 1968; Dieterich, 1978). 

For predicting and, if possible, preventing the slip failure along a fracture, it is 

important to know the stress acting on that fracture. Methods using seismic waves are 

205 
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among the most promising for measuring the stress remotely. This is because a seismic 

wave is sensitive to the stiffness of a fracture, which is stress dependent. Stress applied 

normal to an interface between two rough surfaces, such as a fracture, alters the 

characteristics of waves interacting with this interface. Changes in the wave's travel time, 

amplitude, and spectral characteristics are used to determine the normal and shear stiffness 

of a fracture. Kendall and Tabor (1971) used the transmission coefficient of waves to 

determine the stiffness of an interface between a variety of materials including steel and 

glass. Pyrak-Nolte et al. (1990a) also measured waves transmitted across single natural 

fractures in rocks and attempted to determine the normal and shear stiffness of the fractures 

by matching experimental and theoretical wave spectra. 

If the geometry of the contacting surfaces is known, the stress applied to a fracture can 

be determined from the fracture stiffness assessed by seismic measurements. For 

nominally flat and smooth metal surfaces, Haines ( 1980) proposed a model that predicts the 

average contact stress of an interface from its specific stiffness. Using this model, Bucket 

al. (1982) determined the normal stress on a fracture from the spectra of transmitted and 

diffracted waves. Rehbein et al. ( 1984) applied a similar technique to determine the normal 

stress on the interface of a metal coupler from waves reflected off the interface. For the 

· contact between rough surfaces in rock-like materials, however, the full geometry of the 

contact is not known or it is too complicated to find the relation between the applied stress 

and resulting stiffness . For such cases, the stress-stiffness relation has to be measured 

experimentally. 

Shear stress applied to a fracture also changes the normal and tangential stiffness of a 

fracture. However, in many cases, shear stress on a fracture is also accompanied by a 

normal stress component that prevents slip along the interface. As the effect of the normal 

stress is usually larger than the shear stress, shear stress on a fracture is difficult to 

determine by the seismic measurements described above. Furthermore, changes in the 

waves do not carry any information about the direction of the shear stress applied to the 

fracture. 

To determine the presence, direction, and magnitude of shear stress on a fracture, the 

conventional measurements for transmitted and reflected P and S-waves do not provide 

sufficient information. Therefore, an alternative measurement that is sensitive to the change 

in the shear stress on a fracture is desirable. In this chapter, a new understanding about the 

behavior of seismic waves interacting with a sheared fracture is presented. Laboratory 
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experiments show that the shear stress applied to a fracture in a rock specimen partially 

converts normal incident compressional (P)-wave and shear (S)-wave to S and P-waves, 

respectively. As the waves are normally incident on a fracture, this phenomenon cannot be 

explained by the Snell's law or the conventional displacement-discontinuity theory 

(Schoenberg, 1980; Pyrak-Nolte et al., 1990a). This behavior of seismic waves may 

provide a tool for detecting and measuring the shear stress on a fracture. The results of 

laboratory ultrasonic transmission tests performed on a granite specimen containing a 

through-going fracture and a fractured steel specimen with a regular surface geometry are 

presented. Theoretical transmission and reflection coefficients for a sheared fractUre were 

obtained by applying an extended form of the displacement-discontinuity boundary 

conditions that included cross-coupling terms in the fracture stiffness matrix. The model 

predicts increasing conversion of waves as the cross-coupling stiffness increases, which is 

directly related to an increase in the magnitude of the shear stress on a fracture. Using this 

extended form of the displacement-discontinuity boundary conditions for modeling 

dynamic interactions between a fracture and seismic waves, numerical simulations were 

conducted using a boundary element method to demonstrate the effect of the shear-induced 

cross-coupling fracture stiffness on propagating seismic waves. 

8.2 Mechanism of Shear-induced Wave Conversion 

The mechanical properties of a fracture can be examined by modeling a fracture as a 

non-welded interface between two solid media with imperfect contacts (Greenwood and 

Williamson, 1966). The surface of a fracture consists of irregularities at many scales 

ranging from atomic scale roughness to macroscopic undulations with a scale comparable 

to the dimension of the fracture itself. Brown et al. (1986) showed that the spectral 

components of the two surface profiles across a fracture are more "correlated" (in phase) at 

longer spatial wavelength than at shorter wavelength especially for a mated fracture. 

Compliance of a fracture decreases as the two surfaces are pressed together primarily due to 

increase in contact between irregularities with relatively short spatial wavelength (Brown 

and Scholz, 1985, 1986). Velocity and amplitude of the transmitting P and S-waves 

increase due to an increase in mechankal coupling between two surfaces. 

One of the simplest models for a fracture surface consists of elastic hemispheres 

attached to rigid halfspaces (Greenwood and Williamson, 1966; Brown and Scholz, 1985, 

1986; Yoshioka and Sholtz, 1989a,b). The nonlinear closing behavior is explained by 
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deformation of individual asperities predicted by the Hertz-Mindlin model (Mindlin, 1949). 

However, such a model ignores the effect of the deformation in the half-space behind the 

asperities. Kendall and Tabor ( 1971) showed that the stiffness of an interface and therefore 

the velocity and amplitude of transmitted and reflected waves depend not only on the 

nonlinear increase in contact area between single asperities but also on the interaction 

between neighboring contacts. Using numerical simulations for a variety of contact 

patterns and spacings, Hopkins et al. ( 1987, 1990) demonstrated the significant effect of 

the interacting contacts on the stiffness of an interface. Their results indicate that the 

stiffness of a rough interface cannot be understood by simply examining the deformation of 

single asperities. Instead, the contact distribution has a large effect in determining the 

overall stiffness of an interface. 

When a natural fracture is subjected to shear stress, the local stiffness of the fracture 

due to contacting asperities becomes either stiffened or relaxed, depending on the relative 

approaching motion of the fracture surfaces and angle of contact. Such behavior is 

governed by the long spatial wavelength component of the fracture surface profiles that are 

more or less correlated across the fracture. The multi-scale surface irregularity of a fracture 

would be idealized by a geometry of the surface that consists of small random 

(uncorrelated) asperities superposed on regular saw-tooth profiles that are identical across 

the fracture (Figure 8.1). In Figure 8.1, the regular long-wavelength profile determines 

whether the short-wavelength asperities across the fracture approach or separate when the 

two surfaces are sheared. On the approaching side of the slopes, the local stiffness of the 

fracture increases due to a non-linear increase in contact stiffness between the micro-scale 

asperities while the local stiffness decreases on the other side of the slopes. If the applied 

shear stress is large, the stiffness of the relaxed contacts approaches zero and the stiffness 

tends to infinity for the stiffened contacts. In this limit, the fracture effectively behaves as 

an array of inclined open flat microcracks. Statically, (i.e. at the zero-frequency limit) such 

cracks exhibit dilation (coupled) behavior: application of a normal stress on the fracture is 

accompanied by a relative lateral displacement across the fracture, and shear stress results 

in relative normal displacement. It should be noted that this behavior is elastic and no slip 

along the fracture is involved. Dynamic interactions between such cracks and propagating 

elastic waves were studied by Mikata and Achenbach (1988) using a boundary integral 

equation method. Their results showed that, for P and S-waves normally incident on a 

mean-crack plane of the microcracks, transmission and reflection coefficients of the cross­

coupled waves are finite, i.e., the converted waves are generated. 
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uncorrelated asperities 

(b) idealized interface 
(without shear) 

transmitting 
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(P-wave) 

(d) generation of converted 
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Figure 8.1 Mechanism generating cross-coupled waves for normal-incident plane waves. Surface 
profile of a natural fracture (a) is modeled by correlated long-wavelength undulations and uncorrelated 
(random) short-wavelength asperities (b). (c) Application of shear stress changes the local contact stiffness 
of the fracture that becomes (d) inclined flat microcracks that exhibit the elastic dilation for applied normal 
and shear load. In the above case, generation of a converted S-wave by a normal-incident P-wave is shown. 

In the following section, experimentally observed conversion of elastic waves normally 

incident on a sheared fracture in a rock specimen is presented. The effect of an idealized 

surface geometry for generating cross-coupled waves is demonstrated using a steel block 

specimen. 
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8.3 Experiment 

8.3.1 Wave transmission tests across a fracture in rock 

8.3.1.1 Experimental setup 

Ultrasonic transmission tests were conducted using a pair of identical transducers that 

contained both P and S- type piezoelectric crystals. By selectively generating and 

measuring different types of waves, both directly transmitted and converted P and S-waves 

propagating through a specimen were observed. The central frequencies of the generated P 

and S-waves were 850kHz and 500kHz, respectively. Particle motion of the S-wave 

generated by the transducer was polarized in a single direction. Both waves were generated 

by 500 V square pulses sent from a high-voltage pulse generator (Cober 605P). Received 

waves were displayed and recorded by a digital oscilloscope (LeCroy 9424E). The 

experimental setup is shown in Figure 8.2 

A series of laboratory ultrasonic measurements was performed on a cylindrical 

specimen of granite (5 .08 em in diameter and 10.16 em in length). The granite used for 

this test exhibited approximately transversely isotropic behavior due to preferentially 

oriented microcracks similar to the granite specimens used in the previous chapters 

(Chapter 3 and 5). The density of the specimen was 2.66 g/cm3 (room dry). The 

specimen was cored along the average microcrack plane. Velocities of P and S-waves 

(polarized parallel to the microcrack planes) measured along the axis of the intact specimen 

were 4606 rn/sec and 2851 m/sec, respectively. The applied axial stress was 2.46MPa. 

Thin pieces of lead foil were used to establish good acoustic coupling between the 

transducers and the specimen. 

Figure 8.3 shows P and S- waves transmitted through the specimen before and after the 

fracture was introduced. From the plot, it can be seen that both directly transmitted P and 

S-waves (P-source to P-receiver and S-source to S-receiver) and converted waves (P­

source to S-receiver and S-source to P-receiver) show a large decrease in amplitude and an 

increase in travel time. The small converted waves are observed even for the intact 

specimen as the transducer does not generate pure P or S-waves. It was found that the 

changes in the velocity of the waves are too large to be caused by any increase in 

compliance from the fracture. Although most of the changes were possibly due to the 

effect of the fracture, a slight decrease in the water content of the specimen between tests 
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Enerpac tensile fracture 

copper shim 
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Figure 8.2 Experimental setup for seismic wave conversion tests across a fracture in a rock specimen. 
During the tests, the specimen was axially loaded. Waves were generated by piezoelectric crystals inside the 
transducers. The effect of shear stress on the conversion behavior of the waves was examined by applying 
a shear force across the fracture using a lateral load frame. 
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Figure 8.3 Changes in transmitted and converted waves through a granite specimen before and after a 
fracture is introduced. All the waves show decreases in velocities and amplitudes due to the frequency­
dependent scattering by the fracture. It is noted that the changes in the waveforms may also be caused by a 
slight change in the water content of the specimen between the times the two tests were conducted. 
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was also suspected to be the cause. For this reason, no attempts were made to determine 

the specific stiffness of the fracture from the dynamic measurements. 

After measuring the ultrasonic properties of the intact specimen, a through-going tensile 

fracture was created perpendicular to the core axis by applying a point load along a diameter 

of the core (Brazilian loading). The specimen was held in a horizontal load frame that 

applied a lateral load, shearing the specimen across the fracture. The two surfaces of the 

fracture were mated. Before the measurements were conducted, the fracture was uniaxially 

cycled for several times up to 3MPa. This was done to minimize the amount of permanent 

deformation on the fracture surface such as crushing of asperities that may occur during the 

tests. During the tests, a constant axial stress (2.46MPa) was applied to the specimen 

placed between the transducers. 

8.3.1.2 Effect of shear stress 

In the first series of tests, the lateral load was varied to see the effect of shear stress on 

seismic waves propagating across the fracture. The shearing direction was aligned with the 

polarization direction of the S-wave. These directions were also aligned parallel to the . 

average microcrack plane in the granite. A range of shear stress from 0 to 3 MPa (called 

"right-lateral shear") were applied followed by shear with reversed direction from 0 to -3 

MPa (called "left-lateral shear"). 

The measured values of the directly-transmitted waves across the fracture are shown 

in Figure 8.4(a) for P-waves and in Figure 8.4(b) for S-waves. Waves measured before 

and after application of the right-lateral shear are also shown for comparison. During 

shearing, directly transmitted waves showed small changes with increasing shear stress. 

P-wave amplitudes decreased approximately 10% for both right-lateral and left-lateral 

shear. S-wave amplitude showed a small increase for left-lateral shear (540mV increased 

up to 562mV) but release in shear stress resulted in higher amplitude (571mV) and, 

consequently, the left-lateral shear amplitude decreased by approximately 15%. It appears 

that application of shear stress tends to decrease the non-converted transmitted waves. The 

small increase inS-wave amplitude for right-lateral shear may be due to slip of the fracture 

that will greatly increase the tangential stiffness of the fracture by changing the contact 

geometry. As can be seen from the above results, although the shear stress does cause 

some change in the directly transmitted (non-converted) P and S-waves, its effect is 

relatively small and the direction of the shear cannot be known from these measurements. 
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Figure 8.4 Waves transmitted and converted on a single fracture in a granite specimen. Both directly 
transmitted (a) P and (b) S-waves show little change. Shear stress was increased from 0 to 3 MPa in both 
directions (left-lateral shear and right-lateral shear). 
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Figure 8.4 Waves transmitted and converted on a single fracture in a granite specimen. Amplitudes of 
both converted (c) S and (d) P-waves 'increase with applied shear stress. Particle motions of the waves 
change their phase by 180" when the direction of the shear is reversed. 
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· Figure 8.5 Changes in converted (a) S and (b) P-waves for different shear stresses. Normal stress on 
the fracture is maintained at 2.46 MPa. The amplitude of the converted waves increases in accordance 
with increases in shear stress. 

The shear stress applied to the fracture resulted in converted S and P- waves generated 

from incident P and S- waves, respectively (Figure 8.4 (c) and (d)). Both waves showed a 

small amplitude without any shear stress. This may be due to the waves converted by the 

fracture that was not perfectly perpendicular to the axis of the specimen. The converted 

waves showed a monotonic increase in amplitude with increasing shear stress (Figure 8.5). 

Phase for the particle motion of the converted waves changed by 180° when the direction of 

the shear was reversed. A larger increase in the amplitude of converted S-waves than 

converted P-waves is due to the difference in the characteristics of the sending and 

receiving transducers. This is confirmed by the observation of identical waveforms when 

the receiving transducer is used to generate waves and the sending transducer to receive the 

converted waves. This demonstrates the reciprocity in wave propagation. 
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8.3.1.3 Effect of shear angle 

The second series of tests was conducted by changing the direction of the lateral shear 

around the axis of the sample. Both axial and lateral loads were maintained at 2.46 MPa. 

Figure 8.6 shows waveforms for varying shear directions. From the plots, clear arrivals 

of the converted waves can be seen when the fracture is sheared in the polarization direction 

of the S-wave. Directly transmitted waves do not show significant changes in their arrival 

times and waveforms. The converted waves vanish when the polarization direction is 

normal to the shear direction (90° and 270°). As was seen for the first series of tests, 

particle motion of the wave changes its phase when the direction of the shear is reversed by 

180°. 

8.3.2 Transmission tests across a regular saw-tooth fracture 

8.3.2.1 Experimental setup 

As was explained in Section 8.2, a shear force applied to the surface of a fracture 

changes the distribution of contacts on the fracture. The altered distribution of the contacts 

can be idealized by an interface between two solid halfspaces with a sawtooth geometry. A · 

physical model of such a fracture was fabricated using cylindrical steel blocks (Figure 8.7). 

The spacing between the teeth was 3mm and the angle of the peaks and valleys was 90°. 

The density of the specimen was 7.82 g/cm3 and the velocities of ultrasonic waves 

measured using an identical steel block without sawteeth were 5908 rn/sec (P-wave, 

850kHz) and 3237 rn/sec (S-wave, 500kHz), respectively. The wavelengths of P and S­

waves in the block were 7mm and 6.5mm, respectively. 

For the first series of tests, an array of inclined flat slits was introduced between the 

two blocks (Figure 8.8a). Two brass shims were placed on the edge of the fracture to 

introduce mismatch between the two surfaces. Strips of lead foil were placed on the 

contacting slopes of the saw teeth, and the specimen was axially loaded by 12.3MPa to 

establish good acoustic coupling. During the tests, no shear load was applied to the 

interface. 

The second series of tests was conducted with a thin layer of clean glass beads 

(diameter 50 to lOOJ.Lm) on the interface between the sawtooth surfaces (Figure 8.8b). 

During these tests, the axial load was maintained at 2.46MPa. The thickness of the glass 
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Figure 8.6 Measured waves along the axis of a fractured rock specimen for a range of shear angles . The 
amplitude of each plot is normalized against the max~mum amplitude of the plot. Measurements were made 
every 15·. The applied axial stress was 2.46MPa and the shear stress was approximately 2.5MPa. When 
the shear direction is aligned with the polarization direction of the shear piezoelectric crystal, large 
conversions between P and S-waves on the fracture are observed. Non-converted.P and S- waves show little 
change for different shear angles. 
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Figure 8.7 Steel blocks with regular sawtooth surface. Spacing between the teeth is 3mm. The 
geometry of each block is identical. 

bead layer between the surfaces was 0.43mm. From the initial unsheared state, the shear 

stress was increased up to 3MPa. 

8.3.2.2 Effect of slit angle 

Ultrasonic transmission tests were conducted on the steel blocks with inclined, flat, 

open slits. The orientations of the slits from the polarization direction of the S-wave were 

-90°, 0°, and 90°. At each angle, directly-transmitted and converted P and S-waves were 

measured. The waves measured for the fractured specimen were compared with waves 

measured for an intact steel block. 

Comparison between measured waves is shown in Figure 8.9. From the comparison 

between intact and fractured specimens, a large decrease in amplitude of directly­

transmitted P and S-waves can be observed. This is due to the strong scattering of waves 

by the open slits whose dimension is comparable to the wavelength. For direction -90° and 

90°, very clear and strong converted waves were generated. These waves were not seen 

for the intact specimen. Particle motion of the converted wave changed its phase by 180° 

when the direction of the slits was reversed. 
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Figure 8.8 (a) A series of inclined flat slits was created by introducing slight lateral offset between 
· two steel blocks with a regular sawtooth surface. No shear stress was applied to this specimen during 

the tests. (b) To see the effect of sheared filling material on the converted seismic waves, fine glass 
beads were deposited on the steel block interface. 

8.3.2.3 Effect of filling material 

The glass bead mediated fracture surface can be considered a fracture containing debris, 

such as fault gouge. Before the tests, the specimen was axially loaded up to 2.46MPa and 

all transmitted waves were measured. Subsequently, shear stress was applied to the 

fracture using a horizontal load frame. Figure 8.10 compares waves with and without the 

applied shear stress. The figure also includes waves measured when the shear stress is 

decreased to zero. It is noted that both non-converted P and S-waves show a decrease in 

amplitude when the shear is applied, analogous to the behavior of the waves observed for 

the fracture in a rock specimen. The results clearly show a large increase in the amplitude 

of converted waves. A small initial conversion may be due to the random scattering of 

waves off the glass bead layer that has a strong acoustic impedance contrast against the 

steel blocks. 

I 
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The mechanism of wave conversion for a fracture containing debris is similar to that of 

a clean fracture with imperfect contacts. As a fracture is sheared, the glass beads between 

approaching surfaces are compacted, increasing their contact stiffness, while the beads 

between the parting surfaces are not, decreasing stiffness. As a result, the stiffness 

distribution of the interface becomes similar to inclined open cracks that exhibit an elastic 

dilation behavior. 

The above tests were repeated for a glass bead layer saturated with distilled water. 

Without shear, the directly transmitted P and S-waves show much larger amplitude than for 

fracture with dry glass beads (Figure 8.11). This is due to the stiffening effect of the water 

that fills the pore space among glass beads. On the other hand, converted waves for a 

sheared wet fracture show smaller amplitude than for the dry fracture . This may be 

because the overall increase in the stiffness of a fracture makes its behavior close to a 

welded fracture . 

