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ABSTRACT OF THE THESIS 
 
 

Modeling White Abalone Habitat in the Southern California Bight  
to Inform Future Outpanting Efforts 

 
 

by 
 

 
Jordan DiNardo 

 
 

Master of Science in Marine Biology 
 
 

University of California San Diego, 2018 
 
 
 

Professor Brice Semmens, Chair 
 
 

White abalone (Haliotis sorenseni) supported an intense commercial fishery in 

southern California during the 1970s, which closed in 1996. In 2001 white abalone was 

listed under the Endangered Species Act (ESA), and due to their high risk of extinction, 

National Oceanic Atmosphere Administration (NOAA) identified the species as a 

“Species in the Spotlight” in 2016.  Efforts are underway to develop a conservation 

hatchery and outplanting program to recover the species. To inform outplanting efforts, I 

modeled broad-scale (17 km) historical (fishery-dependent) and contemporary (fishery-



 

 xviii

independent) distributions of white abalone habitat using random forest and maximum entropy 

(MaxEnt), respectively. I projected models to future scenarios in 2050 and 2100 to assess the 

quality of habitat under climate change. Using MaxEnt, I developed fine-scale (10 m) models 

with fishery-independent data. I also conducted interviews with former abalone fishermen who 

observed white abalone during the fishery. 

Fishery-dependent and -independent based models revealed differing outcomes of 

suitable habitat and ensuing effects of climate change. These differences in suitability resulted 

from differences in the spatial distribution of white abalone between the two data sets. Fine-scale 

fishery-independent data was limited in its spatial extent, yet in places with sufficient data, I 

generated high resolution suitability maps. These maps comported with oral histories from 

fishermen regarding fine-scale habitat, and can help guide site selection within broadly suitable 

geographic regions. This study provides managers with potential areas to outplant that are 

resistant to climate change and a framework to design experimental outplanting to adaptively 

manage a successful recovery effort.  
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CHAPTER 1 (INTRODUCTION) 

1.1 Distribution and Ecology of White Abalone 

1.1.1  Historical Distribution 

White abalone historically inhabited coastlines found between Point Conception, 

California, United States (US) and Punta Abreojos, Baja California, Mexico (Cox 1960) 

(Figure 1.1). In the US, the species was common along the coast in the Santa Barbara 

county and along the coastlines of the Channel Islands. In Mexico, white abalone were 

common at the center of the Baja California Peninsula, as well as around Isla Cedros and 

Isla Natividad (Shepherd, Tegner, and Guzman Del Proo 1992). 

1.1.2 Habitat 

Thought to be the deepest-living of the west coast abalone species, white abalone 

occurred in high numbers at 30-70 meters (m) ( Davis, Haaker, and Richards 1998; Butler  

et al. 2006), although both scientists and fishermen have observed them at depths as 

shallow as 10 m (Shepherd, Tegner, and Guzman Del Proo 1992).  

White abalone occur in open low relief areas, amongst large rocks or boulders 

surrounded by sand (Davis, Haaker, and Richards 1996; Tutschulte 1977; Hobday and 

Tegner 2000; Hobday,. Tegner, and Haaker 2000). Sand channels between rock 

structures are thought to facilitate movement and collection of macroalgae. Brown algae 

species, such as Laminaria farlowii and Agarum fimbriatum, as well as a variety of red 

algae species, are commonly found in white abalone habitat ( Hobday and Tegner 2000; 

Hobday, Tegner, and Haaker 2000; Butler et al. 2006).  

 Preferences of microhabitat depend on life stages. Newly settled abalone are 

cryptic until they reach 75-100 millimeters (mm) (2-5 years old), when they become 
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emergent (Cox 1962). Juveniles tend to exploit small crevices and sometimes areas 

underneath adult Strongylocentrotus franciscanus, red sea urchin, to escape predation, 

while adults are found on exposed rock usually at the sand-rock interface (Hahn 1989). 

Amongst the west coast abalone species, white abalone tend to occupy the exposed 

habitat regardless of size.  

1.1.3 Diet 

Upon settlement juveniles feed on benthic diatoms, bacterial films, and encrusting 

coralline algae (Cox 1962). When juveniles reach ~10 (mm) in length, their diet shifts to 

attached or drifting macroalgae (Hahn 1989; Tutschulte 1977). Tutschulte (1977) 

observed wild adult white abalone feeding on dominant brown algae within their habitat. 

Laboratory observations have recognized Macrocystis pyrifera and Pelagophycus porra 

as other common food sources for white abalone although it is not as high in nutritional 

value as Laminaria farlowii or Agarum fimbriatum (Cox 1962). 