The experimental results shown in this section demonstrate that the changes in the 

surface geometry of the surface of a fracture by shear leads to a property of the fracture that 

introduces conversion of normally incident waves. Results for the steel block specimen 

show that the geometry of a sheared fracture can be modeled by an array of inclined cracks · 

along the interface. 
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Figure 8.9 Comparison of directly transmitted waves through intact and fractured steel specimens. In the 
plots, the angle between the open slits and the polarization direction of the S-wave crystals is shown. 
Arrival of the P and S-waves is indicated by solid triangles. Directly transmitted (a) P and (b) S-waves 
show large decreases in wave amplitudes. It is noted that when the angle between the slits and S-wave 
particle motion is o·, the S-wave shows even smaller amplitude. 
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Figure 8.9 (c) (d) The fractured specimen shows very strong and clear converted (c) S-and (d) P- waves. 
The particle motion of the converted waves reverses when the direction of slits is rotated by 180 •. 
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Figure 8.10 Directly transmitted waves through a fracture containing dry glass beads. Axial stress is 
maintained at 2.46MPa and shear stress was increased up to approximately 2.5MPa. Waves measured before 
and after the shear are compared with waves during the shear. Shear stress slightly decreases the amplitude of 
directly transmitted (a) P and (b) S-waves 
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Figure 8.10 (c) (d) Converted waves through a fracture containing dry glass beads. Clear arrival and 
increase in amplitude of converted waves are observed. Small converted waves observed before and after the 
shear are possibly due to random scattering from the glass bead layer between the two steel blocks. 
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[Steel block with fracture containing water-saturated glass beads] 
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Figure 8.11 Directly transmitted waves through a fracture containing water saturated glass beads. Axial 
stress is maintained at 2.46MPa and shear stress is increased up to approximately 2.5MPa. Compared with 
the waves through dry glass beads, velocity and amplitude of the directly transmitted wave increase for both 
(a) P and (b) S-waves. 
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Figure 8.11 (c) (d) Converted waves transmitted through a fracture containing water saturated glass 
beads. Axial stress is maintained at 2.46MPa and shear stress is increased up to approximately 2.5MPa. 
Unlike the directly transmitted waves, the converted waves show smaller amplitudes than the dry specimen. 
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8.4 Extension of the Displacement-Discontinuity Theory 

8.4.1 Applicability of displacement-discontinuity model for dynamic 

problems 

When a static load is applied to a medium that contains a compliant fracture, large 

displacements localize around the fracture due to deformation of contacting asperities and 

their supporting halfspace. Many researchers including Angel and Achenbach ( 1985) and 

Baik and Thompson (1984) idealized a fracture as an interface consisting of a periodic array 

of flat microcracks (Figure 8.12). The contact between the two halfspaces is represented 

by bridges between cracks. The stress and displacement fields around the fracture are 

obtained analytically using a Westergarrd stress function (Westergaard, 1939). 

The displacement-discontinuity model (Schoenberg, 1980; Pyrak-Nolte et al., 1990a) 

assumes that the additional displacement introduced by a fracture is localized within an 

interface with infinitesimal thickness. Therefore, the model replaces the complicated 

distribution of stress and strain around the fracture by uniform stress and strain in 

halfspaces and displacement discontinuity across the interface. The effect of the fracture on 

Figure 8.12 Interface consists of a periodic array of flat open microcracks. Intact bridges between 
cracks represent contacts and bonds between the two surfaces of a fracture . 

I 
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the far-field displacement is described by a specific compliance, defined as an additional 

displacement introduced into the medium by a fracture for applied unit far-field stress. 

Specific stiffness of a fracture is defined as the inverse of the specific compliance. 

Applicability of the displacement-discontinuity model for dynamic problems was 

examined by Angel and Achenbach ( 1985) for transmission and reflection of plane waves 

impinging on a periodic array of flat cracks. Transmission and reflection coefficients of the 

waves were derived numerically using a boundary element method computing the dynamic 

interaction between waves and individual cracks. The computed coefficients were 

compared with analytic solutions obtained using the displacement-discontinuity model. 

The stiffness of a fracture used in the model was obtained analytically using the 

Westergaard stress function. For a periodic array of cracks with center spacing of s and 

width 2a, a normal fracture stiffness that yields equivalent additional far-field displacement 

is given by (Angel and Achenbach, 1985; Baik and Thompson, 1984) 

(8.1) 

where K* is a non-dimensional fracture stiffness given by 

(8.2) 

The above solution is for plane strain problems. Results obtained by Angel and Achenbach 

showed that the computed coefficients agree well with the analytic results given by the 

displacement-discontinuity theory for wavelengths longer than the size and spacing of the 

cracks. Therefore, by using the displacement-discontinuity model, the quasi-static 

behavior of a fracture can be used to examine the dynamic interaction between the waves 

and the fracture. 

8.4.2 Static behavior of an idealized sheared fracture 

To understand the interaction between a sheared fracture and waves, the static behavior 

of the fracture was examined for the idealized surface geometry (a periodic array of inclined 

flat cracks) discussed in the previous section. As analytic solution for displacement around 

such cracks is not known, the static plane-strain boundary element method was used to 

compute the displacement for an applied far-field stress. Using static Green's functions, 
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displacements and tractions on a boundary of a computational domain are related by (for 

example, Brebbia and Dominguez, 1989) 

(8.3) 
r r 

where u~ and P;; are the static displacement and traction Green's functions, and uj and p j 

are displacement and traction on the boundary, respectively. No body force is assumed. 
Integrations are performed in the Cauchy's sense and the cij is a coefficient matrix that 

includes the jump-term resulting from the singularity of the Green's functions. By 

performing the numerical integration, the above expression leads to a linear system of 

equations that relate displacements and tractions on the boundary 

(8.4) 

where u1 and p1 are known and unknown displacements and tractions on the boundary. 

The above matrix equation can be decomposed to known and unknown parts as 

(8.5) 

where u and p are unknown displacement and traction, and u and p are known 

displacement and traction specified by boundary conditions, respectively. By solving 

Eq.(8.5), all unknown displacements and tractions are determined. In this research, a 

crack is modeled as a part of the boundary between two domains. Such a method is known 

as the multiple-domain technique in solving crack problems using the boundary element 

method (Blandford et al., 1981 ). Quadratic-continuous elements are used for the current 

simulations except for the elements on the interface between two domains and elements 

adjacent to the interface (Figure 8.13). For these, quadratic-discontinuous elements (all or 

part of the nodes are located within an element) are used. The quadratic-discontinuous 

element provides accurate results for computing displacement and stress concentration 

around cracks (Portela et al., 1992). For simulating the behavior of an infinite series of 

cracks, periodic boundary conditions are applied to the sides of the interconnected 

domains. 

To check the accuracy of the num~rical code, computed results are compared with 

known analytic solutions for a periodic array of flat cracks. The cracks lie on a single plane 
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Figure 8.13 Boundary element mesh used for computing displacement around a periodic array of 
inclined flat cracks subjected to far-field stress. Due to periodicity of the problem, a single strip with a 
crack was used for the simulations. 

and are subjected to a given far-field stress. An analytic solution for opening displacement 

for a crack is derived from a stress function given by (Westergaard, 1939) 

( ) 
_ (jo sin( nz/ s) 

zl z - ~ 2 , 
sin 2 

( nz/ s) -sin ( naj s) 
(8.6) 

where (j
11 

is the stress applied normal to the interface at infinite distance. In the above 

expression, z is a complex variable defined by z = x + iy where x and y are real numbers. 

Noting that z = x, lxl ~ a within a crack, crack surface displacement is computed by 

(8.7) 



2 3 2 8 Dynamic Behavior of Sheared Fracture 

5 10-7 

4 10-7 

2 10-7 

1 10-7 

0 
-1 -0.5 0 

x/a 
0.5 

Figure 8.14 Comparison between numerical and analytical solutions for crack-surface displacement for 
the model in Figure 8.11. The numerical results were obtained using the boundary element model 
described in Figure 8.13. Both results show good agreement for a range of crack sizes with respect to the 
crack interval. 

The analytic solution for the lateral crack-surface displacement due to a far-field shear stress 
is obtained by replacing the CJ

0 
in the Eq.(8.6) by the shear stress r" and uY in the 

Eq.(8.7) by ux. Figure 8.14 shows a comparison between computed and analytic 

solutions for the crack-opening displacement. The result demonstrates the accuracy of the 

numerical model for solving problems with an infinite periodic array of cracks. 

The numerical code was used to compute the displacement around a periodic array of 

open flat cracks. An example of a computed displacement field is shown in Figure 8.15. 

From the plot, it can be seen that the perturbation of the displacement field due to the cracks 

is strongly localized in the vicinity of the cracks, which indicates that a fracture can be 

modeled by a displacement-discontinuity boundary with zero-thickness. The relation 

between the displacement discontinuity and the applied stress is described by the specific 

fracture compliance. This compliance can be measured as an additional displacement in the 

far-field due to the fracture for an applied unit far-field traction. Normal and tangential 

fracture compliances are computed by 

X 
= ( far/frac'd _ farlintact) /(Jfar 

YY uY uY YY , (8.8a) 

X 
= ( farlfrac'd _ far/intact )/(Jfar 

xx Ux Ux yx ' (8.8b) 
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Figure 8.15 Computed displacement field for cracks with crack size to interval ratio of 2a!s=0.5 . 
Inclination of the cracks is 45• . A compressional stress of lMPa wa~ applied at far-field. Young's 
modulus of the half-space was 50GPa and Poisson's ratio was 0.2. Resulting displacement localizes 
strongly nearby the array of inclined cracks. Finite lateral displacement (x-displacement) in the upper 
domain (y>O) indicates dilation of the interface. 

where superscript II far II stands for far-field, II frac' d II for fractured medium, and II intact II 

for intact medium. Coupling compliances are computed from tangential and normal 

displacements for normal and tangential tractions, respectively, by 

X = ( farlfrac' d _ far/intact ) / afar 
)'X U X UX )')' ' (8.8c) 

X 
= ( farlfrac' d _ far/intact )/I'T'far 

X)' U)' U)' V )'X • (8.8d) 

Figure 8.16(a) shows computed compliances for an array of infinite number of cracks. 

The compliances are computed for a range of crack inclination angles. The compliances are 

normalized by the normal compliance of an array of Oo -inclination cracks whose fracture 

stiffness is given by Eq.(8.1) . As can be seen from the plot, the coupling compliances 

increase monotonically with increasing inclination of the cracks. It is also noted that both 

coupling compliances show similar values in accordance with reciprocity of elasticity. The 

small difference observed is due to numerical errors. Fracture stiffness is computed by 

inverting the compliance matrix whose off-diagonal terms are given by the coupling 

compliances (Figure 8.16b) . It is found that the stiffnesses of the fracture becomes 
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infinitely large for a certain inclination of the cracks. This is because the determinant of the 

compliance matrix approaches zero at this angle (Figure 8.16c). The relative magnitude of 

the coupling compliance or stiffness of a fracture is defined by 

R= (8.9) 

The computed ratios are plotted in Figure 8.16d. It can be seen that the ratio approaches 

unity as the determinant of the compliance matrix approaches zero. 

8.4.3 Some basic properties of fracture stiffness and compliance matrices 

For a general three-dimensional coupling between displacement-discontinuities and 

tractions across a fracture, the fracture compliance and stiffness matrices are 3x3 square 

matrices. As the additional strain energy stored by the fracture has to be non-negative, the 

matrices must be positive definite. Therefore, the matrices have real non-negative 

eigenvalues and are symmetric. For the plain strain problem discussed in Section 8.4.2, 

the matrices can be treated as 2x2, since the third components are decoupled from the rest. 

Eigenvalues of the 2x2 fracture compliance matrix are given by 

+ Xxx + Xyy ± ~(Xxx + Xyy f -4(Xxx · Xyy - Xxy · Xyx) 
x-= --------~------------------------ . 

2 
(8 .10) 

Therefore, for non-negative normal and tangential compliances Xyy and Xxx' a necessary 

and sufficient condition to have non-negative eigenvalues is 

det[Xij] = Xxx · XYY - XX)' · Xyx ;:::: 0 · (8.11) 

This condition is satisfied in all previo~s simulations (Figure 8.16c). An identical 

condition is required· for the stiffness matrix to have non-negative normal and tangential 

stiffnesses. These conditions provide a constraint on the coupling ratio R defined by 

Eq.(8.9) as 

(8.12) 

This constraint is also satisfied for the. numerical simulation (Figure 8.16d). Note that 

Eq.(8.12) is an equality only when the determinant of the compliance matrix becomes zero. 
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Figure 8.16 Computed compliances and stiffnesses of a fracture consisting of a periodic array of inclined 
cracks . Coupling compliance (a) and stiffness (b) that show dilation behavior of the fracture increase 
monotonically as the inclination of the cracks increases. The fracture stiffnesses become infinitely large at 
an angle (approximately 63") where the determinant of the compliance matrix becomes zero (c) . The 
coupling stiffness ratio R increases monotonically with increasing inclination of the cracks until it reaches 
unity (d). The angle at which the ratio R is maximum is identical to the angle where the determinant of the 
compliance matrix becomes zero. 
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8.4.4 General scattering matrix for plane waves incident on fracture 

The results in Section 8.4.2 demonstrated that a periodic array of inclined cracks (an 

idealized geometry for a sheared fracture) exhibits a significant dilation. Such behavior is 

described quantitatively by the coupling (off-diagonal) components of the fracture stiffness 

and compliance matrices. In the following analysis, the effect of the dilation behavior on 

those waves incident upon a fracture is examined usfng the displacement-discontinuity 

model. 

The displacement-discontinuity model provides a set of boundary conditions that 

require continuous stress and discontinuity in displacement that is proportional to the 

traction on the fracture. For a fracture located on an x-y plane, these boundary conditions 

are 

tli = -t2i = (jzi' 

a zi = l(ij[uj] (i, j=x,y,z), 

(8 .13) 

(8.14) 

where a zi (i=x,y,z) are components of the stress tensor on the fracture ( a zx and a zy are 

. tangential stresses, a zz is normal stress), ti is the traction force on the surface, and [uj] is 

the displacement-discontinuity across the fracture defined by [ uj] = u2j - u,j(j=x, y,z ) . 

Subscripts "1" and "2" denote halfspaces on either side of a fracture. 

For a fracture without shear, the cross-coupling stiffness becomes zero and the fracture 
stiffness matrix l(ii becomes diagonal. Therefore the above matrix equation yields three 

sets of independent scalar equations 

(jzx = l(xx [ Ux ], tl x = - t2x = (jzx' (8.15a) 

a zy = I(YA uy], fl y = -t2y = (jzy , (8.15b) 

a zz = 1( zz [ uzJ' t] z = - t2z = a zz . (8.15c) 

The displacement-discontinuity boundary conditions without coupling fracture stiffness 

have been successfully used to investigate the interaction between elastic waves and 

fractures in rock when the fractures were subjected to normal loading only (Pyrak-Nolte et 

al., 1990a). If the x-coordinate axis is defined such that the incident wave propagates 

parallel to the x-z plane, Eq.(8.15a) and (8.15c) are used to derive transmission and 

reflection coefficients for P and SV- waves. Eq.(8.15b) is used to derive the transmission 
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and reflection coefficients for an SH-wave that is decoupled from the other waves. The 

following analysis will show that if coupling fracture stiffnesses are non-zero, P, SV, and 

SH-waves will become coupled. 

For plane waves incident on a fracture (Figure 8.17), the displacement of the waves is 

given by 

[

cos¢, J {· (sin¢, cos¢, ]} 
u 15v =A15v · ? ·exp zm ~x+~z , 

- sm¢1 

(incident SV-wave) (8.16a) 

(OJ { . (sin ¢, cos ¢, ]} 
u15H=A15H·l~ ·exp zm ~x+~z , (incident SH-wave) (8.16b) 

u IP ~ A IP J si~ 111 

J . exp{ iat:.~• x + c~:~1 z J} , (incident P-wave) (8 .16c) . l cas e1 

u '" ~ Ar) co~~' J · exp{ im( si;,;• x - c~:.~• z J} , (reflected SV -wave) ( 8 .16d) 

lsm¢1 

(OJ { . (sin ¢1 cos ¢1 ]} URsH=ATP·l~ ·exp zm ~x-~z , (reflectedSH-wave) (8.16e) 

u ,, ~ A,, J-s~ II, J · ex{m( si;,~· x - c~:~· z J}, (reflected P-wave) (8. 16f) 

l cose, 

Ursv ~ Anv · r CO~~' J · exp{ im( si;,;' X + C~:~' Z J}, ( transmi !ted SV-Wave )(8. J6g) 

l-sm¢2 

_ (

0

J {· (sin¢2 cos¢2 ]} uTsH - ATsH·l~ ·exp zm ~x+~z , (transmittedSH-wave) (8 .16h) 

(8 .16i) 
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Figure 8.17 Scattering of waves incident upon a compliant interface (fracture). The coordinate system 
is defined such that the incident waves propagate parallel to the x-z plane. P, SH, and SV-waves incident 
on the interface result in transmitted and reflected P, SH, and SV-waves. The components of the fracture 
stiffness matrix consist of diagonal stiffnesses and off-diagonal cross-coupling stiffnesses that lead to 
dilation behavior of the fracture. , 
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where cp and c5 are the velocity of P and S-waves in the halfspace, respectively. The 

terms 8 and ¢ are incidence angles of P and S- waves, respectively, that satisfy Snell's 

law, and m is the angular frequency of wave. Displacement in the half-spaces is 

Ul = UIP + UISV + UISH + URP + URSV + URSH> 

U 2 = UTP + UTSV + UTSH • 

The displacement -discontinuity vector is 

The constitutive relations in the halfspaces are 

cr, zx = jl, ( u! x,z + ulz ,x ) ' 

(j2zx = J1 2 ( u 2x,z + u2 z,x )' 

(jl zy = jl, ( ~y.z + ul z,y )' 

(j2zy = J12 ( u 2y,z + u 2z ,y ) ' 

(ji zz = (2J11 +AI )ul z,z + Al~ x.x' 
(j2zz = ( 2J12 + A2 )u2z.z + A zUzx,x · 

(8.17a) 

(8 .17b) 

(8 .18) 

(8 .19a) 

(8.19b) 

(8.19c) 

(8.19d) 

(8 .19e) 

(8.19f) 

The relation between the amplitude of incident and scattered waves is obtained by 

introducing the displacement of the wave given by Eq.(8.16a)-(8.16i) into the six 

displacement-discontinuity boundary conditions in Eq.(8.13) and (8.14 ). Stresses and 

displacement discontinuities are then computed from Eq.(8.18) and (8.19a-f). The result 

is expressed in the form of a matrix equation that is solved for the transmission and 

reflection coefficients. The transmission coefficient matrix [T] and a reflection coefficient 

matrix [R] are defined as 

l
T (SV ) 

sv 

[T] = T~~v> 
y (SV ) 

p 

y <SH ) 
SV 

y <SH) 
SH 

T (SH ) 
p 

R(SH ) 
sv 

R(SH ) 
SH 

R (SH) 
p 

R (P)l sv 

R (P) 
SH • 

R(P) 
p 

(8.20) 

The superscript on the coefficients identifies the type of incident waves (SV -, SH-, and P­

waves) and the subscript identifies the type of scattered waves. The matrix equation for the 

transmission and reflection co~fficients is shown in Figure 8.18. For the sake of 

simplicity, sine and cosine functions are abbreviated ass() and c(). 
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8.4.5 Normal incident waves with cross-coupling fracture stiffnesses 

For the special case when the incident wave propagates normal to the fracture between 

two identical media, the scattering matrix becomes 

Zs 0 0 Zs 0 0 

0 Zs 0 0 Zs 0 

0 0 Zp 0 0 Zp 
X [(TJ] 

1<: xx - imZs 1\:zy 1\:u -1\: XX - 1\: xy - 1\:zz [R] 
1\: yx 1\:YY - imZs 1\: yz - 1\: yx - 1\:yy -Kyz 

1\:u 1\:zy 1\:zz - imZp - 1\:u - 1\:zy -1\:zz 

Zs 0 0 

0 Zs 0 

0 0 Zp 

1\:xx 1\:xy 1\: xz 
(8.21) 

1\: yx 1\: yy 1\:yz 

1\:u 1\:zy 1\:zz 

where Zp, and Zs are P-wave and S-wave acoustic impedance of the half-space, 

respectively. By introducing an impedance ratio matrix 

rP! /3~ P! J r z~u ;wz, 27<: X)' 1 mZs 2~~fwZ, J 
[/3] = f3:,x /3~. f3:,z = 21\:yxi WZs 2T<:YY 1 mZs 21\:yz I mZs ' (8.22) 

/3~ /3~. f3 ~ 2 1\: u 1 wz p 21\:zy I OJZ P 2 1<: zz 1 mZ P 

the matrix equation becomes 

1 0 0 1 0 0 1 0 0 

0 1 0 0 1 0 0 1 0 

0 0 1 0 0 1 [[T]]= 0 0 1 

2 + i/3~ 'f3s 'f3s 'f3s 'f3s 'f3s X [R] 'f3s 'f3s 'f3s l X)' l xz -l XX - l xy - l xz l xx l xy l xz 
'f3s l yx 2 + if3:y 'f3s l yz ·f3S - l yx 'f3s 

-l YY 'f3s -l yz 'f3s l yx 'f3s l yy 'f3s 
l yz 

'f3p l u 'f3 p l zy 2 + i/3~ 'f3p - l u '{Y - l zy 'f3p - l zz 'f3p l u 'f3p 
l Z)' 

'f3p l zz 

(8 .23) 

From the first three rows of the matrix equation, it follows that 

[T]+ [R]= I (8.24) 



Zs2c2¢2 

0 

-ZS2s2¢2 
7Cxxc¢2 - Kzxs¢2- imZs2c2</J2 

Kyxc¢2- Kyzs¢2 

Kzxc¢2 - Kzz s¢2 + imZS2s2</J2 

x [[TJ] = 
[R] 

Note 

sin( ) = s( ) 

cos( ) = c( ) 

0 

Zs2c¢2 

0 

K 
xy 

Kyy - iWZs2c2</J2 

IS.y 

Zs1c2¢1 
0 

-Zs1s2</J1 
Kxxc¢1- Kxzs¢1 

Kyxc¢1- Kyzs¢1 

Kzxc¢1- Kzzs¢1 

2Zs2c82s¢2 ZSJc2¢1 0 -2ZSJc81s</J 1 
0 0 Zs1c</J1 0 

ZP2 - 2ZS2s82s</J2 ZSJs2¢1 0 Zp1- 2Zs1s81s</J1 
K~82 + Kzx c82- im2ZS2 c82s</J2 - Kxxc¢1 - Kzx s¢1 -K X), KzxS 81 - Kzzc81 

Ky~82 + KYF82 - Kyxc¢1- Ky~</J1 -K yy Ky~ 81 - KyF81 
Kzx s82 + Kzzc82- iw(Zp2 - 2Zs2s82s</J2) - Kzxc¢1- Kzz s¢1 -Kzy Kzxs81 - Kzzc81 

0 2Zs1c81s¢1 

ZSic¢1 0 

0 Zp1- 2Zs1s81s¢1 
K K~81 + KxF81 X)' 
K Ky~ 81 + KYF81 )')' 

K Kzx s81 + Kzzc81 Z)' 

Figure 8.18 Matrix equation for the general scattering problem of a fracture including coupling between all displacement discontinuity 
and traction components. Subscripts "1" and "2" represent media on either sides of the fracture . By solving the matrix equation, 
transmission and reflection coefficient matrices ([T] and [R]) are determined for any specified angle of incidence. 
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where I is an identity matrix. Therefore the matrix equation is reduced to as 

r
1 + if3! 

'f3s l yx 
'f3p 
l zx 

·f3S 
l xy 

1 + if3~, 
'f3p 
l zy 

(8.25) 

For the special case when the coupling stiffnesses between y and the other directions 

are zero, the above matrix equation is decomposed to a P-SV problem and aSH problem. 

Such fracture stiffness is expected for a fracture sheared along the x-axis. By setting the 

coupling impedance parameters f3;Y, f3:,x, f3:,z, and /3~ equal to zero, the matrices become 

block-diagonal, yielding 

[
1 + if3! if3;z ][Tltv) 

if3; 1 + if3~ T~SV) 
Tl~l 1 = [if3! 
T(P) 'f3p 

p l zx 

'f3s l l xz 
'f3p ' 
l zz 

( 1 + if3:y )Tl~H) = if3:Y' 

Tl~vl = TlZl = Tl~il = T~sH) = 0. 

Therefore, the transmission coefficients for the P-SV problem are 

[
Tltv) Tl~l l = _!_[i/3!(1 + if3~ ) + f3;zf3; 
r<sv) r<P) ~ if3p 

p p zx 

~ = (1 + i/3!)(1 + i/3~) + {3;zf3;. 

The transmission coefficient for the SH problem is 

'f3s 
T(SH) = l YY 

SH 1 + if3:y . 

(8.26a) 

(8.26b) 

(8.26c) 

(8.27) 

(8 .28) 

Once the transmission coefficients are obtained, reflection coefficients are derived from 

Eq.(8.25) . The matrix equation Eq.(8.28) shows that the transmission (and reflection) 

coefficients for converted waves (converted SV wave from P-wave and converted P-wave 

from SV -wave) do not vanish for finite coupling fracture stiffnesses. The scattering 

coefficients of the transmitted, reflected, and converted waves for a normal incident P-wave 

are shown in Figure 8.19. Normal and tangential fracture stiffnesses are assumed to be 

identical ( K:xx = K:zz = x::) and the relative magnitude of the coupling stiffness is given by the 

coupling stiffness ratio R = Kzx / 7<: . The horizontal axis is the inverse of impedance ratio 
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Figure 8.19 Transmission and reflection coefficients for a P-wave normally incident on a fracture. 
Poisson's ratio of the half-space is 0.2. Normal and tangential fracture stiffnesses are assumed to be 
identical(= K: ). The second subscript of each coefficients shows the type of scattered wave. The horizontal 
axis shows an inverse of impedance ratio defined by 2/fJ=wZp/ K: where Zp is the P-wave impedance of the 
half-space and ill is the angular frequency of wave. As the coupling fracture stiffness R (= K: xzl K:) 
increases, transmission and reflection coefficients of the converted waves (Tps and Rps) increase 
monotonically. The plots also include normalized group time delay for the directly transmitted P-wave 
(t g=tg . 2 K: I Zp ). For the case with very large coupling fracture stiffness (R=0.9) , the group time delay 
becomes negative for a certain range of frequency and fracture stiffness. 

f3 between the fracture and its halfspace. The parameter 2 I f3 is proportional to the wave 

frequency and inversely proportional to the normal stiffness of the fracture . It can be seen 

that the transmission and reflection coefficients for the converted wave become significantly 

larger with increasing coupling stiffness. On the other hand, the transmission coefficient of 

the P-wave for a constant f3 decreases slightly. Such behaviors of the waves have been 

observed during the laboratory wave transmission tests presented earlier in this chapter. 

Unlike the monotonically decreasing P-to-P transmission coefficient or monotonically 

increasing P-to-P reflection coefficient, coefficients of converted waves have a peak for 

f3"" 1. This indicates that the converted waves are best generated for intermediate fracture 

stiffnesses and wave frequencies. 

In the Figure 8.19, changes in the group time delay for the transmitting P-wave are also 

shown. The group time delay increases for low frequency (or high stiffness) and decreases 

for high frequency (or low stiffness) as the coupling stiffness increases. For a very high 
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coupling stiffness (R=0.9), the group time delay becomes negative for a certain range of 

frequency and fracture stiffness. Such a result appears to be unphysical as it indicates that 

wave energy propagates across the fracture during negative travel time. The cause of the 

negative group time delay and its effects on an actually measured wave is left for further 

investigation. 

If coupling stiffness between the x and z directions is not present, the P and SV -waves 

are also decoupled, yielding 

·f3S 
T(SV) = l XX 

SV l ·13S ' + l XX 

.f3p 
T(P) = l zz 

p 1 .f3p , 
+z zz 

T~~) = T~SV) = 0 . 

(8.29a) 

(8.29b) 

(8.29c) 

These results are identical to the transmission coefficients of a fracture without coupling 

stiffnesses (for example, Pyrak-Nolte et al., 1990a). 

8.4;6 P-SV cross coupling for obliquely incident waves 

When a wave is obliquely incident on a compliant interface (fracture), conversions 

between P and S-waves occur even without the cross-coupling fracture stiffnesses. Gu et 

al. ( 1996) conducted a detailed analysis of the characteristics of transmitted and reflected 

waves obliquely incident on a fracture using the displacement-discontinuity model. 

However, their analysis did not include the effect of cross-coupling fracture stiffnesses. 

The results for the transmission and reflection coefficients of normal incident waves 

suggest that the cross-coupling stiffness has a significant effect on the transmission and 

reflection coefficients of obliquely incident waves as well. 

In the following analyses, a virtual shear on the fracture is applied along the x-axis and 

the incident wave impinges on the fracture in the x-z plane. In this case, coupling fracture 
stiffnesses Kzy, Kyz, Kxy' and Kyx can be assumed to be zero due to the symmetry of the 

problem. Because the SH-wave has a particle motion that is parallel to the fracture and is 

decoupled from the P and SV -waves, its behavior is not affected by the remaining coupling 
fracture stiffnesses Kxz and Kzx. Therefore its behavior is not discussed here. Identical 

material is assumed on both sides of the-fracture and Poissdn's ratio of the halfspaces is 
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assumed to be 0.2. Normal and tangential fracture stiffnesses are also assumed to be equal 

( K: xx = K: zz == K:) for the sake of simplicity. 

For a range of incidence angles, the matrix equation Eq.(8.17) was solved to determine 

the resulting transmission and reflection coefficients. Figure 8.20 shows the computed 

coefficients for varying incidence angles of the P-wave. The vertical axis shows the angle 

of incidence and the horizontal axis shows the inverse of the fracture impedance ratio with 

the P-wave acoustic impedance of the halfspace. An increase in the parameter 2/ f3 
corresponds to an increase in wave frequency or a decrease in normal and tangential 

fracture stiffnesses. When the relative coupling fracture stiffness ( R = K:xz fK:) is zero, all 

the coefficients are symmetric about the normal incident direction ( 8=0°). For obliquely 

incident waves ( 8 * 0 ), transmission and reflection coefficients of the S-wave are not zero 

due to the conversion of the waves. As the relative coupling fracture stiffness increases, 

the symmetry of the coefficients about the normal incidence direction is distorted, resulting 

in finite coefficients in the normal incidence direction. The direction in which large 

transmission and reflection coefficients are observed changes with increasing relative 

coupling stiffness and varies from coefficient to coefficient. Unlike the other coefficients, 

the coefficient for the reflected P-wave maintains its symmetry about the normal incident 

direction with increasing coupling fracture stiffness. 

For an S-incident wave, similar behavior of the scattered wave was observed (Figure 

8.21). Since critical angle of incidence was 38°, the S-waves incident beyond 38° result in 

invalid data as the scattered waves are inhomogeneous (e.g., Aki and Richards, 1980). As 

for the P-incident case, an increase in the relative coupling fracture stiffness distorts the 

symmetry in the transmission and reflection coefficients. However, the coefficient for the 

reflected S-wave maintains symmetry. 

For the results shown above, it is noted that the increasing and decreasing trends in the 

amplitude of the transmission and reflection coefficients reverse when the sign of the 

relative coupling fracture stiffness is reversed. This can be easily achieved by reversing the 

sign of the x-axis for the system. 
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Figure 8.21 Transmission and reflection coefficients for an obliquely incident S-wave. The 
critical angle of incidence is 38. (Poisson ratio is 0.2) . An increase in the coupling stiffness 
breaks the symmetry in the plots for directly transmitted S-waves ('ri'\ reflected P-waves 
(18\ and transmitted P-waves ('ril'). Reflected S-waves (R~1 keep their symmetry around 
the normal incidence direction (8=0·) . 
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8.5 Numerical Simulation 

8.5.1 Frequency-domain boundary element code (BIEMPS) 

The effect of coupling fracture stiffness on the transmission and reflection of waves 

incident on a fracture was examined using a frequency-domain plane strain boundary 

element method. The fracture was modeled by pairs of constant boundary elements 

(straight elements with a single node at the center) located along a single interface between 

two domains. Each element pair was mechanically coupled by displacement-discontinuity 

boundary conditions. The displacement-discontinuity boundary conditions were used for 

modeling the dynamic interaction between a compliant interface and wave. Such a method 

was used by Nihei ( 1992) for simulating acoustic wave propagation through a granular 

medium (a frequency-domain code), and by Gu et al. (1994) for simulating a fracture 

interface wave (a time-domain code). At each frequency OJ, displacement at a node was 

computed by a similar expression as the static expression in Eq.(8.3) 

cijuJ (x: OJ) = J u~ (x, x': OJ )p1(x': OJ )dr(x') - J p~ (x, x': OJ )u1 (x': OJ )dr(x') 
rJ * r ,(8.30) 

+ uij(x, x' :OJ)j1(x':OJ)dQ(x') 
Q 

where u~ and p~ are dynamic displacement and traction Green's functions for angular 

frequency OJ (e.g., Brebbia and Dominguez, 1989). The last term in the equation includes 

a body force jj that represents a point source for generating waves. Integrations were 

performed only along the boundary of the domain where the displacement is computed. A 

matrix equation equivalent to Eq.(8 .5) was constructed and solved at each frequency for 

unknown boundary displacement and traction. Once the displacement and traction for the 

desired range of frequencies were computed, the time-domain response (waveform) was 

obtained by applying an inverse Fourier transform. 

A model used for simulating the waves transmitted and reflected at a compliant interface 

(fracture) is shown in Figure 8.22. A total of 140 pairs of constant boundary elements 

(280 nodes) are located along a straight interface between two domains. The total length of 

the fracture is 12.0 m and a single point source is located 3.5 m below the center of the 

fracture . The source generates a thre~-lobe Ricker wavelet with central frequency of 

2.65kHz. Young's modulus of the half spaces is 50GPa, Poisson's ratio is 0.2, and the 
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Figure 8.22 A numerical model for simulating scattering of waves incident on a compliant fracture. 
Constant boundary element pairs are placed along an interface between two half spaces. Each element pair 
is connected by normal, tangential, and coupling displacement-discontinuity fracture stiffnesses. A 
directional force is applied from below the center of the fracture . 

density is 2600 kgfm3. For the S-wave, the element size to wavelength ratio is 0.08, 

yielding sufficient resolution for varying displacement and traction along the fracture. 

Throughout the following simulations, normal and tangential fracture stiffnesses are 

assumed to be equal to K( = Kzz = K .o,)= 1011 Palm. For P and S-wave velocities of the 

half-space and the central frequency of the incident wave, the resulting fracture impedance 

ratios (/3 = 2KjmZ) are 1.0 for the P-wave and 1.63 for the S-wave. Therefore, from the 

magnitude of the resulting transmission and reflection coefficients in Figure 8.20 and 

Figure 8.21, the waves should have a sufficiently strong interaction with the fracture. 

8.5.2 Simulations 

The first test was conducted using an explosion source. The left column in Figure 8.23 

shows snapshots and the particle displacement distribution for the case without coupling 

fracture stiffness. The right column shows the case for a coupling fracture stiffness of 

R = KxzfK=0.5. Snapshots show the magnitude of the particle displacement given by 

u = ~ u; + u~ where ux and uz are x and z-direction particle displacements. 
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Explosion Source 

without coupling with coupling {R=0.5) 

positive angle 
of incidence 

Figure 8.23 Snapshots of the wavefield interacting with a compliant fracture. Waves are 
generated by an explosive source. Absolute magnitude of particle displacement is shown. 
Normal and tangential fracture st_iffnesses are 10 llPafm. Introduction of coupling fracture 
stiffness (R=O.S) results in an increase in (a) reflected and (b) transmitted, converted S-waves at 
oblique directions. 
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At t=0.94 msec, there is only a P-wave with a wavefront propagating radially from the 

source. As the wave propagates, its wavefront curvature decreases and the wave becomes 

approximately a plane wave. Therefore, the circular wavefront can be seen as a series of 

plane waves with continuously changing angle of incidence. At t= 1.88 msec, the plots 

show many wavefronts generated as a result of interaction between the P-incident wave and 

the fracture. For the case without coupling, the amplitudes of the transmitted and reflected 

waves are distributed symmetrically about the vertical axis. The reflection conversion from 

P- wave to S- wave can be seen at oblique angles. When the coupling fracture stiffness is 

introduced, the symmetry about the vertical axis is destroyed. For the reflected S-wave 

(converted from P-wave), amplitude of the wave decreases in directions with positive 

incidence angle (labeled as "a") and increases for negative incidence angle. The transmitted 

S-wave (converted from P-wave) also shows increase in amplitude, primarily in the 

directions with a positive incidence angle (labeled as "b"). 

The second test was conducted with a vertical point source (Figure 8.24) that generated 

a strong P-wave in the vertical direction and an S-wave in the horizontal direction. The 

resulting wavefield generated by the interaction between the P-incident wave and the 

fracture was similar to the wavefield generated by the explosion source. 

In addition, a horizontal source was used to generate strong S-wave· motion in the 

vertical direction (Figure 8.25, snapshot at t=l.25msec). From the snapshots at t=2.19 

msec, a slight increase in the amplitude of reflected P-wave (converted from S-wave) can 

be seen in directions with a positive incidence angle (labeled as "a"). The transmitted S­

wave shows a slight increase for negative incidence angles (labeled as "b"). The plot also 

shows an increased amplitude of the reflected S-wave converted from the incident P-wave 

(labeled as "c"). 

In the above results, the observed changes in the amplitude of the scattered wave are 

consistent with the results of the previous analysis using plane waves. The results show 

that sheared fractures re-direct wave energy for both converted and non-converted waves. 
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Figure 8.24 Snapshots of the wavefield interacting with a compliant fracture. Waves are 
generated by a vertical source. Similar to the waves generated by an explosion source, 
introduction of coupling fracture , stiffness (R=0.5) results in an increase in reflected and 
transmitted, converted S-waves ( a and b) at oblique directions, 
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Horizontal Source 

without coupling with coupling (R=0.5) 

particle displacement (t=2.19 msec) 

positive 
angle of 
incidence 

Figure 8.25 Snapshots of the wavefield interacting with a compliant fracture. Waves are 
generated by a horizontal source. Introduction of coupling fracture stiffness (R=0.5) results in an 
increase in converted and reflect~d P-waves (a) and transmitted S-waves (b) at oblique 
directions. In the plot, a converted, reflected S-wave generated by an obliquely incident P-wave 
can also be seen (c). 
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8.6 Summary 

In this chapter, the interaction between propagating seismic waves and a sheared 

fracture is examined experimentally, numerically, and analytically. Because this chapter 

specifically discussed propagating waves rather than standing waves (resonances), the 

results provide a fundamental understanding of the dynamic properties of a sheared 

fracture. The extended form of the displacement-discontinuity boundary conditions can be 

easily incorporated into the model described in Chapter 4 to simulate the resonance of a 

structure containing a sheared fracture (e.g., by including the cross-coupling terms in the 

fracture stiffness matrix in Eq.(4.4)). 

Laboratory experiments reveal that a sheared fracture in rock introduces conversions of 

normally incident seismic waves. The amplitude of the converted waves increases 

monotonically with an applied shear stress. When the direction of the shear is reversed, the 

particle motion of the converted wave changes its phase by 180°. The observed behaviors 

of the wave show that the conversions are not caused by random scattering of waves off 

the rough surface of a fracture. A mechanism that leads to the conversion of waves is 

postulated and confirmed by a physical analogue (steel block specimen with regular surface 

geometry) and numerical simulations. A static numerical simulation shows that changes in 

the geometry of a sheared fracture leads to dilation behavior of the fracture that manifests 

itself as conversions of seismic waves normally incident on the fracture. Analytic solutions 

for transmission and reflection coefficients of scattered waves off a fracture are derived 

using an extended form of the displacement-discontinuity boundary conditions that include 

cross-coupling terms in the fracture stiffness matrix. 

Although the dilation behavior of a fracture subjected to static loading has been studied 

by researchers for many years, few have investigated the effects of dilation on wave 

propagation. The experimental results presented in this chapter are quite novel to the 

knowledge of the author. The shear-induced conversion of seismic waves may have 

significant applications as a diagnostic tool for detecting and measuring the shear stress on 

a rough interface between solids. As the underlying physics is very fundamental, the 

phenomenon has a broad scope of applications. For example, it may be applied to develop 

a sensor that measures shear stress in manufactured parts, and structures such as buildings, 

columns, piers, tunnels, and dams. In the latter area, such a sensor can be used to measure 

the stress state on a fracture that poses potential slip failure or to monitor the stress state on 
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a geological fault that may cause an earthquake by accumulation of shear stress. It is also 

significant that the shear-induced conversion behavior of the waves can be modeled and 

examined using a simple extension of an existing model (displacement-discontinuity 

model). Many interesting new wave phenomena are expected for single and multiple 

fractures subjected to shear stress. An example is shown in the following chapter for 

fracture interface waves propagating along a sheared fracture. 

For future research, it would be necessary to quantify the magnitude of the conversions 

that can happen under realistic conditions. For this purpose, the relation between geometry 

of contacting fracture surfaces and their elastic behavior when subjected to load has to be 

investigated. Unlike the simple idealized two-dimensional interface (inclined flat 

microcracks) discussed in this chapter, surfaces of a real fracture tend to be in contact at 

small patches and islands (Baik and Thompson, 1984). Although the dynamic dilation that 

leads to conversion of the wave still can be treated using the extended displacement­

discontinuity boundary conditions, the relation between the geometry and the stiffness of 

the fracture is difficult to determine. To examine the dilation behavior of the fracture, three­

dimensional analysis as performed by Hopkins et al. (1990), which considers the 

interaction between individual contacts, may be required. This analysis also leads to the 

determination of the relation between stress applied to the fracture (both normal and 

tangential) and its resulting fracture stiffnesses. 



Propagation along Wave 
Sheared Fractures 

9.1 Introduction 

A compliant interface between two solids such as a fracture or a bond can support 

waves that propagate for a long distance without attenuating. Such waves are called the 

fracture interface waves and can be shown mathematically to be a generalized form of the 

classic Rayleigh surface wave. The existence of fracture interface waves was predicted by 

Murty (1975) for an Interface with a finite shear stiffness, and by Pyrak-Nolte and Cook 

(1987) for a fracture with finite normal and tangential stiffnesses . Pyrak-Nolte et al. 

(1992) have confirmed the existence of these wave through laboratory measurements of 

waves propagating along a model fracture in an aluminum specimen. The properties of 

fracture interface waves have been examined both analytically (Pyrak-Nolte and Cook, 

1987) and numerically (Gu et al., 1996) by modeling the behavior of a fracture using the 

displacement-discontinuity boundary conditions (Schoenberg, 1980; Pyrak-Nolte et al., 

1990a). Analysis by Pyrak-Nolte and Cook (1987) predicts two types of fracture interface 

256 
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waves, a fast wave with symmetric particle motion across a fracture and a slow wave with 

anti-symmetric particle motion. The velocities and particle motions of the interface wave 

depend on both the wave frequency and the fracture stiffness. Gu et al. (1996) show that 

the behavior of the fast and slow waves are each governed by independent dispersion 

equations. 

In the previous chapter (Chapter 8), a sheared fracture was shown to generate 

converted P and S- waves for normally incident S and P-waves, respectively. This is 

attributed to the elastic dilation of a fracture that involves mechanical cross-coupling 

between normal stress and tangential displacement, and shear stress and normal 

displacement across the fracture (Nakagawa et al., 1997). The elastic dilation occurs as the 

shear stress applied to the surface of a fracture systematically changes the distribution of 

local contact stiffness. Relations between stress and relative displacement across a fracture 

can be described using an extended form of the displacement-discontinuity boundary 

conditions with coupling fracture stiffnesses. 