1.1.4 Reproduction 

White abalone are dioecious and exhibit broadcast spawning, directly releasing 

their gametes into the water column for external fertilization typically during the winter 

months. Temperature influences gonad development and at temperatures >16 degrees 

Celsius (°C) development ceases (Rogers-Bennett et al. 2010). Organism size and food 

availability are known factors to affect fecundity in abalone. Although white abalone 

have the highest fecundity of west coast abalone (Tutschulte 1977), successful 

fertilization of broadcast spawners requires individuals to be in close proximity, as well 

as in synchronization of gonadal maturation and spawning.  
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1.1.5 Larval Stage and Settlement  

Larval settlement, survival, and growth are temperature dependent. Under 

laboratory conditions, white abalone larval settlement occurred at 9-10 days (Leighton 

1972). Survival from fertilization to settlement was greatest at 12 °C (Mccormick et al. 

2016). Settlement was most successful at 15-16 °C (Leighton 1972) while survival and 

growth of newly settled larvae was best at 15 °C (Mccormick et al. 2016). Larvae raised 

at extremes of 21 °C and 9 °C had 100% mortality (Mccormick et al. 2016).  

1.1.6 Growth 

Information on growth rates of juveniles and adults is limited. Tutschulte (1977) 

conducted laboratory growth experiments and reported juvenile (sample size (n)=5) and 

adult (n=3) abalone had growth rates of 29.2 ±15.0 mm/year and 16.4 ±7.8 mm/year, 

respectively. White abalone reach sexual maturity after 4-6 years (Hobday and Tegner 

2000). Temperature, salinity, and dissolved oxygen have been shown to influence growth 

rate and survival of juvenile abalone (Kong, N., et al. 2017). Mccormick et al (2106) 

conducted growth experiments study the effect of temperature on growth of juvenile 

white abalone in the mariculture laboratory of the Channel Islands Marine Resource 

Institute and found juveniles exhibited fastest growth at 15 °C when fed Macrocystis 

pyrifera. White abalone can grow to a maximum size of  200-254 mm and weight of 

0.771 kilograms (kg) (Cox 1960) and under optimal conditions, white abalone are 

estimated to live a maximum of 35-40 years (Tutschulte 1977). 

1.1.7 Predators and Competitors 

White abalone predators include sea otters, asteroids (Pycnopodia and 

Astrometis), octopuses (Octopus bimaculatus and Octopus rubescens), crustaceans 



 

 4

(Panulirus Cancer and Loxorhynchus), and fishes (Scorpaenichthys, Myliobatis, 

Semicossyphus, and Heterodontus) (Tutschulte 1977). Asteroids tend to feed on juvenile 

and stressed abalone, while fishes generally predate on adult abalone. Octopuses and 

crustaceans are perpetual predators, exploiting abalone at all life stages. Healthy adult 

abalone with thicker shells are less vulnerable to predation, even when completely 

exposed (Hahn 1989). Studies with restoration stocking experiments using red abalone, a 

common surrogate species, assessed the severity of mortality brought on by predation on 

outplanted juveniles, and identified Octopus bimaculatus as a prominent predator 

(Hofmeister et al. 2018).  

Sea urchins (Strongylocentrotus purpuratus and Strongylocentrotus franciscanus) 

compete with white abalone for food and space. Laboratory studies demonstrated when 

drift algae is abundant, red abalone out compete red sea urchin and vice versa when drift 

algae abundance is low (Shepherd, Tegner, and Guzman Del Proo 1992; M. Tegner and 

Levin 1982). No field experiments investigating competition for space and food between 

abalone and sea urchins have been conducted. Sea urchins also have the potential of 

facilitating juvenile white abalone survival. Juvenile red abalone have been observed 

clustered under red sea urchin, using the physical protection from predators engendered 

from the sea urchin’s large spin canopy (M. J. Tegner and Dayton 1977; Hahn 1989).  

1.1.8 Disease 

First detected in 1985, withering syndrome (WS) eradicated most of the remaining black 

abalone population, not exploited from the fihsery and affected green, pink, red, and 

white abalone (Altstatt et al. 1996). A Rickettsiales like prokaryote (RLP) that infects the 

mucosal epithelium of the gastrointestinal tract is thought to cause WS. The prevalence of 
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WS is temperature dependent. In water <18 °C RLP remains dormant while in 

temperatures ≥18 °C RLP is activated (Moore, Robbins, and Friedman 2000). WS has 

been observed in white abalone, but at a lower frequency compared to other west coast 

abalone species, possibly because white abalone tend to inhabit deeper depths and thus 

colder waters.  

1.2 History of Fishery and Management of White Abalone 
 

1.2.1 California White Abalone Commercial Fishery 
 

Anthropological evidence, dating as far back as 7,500 years indicates that ntive 

peoples of the coastal regions of California and Channel Islands exploited west coast 

abalone species as a source of food, ornaments, and hunting, gathering, and bartering  

tools. In the early 1850s, Chinese immigrants began targeting abalone in the intertidal via 

skiffs, and gradually moved south along the northern California coastline (Cox 1962).  

To impede overexploitation of west coast abalone populations, the state prohibited 

“shore-gathering” in many southern California counties in 1990 (Hobday and Tegner 

2000). While this management measure curtailed further increases in fishing pressure 

from Chinese immigrants fishing skiffs, Japanese immigrants replaced them with hard-

hat diving, a more efficient fishing method. This new method of catch, permitted access 

to offshore abalone populations at greater depths. In efforts to monitor the fishery, 

California Department of Fish and Game (CDFG) started to record abalone commercial 

and recreational catch landings in 1916. Japanese divers dominated the California 

abalone fishery from Monterey Bay to Point Conception until World War II, when the 

state relocated the Japanese immigrants inland. Although this change removed fishing 

pressure from Japanese fishermen, wartime demand for additional protein kept 
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exploitation of abalone high. The state opened waters between Point Conception and San 

Diego, including the Channel Islands, to fishing in 1943 to meet this local demand (Cox 

1960).  

Subsequent technology improvements in the 1950s, including lightweight dive 

suits and scuba, introduced even more efficient diving methods. Although CDFG named 

white abalone a species that could be harvested in 1955, the species did not appear in 

catch records until 1959. Reported white abalone catches increased substantially in 1968 

after the steady overexploitation of shallower abalone species and improvement of 

nautical equipment (Figure 1.2; California Department of Fish and Game 2005). 

Fishermen and scientists believe white abalone may have been caught and mistakenly 

recorded under red or pink abalone prior to this time due to their similar physical features 

and habitat overlap (M. J. Tegner, Breen, and Lennert 1989; Dugan and Davis 1993; 

Davis, Haaker, and Richards 1998). White abalone landings peaked in 1972 at 65 metric 

tons, predominantly taken from San Clemente Island, followed by Tanner Bank and 

thereafter dramatically declined (Figure 1.3). Over 95% of the commercial white abalone 

catch occurred in 10 years (1968-1977). By 1978 white abalone catch declined so 

dramatically that mandatory reporting in fishing receipts was eliminated, until the closure 

of the fishery in 1996 (Hobday and Tegner 2000).  

1.2.2 California White Abalone Recreational Fishery 
 

The California recreational abalone fishery began in the 1860s, when CDFG 

prohibited the sale of commercially caught abalone collected from the littoral zone, 

consequently moving the commercial fishery offshore and opening shallow coastal 

waters to recreational fishing. Recorded recreational catch comes from specialized 
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Commercial Passenger Fishing Vessels (CPFVs), known as Commercial Passenger Dive 

Boats (CPDBs), which limit trips to skin and scuba diving. CPDB began operating for 

recreational divers, primarily in southern California, in the 1940s, but CDFG did not 

begin monitoring catch from these trips until 1958. Most of the CPDB effort included 

several day trips, concentrated around northern Channel Islands (Santa Rosa, Santa Cruz, 

and Anacapa) and southern Channel Islands (San Clemente, Santa Catalina, and Santa 

Barbara).  

White abalone contributed 1.29% of the total and 2.89 % of identified recreational 

catch from 1971 through 1993 (Hobday and Tegner 2000). These percentages may not 

represent all of the white abalone exploited recreationally because reporting by species 

was voluntary and catch from private recreational divers (non-CPDB), while likely 

substantial, was never quantified. It is difficult to quantify recreational catch from CPDBs 

because catch values differ substantially in catch reports (Hobday and Tegner 2000). 

However, the majority of white abalone catch came from Santa Catalina and San 

Clemente Islands, followed by Santa Cruz and Anacapa Islands (Hobday and Tegner 

2000). Catch declined sharply thereafter, and by 1986 white abalone were rarely 

harvested recreationally.  

1.2.3 California Management Regulations and Status 
 

The first abalone management regulation enacted by the state was instituted in 1901, 

which established a minimum size on all species of 15 inches (in) (381 mm) in 

circumference (4.75 in (120 mm) in diameter). CDFG established minimum size limits at 

sizes greater than size at sexual maturity, allowing abalone to spawn before being 

harvested. However, successful reproduction does not occur regularly, especially for 
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white abalone, which may have contributed to the species’ reproduction and recruitment 

failure (Hobday and Tegner 2000). Additional regulations included the ban of spearing 

for subtidal abalone and the first bag limit of 10 abalone per day in 1913. In 1976, the bag 

limit decreased to 4 abalone of any species per day after it was evident populations were 

declining. (Cox 1962).   

In 1939, CDFG required recreational divers to carry a measuring instrument to aid in 

the identification of legal size individuals. In an effort to reduce the fishing effort, CDFG 

required commercial fishermen to use surface-supplied air through a hose in 1954 and 

enforced catch seasons. To stem the further decline of abalone landings in the 1970s, 

CDFG required commercial fishermen to land at least 10,000 pounds (Lbs) of abalone 

annually to maintain their license. Despite these efforts landings continued to decline, and 

in 1990 the state modified it licensing rule requiring commercial fishermen to land at 

least 1,200 pounds or 320 abalone per year to keep their license (Lundy 1997).  