The purpose of this chapter is to examine the effects of the shear-induced cross­

coupling fracture stiffness on the properties of fracture interface waves. A dispersion 

equation for the interface wave is derived by applying the displacement-discontinuity 

boundary conditions to a plane wave solution. It is shown that the generalized fracture 

interface waves for a sheared fracture no longer have pure symmetric or anti-symmetric 

particle motion. Furthermore, introduction of coupling stiffnesses change the velocities of 

the interface wave, which may be misinterpreted as changes in normal and tangential 

fracture stiffnesses if the effect of the shear is not taken into account. Changes in wave 

velocity and accompanying particle motion are examined for a range of fracture stiffnesses 

and coupling fracture stiffnesses. Numerical simulations are performed using a dynamic 

boundary element method to demonstrate the predicted behaviors of fracture interface 

waves for a sheared fracture. Observed changes in the velocity and particle motion can 

potentially be used for characterizing the stress state on a fracture. 

9.2 Theory 

9.2.1 Generalized interface wave 

A dispersion equation for the fracture interface wave propagating along a sheared 

fracture is derived following Gu et al. (1996)'s work for a fracture without shear. For a 
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(a) Sheared compliant interface (fracture) with partial contacts and bonds 

(b) Displacement-discontinuity model including coupling fracture stiffness 

Figure 9.1 Fracture interface wave propagating along a sheared fracture. (a) The fracture is assumed to 
be on an x-y plane at z=O and the shear force is applied along the x-axis. (b) The quasi-static behavior of 
the fracture is described using the displacement-discontinuity boundary conditions with coupling (dilation) 
fracture stiffness. 
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fracture located on an x-y plane at z=O (Figure 9.1), scalar Helmholtz potentials for a 

interface wave propagating along the x-axis are given by 

til _ L1 -pwz iw( x/c-t) 
'1'2 -,'2e e 
til _ A +pwz iw(x/c-t) 
'I'I- 1e e 

,z :2:0, 

,z ::;;o, 

(9.1) 

for P-wave motion. The vector Helmholz potentials for the in-plane S-wave motion are 

given by 

lfl 
_ B -qOJZ iw(xlc-t) 

2- 2e e 

lfl 
_ B +qwz iw(x/c-t) 

I- le e 

,z:2:0, 

,Z::;; 0. 

(9.2) 

Subscripts "1" and "2" designate the half-space z::;; 0 and z :2: 0, respectively. In the above 

expressions, p and q are given by 

(9.3) 

where cp and cs are P and S-wave velocities in the isotropic homogeneous halfspaces. 

Using the potentials defined above, particle displacements in the x and z- directions are 

derived from the following relations 

a¢ alfl a¢ alfl 
u =--- u =-+-

X ax az ' z az ax • 
(9.4) 

The tractions on the surface of the isotropic homogeneous halfspace are obtained from 

Hooke's Law 

(9.5) 

for each halfspace. The tractions and displacements of the surfaces are related by the 

displacement-discontinuity boundary conditions (Schoenberg, 1980; Pyrak-Nolte et al., 
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1990). In the previous chapter (Chapter 8), it was shown that the coupling fracture 

stiffnesses that describe the elastic dilation behavior of the fracture can have a significant 

effect on P and S-waves propagating across the fracture. A generalized form of the 

displacement-discontinuity boundary conditions for a fracture sheared along the x-axis was 

(jzx = I( xx[ Ux ] + l(xz[ uzJ 

(jzz = l(zx [ux] + l(zz [ uzJ 

(j zx = fi x = -f2x 

(jzz = tl z = -f2z' (9.6) 

By introducing Eq.(9.1) through (9.5) into the above expressions, the following 

homogeneous matrix equation is obtained 

2i mp J1 i 1C xx 
-.....:....::- - -- + Pl(xz 

c c 

JlW( ~ - ~J- _iiC_zx + piCzz 
c Cs c 

A2 

AI 
X =0, 

B2 

BI 

2ip 

c 

2 1 

ii(XX 
- -+ pi(XZ 

c 

iiC 
______Q_ + p I( zz 

c 

2ip 

c 

where that pc~ = A. + 2J1 and pc~ = J1 . 

2 1 

2iq 

c 

2iq 

c 

(9 .7) 

To simplify the above expression, coefficients of the potentials are decomposed into 

their symmetric and antisymmetric components as follows 

Aasym = A2- AI 

2 ' 

It is noted that the symmetry is defined with respect to the interface located at z=O. By 

substituting the variables, the matrix equation becomes 
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2ip 
-f.l(l)- + 2pKxz 

c 

J.lm( ~ -~J 
c . Cs 
+ 2pKzz 
2ip 

Asym 

Bsym 

X Aasym 

Basym 

c 

0 

=0. 

-f.l(l)( ~ __ 1 J _ 2i1(xz 
c c2 c s 

2iq 2iKzz -J.lm----
c c 

2 1 

0 

2ip 2iKxx 
-f.l(J)----

c c 

0 

2 1 

0 

2iq 

c 

(9.9) 

The equations in the third and fourth rows independently determine the relative magnitudes 

of the P and S- type motions for the symmetric and anti-symmetric particle motions 

independently. Using these relations, the coefficients are given by 

Asym 2 -2 Aa.\ym -
c c c =canst. X . s , = const.x . 

{ 

2 1 } { 2iq } 

{ B''m} _ 2; { B"''m} :, _ :; 

By introducing non-dimensional slowness parameters ~ = Cs I c, 

relations become 

(9.10) 

t;=cslcp, these 

(9.11) 

Substitution of variables into the matrix equation reduces the size of the matrix from a 4x4 

to a 2x2 as follows 
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(9.12) 

where the stiffness of the interface is expressed by non-dimensional impedance parameters 

{3 s = {3 s = 2~xz I m = 2~zx I m 
R lX ' pes pes 

(9.13) 

where p is the material density of the half-spaces and 

(9.14) . 

Note that f( ~ 2 ) = 0 is a Rayleigh-wave equation (for example, Aki and Richards, 1980). 

Non-trivial solutions of the matrix equation are obtained by equating the determinant of the 

matrix to zero 

P( ~ 2 ) = detJMI 

= {!(~ 2) _ {3~ ~~ 2 _ 1;2 }{!(~ 2 )- {3~~}-{3;z{3~~~2 _ 1;2~ = 0. 

(9.15) 

Solutions of Eq .(9 .15) provide the velocity of the interface wave for given frequencies. 

For a solution of the equation, the corresponding mode vector is derived as 

(9.16) 

For the special case when there is no coupling fracture stiffness, two independent 

equations arise from Eq.(9.15) 

(a) f(~)=f31z~~2-1;2, 

(b) !(~) = f3Ix~ . 

(9.17a) 

(9.17b) 

These equations are identical to those derived by Gu et a/.(1996). The accompanying mode 

vectors of the equations are 

(a) { usym} {1} uasym - 0 , (9 .18a) 
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(b) { usym} {0} uasym - 1 . (9.18b) 

The horizontal particle motions of the fracture interface wave described by the mode vectors 

given by Eq.(9.18a) and Eq.(9.18b) are symmetric and anti-symmetric across the interface, 

respectively. The velocity of the symmetric interface wave is faster than the anti-symmetric 

wave for identical normal and tangential fracture stiffnesses (Gu et al., 1996). On the other 

hand, as is shown by the analyses performed later in this chapter, particle motions of the 

interface wave derived from Eq.(9.16) for a fracture with coupling fracture stiffness are no 

longer symmetric or anti-symmetric. As these particle motions approach symmetric and 

anti-symmetric motions for small coupling fracture stiffnesses, the fast wave is called the 

"quasi-symmetric Rayleigh interface wave (q-symmetric RIW)" and the slow wave is called 

the "quasi-antisymmetric Rayleigh interface wave (q-antisymmetric RIW)" . 

9.2.2 Dispersion relations 

For a given wave frequency and fracture stiffness, the dispersion equation Eq.(9.15) 

can be solved to determine the velocity of the interface wave. The velocity can be either a 

real or a complex number. Because an interface wave with a complex velocity decays 

exponentially as it propagates along a fracture (leaky wave), the fracture can support only 

waves with real velocity. The real solution (velocity) of the dispersion equation is found 

only for velocities smaller than the S-wave velocity ( ~;::: 1) or equal to the P-wave velocity 

( ~ = (). This can be proven as the ~ ~ 2 -1 term in the equation can be explicitly 

expressed by all the other real-valued terms. For this reason, the q-symmetric RIW 

becomes attenuative (leaky) when its velocity increases beyond the S-wave velocity. 

The behavior of the interface wave velocity can be predicted by examining the structure 

of the dispersion equation. For the sake of simplicity, the following discussion assumes 

identical normal and tangential fracture stiffnesses ( K: xx = K:zz = K:, and therefore 

f3! = {3~ = {3 ). The relative magnitude of the coupling fracture stiffness is expressed by a 

fracture stiffness ratio R defined by 

(9.19) 

The dispersion equation P( ~ 2 ) (Eq.(9 .15)) is expressed by the following components 
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P(~ 2 ) = F-G, 

F = (f- f3. 8 )(!- f3 . <1>), 

G = ( R/3)2 
8<1>, 

8=~, 
<I>= ~~2 - c 0 (9.20) 

The behaviors of functions f, {3 · 8, and {3 · <I> for a range of interface wave velocities are 

shown in Figure 9.2(a). The Poisson's ratio of the halfspaces is assumed to be 0.2. A 

zero of the function f provides the Rayleigh wave velocity ( c R ). As the stiffness of the 

fracture increases, {3 · 8 and {3 ·<I> increase monotonically. For a fracture without coupling 

stiffness, intercepts between these functions and f, or zeros of the function F (Figure 

9.2(b)) provide velocities of the symmetric (cRsym ) and anti-symmetric (cRasyn,) waves. 

When the coupling fracture stiffness is introduced ( R -:f:. 0), the function G increases 

monotonically (Figure 9.2(b)). As can be seen from the plot, an increase in the coupling 

fracture stiffness results in a slight increase in the velocity of the (quasi-)symmetric wave 

and a relatively large decrease in the velocity of the (quasi-)anti-symmetric wave. 

The computed velocity dispersion of the interface waves for a range of fracture 

stiffnesses (represented by the dimensionless impedance parameter {3) is shown in Figure 

9.3. The vertical axis is the velocity of the interface wave normalized by the S-wave 

velocity. Curves are computed for a range of coupling fracture stiffnesses specified by R . 

When the stiffness of the fracture is very low or the frequency of the wave is high 

({3 ~ 0), the two solutions of the dispersion equation degenerate to the Rayleigh wave 

velocity of the halfspace. On the other hand, when the stiffness of the fracture is very high 

(fracture is welded) or the frequency of the wave is low ({3 ~ oo ), the two solutions 

become P-wave and S-wave velocities of the halfspaces (P-wave velocity is not shown in 

the plot). For an intermediate stiffness and wave frequencies, two kinds of waves with 

velocity between the Rayleigh wave velocity and S-wave velocity exist. For a fracture 

without the coupling fracture stiffness, these are the fast wave with symmetric particle 

motion and the slow wave with anti-symmetric particle motion (Pyrak-Nolte and Cook, 

1987). For a sheared fracture with a finite coupling fracture stiffness ( R -:f:. 0), these waves 

are no longer purely symmetric or antisymmetric. 
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~<I> ~=1) 

0 .92 0.94 0.96 0 .98 

c/c (=11~) 
s 

(a) Solutions of non-coupled dispersion equation 

F 

G 

c 
Rasym 

0 r--.---7------~----~~-----7----~~ 
~ G (R=O) 

-0.2 

-0.4 

0 .9 0.92 0 .94 0.96 0.98 

c/ c (=1/~) 
s 

(b) Solutions of coupled dispersion equation 

Figure 9.2 Graphic representation of individual terms in the dispersion equation for the fracture interface 
wave. The above plots are for a special case of b=l and R=0.5. (a) A zero of the function f yields the 
Rayleigh wave velocity. As the stiffness of the fracture increases, functions ~<l> and ~e increase 
monotonically, their intersections withfyielding the velocities of the symmetric and antisymetric interface 
waves, respectively. (b) When the coupling fracture stiffness is introduced, function G increases 
monononically, decreasing the velocity of the (quasi-) anti-symmetric wave and increasing the velocity of 
the (quasi-) symmetric wave. 

Note: Dispersion equation P = (f- f3 · 8)(!- f3 · <1>)- G = F- G where, 8 = ~. 
<I>= ~~2- S2' f = (2~ 2 -1)2 -4~2~~~2- S2 and G = (R/3)28<1> 



2 6 6 9 Wave Propagation along Sheared Fractures 
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f3 
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·Figure 9.3 Computed dispersion of phase velocities for interface waves with a coupling fracture 
stiffness. Poisson's ratio of the material is 0.2 and normal and tangential fracture stiffnesses are 
assumed to be equal ( K zz= K xx= K )) . Increase in the coupling stiffness (R= K zxl K) increases the 
velocity of the quasi-symmetric wave while it decreases the velocity of the quasi-antisymmetric wave. 
For any possible magnitude of the coupling fracture stiffness, the curves for the quasi-symmetric wave 
share a common point at c = c s (S-wave velocity) where the wave becomes attenuative (corresponding 
[3 gives the cut-off frequency). 

From the plot, it can be seen that an increase in the coupling fracture stiffness decreases 

the velocity of the slow wave (q-asymrnetric RIW) and slightly increases the velocity of the 

fast wave (q-symmetric RIW) for a given frequency and fracture stiffness. As f3 increases 

beyond f3 = 1, the fast wave approaches the S-wave velocity and then vanishes. By setting 

~ = c s j c = 1, the dispersion equation yields a corresponding non-dimensional if!Ipedance 

parameter (Gu et al., 1996) 

1 
f3 = ~1- s2 · 

(9 .21) 

It is noted that the above expression does not include the coupling fracture stiffness 

parameter R. Therefore, all type curves for the fast wave (q-symmetric RIW) share a 

common cut-off point (shown as "V" in the plot). 
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9.2.3 Particle motion 

Particle motions associated with the fracture interface waves are obtained by 

introducing the solution of the dispersion equation (Eq.(9.15)) into Eq.(9.16) and 

Eq.(9.11) to determine the coefficients of the Helmholtz potentials. The x and z-direction 

displacements on the surface of the fracture are computed from the Eq.(9.4) as 

u, x ir e 
u, z (1) -ci> ir { U''m } = eiw(xfc-t) 

u2x Cs ir -e uasym ' 
(9.22) 

u2z <I> ir 
where 

r = ~{(2~ 2 -1)- 2~~ 2 -1~~2 
_ t;2 

}. (9 .23) 

Parameters 8 , ci>, and the above parameters can take only real non-negative values for an 

admissible range of ~ ( t; < 1 ~ ~) that is given as a real-valued solution of the dispersion 

equation. If the coupling fracture stiffness is zero, Eq .(9 .18a) and (9 .18b) hold, and 

Eq.(9.22) yields 

(9.24a) 

(9.24b) 

Eq.(9 .24a) and (9.24b) represent symmetric and anti-symmetric particle motions , 

respectively. For both cases, the phase for the z-direction motion is 90° ahead of the x­

direction on the halfspace z<O, and 90° behind on the halfspace z>O. This leads to an 

elliptic retrograding motion whose principal axes are normal and parallel to the interface. 

The corresponding displacement components across the interface are either in phase or 180° 

off-phase. Notethat u1x=u2x=Oforc=cs (~=1)and u1z=u2z=Oforc=cP (~=(). 

When the coupling fracture stiffness is non-zero, the phase of the z-direction particle 

motion is faster than the x-direction's particle motion by: 

arg --.k = - arg ..A.. = tan 1 
• (

u J (u J --{r(e. uusym
2 
+ ci>. U-'>'

111 2
)}. 

~X u2x (r2 -Gel> )usym . uusym (9.25) 



2 6 8 9 Wave Propagation along Sheared Fractures 

For ~ :2:1 , f, 8 , <I>, and f 2 
- 8<1> are non-negative. Therefore, the sign of the 

expression in the major bracket depends on the sign of U''>'"' · U"·''>'"'. For a quasi-symmetric 

wave, the second expression in Eq.(9.16) yields 

u sym . U"·''Y"'= R8(f3 . <I>- f). (9.26) 

From Figure 9.2, f3 ·<I>- f <0 due to the increase in the velocity of the quasi-symmetric 

wave caused by the increase in coupling fracture stiffness. Therefore, 

(9.27) 

where the sign of the phase shift Os is given by the sign of R. For a quasi-antisymmetric 

wave, the first expression in the Eq.(9.16) yields 

U"Y"' . U""Y"'= R<l>(f3 . 8- f) . (9.28) 

As f3 · 8- f>O for the decreased velocity of the quasi-antisymmetric wave, 

(9 .29) 

where o" is the phase shift whose sign is given by the sign of R. Using these phase 

angles, relations between x and z- direction particle motions on the surface of the half­

spaces are obtained as 

~x = Re{ a· e-iwr} =a cos( mt) 

u
1
z = Re{ b · e -iwr+i( Y2 +.5,)} = b sin( mt- o,.) 

(a) 
u2x = Re{c · e-iwr} = ccos(-mt) 

u
2

z = Re{ d · e - iwr- i( Y1+.5,)} = d sin( -mt- 8,) 

u1x = Re{ a· e-iwr } = a cos( mt) 

~ z = Re{ b · e -iwt+i(Y1-"~~) } = bsin( mt + ou) 
(b) 

u2x = Re{ c · e-iwr } = ccos( -mt) 

u
2

z = Re{ d · e -iwr-i(Y1-8
") } = d sin( -mt + o") 

(9.30a) 

(9.30b) 



9 Wave Propagation along Sheared Fractures 2 6 9 

Coefficient a-d are real and positive. Eq.(9.30a) and (9.30b) are for the quasi-symmetric 

wave and the quasi-antisymmetric wave, respectively. If the coupling fracture stiffness is 

positive, both 8" and 8a are positive. The above expressions also reveal that both particle 

motions are retrograde. From Eq.(9.30a), it can be seen that the ellipse of the particle 

motion for a quasi-symmetric wave tilts into the second and fourth quadrants around the 

origin ( nj2 < e < n and 3nj2 < e < 2n' where e is an angle defined from the positive x­

axis in the counter-clockwise direction) by 8, as the coupling fracture stiffness is increased 

(R>O). On the other hand, from Eq.(9.30b), the ellipse tilts into the first and the third 

quadrants by 8a for a quasi-antisymmetric wave. 

Computed particle motions on the fracture surface for a range of impedance ratios and 

coupling fracture stiffnesses are shown in Figure 9.4. When the stiffness of the fracture is 

low (or the wave frequency is high), both q-symmetric and q-antisymmetric waves exhibit 

elliptic retrograde motions. For this stiffness (/3 = 0.1 ), an increase in the coupling 

stiffness (R) has little effect on the shape of the particle motion. For an intermediate 

fracture stiffness ( f3 = 1 ), the q-symmetric wave exhibits elongation and tilting of the 

elliptic motion in the predicted direction, while the q-antisymmetric wave exhibits slight 

widening and tilting in the opposite direction. For a high fracture stiffness ( f3 = 10), 

particle motion of the q-antisymmetric wave exhibits similar behaviors as the intermediate 

fracture stiffness case. A slight change is that the elliptic trajectory becomes narrower in 

the z-direction, approaching the particle motion of the S-wave. The quasi-symmetric wave 

becomes a leaky P-wave in this range, as can be seen by the nearly horizontal particle 

motion. 

The distribution of particle motion in the vicinity of the fracture is shown in Figure 9.5 

for the (a) q-symmetric and (b) q-antisymmetric interface waves. When there is no cross­

coupling stiffness (R=O), the q-symmetric wave's particle motion is symmetric and the q­

antisymmetric wave's particle motion is anti-symmetric across the interface located at z=O. 

Therefore, for the symmetric wave, the x-direction motions are in phase and the z-direction 

motions are 180° out of phase across the fracture. Conversely, the anti-symmetric wave 

has in-phase z-direction motions and 180° out-of-phase x-direction motions. The most 

marked effect of the shear or cross coupling stiffness is the altering of the phase difference 

between the particle motions on both surfaces of the fracture. These shifts occur in the 

same direction for both q-symmetric and q-antisymmetric waves. 
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Figure 9.4 Particle motion of a single point on the surface of a fracture. In each plot, elliptic trajectories 
at the top are for the upper surface (z>O) and at the bottom are for the lower surface (z<O). All the particle 
motions except for the high-stiffness ({3 =10) quasi-symmetric case are retrograde. The wave that shows 
prograde motion is not truly an interface wave since the wave is attenuative. As the relative coupling 
fracture stiffness (R) increases, elliptic trajectories are skewed and their symmetry across the interface is 
broken. 
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Particle Motions of (Quasi-)Symmetric Rayleigh Interface Wave 
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Figure 9.5(a) Particle motions of (quasi-) symmetric Rayleigh interface waves. An increase in 
the relative coupling fracture stiffness (R) breaks the symmetry in the particle motions across 
the interface. A phase lag between upper and lower half spaces becomes apparent with 
increasing coupling fracture stiffness, . In the above plot, the case ~=10 is a slightly leaky 
surface P-wave. 
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Figure 9.S(b) Particle motions of (quasi-) antisymmetric Rayleigh interface waves. An increase 
in the relative coupling fracture stiffness (R) breaks the anti-symmetry in the particle motions 
across the interface. A phase lag between upper and lower halfspaces becomes apparent with 
increasing coupling fracture stiffness. 
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9.3 Numerical Simulation Using Dynamic Boundary Element 
Method 

9.3.1 Numerical Model 

Interface waves propagating along a sheared fracture were simulated using a frequency­

domain dynamic boundary element method for elastic plain strain problems. The model 

used for the simulation is identical to the model used in the previous chapter (Chapter 8). A 

fracture was modeled by an array of constant element pairs located along the fracture 

embedded in an infinite medium. The length of the fracture was 12 m and a pair of 

directional point sources (force sources) were located 0.086m above and below one end of 

the fracture (Figure 9.6). The source generated a 3-lobe Ricker wavelet with central 

frequency of 2.65kHz. The two sources were oriented so that they introduced either 

symmetric or anti-symmetric source displacement. The number of the constant elements 

used for the simulations was 280 (140 pairs). For a P-wave velocity of 4623m/sec and an 

S-wave velocity of 2831m/sec, the number of the nodes per element was approximately 20 

and 12, respectively. The density of the material used for the simulaitons was 2600 kg/cm3 

and Poisson's ratio was 0.2. 