CDFG closed the white abalone commercial and recreational fisheries in 1996, along 

with the green and pink fisheries throughout California California Department of Fish 

and Game 2005; Hobday and Tegner 2000). Despite the closure of these fisheries white 

abalone populations continued to decline, and in 2001 became the first marine 

invertebrate to be listed as endangered under the ESA. Since the last recruitment pulse to 

the white abalone population was in the 1960s only a remnant population exists. Field 

monitoring surveys of the remnant populations conducted by NOAA since the species 

had been listed under the ESA indicate further population declines, confirming the 

species’ collapsed status post fishery-closure (Stierhoff, Neuman, and Butler 2012). 
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National Marine Fisheries Service (NMFS) published a recovery plan in 2008 that 

identified goals and strategies to delist the species from the ESA and recover the white 

abalone population. Such strategies include field monitoring and protection of wild 

populations and their habitat, captive propagation for enhancement of wild populations, 

and development of an enforcement, public outreach, and education plan (The White 

Abalone Recovery Team 2008).  

Due to the species’ high risk of extinction in the very near future, NOAA 

recognized white abalone as a “Species in the Spotlight” in 2016, with the aim of 

applying its time, energy, and resources to meeting the goals identified in the recovery 

plan. NOAA Southwest Fisheries Science Center (SWFSC) continues to conduct regular 

remote operated vehicle (ROV) and scuba surveys to locate and monitor wild 

populations, characterize habitat, and collect individuals for broodstock, which helped to 

initiate the captive breeding program in 2011 at University of California Davis Bodega 

Marine Lab. This program has resulted in juvenile white abalone ready to be introduced 

into the wild, presenting a need for habitat modeling to identify areas of suitable habitat 

that can support survival and growth of outplanted populations in a variable environment.  

1.2.4 Mexican White Abalone Commercial Fishery 
 

The history of white abalone exploitation in Mexico is similar to that in California. 

Native peoples began harvesting abalone in 7000 before Christ (B.C.). The Chinese and 

Japanese immigrants began exploiting Mexican abalone populations in the 1860s and 

ceased when the Mexican government gave local villages exclusive control over the 

fishery in 1945. The government divided the coast of Baja California between the 

Coronado Islands and Margarita Island into cooperatives and larger zones for 
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management. In 1992 the government allowed additional fishing groups, not 

representative of cooperatives, to participate in the abalone fishery. The effects of these 

changes on abalone populations are unknown since the Mexican government did not 

establish the requirement of species identification in catch until 1984.  

Reporting of white abalone catch data commenced in 1990, but these data are 

considered unreliable, patchy both spatially and temporally . Although the catch of each 

species varied between and within zones, the fishery was predominantly supported by 

pink and green abalone. While white abalone comprised only a few percent of the total 

catch throughout all of Baja California, in some months of the year white abalone 

represented a little over half the catch for particular zones. These occasional pulses are 

believed to represent either newly located populations or recruitment events, that were 

quickly harvested and no longer observed in the catch records.  

1.2.5 Mexican Management Regulations and Status 
 

Prior to 1972, Mexican abalone size limits were similar to those established in 

California. Unfortunately the Mexican government did not establish size limits 

specifically for white abalone and assumed fishermen captured white abalone at sizes 

greater than 135 mm, as required for pink abalone.  Even with this assumed size limit, 

abalone were shelled at sea, conceivably producing a substantial proportion of abalone 

harvest at sublegal size (Hobday and Tegner 2000). Not until 1984 did the government 

introduce regulations that required in shell landings of abalone to verify size limits and 

identify catch by individual species.  

The closed season which initially spanned winter months, changed in 1973 to summer 

months. Although this change in season closure protected spawning pink and green 
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abalone, it left winter-spawning white abalone vulnerable to exploitation. In 1981 the 

government established white abalone size limits and closed seasons by zones (Hobday 

and Tegner 2000).  

The white abalone fishery supposedly closed in Natividad in 1995 (Shepherd, 

Turrubiates-Morales, and Hall 1998) and a petition to close the white abalone fishery, 

along with red and black abalone fisheries, throughout the entire Baja California coast 

was put forward in 1997. The government has yet to act on this petition. Given the lack 

of regulations and appropriate surveying, little information is available to assess the 

status of white abalone populations in Mexican waters.  

1.3 Habitat Modeling  

Species Distribution Models (SDMs) attempt to predict the potential species’ 

distribution by modeling the relationship between locations of occurrences (or 

abundances) and associated environmental conditions, extrapolating inferred 

relationships in both time and space. SDMs are now widely used tools in the terrestrial, 

freshwater, and marine fields, demonstrating applications in conservation planning, 

ecology, evolution, invasive-species management, and biogeography (Phillips et al. 