Figure 9.6 A numerical model for simulating a fracture interface wave along a fracture with coupling 
fracture stiffness. Constant boundary element pair are placed along an interface between two half spaces. 
Each element pairs is connected by normal, tangential, and coupling displacement-discontinuity fracture 
stiffness. Directional force is applied at the end of the fracture. To introduce quasi-symmetric waves, two 
directional forces are applied in the same direction along the x-axis. For quasi-antisymmetric waves, the 
forces are applied in the same direction along the y-axis. 
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9.3.2 Simulated interface waves 

To best see the effect of the coupling stiffness on the interface waves, an intermediate 

value of 1 Qll Palm is selected for both normal and tangential fracture stiffnesses. For the 

central frequency of the source (2.65kHz) and the velocity of the S-wave (2831 rnlsec ), this 

stiffness yields an impedance ratio f3 -1.63 and a transmission coefficient T=0.85 for 

normal incidentS-waves. Figure 9.7(a) shows snapshots of the wavefield generated by a 

symmetric source (a pair of point sources moving along the fracture). The absolute 

amplitude of the wave ( u = ~ u; + u~ ) is shown. Along the fracture, most of the energy is 

carried by the P-wave and the amplitude of the interface wave is small. The P-wave 

wavefront generates a strong head wave. An increase in the coupling fracture stiffness (or 

shear on the fracture) disturbs the symmetry of the wavefield. From the plot, it can be seen 

No cross coupling With cross coupling (R=O.S) 

Figure 9.7(a) Snapshots of symmetric and ql!asi-symmetric fracture interface waves with and without 
coupling fracture stiffness (R= 7( zxl 7( xx=O or 0.5). Normal and tangential fracture stiffness is 1011 Palm 
({3 -1.63, T -0.85). Absolute displacement amplitude is shown. A symmetric source is used to generate the 
interface waves. 
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that the amplitude of the interface wave in the upper halfspace (z:2::0) has a slightly advanced 

phase than the lower halfspace. 

The snapshots of the wavefield generated by an anti-symmetric source (a pair of point 

sources moving perpendicular to the fracture) are shown in Figure 9.7(b). The source 

generates only a small P-wave along the fracture. Compared with the symmetric source, 

the amplitude of the interface wave is significantly larger and its velocity slower than the S­

wave (the S-wave/interface wave wavefront becomes concave on the fracture). Similar to 

the symmetric source, the interface wave for a sheared fracture shows an advanced phase in 

the upper halfspace (z:2::0). 

In Figure 9.8, x- and z- displacements of the waves generated by the symmetric source 

are shown. An array of receivers is located 7.0 m from the source parallel to the z-axis. 

No cross coupling With cross coupling (R=O.S) 

t=2~t 

t=4~t 

t=6~t 

Figure 9.7(b) Snapshots of antisymmetric and quasi-antisymmetric fracture interface waves with and 
without coupling fracture stiffness (R= ']( zxl K" xx=O or 0.5). Normal and tangential fracture stiffness is 

1011 Palm ({3 -1.63, T -0.85). Absolute displacement amplitude is shown. An antisymmetric source is 
used to generate the interface waves. 
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(Quasi-)Symmetric Interface Wave 
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Figure 9.8 Seismograms for waves generated by a symmetric source. The fracture is located at z=O. Labels 
in the plots are, P: P-wave, S: S-wave, H: head-wave, SIW: symmetric interface wave, and QSIW: quasi­
symmetric interface wave. Introduction of coupling fracture stiffness breaks the symmetry of the waves across 
the fracture and advances the phase of the quasi-symmetric interface wave in the upper halfspace. 
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(Quasi-)Antisymmetric Interface Wave 
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Figure 9.9 Seismograms for waves generated by an anti-symmetric source. Labels in the plots are, P: P­
wave, S: S-wave, H: head-wave, AIW: anti-symmetric interface wave, and QAIW: quasi-antisymmetric 
interface wave. Introduction of coupling fracture stiffness breaks the anti-symmetry of the waves across the 
fracture and advances the phase of the quasi-antisymmetric interface wave in the upper halfspace. 
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For a welded fracture, strong P-wave motion in the x-direction and a smallS-wave motion 

due to the circular wavefront are observed (left column). A decrease in thefracture stiffness 

introduces a head wave and a symmetric interface wave (middle column). The velocity of 

the symmetric interface wave is very close to the S-wave velocity as the non-dimensional 

impedance ratio {3 is close to the cut-off impedance ratio given by Eq.(9.21) that yields 

identical S-wave and interface wave velocities (see Figure 9.3). When the coupling 

fracture stiffness is introduced, the quasi-symmetric wave exhibits advanced phase for the 

upper halfspace and retarded phase in the lower half-space, breaking the symmetry in the 

wavefield (right column). 

The waves generated by an anti-symmetric source are shown in Figure 9.9. For a 

welded fracture, strong z-direction motion due to the S-wave is seen (left). A compliant 

fracture exhibits an anti-symmetric interface wave along the fracture. The head wave does 

not have significant amplitude as the P-wave motion along the fracture is very small 

(middle). The anti-symmetric wave shows a slower velocity than the S-wave and the 

waveform for the x-displacement flips at a certain depth ( z::::: ±0.2m). At this depth, the 

particle motion changes from retrograde motion at the near surface to a prograde motion. 

Such a flip is not observed for the symmetric interface waves and the assumed fracture 

stiffness ( {3 = 1. 63 ). This is because the velocity of the symmetric interface wave is close 

to the S-wave velocity. A small q for the velocity of the interface wave given by Eq.(9.3) 

yields a small second term of the x-direction displacement in Eq.(9.4). As a result, the 

amplitude of the x-displacement decreases monotonically with distance from the fracture. 

Introduction of the coupling fracture stiffness has a similar effect on the anti-symmetric 

interface wave as the symmetric wave, changing the phase lag across the fracture and 

breaking the symmetry of the wavefield. 

Numerically simulated particle motions on the surface of the fracture are shown in 

Figure 9.10 for symmetric and anti-symmetric sources. Displacements for welded and 

compliant fractures ({3 = 1.63) with and without coupling fracture stiffness (R=O or 0.5) are 

compared. In each plot, the top half is for the upper surface and the bottom half is for the 

lower surface. From the plots, it can be seen that the both (quasi-)symmetric and (quasi-) 

anti-symmetric waves show elliptic retrograde particle motions. An increase in the coupling 

stiffness causes elongation of the elliptic trajectories for the symmetric interface wave. Tilting 

of the elliptic trajectories is observed fo~ both types of interface waves and their direction is 

consistent with the theoretical prediction (Figure 9.4, middle column). 
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Figure 9.10 Particle motions of interface wave on the fracture surface. Both (quasi-) symmetric and 
(quasi-)antisymmetric interface waves ~how elliptic retrograde motion. Increase in the coupling fracture 
stiffness (R) introduces a phase shift of the waves (waveforms at the top) and tilting of the ellipses. 
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9.4 Summary 

In this chapter, the property of fracture interface waves propagating along a sheared 

fracture is examined by modeling the effect of the shear using the displacement­

discontinuity boundary conditions with a coupling fracture stiffness. A dispersion equation 

is derived using a plane wave solution for waves propagating along the fracture. The 

coupling fracture stiffness relates two independent dispersion equations for symmetric and 

anti-synlinetric interface waves for a fracture without shear. The analysis shows that the 

resulting particle motions for the interface waves are no longer purely symmetric or anti­

symmetric. As can be seen from the dispersion equation, both symmetric and anti­

symmetric motions are coupled through the coupling fracture stiffness. Velocities of the 

two types of waves and phase lag between displacements on upper and lower surface of the 

fracture are observed as well. The introduction of the coupling fracture stiffness increases 

the velocity of the (quasi-) symmetric Rayleigh interface wave and decreases that for the 

(quasi-) antisymmetric wave. Elliptic particle motions show tilts in the opposite directions 

for the two waves. For both waves, phase lags are introduced between the opposite sides 

of the fracture. 

The observed changes in the characteristics of the fracture interface wave can potentially 

be used as a diagnostic tool for detecting and measuring shear stress on a fracture. Such a 

measurements would be useful for crosshole seismic measurements along a fracture 

subjected to shear. However, as the effect of shear stress on the characteristics of a 

fracture interface wave is rather small, experimental confirmation of the results obtained in 

this chapter is necessary to confirm if the effect is significant enough to be used in reality. 

l . 
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Resonance in Wave Propagation and 
Media Containing Regularly 

Parallel Fractures 
Spaced 

10.1 Introduction 

In recent years, fractures in reservoir rock have been recognized as important couduits 

for hydrocarbon production (Nelson, 1987). For fractures to serve as conduits for fluid 

and gas transport, they must be partially open. This imperfect contact can result in large 

dynamic normal and tangential compliances when filled with gas and large tangential 

compliance when filled with fluid. As was discussed in Chapter 8, fractures may also 

dilate when- subjected to shear stress. In this case, fractures also have a cross-coupling 

compliance. Compliant fractures are seismically detectable by the changes they impart to 

wave velocities, amplitudes, and spectral content. By examining these characteristics, 

reservoir properties that arise from fractures can be investigated. 

One of the common geologic structures encountered in reservoir rock is that of closely­

spaced parallel fractures (Laubach, 1991; Lorenz and Finley, 1991 ). Such structures are 

possibly formed by large regional compressive stresses (Lorenz et al., 1991). Gas flow, 

281 
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fluid flow and seismic wave propagation in rock with a single set of parallel fractures can 

exhibit strong transverse isotropy. When the seismic wavelength is much longer than the 

fracture spacing, the medium can be replaced by an equivalent transversely isotropic 

medium (Schoenberg and Douma, 1988; Schoenberg and Muir, 1989; Hood and 

Schoenberg, 1989). The elastic properties of the equivalent anisotropic medium are then 

made equivalent to the static properties of the fractured medium. Such an approximation is 

possible because the stress distribution in a representative volume containing fractures is 

nearly uniform because of the small spatial variations in stress. Similar approaches have 

been used by many researchers including Bruggeman (1937) Riznichenko (1948, 1949), 

Postma (1955), Helbig (1958), and Backus (1963) for examining the long-wavelength 

wave propagation in finely layered geologic structures with welded interfaces . . Wave 

propagation in an equivalent homogeneous medium is frequency-independent, as it is a 

zero-frequency approximation. 

The dynamic behavior of a single fracture, however, is frequency-dependent and its 

filtering effect on propagating waves is a function of the impedance ratio of the fracture that 

is a function of fracture stiffness, wave frequency, and the material properties of the 

medium (Kendall and Tabor, 1971; Schoenberg, 1980). Therefore, even when the 

· wavelength is much longer than the fracture spacing, wave propagation in a fractured 

medium can exhibit frequency-dependent behavior if the fracture stiffness is sufficiently 

small. Such a factor is not considered with the static approximation. Furthermore, the 

static approximation ignores the attenuation of waves due to scattering off the fractures. 

If the wavelength is smaller than or comparable to the fracture spacing, the stress 

variation in a fractured medium is no longer smooth across each fracture. For such a case, 

the static approximation may no longer be valid. Waves propagating in such media are 

multiply scattered and the resulting wave velocity and amplitude can be quite different from 

those for homogeneous media. In Chapter 2, the frequency-dependent filtering 

characteristics of one-dimensional systems with a zone of regularly and irregularly spaced 

fractures were examined. It has been shown that the transmission and reflection 

coefficients of the fractures have a strong correlation with the resonance of the fractured 

zone that is taken out of the system. Using an exact analytic solution for the dispersion of 

waves propagating through an infinite number of periodically spaced fractures, it was 

shown that a spectrum of the wave is ch~acterized by alternating stop and pass bands that 

correspond to groups of resonance peaks in an equivalent finite system. Such wave 

behavior was also observed by Helbig (1984) for periodically layered structures with 

I 
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welded interfaces and Schoenberg (1983) for reflection of SH-waves obliquely incident on 

regularly spaced parallel non-welded interfaces (fractures) . 

In this chapter, a general form of the dispersion equation for plane wave propagation in 

media containing multiple parallel fractures is derived. The stiffness matrix of the fractures 

is kept general, i.e., all cross-coupling terms are included. The dispersion equation is 

derived by imposing periodic boundary conditons on a plane wave solution using Floquet 

theory (Floquet, 1883; Bedford and Drumheller, 1994). To model the dynamic behavior of 

the fractures, the displacement-discontinuity boundary conditions are used (Schoenberg, 

1980; Pyrak-Nolte et al., 1990a). The resulting dispersion relation is exact, i.e., no long­

wavelength approximation was used, and can describe full coupling among P-, SV -, and 

SH-waves. It is then shown that when the effective wave propagation in the z-direction 

(normal to the fractures) is zero, the dispersion equation degenerates to a set of generalized 

Rayleigh-Lamb plate wave equations for the case of P-SV waves and a generalized SH­

plate wave equations for SH-waves. If the thickness of individual layers is large compared 

with the wavelength, the equation degenerates to the dispersion equation for the fracture 

interface wave. 

10.2 Derivation of General Dispersion Equation 

A general dispersion equation in a three-dimensional medium including regularly 

spaced multiple parallel fractures will now be derived. The derivation is similar to that 

followed for the dispersion equation of the fracture interface wave in Chapter 9. 

The displacement of a wave propagating in an isotropic intact medium can be expressed 

in terms of Helmholtz potentials as 

(1 0.1) 

where ¢ and lfl are scalar and vector potentials for P- and S-wave type motions, 

respectively. If the coordinate system is oriented such that the fractures are parallel to the z­

plane and the wave is propagating parallel to the x-z plane (Figure 10.1), the components 

of the displacement are expressed as 

{

Ux} = {¢,x} { lflz,y = lf/y,z} {¢.x - lfl.z} 
uy ¢.)' + lflx.z lflz,x -=::} v . 

Uz ¢.z lf/y,x - lflx,y ¢.z + lfl,x 

(10.2) 
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>fracture 

Figure 10.1 P-SV-SH wave propagation in a medium containing regularly spaced parallel fractures . 
Fracture spacing is h. A general fracture stiffness matrix is used (i. e., the stiffness matrix includes 
normal, tangential, and coupling fracture stiffnesses). 

Note that tf1 is redefined as a scalar potential in the above equation. For plane waves, 

explicit forms of the potentials are given by 

¢ = ( A eik{z + Ae-ik{z )ei(k,x-wt ), 

tfl = ( Beik fz + Be-ik;z )ei(k,x-wt) , 

v = ( Ceik;z + ce-ik;z )ei(k,x- Wt ), (10.3) 

where kx is the horizontal wavenumber; k; and k; are the vertical wavenumbers for P­

and S-waves. An identical horizontal wavenumber is assumed for all the potentials. It is 

noted that the first terms in the potentials represent "up-going" waves and the second terms 

are for "down-going" waves in the layered system. By introducing Eq.(10.3) into 

Eq.(10.2), the components of the displacement are 
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0 

x[ Aeik{ z Ae -ik{ z ik sz 
Be ' 

.ks 
l z 

ikx 

0 

The displacement gradients are then given by 

and 

Ae-ik{z 

'ks Be' ,z 

0 0 

0 

0 

0 

0 
.ks 
l z 

-C -ik] z ]T i(k,x-wr) e ·e 

iu 
Ce _, ' z . e' ,x-wr - .ks ]T '(k ) 

C -t z z l xX -(1)1 - .ks ]T '(k ) 
e ·e 

(10.4) 

( 1 0.5a) 

(10.5b) 

The stress components in a layer are computed as linear combinations of Eq(10.5a) and 

(10.5b) . In a medium containing an infinite series of regular periodic fractures, Floquet's 

theory (Floquet, 1883; Bedford and Drumheller, 1994) can be used to impose periodic 

boundary conditions on the displacement and stress fields. The theory states that, in a 

periodic structure, a stationary wavefield must also be periodic. To apply this condition to 

the waves scattered by the periodic fractures, the effective wave propagation in the z-
A 

direction is defined using a wave number kz. Using kz, the displacement and stress are 

expressed as 

!:!: = U(z) . ei(f,z+k,x-wr), 

T( ) 
i( k,z+k,x-wr) 

Q=_z ·e . 

(10.6a) 

(10.6b) 

Effective wavenumbers are defined following a procedure used by Bedford and Drumheller 

(1994) 

(10.7) 



2 8 6 10 Wave Propagation and Resonance in Media Containing Parallel Fractures 

The components of U(z) are rewritten as 

t}{k; ikx -iks .ks 0 

~1 
z l z 

-ie ikx ikx 0 Uz - lkz . z 

uY 0 0 0 0 1 

x [Ae;Ktz A -iK"•z e ' 
iK s-Z 

Be ' 
- -iKS+Z 
Be ' CeiK;-z c -iKS+ z r i(.~,z +k,x- WI) 

e ' ·e 

(10.8) 

The components of I(z) are computed from linear combinations of displacement gradients 

computed by 

tll--k/, -k 2 kxk; -kxk; 0 

i~J 
X 

kxk: -k 2 -k 2 0 Uz,x - kxkz X X 

uy,x 0 0 0 0 ikx 

x[ AeiK{-z A -iKP+z e ' 
iKs-z 

Be ' 
- - iK S+z 
Be ' 

iKS-z 
Ce ' Ce-iK;•z r. ei(k,z+k,x-wt) 

(10.9a) 

(10.9b) 

Periodic boundary conditions are imposed on the stationary part of the displacement and 

stress field as 

U(O-)=U(h+O- ), 

ICO- ) = I(h + 0- ), 

(lO.lOa) 

(10.10b) 

where h is the thickness of a single layer and the origin (z=O) is taken on the surface of the 

reference layer. Displacement-discontinuity boundary conditions for a compliant interface 

are expressed as 
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I(O -) = I(O+), 

I(O+) = ~[U(O+)- U(O-)], 

(10.11a) 

(10.11b) 

where ~( = [ 1(;;]) is the general fracture stiffness matrix. By introducing Eq.(l0.10a) and 

(10.10b) into Eq.(lO.lla) and (10.11b), 

I(h + 0-) = I(O+), 

I(O +) = ~[U(O+)- U(h + 0-)]. 

(10.12a) 

(10.12b) 

Note that the above boundary conditions include only the quantities for the reference layer 

(O<z<h). Eq.(l0.12a) and (10.12b) provide six independent equations for the six 

unknown coefficients of the Helmholtz potentials. The equations can be written in the form 

of a 6x6 matrix equation. 

To express the matrix in a dimensionless form, the following dimensionless slowness 

and impedance parameters are introduced 

S 
2/( .. jw 

f3 I) (" • ) ;; = z,J = x,y,z , 
Zs 

(10.13) 

where Cx is the phase velocity along fractures, C5 and Cp are the S- and P-wave velocities 

in an intact medium, and Zs is the S-wave acoustic impedance of the intact medium. It 

should be noted that the following relations hold for the wavenumbers and slowness 

parameters 

(10.14) 

To obtain a matrix equation of simplified form, the coefficients of the potentials are 

redefined as 

(10.15) 
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Using the redefined parameters, the six displacement-discontinuity boundary conditions are 

expressed as a matrix equation in Figure 10.2. 