2006). The nature of species occurrences and quality of data determines the appropriate 

modeling method. Systematic surveys yield presence-absence data and motivate the 

application of familiar statistical methods, such as Generalized Linear Model (GLM), 

Generalized Additive Model (GAM) and Random Forest. However, when absences are 

difficult to obtain or unreliable due to insufficient field effort, modeling methods are 

constrained to BIOCLIM, DOMAIN, Ecological-Niche Factor Analysis (ENFA), and 
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MaxEnt.  In this study I made use of MaxEnt, which utilizes presence-only data and 

Random Forest, which can leverage species abundance information (Phillips et al 2006).  

Among the SDMs equipped to work with species occurrence data lacking true or 

pseudo absences, MaxEnt is one of the leading methods due to its efficiency with 

complex interactions between response functions and environmental predictor variables 

(continuous and categorical), as well as its low sensitivity to small sample sizes (Elith et 

al. 2006; Wisz et al. 2008; Monk et al. 2010). MaxEnt estimates the realized niche of a 

species by identifying the distribution with the maximum entropy, similar to the 

maximum likelihood in parametric instances, subject to constraints at locations of known 

occurrences (presence only data). These constraints are classified by environmental 

predictor variables and functions of them ( Phillips., Mirosalv, and Schapire.2004, 

Phillips et al. 2017).  

To offset the lack of absences, MaxEnt uses a sampled set of background points from 

the study area to compare against the distribution of species occurrences (presence 

only data) along environmental gradients and make inferences on selection of habitat. 

Selection of these background points can greatly influence model accuracy. By default, 

MaxEnt randomly selects background points, assuming sampling effort is uniform 

throughout the entirety of the study area. When sampling is biased, models based on a 

random sample of background points may reflect the sampling effort rather than the 

species’ realized niche and environmental response curves may reflect underlying 

variation in sampling intensity rather than pure environment responses (Syfert, Smith, 

and Coomes 2013). By accounting for sampling bias, with an analogous biased sampling 
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of background points representative of actual sampling intensity across the study area, 

MaxEnt is more accurate in predicting species distribution. 

Outputs of MaxEnt models include a map of relative likelihood of presence of a 

species, which can be interpreted as an measure of suitability of habitat along with 

metrics of environmental variable importance, including percent contribution and 

jackknife regularized gain (Kearney 2006). MaxEnt also provides response curves for the 

environmental variables included in modeling, which describe the effect each variable 

has on the prediction, which can then be applied to project to past or future conditions.  

Random forest is a non-parametric algorithm derived from classification and 

regression trees, belonging to the machine learning methods. Due to its practicality in 

addition to its ability to handle data with non-linear or hierarchical interactions, the use of 

random forest in ecology and climate change research has gained momentum. By 

applying the general technique of bootstrap aggregation, random forest constructs a 

multitude of decision trees based on randomly selected subsamples of data and random 

subsets of environmental predictor variables. Species’ observations that do not occur in 

the bootstrap sample are considered out-of-bag observations, which are predicted by each 

tree. The prediction for each observation is determined by the mode class (for 

classification) or average value (for regression) of the out-of-bag predictions for a 

particular observation (Beard 2007). 

Outputs of random forest include a set of relative predictions, presence-absence 

(for classification) or abundance estimates (for regression), that represent a measure of 

habitat suitability of the species of interest, similar to that seen from MaxEnt. Random 

forest measures variable importance by the ratio of the improvement in error at each node 
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for each randomly selected variable to all nodes in the forest. Variables that greatly 

improve error are of more importance compared to those that do not. To explore the 

mechanistic relationships between predictor environmental variables and the response 

variable (relative abundance of the species) identified in the model, random forest 

produces “response curves” of each variable when all other variables are held at its 

average effect. These defined relationships can be applied to predict potential past and 

future species’ distributions similar to MaxEnt.  
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CHAPTER 2 (MATERIALS AND METHODS) 

2.1 Study Areas 

 

The SCB includes the coastline of southern California extending from Point 

Conception, California to the California-Mexico border, in addition to the Channel 

Islands and part of the Pacific Ocean. The waters within the SCB are characterized by 

complex circulation patterns (Figure 2.1, Hickey 1992). While the California Current 

(CC) flows towards the equator, it diverges shoreward and then poleward to form the 

SCC, which is found throughout all seasons, except Spring, when winds near the coast 

increase and cause surface currents to change direction (Brown 1991).The California 

Undercurrent (CU) flows along the continental slope transporting relatively warm, high-

salinity, low-oxygenated water from the equator poleward. The Northern Channel Islands 

are found in the Santa Barbara Channel where a cyclonic eddy exists nearly year round 

due to the main coastline structure. The Southern Channel Islands experience the 

convergence of the CC and Southern California Countercurrent (SCC) (Dong, Idica, and 

McWilliams 2009). 

(Rogers-Bennett et al. 2002) estimated spatial productivity estimates for white 

abalone from reported commercial catch and estimates of potentially suitable habitat 

throughout the SCB. In that study, researchers estimated productivity for each 

predefined region by dividing the catch (in metric tons) by the amount of potentially 

suitable habitat. To estimate potential suitable white abalone habitat, a two-step approach 

was employed. First the amount of shelf area was computed as the area of shelf within 25 

to 65 m depths. Second, potential white abalone habitat was assumed to be 3% of the 

computed shelf area (Davis, Haaker, and Richards 1998; Rogers-Bennett et al. 2002). 
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These estimates relied on the assumption that effort and fishing efficiency were similar 

across all locations, allowing catch to represent abundance. Locations with similar 

productivity were assumed to exhibit similar dynamics. 

I chose the SCB as the study area for broad-scale models because it covers the 

historical white abalone distribution within U.S. waters, as well as all recorded species 

data. The spatial resolution of broad-scale models is the size of the CDFG statistical 

fishing blocks (~17 kilometers (km)). The fine scale models differ in extent and 

geography. After examination of general ocean circulation patterns within the SCB, 

productivity of regions estimated from CDFG commercial catch data, and fishery-

independent white abalone presence data, I developed 5 study areas, which included 

coastal waters of 1) San Clemente Island, 2) Tanner and Cortes Banks, 3) Santa Catalina 

and Santa Barbara Islands, 4) San Diego, and 5) Palos Verdes, all with spatial resolutions 

of 10 m.  

2.2 Species Datasets  

2.2.1 Fishery-Dependent  

I acquired white abalone commercial and recreation catch data reported from 

CDFG fishing receipts and CPFV logs. Commercial catch were recorded by CDFG 

statistical fishing blocks in pounds from 1951 to 1993 (Figure 2.2). Recreational catch 

was recorded by CDFG statistical fishing blocks in number of abalone from 1980 to 

1997.  

2.2.2 Fishery-Independent 

I acquired fishery-independent white abalone occurrence data from various surveys 

conducted in the SCB, from 1976 to 2017 (Table 2.1). Since sampling platforms varied 
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between surveys (scuba, manned submersible, ROV), spatial resolution of white abalone 

observations also varied.   

Tutschulte (1977) reported the first fishery-independent density estimate for white 

abalone in 1971. He sighted 7 abalone in 3 quadrats (10 square meters (m2) each) near the 

Isthmus region of Santa Catalina Island at 20-33 meters in depth, generating a density of 

0.23 white abalone/m2 and 3 abalone in a 35m2 quadrat at 20 meters in depth, 

corresponding to a density of 0.0857 white abalone/m2 (Tutschulte 1977).  

CDFG and Channel Islands National Park Service (CINPS) divers conducted surveys 

in 1980-81 and 1992-93 to describe the status and trends of white abalone at its historic 

center of abundance around the Channel Islands. In the 1980-81 survey, divers searched a 

total of 10,000 m2 of suitable habitat at 10 locations (1,000m2 at each survey location) in 

depths of 24-30 meters. Divers observed a total of 21 live white abalone, yielding a mean 

density of .0021 white abalone/m2. In the 1992-93 survey, divers searched a total of 

30,600 m2 of suitable habitat at 15 locations in depths of 25-35 meters, using transect 

(30-100 meters long along depth contours) and timed (30 minute periods) search 

methods. Divers sighted only 3 live white abalone, yielding a mean density of 0.0001 

white abalone/m2 and 119 empty white abalone shells. All but one shell were adult size 

(>50mm), indicating recruitment had not occurred (Davis, Haaker, and Richards 1996; 

Hobday and Tegner 2000).  

In 1996-97 and 1999 CDFG and CINPS researchers conducted surveys to locate 

remnant white abalone populations, lying below normal scientific scuba diving depths 

(~32 meters) using the DELTA manned submersible. During the 1996-97 survey, a total 

of 77,050m2 of suitable habitat in depths of 31-67 meters was surveyed. Researchers 
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observed a total of 9 live white abalone, yielding a mean density of 0.0001 white 

abalone/m2. The survey also observed over 300 empty white abalone shells (Davis, 

Haaker, and Richards 1998; Hobday and Tegner 2000). The survey in 1999 covered a 

search area of 277,876m2 of suitable habitat in depths of 19-72 m. Researchers sighted 

157 live white abalone, yielding a mean density of 0.0006 white abalone/m2 (K. Lafferty, 

personal communication, May 2017).  