The matrix equation is simplified further by introducing the following coefficients 

A asym = }( +A' B""">'m = B - B' C"·')'m = C + c· 
2 , 2 , 2 , 

Asym = A - A' B'YIII = B + B' c sym = c - c' . 
2 , 2 , 2 (10.16) 

The resulting matrix equation is shown in Figure 10.3. In this expression, the following 

functions are used 

sin(k;h) isinh(a<l>) 
a = ~ = ---=~---'----'---

- cos(k,h) - cos(k;h) cos( a~, )- cosh(a<l>)' 

b = ~sin(k;h) = i~inh(a8) 
- cos(k,h)- cos(k;h) cos( a~, ) - cosh(a8) 

~ 

d b 
_ _ isin(a~, ){ cosh(a8)- cosh(a<l>)} 

an + a+ - { ~ }{ ~ } cos( a~, ) - cosh(a8) cos( a~, ) - cosh(a<l>) 
(10.17) 

where 

E k~ I ks a = ksh = mh . 
'=> z = z ' 

(10.18) 

From the first three rows in the matrix of Figure 10.3, the following relations can be found 

= usym ':> = uasym ':> = vasym 10 19 
{

Asym} {2 J: 2 
_ 1} {A asym} { 2i J:e } { C"">'"' } {0} 

B'rym 2i~<l> , Basym . 2~2 _ 1 , casym 1 .( · ) 
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Introduction of Eqo(10019) reduces the size of the matrix in Figure 1003 from a 6x6 to a 

3x30 The resulting matrix equation is 

{3;y 

{3~, +00 jR 

{3~, 

where 

fp = i[(2~ 2 -lr a_ - 4~ 20<1>b_] 

JQ = i((2~ 2 -1)2 
b_ - 4~ 20<1>a_] 

f = ib R -

gp = 2i~<1>(2~ 2 -1)(b+- a+) 

gQ = 2i~0(2~ 2 -1)(b+- a+) 0 

(10020) 

(10021a) 

(10o21b) 

(10021c) 

(10021d) 

(10021e) 

Therefore, a dispersion equation for the general P-SV -SH wave propagation in a medium 

containing a regularly spaced, infinite series of parallel fractures is obtained as 

(10022) 

Except for an exponential factor e-3ik, z , the above dispersion equation is either a real 

function (Imag{P}=O) or a pure imaginary function (Real{P}=O) for real-valued fracture 

stiffnesses and wavenumberso Therefore, standard root finding algorithms can be usedoto 
A 

find real solutions for the slowness ( ~ or ~z ) 0 
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10.3 Group Velocity 

When a dispersion relation is expressed in the form P=P(~x'~Y'~z,m), the group 

velocity can be computed by 

(i = x,y,z) (10.23) 

The summation rule applies for repeated indices. If the fracture stiffness is not azimuthally 

isotropic, group velocity is a function of azimuthal angle cp for the source slowness vector. 

A general fracture impedance ratio matrix [,8;~] can always be obtained by rotating a semi­

diagonal matrix without coupling between the x and y-directions around the z-axis as 

follows 

,813J [,81c
2

c/J + ,82s
2

c/J (,81 - ,82)scpccp ,813cc/J- ,823Sc/J] 
,823 ·Q= (,8t-,82)sc/Jcc/J .Bticp+,82c

2
c/J .Bt3scp+,823ccp, 

,833 ,813ccp- .B23scp ,Bl3scp + .B23ccp ,833 

0 

(10.24) 

where ccp = cos cp, scp =sin cp. Therefore, the reference direction for the azimuthal angle 

can be defined as the first principal axis for the upper 2x2 matrix of the fracture impedance 

ratio matrix. The matrix Q that rotates the coordinate system to an arbitrary direction is 

l cc/J scp 01 
Q = -scp ccp 0 . 

0 0 1 

(10.25) 

Therefore the general dispersion equation Eq. (1 0.23) is expressed in cylindrical 

coordinates as P=P(~,cp,~z,m) where ~=~~x2 +~/ and c/J=tan- 1 (~Y/~J. The 

slowness derivatives in Eq.(10.23) are computed by 

(10.26) 

or, 

(10.27) 
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Therefore, for a given combination of horizontal slownesses ~x and ~Y' the resulting 

group velocity of the wave can be computed. 

10.4 Decoupled SH-wave in Infinite Series of Regular Fractures 

10.4.1 Decoupled SH-dispersion equation 

When shear fracture stiffness is azimuthally isotropic and there are no cross-coupling 

stiffnesses ({3~ = f3:,x = {3~, = f3:,z = {3~ = f3;z = 0), the dispersion equation (10.22) is 

decoupled as 

8=0 (10.28a) 

(10.28b) 

(1- e;K;-")(1- e-iK{+")(l- e;K;-")(1- e-iK;+") 

x{ (! p - {3~ <1> )(! Q - f3!e)- gPgQ} = o (10.28c) 

Eq.(10.28a) is satisfied only when ~ = kx I e = 1. This is an SH-wave propagating 

parallel to the fractures . The second and the third equations are for decoupled SH-and P­

SV waves, respectively. 

The dispersion equation Eq.(l0.28b) can be written more explicitly as 

(10.29) 

In the following discussion, the behavior of the SH-wave described by Eq.(10.29) is 

first examined followed by a special case of SH-wave propagation parallel to the fractures. 

To perform a parametric study to examine the effect of wave frequency and fracture 

stiffness, the following two dimensionless parameters are introduced 

mh 
a=-, (10.30a) 

Cs 

b = T(yyh' (10.30b) 
J1 
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where J.1 is the shear modulus of a single layer. Parameter a is a normalized frequency and 

b is a normalized fracture stiffness. Using these parameters, the wave frequency and 

fracture stiffness can be altered independently. 

10.4.2 SH-Wave with oblique incidence 

By applying Eq.(l0.23) to the dispersion equation (10.29), the group velocity of the 

SH-wave for a specified combination of frequency and fracture stiffness is computed. A 

velocity surface for the SH-wave is obtained by sweeping over a range of normalized 

horizontal slownesses ~(0 < ~ < 1) . Figure 10.4 shows computed group velocities for 

decoupled SH-wave propagation over a range of frequencies. Poisson's ratio of the intact 

medium is assumed to be 0.2. Velocities are computed only for real solutions of the 

disp~rsion equation. When the wavelength is relatively long compared with the fracture 

spacing, the velocity surface has an elliptic shape. Velocity surfaces computed using the 

static approximation are also shown for comparison. The aspect ratio of the ellipse 

increases as the fracture stiffness decreases. As the wave frequency increases, the elliptic 

wavefront increases the aspect ratio, indicating that the velocity anisotropy is frequency­

dependent. For wavelengths comparable to, or shorter than, the fracture spacing, the 

. velocity surface is distorted due to strong multiple scattering and a filtering effect of the 

fractures. For certain ranges of the horizontal wave number ~, no real solutions exist for 

vertical effective slowness or group velocity. This leads to multiplication of a velocity 

surface with gaps in horizontal group velocity . The width of the gaps increases with 

decreasing fracture stiffness. 

In Chapter 2, it was observed that the spectrum of waves propagating in a periodically 

fractured one-dimensional system (see Figure 2.24b) is characterized by pass bands that 

permit non-attenuative propagation of waves and stop bands that prohibit wave 

propagation. The relation between the multiplied velocity surfaces and the spectra with 

alternating pass and stop bands can be seen by plotting velocity surfaces as a function of 

wave frequency (Figure 10.5). A vertical cross-section of the plot along the frequency axis 

at Cgx=O yields the spectrum in Figure 2.24b. Each pass band in the Figure 2.24b is a part 

of the lobes for the multiplied velocity surface. The plots in Figure 10.4 are vertical cross 

sections of the velocity surfaces along the horizontal group velocity axis for a frequency a. 
It is noted that the lower frequency limits and higher horizontal group velocity limits of the 

pass bands are independent of fracture stjffness. From this observation, it can be seen that 

the velocity surface has only a single lobe if the normalized wave frequency is a j 27r < 0.5 . 
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Figure 10.4 Velocity surfaces (group velocity) for decoupled SH-waves. The aspect ratio of the elliptic 
wavefront for low frequencies (a) increases with decreasing fracture stiffness (b). For high frequencies, the 
wavefront exhibits multiple lobes and regions of no vertical wave propagation. 
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10.4.3 SH-Wave propagation along fractures 

In a stop band of the frequency dependent velocity surface, waves propagate 

horizontally through the fractured medium (parallel to the fractures). Particularly at 

boundaries between pass bands and stop bands , the vertical group velocity becomes zero. 

Such waves can be seen as generalized cases of SH-plate waves in multiple plates coupled 

by the displacement-discontinuity boundary conditions. Conditions for such waves to exist 

are found by applying Eq.(l0.23) to Eq.(l 0 .28) or (10.29) . The expression for the z­

direction group velocity has a numerator 

(10.31) 

Therefore, a condition for vertical group velocity to vanish is 

A A 

sin(k
2
h)=O or k

2
h =n7T: (n=0 ,1,2 , .. . ) . (10.32) 

A 

From Eq.(l0.29), k
2
h becomes a purely imaginary number if the right hand side of the 

equation is larger than unity 

A A A 

k
2
h = i · k1zh, k1z E R . (10.33a) 

On the other hand, if the equation is smaller than -1 , a wavenumber that satisfies the 

equation is 

A A A 

kzh = 7r+ i · k12h , k12 E R. (10.33b) 

Regions where real , imaginary, and complex solutions result are graphically represented 

for the case a=2rcx3 .5 (Figure 10.6(a)) and ~ =0 .707 (incident angle 8=45.) (Figure 

10.6(b)). Oscillation of the equation is due to the cos(k;h) term in Eq.(10.29) . The 

amplitude of the oscillation increases monotonically with increasing wave frequency , 

resulting in reduction of the width of pass bands. 

When Eq.(l0.32) is satisfied, the SH wave propagates parallel to the fractures without 

attenuating in the vertical direction. The condition can be classified into two subconditions 

A 

kzh = 2mn: 

kzh =(2m+ l)n: 

(m=O, 1 ,2 , .. . ) , 

(m=O , 1 ,2 , ... ) . 

(10.34a) 

(10.34b) 
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Figure 10.5 Velocity surfaces for SH-wave propagation in an infinite series of regularly spaced parallel 
fractures . A cross section of the surface along the frequency axis is a spectrum. A cross section along a 
horizontal group velocity axis is an anisotropic velocity surface for the selected frequency. Upper and lower 
frequency limits of each pass band are the waves propagating parallel to the fractures. Waves for the lower 
limits are insensitive to the change in fracture stiffness. 
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Figure 10.6 Behavior of the SH-dispersion equation. The value of the equation oscillates around zero. 
Where the value is between -1 to 1, a real-valued solution for z-direction slowness (or wavenumber) results. 
If the yalue is l~arger !han 1 or smaller than -1 , a pure imaginary solution or a complex solution (of the 
form k zh=7r+i k z], k z[, E R) is obtained. Regions with real solutions are the pass bands whose width 
decreases with increasing wave frequency. Note that each pass band for different fracture stiffnesses has a 
shared point at the boundary between a pass and a stop band. 

By introducing Eq.(10.34a) into Eq.(10.6a) and (10.6b), it can be seen that the first set of 

conditions produces no phase shift in the vertical direction over layer thickness h. 

Therefore, wave motions in adjacent layers are identical. In contrast, Eq.(10.34b) leads to 

180° of phase shift across a layer. The corresponding dispersion equations for both 

conditions are 

· ' 
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(k'h){ (k'h) (ksh )} sin ~ b + ~ ·cot ~ = 0 , (10.35a) 

(k'h){ (k'h) (k'h)} cos~ b+ ~ ·tan~ =0, (10.35b) 

respectively. It is noted that the first terms in Eq.(l0.35a) and (10.35b) yield the following 

conditions, independent of fracture stiffness 

(m=O, 1 ,2, ... ), (10.36a) 

(m=O, 1 ,2, ... ). (10.36b) 

The second terms in Eq.(l0.35a) and (10.35b) depend on the stiffness of the fracture. 

When the fracture stiffness approaches zero ( b ~ 0 ), these terms yield conditions 

(k'h) ,. cos ~ = 0, or k~ h =(2m+ 1)n (m=O, 1 ,2, ... ), (10.37a) 

(k·'"hJ sin ~ = 0, or k:h = 2mn (m=O, 1 ,2, ... ). (10.37b) 

For fractures with very high stiffness, b ~ oo and 

(m=O, 1 ,2, ... ), (10.38a) 

(m=O, 1 ,2, ... ). (10.38b) 

These results show that the solutions of the dispersion equations as a function of fracture 

stiffness move between the stiffness-independent solutions of Eq.(l0.36a) and (10.36b). 

The dispersion behavior of the generalized SH-plate wave is shown in Figure 10.7 for 

selected values of fracture stiffness (b=0.1, 1, 10). Velocities shown in the plot are the 

group velocity parallel to the fractures . As has been discussed, both stiffness-independent 

and stiffness-dependent modes exist. Essentially, the plot is a cross section of the velocity 

surface shown in Figure 10.5 at the zero vertical group velocity. 
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Figure 10.7 Group-velocity dispersion curves for generalized SH-plate waves. Each mode is either 
dependent on or independent of the fracture stiffness. Each stiffness-dependent mode shifts between two 
stiffness-independent modes for varying fracture stiffness. 
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When Eq.(10.33a) or (10.33b) is satisfied, the amplitude of the SH-wave in the layers 

decays exponentially away from the source. Therefore the wave motion is localized in the 

vertical direction without energy dissipation or radiation. Such behavior can be examined 

quantitatively by computing the particle motion within the.layers. 

10.4.4 Particle motions of SH-waves. 

Particle motions in the fractured medium are plotted as a function of horizontal 

slowness in Figure 10.8(a) and (b). The assumed fracture stiffness is b=l and a 

normalized wave frequency is a/2rr=0.5. For this wave frequency, the changes in the 

behavior of SH-waves for a single pass band and stop band can be examined by sweeping 

over a range of horizontal slownesses ( 0 ~ ~ ~ 1 ). The fracture spacing h=O.l m. It 

should be noted that for the SH-case, a normalized horizontal group velocity computed 

from Eq.(10.23) is always identical to a normalized horizontal slowness (or wavenumber). 

When ~ =0 , the wavefield is at a boundary between a stop band and a pass band. 

From the discussion in the previous subsection, there is no vertical wave propagation for 

this state and the SH-wave propagates parallel to fractures. From Figure 10.7, this is an 

SH-plate wave mode independent of fracture stiffness. The particle motion of the mode 

has the anti-nodes corresponding exactly to the location of fractures (Figure 10.8(b)). As 

examined analytically in Chapter 2 and experimentally in Chapter 3, fracture stiffness has 

no effect on the behavior of the mode because stress on the anti-nodes is always zero. 

With increasing horizontal slowness (or increasing angle of incidence), the state of the 

wave passes through a stop band. Both Figure 10.8(a) and (b) show wave motions 

localized near the source, exponentially decaying in vertical direction. It is noted that the 

decay in amplitude occurs only across fractures and no amplitude decay occurs within 

individual layers. The degree of localization is stronger for the center of the stop band and 

weaker for the edges of the band. 

At the other boundary between a stop band and a pass band ( ~ =0.837) , once again, the 

wave motion exists ubiquitously in the fractured medium. Unlike on the other boundary, 

however, the mode shape in the vertical direction is discontinuous across the fractures. As 

the discontinuous displacement across a fracture generates stress for finite fracture 

stiffnesses, the behavior of the mode depends on the fracture stiffness. Within the pass 

band, there is no decay of wave amplitude in the vertical direction. From Figure 10.8(b) it 

can be seen that waves with coherent phase are regenerated for high angles of incidence. 



3 0 2 10 Wave Propagation and Resonance in Media Containing Parallel Fractures 

0.75 

0.25 

oL..-.___......_~'-----k-,11....1;.-"-':......::..1-J.. 
0 0.5 1.5 

a/2n 

~(= Cgx I C:,) = 0.8 ~(= Cgx I C,. ) = 0.95 

~(= Cgx I C:J = 0.99 

~(= Cgx I CJ = 0.5 

Figure 10.8 (a) Snapshots for obliquely incident SH-waves in a medium containing periodic parallel 
fractures. Normalized frequency is a/2 7r=0.5. In the stop band (0<~<0 . 837), wave motion localizes near 
the source (z=O). Within a pass band, wave motion is present ubiquitously. 
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Figure 10.8 (b) Views from the top of Figure 10.8(a). High and low amplitudes are shown in light and 
dark grays, respectively. Line diagrams to the left of each density diagram show amplitude of the wave 
measured at x=O (m) along the z-direction. 
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10.5 Decoupled P-SV Waves in Infinite Series of Regularly 
Spaced Parallel Fractures 

10.5.1 Obliquely incident P-SV wave 

A decoupled dispersion equation for P-SV wave propagation in a periodically fractured 

system is given by Eq.(10.28c). Solutions of the equation are examined using the 

dimensionless parameters defined by Eq.(10.30a) and (10.30b). 

Velocity surfaces (group velocity) for a range of fracture stiffnesses are shown in 

Figure 10.9. A constant normalized wave frequency ( a=1) and an isotropic fracture 

stiffness ( bij = b for i=j and b;j = 0 for i t= j) are assumed. For comparison, velocity 

surfaces that are computed from a static equivalent medium model for fractured media 

(Schoenberg and Douma, 1988; Schoenberg and Muir, 1989) are also shown. Dotted 

quarter circles with normalized group velocities of i and 1.62 are the reference velocities 

for S-and P-waves in an intact medium, respectively. As the wavelength is much longer 

than the fracture spacing (hi Ap=0.097, hi As=0.16, Ap and As are P and S- wave 

wavelength, respectively), both the effective medium (static) approximation and the exact 

solution yield similar results for relatively high fracture stiffnesses (Figure 10.9(a)). 

However, for medium to low fracture stiffnesses ( b -1 or smaller), the difference between 

the two solutions becomes significant (Figure 10.9(b)). For very low fracture stiffnesses, 

the velocity surface for the exact solution exhibits the multiplication, while the effective 

medium model always yields continuous elliptic wavefronts . 

The dotted sections of the SV-wave velocity surfaces for the exact solutions are 

computed for horizontal slowness ~ > 1. Although a plane wave source cannot generate 

such waves, a wavefront often has a finite curvature in real situations that leads to a 

normalized slowness greater than unity. For a wave incident on a single fracture, scattered 

waves with a horizontal slowness ~ > 1 become heterogeneous, yielding a complex vertical 
A 

slowness. It is interesting that a real effective vertical slowness ~z can result for the case 

of an infinite series of fractures. 

Changes in the velocity surface when the wave frequency is increased and the fracture 

stiffness is held constant are shown in Figure 10.10. As is observed for the SH-wave, the 

multiple velocity surfaces appear as the wavelength approaches the fracture spacing. 
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Figure 10.9 (a) Velocity surfaces of P and SV-waves computed for static effective medium models (left) 
and exact solutions of the dispersion equation for fractured media (right). Dotted quarter circles are reference 
velocities for P and S- waves in an intact medium. For a long wavelength ( a=l) and high fracture 
stiffnesses, both results are almost identical. The dotted sections of the SV-wave velocity surfaces for the 
exact solutions are computed for a horizontal slowness of .;>1. 
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Figure 10.9 (b) Velocity surfaces of P and SV-waves computed for static effective medium models (left) 
and exact solutions of the dispersion equation for fractured media (right). Dotted quarter circles are reference 
velocities for P and S- waves in an intact medium. For low fracture stiffnesses, the difference between the 
results becomes significant. The exact solution shows triplication (case b=0.5) and multiple group 
velocities in single directions (case b=0.25) for very low fracture stiffnesses. 
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Figure 10.10 Velocity surfaces of P and SV-waves computed for a constant fracture stiffness (b=lO) and 
a range of wave frequencies. As the wavelength approaches the fracture spacing, stop bands are formed, 
separating the velocity surface to multiple segments. 
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However, in contrast to the SH-wave case, the velocity surfaces show much more 

complicated behavior, possibly due to coupling between'P and SV- waves. Each velocity 

surface has single or multiple intercepts with the zero vertical group velocity axis. At these 

points, waves in the system are propagating parallel to the fractures. The behavior of the 

waves propagating parallel to the fractures is examined in the following subsection. 

10.5.2 Generalized Rayleigh-Lamb plate waves 

A condition equivalent to the generalized SH-plate wave (Eq.(10.32)) can be obtained 

for the P-SV wave propagating parallel to the fractures. In the absence of coupling fracture 

stiffnesses, the numerator of the vertical group velocity for the P-SV wave can be written in 

the form of 

Therefore, a condition for the group velocity to vanish is 

A A 

sin(kzh) = 0 or kzh =nrc (n=O, 1 ,2, ... ). 

or 

The condition given by Eq.(10.40a) yields two subconditions 

A 

kzh = 2mrc (m=O, 1 ,2, ... ), 
A 

kzh =(2m+ l)rc (m=O, 1 ,2, ... ). 

For Eq.(10.41a) the dispersion equation becomes 

(l - eik{")(l- e-ik{")(l- eik{")(l- e-ik;v") 

x(f3~8- fq) · (/3~<1>- !P) = 0 

where, 

!P = fP = coth( a:} (2~ 2 
-1)

2

- coth( a:} 4~ 2<1>8, 

JQ = fq = coth( a2
8}(2~ 2 -It -coth( a:}4~2<I>8, 

(10.39) 

(10.40a) 

(10.40b) 

(10.41a) 

(10.4lb) 

( 1 0.42) 

( 1 0.43a) 

(10.43b) 
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and for Eq.(10.41b), 

(1 + eik{ h )(1 + e -ik{h )(1 + e;k;h )(1 + e - ik; h) 

x(f3~8- Jq) · (/3~<1> ~ Jp) = o 

where, 

fp = fp =tanh( a:} (2~ 2 
-1)

2
- tanhcx:} 4~ 2<1>8, 

JQ = fq =tanh( a
2
8

) · (2~ 2 
-1)

2
- tanh( a:)· 4~ 2<1>8. 