Between 2002 and 2004, Butler et al. 2006) used multibeam and side-scan sonar with 

a ROV to refine population estimates at several locations (Tanner and Cortes Banks and 

part of San Clemente Island) where white abalone historically occurred and were 

surveyed in the 90s. The use of advanced mapping technology improved search methods, 

spatial coverage, and consequently estimations of remnant populations and suitable 

habitat. Multibeam and side-scan sonar also made it possible to examine white abalone 

presence and microhabitat characteristics at Tanner Bank. Microhabitat analysis found 

white abalone closely associated with flat, moderately complex seafloor and close to sand 

at depths of 30-60 meters, and in close proximity to brown algae species (Butler et al. 

2006).   

Subsequent surveys conducted by scientists at NOAA SWFSC from 2005 through 

2017 continued to (1) monitor previously identified populations, (2) survey for additional 

remnant populations and suitable habitat, and (3) in more recent years identify 

individuals for broodstock collection (Stierhoff et al. 2014; Stierhoff, Neuman, and Butler 

2012). Researchers sighted a total of 398 white abalone throughout these surveys (2002-

2017).  



 

 19

Scientific divers associated with NOAA, Occidental College (OC), and California 

State University, Fullerton (CSUF) conducted abalone surveys from 2010 through 2017, 

primarily in coastal waters along the southern California coast at depths where ROV 

could not operate due to the obstruction of kelp canopies and where previous surveys 

missed. A total of 47 white abalone were sighted in 40-91 m depths. 

2.2.3 Species Data for Modeling 

 

For fine-scale models, I included fishery-independent white abalone occurrences 

recorded from 1993 through 2017. While some white abalone observations 

(NOAA/Universities surveys in 2010-2012 at 35 m2 and NOAA SWFSC surveys 2012-

2017 at 2 m2) recorded during this period were not consistent with a 10m spatial 

resolution, I still included them into modeling to increase sample size across study areas. 

Because depth and habitat characteristics were fairly uniform throughout surrounding 

areas of white abalone occurrences, I assumed less accurate observations held the same 

relationship with environmental variables at a 10m spatial resolution (D. Witting, 

personal communication, November 2017). I addressed white abalone observations 

recorded at a finer resolution within MaxEnt by removing duplicates, which omitted any 

white abalone observations that occurred within the same pixel, and thus eliminated the 

risk of existing duplicates across surveys. 

For broad-scale models, I included white abalone commercial catch data from 1951 to 

1993 and fishery-independent observances from 1993 to 2017 into the fishery-dependent 

and -independent models, respectively. Raw recreational catch data was unavailable and 

therefore omitted from modeling. As commercial catch data are only available at the 

CDFG statistical fishing block (~17 km) resolution, I coerced fishery-independent data to 
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match the resolution of fishery-dependent data to compare models. After removing 

duplicates within MaxEnt, the fishery-independent species dataset consisted of a sample 

size of 20 white abalone occurrences while the fishery-dependent species dataset 

consisted of a sample size of 209 (the number of fishing blocks within the SCB). 

 

2.3 Environmental Data  
 
2.3.1 Depth 

 

Depth represents the ocean’s depth, in meters, relative to sea level. As depth 

increases, depth values become more negative. I obtained broad-scale (Shuman 2018) 

and fine-scale (Seafloor Mapping Lab of California State University Monterey Bay 2008) 

depth data at spatial resolutions of 200 m and 2 m, respectively. Depth values range from 

0 to -4,000 m and 0 to -260 m for broad-scale and fine-scale data, respectively  

The Marine Region Geographic Information System (GIS) lab at CDFG provides GIS 

data derived from remote sensing platforms and map based spatial analysis for California 

marine science and management. Seafloor Mapping Lab at California State University 

Monterey Bay (SFML CSUMB) specializes in high-resolution acoustic remote sensing 

for coastal habitats. The California Seafloor Mapping Project, one of the many projects 

SFML CSUMB is involved in, is a collaborative, multi-institutional operation creating 

high-resolution bathymetry data for use in ecological modeling, coastal conservation, 

baseline habitat maps, etc. Depth data was developed from analysis of hydrographic data, 

bathymetric contours, and digital elevation models, representative of terrain surfaces.  
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2.3.2 Vector Ruggedness Measure (VRM) 

VRM measures the terrain roughness of the seafloor as the variation of grid cells 

in three-dimensional space within a predefined neighborhood. Unlike rugosity, VRM is 

based on a geomorphological method for measuring vector dispersion that is less 

correlated with slope. VRM values can range from 0 (flat, no terrain variation) to 1 

(rough, complete terrain variation), while typical seafloor terrain ranges from 0 to about 

0.4 (Sappington, Longshore, and Thompson 2007). 

I obtained available fine scale VRM data (Seafloor Mapping Lab of California 

State University Monterey Bay 2008) at a spatial resolution of 2 m. For areas with 

missing data, I derived VRM from respective bathymetry data using ArcGIS extension 

Benthic Terrain Modeler (BTM) with a neighborhood size of 3. The methods executed to 

derive VRM from bathymetry data are comparable with methods taken by researchers at 

SFML CSUMB.   