(10.44) 

( 1 0.45a) 

(10.45b) 

Together, Eq.(10.43a), (10.43b) and (10.45a), (10.45b) are the Rayleigh-Lamb plate wave 

equations (Graff, 1975). For zero fracture stiffness, the dispersion equations Eq.(10.42) 

and (10.44) provide solutions for P-SV wave propagation in a single plate. It should be 

noted that Eq.(10.43a) and Eq.(10.45b) yield identical symmetric motions while 

Eq.(10.43b) and Eq.(10.45a) yield identical antisymmetric motions 

Dispersion relations for the generalized Rayleigh-Lamb plate wave over a range of . 

fracture stiffnesses are shown in Figure 10.11 (a) and (b). When the fracture stiffness is 

zero, the dispersion relations for the classical Rayleigh-Lamb plate waves are obtained. As 

indicated by Eq.(10.43a,b) and (10.43a,b), each mode is doubly degenerate. As the 

fracture stiffness increases, each mode splits to form a mode pair. It can be shown that one 

out of each mode pair has identical motions in neighboring layers (0 mode) while the other 

shows a motion with a phase 180° different from the neighboring layers (7t mode). The 

difference in the dispersion behaviors of the modes increase with increasing fracture 

stiffness. For high fracture stiffnesses, the generalized Rayleigh-Lamb modes once again 

form pairs but with differt:{nt partners. The first two modes that correspond to the 

symmetric and antisymmetric Rayleigh-Lamb plate waves asymptote to bulk P and S­

waves, respectively. 

Although the behavior of the P-SV wave modes in the multiply fractured system is 

similar to the SH-wave modes, unlike the SH-case, all modes change their behavior with 

fracture stiffness. This is because stationary P and SV -waves with identical horizontal 

slowness cannot have their anti-nodes on the fractures simultaneously. As either P or SV­

waves always generate stress across fractures, the behavior of the waves becomes stiffness 
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Figure 10.11 (a) Group velocities of generalized Rayleigh-Lamb waves for low to medium fracture 
stiffnesses. S and A indicate symmetric and anti-symmetric particle motion in a single layer, and 0 and 1t 

after the dash "-" indicates phase difference between motions in neighboring layers. 0- and 1t- modes split 
with increasing fracture stiffness . One of the split modes has an intercept with the zero group-velocity axis 
that is independent of fracture stiffness. It should be noted that some of the modes exhibit negative group 
velocities. 
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Figure 10.11 (b) Group velocities of generalized Rayleigh-Lamb waves for medium to high fracture 
stiffnesses. The S0-0 mode and A0-0 mode asymptote to non-dispersive P and S-waves, respectively. 
Other modes make pairs between symmetric and antisymmetric modes with identical mode and phase 
number. Negative group velocity does not occur for high fracture stiffness. 
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dependent. However, intercepts for some of the modes with the zero group velocity axis 

do not change with fracture stiffness (indicated by open triangles in Figure 10.11). This is 

because the P and SV -waves are decoupled at these points as the waves are vertically 

incident on the fracture (horizontal slowness becomes zero). It is noted that the mode that 

has the immobile intercept is not always the same. Instead, another mode can replace it 

once its intercept with the horizontal axis catches up with the former immobile intercept. 

For example, the intercept of the S2-0 mode does not change with increasing fracture 

stiffness up to b=2 but it is replaced by the intercept of the S 1-0 mode for higher fracture 

stiffnesses. 

It should be noted that some of the modes show negative group velocities for certain 

ranges of wave frequency. The negative group velocities occur when the slope of the 

wavenumber-frequency curve becomes negative as shown in Figure 10.12. Some of the 

curves in the plots show inflection points below which the group velocity becomes 

negative. Such wave behavior was investigated by many researchers including Folk 

(1958), Mindlin (1960), and Graff (1975). Mindlin (1960) showed that another branch 

that provides complex wavenumbers stems from the inflection point. As the resulting 

. group velocity is complex, waves corresponding to this branch are attenuative. Folk 

(1958) showed that in order to realize a physical wave that is composed of Fourier 

components (sine waves with different frequencies), the slope of the curve has to maintain 

the same sign. This leads to selection of the complex branch below the inflection point 

(Graff, 1975). Therefore even though negative group velocities result frorri real solutions 

of the dispersion equation, they are unphysical. 

10.5.3 Particle motions of P-SV waves 

Particle motions of the decoupled P-SV waves are plotted as a function of horizontal 

slowness in Figure 10.13 (a) to (c) . Arrows showing the particle motions in one of the 

layers (0.1 <z<0.2 m) are drawn in slightly thicker lines to emphasize the deformation of 

single layers. The assumed fracture stiffness is b=10 and a normalized wave frequency is 

a=4. A range of horizontal slowness ~ is swept to examine the behavior of the waves. 

Corresponding group velocities have been computed in Section 10.5.1 (see also Figure 

10.10 for the case a=4 and b=10). 

For most cases, two independent modes (P and SV-type modes) result for a single 

horizontal slowness. When ~ =0, waves are propagating vertically with horizontal particle 
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Figure 10.12 Wavenumber (horizontal)~frequency dispersion curves for the generalized Rayleigh~Lamb 
plate waves. Dispersion curves for P and S~waves in an intact medium and Rayleigh surface wave for a 
halfspace are also shown. For low stiffness fractures, some of the dispersion curves have inflection points 
below which the group velocity becomes negative. 
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Figure10.13 (a) Particle motions in the first pass band for a static fracture stiffness of b=lO and 
wave frequency of a=4. For a horizontal slowness (normalized) of ~=0.244, vertical group 
velocities vanish to zero. For this slowness, both P- and S- type mode yield identical horizontal 
group velocities and particle motions that are mirror images of each other. It is noted that the 
effective vertical slowneg_s does not become zero or the value that yields a resonant condition 
for a single layer (i.e., a~z is not a multiple of 7t). 
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Figure 10.13 (b) Particle motions in the second pass band for a static fracture stiffness of b=lO 
and a wave frequency of a=4. At the end of each pass band, group velocity becomes zero again 
with phase shift across a single layer equal to zero or 1t. These are the generalized Rayleigh­
Lamb plate waves . 
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Figure 10.13 (c) Particle motions in the third pass band for the SV -type mode. The static 
fracture stiffness is b=lO and the wave frequency is a.=4. This band is bound by two modes of 
the generalized Rayleigh-Lamb plate waves. 
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motions in the SV-mode and vertical particle motions in the P-mode (Figure 10.13(a)). As 

the horizontal slowness increases (or the angle of incidence increases), the wavefield is 

distorted due to an interaction between the fractures and waves obliquely incident on the 

fractures. It can be seen that both modes generate elliptic particle motions within single 

layers. For ~ =0.244, the vertical group velocity becomes zero. This is a solution 

satisfying Eq.(10.40b). The modes of the wave do not belong to the generalized Rayleigh­

Lamb plate waves as they do not have symmetric or antisymmetric particle motions in a 

single layer. In fact, both P and SV- type modes have an identical horizontal group 

velocity and particle motions that are mirror images of each other. For this reason, the 

corresponding mode cannot be found in the dispersion curves of the generalized Rayleigh­

Lamb plate waves shown in Figure lO.ll(b). 

Between ~ =0.244 and 0.428, no real solutions can be found for the effective vertical 

slowness. This is a stop band for P-SV wave propagation and the waves attenuate 

exponentially away from the source. At ~ =0.428, another solution for Eq.(l 0.40b) is 

obtained. For the SV -mode, real solutions exist up to ~ =0.684 for which one of the 

generalized Rayleigh Lamb modes (mode S0-7t) is generated. For the P-mode, the pass 

band extends up to ~ =0.617 for which the S0-0 mode is generated. This is essentially the 

decelerated bulk P-wave and no P-mode faster than this wave exists. 

The third pass band for the SV -mode begins at ~ =0.244 for which the A0-7t mode is 

generated. This is the last pass band that is terminated by the A0-0 mode, which is 

essentially the bulk SV-wave. As pointed out previously, the normalized horizontal 

slowness of the wave can be larger than unity for waves with a large angle of incidence. 



318 10 Wave Propagation and Resonance in Media Containing Parallel Fractures 

10.6 Coupled P-SV-SH Wave Propagation 

10.6.1 General fracture stiffness matrix 

When coupling fracture stiffness is present, the behavior of a medium containing 

horizontal multiple parallel fractures is no longer transversely isotropic. The dynamic effect 

of the coupling fracture stiffness has been shown for single fractures in Chapter 8 using P 

and SV-waves obliquely incident on a fracture and for a fracture interface wave propagating 

along a fracture. 

Group velocities of P, SV, and SH-waves are computed for a range of source 

horizontal slowness. To illustrate the effect of coupling fracture stiffness, the following 

fracture stiffness matrix is assumed: 

r
1 0 Rl 

[ K"ij] = 1(". 0 1- v 0 , 

R 0 1 

(10.46) 

where v is the Poisson's ratio of the intact medium ( v=0.2) and R is the coupling fracture 

stiffness ratio between the x and z-directions. The above matrix can be rotated around the 

z-axis to obtain a fully populated fracture stiffness matrix. 

10.6.2 Wave propagation along x-z plane 

To examine the effect of coupling fracture stiffness between the x and z-directions, the 

velocity surfaces for P-, SV-, and SH- waves are first computed using the static equivalent 

medium model (Figure 1 0.14, left column). The stiffness of the fracture is b( = K"h I f.1) = 5. 

The coupling fracture stiffness ratio R is varied as indicated in the plots. It can be seen that 

an increase in coupling fracture stiffness introduces asymmetry and triplications in the 

velocity surface. The degree of the asymmetry and triplication increases with increasing 

coupling fracture stiffness ratio R. From the plots, the SH-wave is not affected by the 

coupling fracture stiffness. This is because the direction of particle motion for the SH­

wave is still decoupled from the other directions. The results obtained for the exact 

dispersion equation for multiply fractured media are shown to the right of the static results 

for comparison. As the assumed wave frequency is relatively low ( a=1), both results are 

I 
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Figure 10.14 Velocity surfaces computed from static equivalent medium model (left) and exact 
dispersion equation (right) for a fractured medium. Normalized static fracture stiffnesses are hxx=hzz=5, 
byy=4, bxy=hyx=O, and hxz=hzx= R X 5. The effect of a coupling fracture stiffness between the x and z­
directions is examined by varying the coupling parameter R. The coupling fracture stiffness introduces 
asymmetry and triplications in the velocity surfaces. 
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Figure 10.15 Velocity surfaces computed from an exact dispersion equation for fractured medium. 
Normalized static fracture stiffnesses are hxx=hzz=b, byy=b(l- V), hxy=O, hxz= R X b, where V=0.2, b 
=5. It can be seen that the coupling affects the shape of the velocity surface greater for lower fracture 
stiffnesses. 

very similar for low-to-intermediate degrees of coupling. For the case of very strong 

coupling (R=0.9), a significant difference between the exact solution and static 

approximation can be seen. 

Velocity surfaces for lower fracture stiffnesses (b=0.5 and 2.5) are also computed 

using the exact dispersion equation (Figure 1 0.15). For a low fracture stiffness, the 

previous analysis shows significant differences between velocity surfaces (see Figure 

10.9b). From a comparison between the case b=51R=0.5 and b=2.5/R=0.5, it can be seen 

that the degree of asymmetry and triplication increases with decreasing fracture stiffness. 

For an even smaller fracture stiffness, the SV -wave surface exhibits a stop band that is not 

observed for the case without coupling fracture stiffness. 
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10.6.3 Fully coupled P-SV -SH wave propagation 

When the fractures in a medium have anisotropic fracture stiffnesses as shown in 

Eq.(10.46), the group velocity for propagating waves exhibits azimuthal anisotropy. This 

anisotropy is caused by an azimuthal rotation of the fracture stiffness matrix that introduces 

a coupling fracture stiffnesses between the x and y-directions. The velocities are computed 

using Eq(10.23) and (10.27). 

A single quadrant (x,y>O) of three-dimensional group velocity surfaces for P-, SV -, 

and SH-waves is shown in Figure 10.16. The dimensionless frequency was a=l, and the 

fracture stiffness used in Eq.(10.46) was b=0.5, yielding an impedance ratio {3 = 1. The 

top plot is for the case without a coupling fracture stiffness between the x and z-directions 

and the bottom is for the case with a coupling stiffness given by R=0.5. Cross-sections of 

the velocity surfaces along the x-z plane are the plots that are shown in Figure 10.15. 

From the plots, the highly complex geometry of the velocity surfaces can be seen. Due to 

the coupling fracture stiffness introduced between they- and other directions, SH- surfaces 

also exhibits azimuthal anisotropy. 



3 2 2 10 Wave Propagation and Resonance in Media Containing Parallel Fractures 

SH-surface 

SV-surface 

(a) without x-z coupling (bxz=O) 

(b) with x-z coupling (bxz=0.25) 

Figure 10.16 Velocity surfaces for media containing an infinite series of regularly spaced parallel 
fractures. For both cases, the frequency parameter is a=l, the static tangential stiffnesses are bxx=0.5, 
byy=0.4, the static normal stiffness is bzz=0.5 . The top plot (a) is computed for bxz=O and the bottom 

plot (b) is forb =0.25 . 
xz 
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10.7 Generalized Fracture Interface Wave 

10.7.1 Dispersion equation 

If the thickness of the layers is large compared with the wavelength, i.e. a ---7 oo, the 

dispersion equation (10.22) degenerates into that for the fracture interface wave. For this 
A 

case, ~z = 0 because no effective vertical wave propagation is present. If the normalized 

horizontal slowness of the interface wave ~ is such that both 8 and <I> are real and positive 

or, if either one of them is complex, the real components are positive and the dispersion 

equation becomes 

l
f3~8 - J 

P=8det as8 P yx 

. {3~8 

where 

{3~, 
{3:)' +8 

{J:v 

Jp = Jq = ( 2~ 2 
-1 t- 4~ 28<I> = J. 

(10.47) 

(10.48) 

It is noted that a scalar term multiplied to the matrix in Eq.(10.22) has been dropped. 

Equation (10.47) is a dispersion equation for interface waves propagating along a fracture. 

This class of waves can be seen as a pair of Rayleigh surface waves coupled across a single 

fracture. 

If no coupling fracture stiffness is present, Eq.(10.47) becomes 

P = 8. cf3~8- n ·Cf3~. +8). CfJ! <I>- n = o. 

Therefore, SV, SH, and P-type waves become decoupled as 

P1 ={3~8-J=O, 
P2 ={3~<l>-f=O, 

P3 = f3;)' + 8 = o, 
p4 =8 =0. 

(10.49) 

(10.50a) 

(10.50b) 

(10.50c) 

(10.50d) 

It is noted that real-valued slowness ~ cannot satisfy Eq.(10.50c) as the impedance 

parameter is always real and positive or its real part takes on a positive value. This is 

because the elastic stiffness of the fracture has to be real and positive. Eq.(10.50d) is 

equivalent to ~ =1. It can be shown that this is a SH-wave propagating parallel to the 
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fracture. Therefore, two types of Rayleigh interface wave exist (Eq.(10.50a) and 

(10.50b)), as shown in the previous chapter. 

10.7.2 Anisotropic group velocity 

As was discussed in Section 10.6 for general wave propagation in an infinite series of 

parallel fractures, the group velocity of the fracture interface wave exhibits azimuthal 

anisotropy if the fracture stiffness matrix (or impedance ratio matrix) is azimuthally 

anisotropic. Such fracture stiffness arises when the two principal tangential stiffnesses are 

not identical or if any coupling fracture stiffness between z- and other directions is present. 

To see the effect of anisotropic fracture stiffness on the velocities of the fracture interface 

waves, the following fracture impedance ratio matrix (proportional to the fracture stiffness 

matrix) is assumed 

l1 0 RJ [!3in = f3 . o 1- v o 
R 0 1 

(10.51) 

. where f3 = 2K:j OJZ5 = 1, V=0.2. The coupling fracture stiffness ratio R between the x and 

z-directions is varied between 0 and 0.9. The components of group velocity are computed 

by applying Eq(10.23) and (10.27) to the dispersion equation Eq.(10.47). 

Group velocities plotted as a function of the azimuthal angle are shown in Figure 

10.17. The angle is defined for the propagation direction (group velocity) relative to the x­

axis . As discussed in the previous chapter, the resulting two modes are characterized by 

symmetric and anti-symmetric particle motions across the fracture in the absence of any 

coupling fracture stiffnesses. The modes whose particle motions are neither symmetric or 

antisymmetric due to the introduced coupling stiffness are called quasi-symmetric and 

quasi-antisymmetric modes. 

The quasi-symmetric mode does not show large azimuthal anisotropy for R=O as an 

azimuthal rotation of the fracture impedance ratio matrix Eq.(10.51) does not introduce 

coupling between the z- and other directions. The quasi-antisymmetric mode, on the other 

hand, exhibits anisotropy as the rotation of the matrix introduces coupling between the x 

andy-directions. Along the direction of the x-axis ( 8=0°), an increase in R results in an 

increase in group velocity of the quasi-symmetric Rayleigh interface wave and a decrease in 

the velocity of the quasi-antisymmetric wave. In contrast, along they-axis ( 8=90°), group 
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Figure 10.17 Anisotropic group velocities of fracture interface wave with a range of x-z coupling 
fracture stiffness. Impedance ratios are f3xx=f3zz= 1, f3yy=0.8, f3xy=O, and {J=R. Along the direction of the x­
axis (8=0.), an increase in R results in increase in group velocity of the quasi-symmetric Rayleigh interface 
wave and a decrease in the velocity of the quasi-antisymmetric wave. In contrast, in the y-axis direction 
( 8=90.), group velocities show opposite behavior with very small change in the velocity of quasi­
antisymmetric mode. 

velocities show opposite behavior with very small change in the velocity of the quasi­

antisymmetric mode. 

10.7.3 Particle motion 

In the previous chapter, it has been shown that introduction of a coupling fracture 

stiffness between the x and z- directions changes the particle motions of the fracture 

interface wave propagating along the x-axis. The elliptic particle motion changes its aspect 

ratio and tilts its principal axes within the x-z plane. Coupling introduced between the x 

andy-directions due to the azimuthal rotation of the source causes particle motions normal 

to the direction of wave propagation as well as the tilting of the elliptic particle motions 

within the x-y plane. 
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Particle motions of the fracture interface wave on the _surface of the lower halfspace are 

shown in Figure 10.18. For this example, the impedance Eq.(l0.51) with /3=1 is used. 

The direction of the phase propagation is 45° (azimuthal angle) from the x-axis. A local 

Cartesian coordinate system (shown as x'-, y'-, and z'- axes) is defined by rotating the 

original system around the z-axis. When the shear stiffness is isotropic (f3xx = f3YY for 

v = 0) and no coupling between the x and z- directions is present, both modes exhibit 

elliptic particle motions parallel to the x'-z' plane. For anisotropic shear stiffness 

(f3xx ::f. f3YY), the ellipse of the particle motion of the quasi-antisymmetric mode tilts against 

the x'-axis. However, the particle motion is still normal to the fracture. When coupling 

between the x and z- directions is introduced (R=0.5), particle motions of both modes have 

all components (x', y', and z- components) and the ellipses are tilted against the local 

coordinate axes. 
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Figure 10.18 Particle motions of fracture interface waves on the surface of the lower halfspace. The 
direction of propagation (phase) is 45" (azimuthal angle) from the x-axis . The local Cartesian coordinate 
system rotated around the z-axis is shown as x'-y'-z. Coupling among all directions (x', yl, and z-directions) 
causes tilting of elliptic trajectories. 
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10.8 Summary 

In this chapter, wave propagation in media containing an infinite series of regularly 

spaced multiple parallel fractures is examined analytically. An exact dispersion equation for 

plane waves is derived using Floquet theory to impose periodic boundary conditions on the 

displacement and stress across fractures whose behavior is modeled by the displacement­

discontinuity boundary conditions. 

The derived dispersion equation can describe the group velocity and particle motion of 

waves propagating at any oblique angle of incidence, including waves propagating parallel 

to multiple parallel fractures or a single fracture. In some cases, waves propagating parallel 

to the fractures are shown to be a generalized case of the Rayleigh-Lamb plate waves. The 

dispersion equation of the Rayleigh-Lamb plate waves is derived by considering the special 

cases of Oo and 180° phase changes across single layers. The dispersion equation of the 

fracture interface waves with general anisotropic fracture stiffness is also derived by 

considering the special case of infinitely large fracture spacing. 

For a wavelength much longer than the fracture spacing and a relatively high fracture 

stiffness, wave propagation in a multiply fractured system can be described by a 

homogeneous equivalent medium model using the static approximation. However, for 

wavelength comparable to or shorter than the fracture spacing, or for low fracture 

stiffnesses, the behavior of the wave can no longer be explained by an equivalent medium 

model. The group velocity exhibits a frequency dependent behavior that increases the 

degree of anisotropy with increasing wave frequency. For certain combinations of wave 

frequency and fracture stiffness, the wave propagation in a direction normal to the fractures 

is prohibited. Such a result is similar to those shown in Chapter 2 for one-dimensional 

wave propagation, describing alternating regions of wave frequencies where waves can 

propagate (pass band) or cannot propagate (stop band) across the wave spectrum. At a 

boundary between a pass and a stop band, the vertical group velocity becomes zero, 

producing waves propagating parallel to the fractures. As the energy is trapped within 

individual layers, the system is resonating in the direction normal to the fractures. 

The results obtained in this chapter are significant for examining the anisotropic 

frequency-dependent characteristics of wave propagation in a multiply fractured medium. 

It has been shown that, for relatively high frequencies and low fracture stiffnesses, the 

behavior of waves can be quite different from what is predicted from the static effective 
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medium approximation. Although the current research is limited to systems with regular 

fracture spacing and constant fracture stiffness, the general dispersion equation for regulary 

fractured media has not been derived before, and its results should provide a foundation for 

investigating wave propagation in more general fractured media. 

Future research should include a study of wave propagation in media containing 

fractures with irregular spacing and fracture stiffness. The spacing and the fracture 

stiffness may be correlated each other. To tackle such problems, simulations using 

numerical methods such as the finite difference method and the propagator matrix method 

may be used. Future research should also examine the amplitude anisotropy in wave 

propagation as it is not included here. Since the wave amplitudes are commonly known to 

be more sensitive to the stiffness of a fracture than velocities, they should provide 

additional and possibly more accurate information about the characteristics of fractured 

reservoir rocks. 



Clulpttrll 

General Summary and Conclusions 

In this thesis, the effects of fractures on the acoustic resonance of rock and concrete have 

been examined for a variety· of fractured systems, including finite one-dimensional and 

three-dimensional bodies, and an infinite three-dimensional body with regularly-spaced 

parallel fractures. The purpose of this chapter is to reemphasize the principal findings and 

conclusions of the preceding chapters and to provide further suggestions for future 

research. 

11.1 Summary and Conclusions 

A medium containing compliant fractures exhibits acoustic resonance characteristics 

different from an intact medium, such as decreased acoustical resonance frequencies, an 

abrupt change in the resonance mode shapes across the fractures, and an increased 

attenuation when fluid or an attenuative material is present in the fracture. These effects are 

caused by fractures acting as internal boundaries that interact with propagating waves. A 

fracture with finite compliance (or stiffness) partially transmits and reflects propagating 

waves. Such behavior of the wave can be properly modeled by a special boundary 

condition called the displacement-discontinuity boundary condition (Schoenberg, 1980; 

330 
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Pyrak-Nolte et al., 1990a,b). Throughout this thesis, this model has been used extensively 

to examine the behavior of both propagating waves and standing waves (resonance). 

Analytical work in Chapter 2 and experimental work in Chapter 3 demonstrate the 

significant effects of single and multiple fractures on the resonance of one-dimensional 

systems. Unlike simple transmission or reflection of a wave from a single fracture, the 

resonance characteristics of a fractured medium such as resonance frequency and 

attenuation are found to be very specific to the location of the fracture in the medium with 

respect to the relevant mode shape. Modes that lead to large strain amplitude at the location 

of the fracture exhibit large sensitivity to changes in the fracture stiffness and attenuation 

due to energy dissipation within the fracture. 

If the location of the fracture is known, the resonance frequency shift of a medium 

containing the fracture can be used to determine the dynamic stiffness of the fracture 

quantitatively. Using a numerical model introduced in Chapter 4, dynamic stiffness of a 

single fracture in a concrete specimen (Chapter 6) was determined from experimentally 

measured resonance frequencies. The same technique and code were used to determine the 

anisotropic elastic moduli of rocks containing compliant microcracks and grain contacts 

(Chapter 5). Such a technique can be a powerful laboratory tool for determining the 

material properties of anisotropic rocks and a diagnostic tool for detecting and 

characterizing defects in any structure built of rock and/or concrete. 

The applicability of these resonance techniques to characterize fracture-introduced 

defects is also demonstrated by a series of semi-site scale tests on concrete bridge columns 

with artificially introduced damage (Chapter 7). Changes in the dynamic bending stiffness 

determined from resonance frequencies before and after the destruction and repair of the 

specimens show excellent agreement with the static stiffness. It is found that the stiffness 

of the columns corresponds better with the result from the resonance test than the high­

frequency wave propagation test indicating that the resonance test is more appropriate for 

assessing the global integrity of the structure. Also, considering the reduced amount of 

time and work required for the resonance test when compared to the static loading test and 

the wave transmission test that requires multiple scans, the resonance test has a significant 

advantage as a technique to assess the integrity of damaged structures. 

In a system containing multiple fractures, the relative locations of the fractures play an 

important role in determining the behavior of resonance as shown in Chapter 2. For 
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fractures with a large compliance, a system with regularly spaced fractures exhibits groups 

of resonance peaks for which the amplitude of the rele-vant mode shape is more or less 

uniformly distributed within the medium. In contrast, a system with irregularly spaced 

fractures does not show formation of the mode groups. However, the mode shape of the 

resonances is strongly localized in limited regions within the medium. Such behavior is 

also observed experimentally in Chapter 6 during the resonance measurements on a 

fractured concrete cylinder. The localization of resonance in a fractured system is 

particularly interesting because it can be a diagnostic tool for detecting fractures. For 

example, it may be applied for detecting a loose key block on a mining roof or an unstable 

boulder that may trigger a dangerous rock fall. 

During the analysis performed in Chapter 2, the resonance of a fractured medium 

embedded in a one-dimensional infinite medium is examined. It has been shown that the 

resonance characteristics of the embedded part cut out of the system bears close relation to 

the spectrum computed for the entire wave train transmitted through the fractured zone. 

The groups of resonances observed for the fractured part correspond to a spectral band 

with large transmission coefficients for the propagating wave (pass band) and a spectral 

. band with small transmission coefficients (stop band). Therefore, by examining the 

spectrum of the propagating wave, a rough estimate of the resonance characteristics of the 

fractured zone can be obtained. For an infinite series of regularly spaced fractures, a 

dispersion equation of the wave can be derived using Floquet's theory to examine the 

behavior of the wave propagating in the medium. For this system, the group velocity 

approaches zero for frequencies at boundaries between the pass bands and stop bands, 

indicating that the system is resonating. These frequencies correspond to the peaks in the 

coda spectrum of the waves transmitted and reflected by the finite fractured zone embedded 

in an infinite medium. 

If a medium contains uniformly distributed microcracks with any preferred orientation, 

the effect of the additional compliance introduced by a fracture can be analyzed by treating 

the medium containing the microcracks as an anisotropic homogenous material. In Chapter 

5, wave propagation and resonance in such medium is examined using granite specimens 

that exhibit approximate transverse isotropy due to oriented microcracks. Elastic moduli of 

the transversely isotropic effective medium model for the granite are determined from static, 

ultrasonic, and resonance tests. Measured frequency responses and mode shapes of the 

granite specimen show good agreement with the behavior of the model using inverted 

anisotropic elastic moduli. Although the moduli determined from the static, ultrasonic, and 
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resonance tests show a consistent trend in the magnitude of their components, results from 

the ultrasonic tests show the highest moduli while ' those from the static test show the lowest 

moduli. This result may reveal a frequency-dependent dynamic behavior of cracks 

contained in the rock. 

To examine the frequency-dependent behavior of multiple fractures, a plane wave 

analysis is performed to derive a general dispersion equation for wave propagation in a 

medium containing an infinite series of regularly spaced multiple parallel fractures (Chapter 

10). A periodic boundary condition is imposed using Floquet's theory and the behavior of 

the fracture is modeled under the displacement-discontinuity boundary conditions as in 

Chapter 2. The dispersion equation describes the behavior of waves incident on the 

fractures at any angle in the layered three-dimensional medium. For low wave frequencies 

and high fracture stiffnesses, the resulting group velocities of the waves are close to the 

velocities computed for an effective medium model using the static approximation for the 

behavior of the medium containing fractures. Such an approximation is essentially the 

same as treating a rock containing oriented microcracks as a homogeneous anisotropic rock 

using an effective medium (Chapter 5). However, for low fracture stiffnesses and wave 

frequencies that result in wavelengths comparable or shorter than the fracture spacing, the 

spectrum and the vertical group velocity of the waves exhibit stop and pass bands similar to 

those seen in the one-dimensional system in Chapter 2. 

At boundaries between a pass band and a stop band and within a stop band, waves 

cannot propagate across fractures, but they can propagate along fractures. Particularly at 

boundaries between a stop and a pass band, wave motion is present everywhere in the 

system but there is no vertical propagation of wave energy (vertical group velocity becomes 

zero.) This can be seen as a resonance of the system in the direction normal to the 

fractures. Some of these modes have been shown to be a family of the Rayleigh-Lamb 

plate waves generalized in the sense that an infinite number of parallel layers are coupled by 

fractures with finite stiffness. The general dispersion equation is also shown to degenerate 

into a dispersion equation for the fracture interface wave along a fracture in three­

dimensional space. This dispersion equation is more general than the one derived in 

Chapter 9 because the fracture stiffness matrix can include all components (9 components 

in a 3x3 matrix). 

The stiffness of the fracture is generalized to include coupling terms between normal 

and tangential components of stress and displacement in Chapter 8. Such coupling is 
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shown to be caused by a shear stress applied to the fracture. Results from experiments and 

numerical analyses show that a sheared fracture converts part of a P-wave normally 

incident on a fracture to a polarized S-wave and vise versa. The physical mechanism that 

leads to this behavior is the elastic dilation of the fracture under the seismically applied 

shear or normal load. The dilation is due to the coupling fracture stiffness that results from 

a redistribution of local contact stiffness on the fracture surface caused by the shear. This 

mechanism is supported by experimental evidence obtained from steel blocks with.a regular 

saw-tooth fracture. Wave transmission through an array of inclined flat slits. shows similar 

behavior to that of a sheared fracture in rock. The same configuration of a fractured steel 

block tested with fine glass beads in the fracture zone reveals that conversion of waves can 

occur for a fracture filled with materials such as rock fragments. 

An exampie of the effect of a sheared fracture on the propagation of waves is given in 

Chapter 9 focusing specifically on the fracture interface wave. A dispersion equation is 

derived for the fracture interface wave including the shear-induced coupling fracture 

stiffness. Velocities and particle motions computed from the dispersion equation show a 

significant effect from the coupling fracture stiffness. 

The observed behaviors of waves propagating normal to and parallel to fractures can be 

used to remotely detect and measure the active shear stress on a fracture. The potential field 

of application of these methods can be quite broad from stress measurement on an interface 

within manufactured parts to stress monitoring for geological structures such as seismically 

active faults. 

11.2 Remaining Problems and Future Research 

Before acoustic resonance can be generally applied as a quantitative tool for material 

characterization and defect diagnosis, there are still many issues to be resolved. 

For example, in reality, most fractures have a finite size. The resonance of three 

dimensional media including a finite fracture is difficult to tackle due to diffraction of waves 

by the crack tip . Such a problem is not very tractable for the numerical technique 

introduced in Chapter 4 due to t~e singular stress field. Extensive computation using the 

finite element method or boundary element method may provide solutions for relatively 

simple problems but the use of such methods becomes impractically expensive 

(computationally) when the dynamic interaction among multiple fractures is to be solved. 
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Attenuation of resonance is also an issue that requires further research. Although 

simple one dimensional cases are treated in Chapter 2, the effect of attenuation on multi­

dimensional resonance should be further investigated. Attenuation in a structure is 

conventionally treated using Rayleigh damping that enables the involved eigenvalue 

problem related to the resonance of the system tractable (for example, Petyt, 1990). 

However, such an approach is hardly physical and the measured attenuation cannot be 

related to any mechanical parameters such as viscous and frictional energy loss in a fracture 

or material. Explicit modeling of the loss mechanism can be computationally expensive. 

Another type of attenuation is radiation damping due to radiation away from a resonating 

structure as a propagating wave. Radiation damping can be a key issue when the 

resonating structure is acoustically coupled to an infinite or semi-infinite space where the 

propagating wave can escape. This is always the case when the resonance of geological 

structures is to be examined. Numerical methods such as the finite difference method that 

can handle a large problem with relatively small computational cost, or the boundary 

element method that can solve problems with infinite boundaries have been used with 

limited success. However, for inverting for the location and properties of inherent 

fractures in a structure from its measured resonance, these numerical techniques have to 

solve the relevant equations fast enough to be able to allow for multiple iterations. 

In inverting the properties of materials and fractures such as elastic moduli and fracture 

stiffness from measured resonance, identification of individual mode type can be a bottle 

neck for their accurate determination. In this thesis, the mode shapes associated with an 

isotropic glass cube and a transversely isotropic granite cube are measured using a laser­

Doppler vibrometer and show good agreement with the simulated mode shapes. These 

results indicate that mode shape can be used to identify each measured resonance. Such a 

technique can be essential if the number of parameters to be determined is large. 

Particularly if the principal axes of the stiffness parameters are not known, a very large 

number (up to 21 for elastic moduli and 6 for fracture stiffness of a single fracture) of 

resonance frequencies are needed to be measured. The feasibility of such a technique 

should be assessed by laboratory experiments. 

Another issue with resonance inversion is the heterogeneity of material properties and 

the fracture stiffness. As indicated by the resonance of a fractured dolomite specimen 

(Chapter 5) and the resonance of a fractured concrete cylinder under low axial stress 

(Chapter 6), heterogeneity in the elastic moduli and fracture stiffness can lead to resonance 

behaviors that are not expected for uniform moduli and stiffness. Through numerical 
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simulations and experiments, the effect of heterogeneity on the resonance should be further 

investigated. 

The cross coupling behavior of waves also needs to be verified quantitatively in 

laboratory, including its relation to static fracture stiffness. For this purpose, seismic 

transducers with matched source and receiver characteristics for both P- and S- waves 

should be used. The current research uses transducers with piezoelectric crystals that have 

different resonance frequencies for P- and S-waves (850kHz and 500kHz, respectively). 

Due to the relatively small overlap between the transducers' spectral ranges, the relative 

magnitude of the shear-induced conversions could not be measured quantitatively. 

Experimental verification is also needed for the effect of shear on the propagation of the 

fracture interface wave. Furthermore, it is important to identify the geometry of the fracture 

interface that leads to the elastic dilation of the fracture. To this end, the relation between 

three-dimensional contact geometries and their mechanical behavior under a variety of 

loading conditions should be investigated. 

In the final chapter, wave propagation and resonance in media containing regularly 

spaced parallel fractures was examined. The pass-and-stop band behavior observed in 

such systems is the most pronounced for fractures with regular spacing and identical 

fracture stiffness. Wave behavior is expected to be quite different if irregularity is 

introduced. As speculated from the results in Chapter 2, pass bands for an irregular system 

would be much narrower and aperiodic, allowing less transmission of energy over a range 

of frequencies. An approach that incorporates the statistics of fracture spacings and 

stiffnesses is difficult to execute for analyzing the frequency-dependent wave propagation 

in an irregular system; consequently, research should be conducted using numerical 

techniques such as the finite difference method or propagator matrix method. 

Finally, it is again emphasized that the research topics covered in this thesis are only a 

part of the rich and profound physical phenomenon associated with the acoustic resonance 

of fractured media. It is the author's hope that this work has shed a little more light on the 

unveiled part of this field. Research on the fundamental physics behind acoustic resonance 

should continue to establish a more complete body of knowledge on the subject, and that 

knowledge should be put to practical use for further technological progress in the pertinent 

fields of engineering. 
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Appendix A 

Displacement Propagator Matrix 
Method for a Fractued 1-D System 

Wave propagation and resonance in a one dimensional system containing multiple 

fractures can be examined analytically or numerically using the propagator matrix method 

(Kennett, 1983; Aki and Richard, 1980). This appendix shows how fractures are 

incorporated in a propagator method formulated for the displacement field. 

The method is developed for a single Fourier component of the wavefield given by 

u(t) = u · e-imr. As the time-dependent term is common for the entire wavefield, it can be 

omitted. The basic idea of the displacement propagator matrix method is to relate source 

displacement on a boundary to receiver displacement on another boundary by incrementally 

predicting the displacement on the boundaries between two points. 

For a one-dimensional system, a wave propagating in the system is decomposed to a 

down-going wave ud and an up-going wave uu. The resulting displacement at any location 

is obtained by adding these two components. At each interface (fracture) between layers, 

the displacement-discontinuity boundary conditions shown below are applied to model the 

transmission and reflection of the waves 

(A.1a) 

(A.1b) 
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where u+ , a+ and u-, a- are displacement and stress at opposite sides of a fracture. K: is 

the specific fracture stiffness. At any location in the system, displacement is given by 

(A.2) 

In a continuous part of the system, up-going and down-going waves are expressed as 

follows 

ud(z) = uAz0 )exp( i: (z- z0 )) 

uu(z) = u"(z0 )exp(- i: (z- z0 )} 

(A.3a) 

(A.3b) 

where m is the angular frequency and c is the velocity of the propagating wave. The stress 

induced by a passage of wave is given by 

a = E* £ = E* du . 
dz 

(A.4) 

The elastic moduli E* is related to the wave velocity in the continuous part of the system by 

(A.5) 

From Eq.(A.3)-(A.5), the stress is obtained as 

a = impc( ud - u") = imZ( ud - u") . (A.6) 

By introducing Eq.(A.2) and (A.6) into Eq.(A.1), the displacement-discontinuity boundary 

conditions are rewritten as 

imz-( u~ - u:) = 1e( u; + u; - u~ - u:) 
z+(u;- u,; ) = z-(u~- u:). 

(A.7a) 

(A.7b) 

Assuming identical material properties for both sides of the fracture ( z+ = z -), 

Eq.(A.7a,b) are expressed in a matrix form 

[u;] = [1 ~ i/{3 -i~/3 ][u~] = p[u~ ], 
u; z/ {3 1-z/ f3 uu u" 

(A.8) 

where the non-dimensional impedance parameter {3 is defined by 
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f3 = 2x:jw. 
z (A.9) 

Equation (A.8) provides the phase and amplitude change of the wave propagating across a 

fracture. 

From Eq.(A.3), components of the displacement between two boundaries of a 

continuous part of the system are 

(A.lO) 

where L is the distance between the boundaries. ¢ is the phase change over the distance L 

given by 

¢ = mL. (A.ll) 
c 

A pair of displacements for the up-going and down-going waves on the boundary can be 

related to another pair of the displacements on a remote boundary by cyclicly applying the 

matrix equations (A.8) and (A.lO) as follows 

[u~](n+m ) - ( ) (n+m-1) ( ) (n+l) ( )[u;](n) u: - E zn+m, zn+m-I p .. . E Zn +2, Zn+I p E Zn +I, Zn u: 
.(A.l2) 

Tge displacement within an intact section of the system is obtained by first computing the 

displacements on a boundary of the section and then applying Eq.(A.3). 

Equation (A.12) needs two boundary conditons to be solved. For example, for the 

forced vibration of a free-end system, the stress at the driving point (driving function) and 

the free-end (equal to zero) are the necessary and satisfactory conditions. A frequency 

response (dynamic compliance) ofthe system can be obtained by setting the driving force 

(stress) amplitude to unity. For a wave incident on a series of fractures in an infinite 

medium, the displacement (or stress) of the incident wave is given. An additional condition 

is provided by setting the zero amplitude of the wave that is ret1ecting back from infinite 

distance (Sommerfeld radiation condition). 



Appendix B 

Derivation of Mobilities for a 
Fractured 1-D System 

In this appendix, the mobilities of fractured one-dimensional systems discussed in 

Chapter 2 are derived using the propagater matrix method described in Appendix A. 

Resonance of a bar containing a single fracture 

For a finite system containing a single fracture as discussed in Section 2.2.2, the 

propagator matrix that relates displacement at the top and the bottom of the system is 

(B.l) 

where 

(B.2) 

The symbols and notations in the above equations are adopted from Appendix A. As the 

system has a stress-free boundary at the end of the second segment, 
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I ' 

:1 -(1) 
-(1) _ au _ . m ( _ _)(I) _ 

0 (j ----l- ud -uu - . 
dz c 

Therefore, 

-(1) - -(1) 
Ud -Uu . 

By introducing Eq.(B.4) into Eq.(B.l), 

- u;<O) - ( 1 + i/ f3)ei(¢J +l/lo) - i/ {3e -i(¢J -l/lo) 

r= u;<O)- (1-i/f3)e-i(¢J+¢o) +i/ {3ei(¢J-¢ol. 

The mobility at the source is 

By introducing the Eq.(B.R) into (B.6), the mobility is 

v<o> = _!_ . 2 cos ¢0 sin ¢1 - f3 cos( ¢0 + cf>1) = __!_ . M. 
a<Ol iZ 2 sin ¢0 sin ¢1 - {3 sin( ¢0 + ¢1) Z 
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(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

M is a dimensionless mobility. Therefore, the power of the dimensionless mobility at the 

source is 

(B.8) 

The mobility at the free-end is 

(B.9) 

The displacement components at the free-end ( u~0 l and u~0 >) are related to u;<o> through 

Eq.(B.l) . Resulting mobiliy is 

(B .l O) 

The power of the dimensionless mobility is 
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(B.ll) 

Resonance of a delaminated halfspace 

For a delaminated halfspace discussed in Section 2.4, the propagator matrix equation 

becomes 

(B.12) 

where 

_ [1 + if f3 -if f3 ][eil/!o 
Q - if f3 1 - if f3 0 

(B.13) 

Due to the radiation condition (i.e., no wave is propagating from an infinite distance), 

u:c1>=o. This leads to a relation 

+(0) 1 
- Uu - 2ii/Jo r------e 
- u;co> 1 + if3 · 

Therefore, the source mobility is computed from 

vco> _(-1)1+r _(-1) 1+cos(2¢)+i(f3+sin(2¢))_1 
------· --·M 
aco> Z 1-r Z 1-cos(2¢)+i(f3-sin(2¢)) Z 

The power of the dimensionless mobility is 

MM* = 2(1 + cos(2¢ )) + /3
2 

+ 2/3 sin(2¢). 
2(1- cos(2¢ )) + /3 2 

- 2/3 sin(2¢) 

(B.14) 

(B.15) 

(B.16) 

I 

' J 
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