2.3.3 Slope 

Slope is the incline or steepness of the seafloor and can be measured in degrees 

from a horizontal plain. Slope values are larger when an area of relief has a greater 

degree of slope. At a broad scale, areas of greater slope can be representative of 

continental shelves, while at a fine scale areas of greater slope may represent rock 

structures or ledges. 

I derived broad scale slope data from respective bathymetry data using ArcGIS 

extension BTM. When available, I obtained fine scale slope data (Seafloor Mapping Lab 

of California State University Monterey Bay, 2008) at a spatial resolution of 2 m. For 

areas with missing data, I derived slope from bathymetry data using ArcGIS extension 
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BTM. The methods to derive slope from bathymetry data is comparable to methods 

executed by researchers at CSUMB SFML. 

2.3.4 Substrate 
 

Substrate is a classification of roughness (soft bottom (0) and  rough  bottom (1)), but 

can serve as a proxy for seafloor type: sand/sediment (0) and rock (1). I obtained 

available fine scale substrate data (Seafloor Mapping Lab of California State University 

Monterey Bay 2008) at a spatial resolution of 2 m. For areas where data is lacking, I 

derived substrate data from the interpretation of VRM data, using an appointed threshold 

to differentiate soft from rough substrate. VRM values equal to or above the selected 

threshold were categorized as “rough” while VRM values below were categorized as 

“smooth”. I selected site specific thresholds based on accuracy assessments that 

compared  “supervised” classifications with visual classifications. Supervised 

classifications were based on interpretation of VRM values relative to a standardized set 

of appointed thresholds while visual classifications were based on visual interpretation of 

substrate from hillshade and shaded relief. I elected thresholds that minimized and 

balanced Type 1 and Type 2 errors amongst 100 randomly selected points for each site to 

be used to classify substrate. The methods executed to derive substrate from VRM data 

compares to methods executed by researchers at SFML CSUMB. I combined substrate 

data into study areas in ArcGIS.  

2.3.5 Kelp Persistence Index 

I defined kelp persistence as a measure of the binary maximum likelihood of 

Macrocystis pyrifera presence through time. Kelp persistence values range from 0 to 1, 

where small values represent low persistence and large values represent high persistence. 
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Because kelp experiences reduced or negative growth months in the summer, I focused 

my analysis on spring months (April through June), a period when cool, nutrient-rich 

bottom waters are brought to the surface through upwelling, thus providing an ideal 

environment for growth and an appropriate indicator of kelp presence (Kelp Forest-a 

Description).  

I obtained data for the coastal areas of southern California, including northern and 

southern Channel Islands and banks that overlapped with fine-scale study areas from 

1993 through 2017 (Bell, Cavanaugh and Siegel. 2017). Santa Barbara Coastal: Long 

Term Ecological Research (SBC-LTER) collects a time series of canopy biomass of 

Macrocystis pyrifera derived from Landsat 5 Thematic Mapper, Landsat 7 Enhanced 

Thematic Mapper Plus, and Landsat 8 Operational Land Imager satellite imagery. Wet 

biomass estimates are recorded in weight (kilogram) on a 16 day repeat cycle and at a 

spatial resolution of 30 m for coastal areas from Año Nuevo to San Diego, including 

Northern and Southern Channels Islands from 1984 to2017.  

I converted wet biomass estimates for each 30 m pixel to a binary classification of 

presence where if wet biomass was greater than 0 it was considered present and if wet 

biomass was 0 it was considered absent. If kelp was observed present at least once during 

these 3 months, kelp was considered present for that specific year. I calculated the binary 

maximum likelihood for each pixel by dividing the number of years kelp was present by 

the total number of years observed. In ArcGIS I used inverse distance weighting (IDW) 

spatial interpolation to develop kelp persistence estimates at a finer resolution (10 m) 

assuming spatially distributed objects are spatially correlated. Each measured point has a 

local influence that diminishes with distance, giving greater weights to points closest to 
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the prediction location and the weights diminish as a function of distance. I justified the 

use of spatial interpolation by assuming that kelp presence did not vary dramatically 

within 30 m. For IDW settings, I set the search radius to 3 nearest input sample points to 

be used to perform interpolation and kept the power at the default value of 2. Power 

controls the significance of surrounding points on the interpolated value. A higher power 

results in less influence from distant points. It can be any real number greater than 0, but 

the most reasonable results are obtained using values from 0.5 to 3. The default is 2. 

2.3.6 Temperature and Salinity 

Temperature and salinity are measured in °C and practical salinity unit (psu) 

respectively. I retrieved surface temperature and salinity data for time periods associated 

with fishery-dependent (1951-1993) and fishery-independent (1993-2017) white abalone 

occurrence data (NOAA NMFS SWFSC ERD 2017). California Cooperative Oceanic 

Fisheries Investigations (CalCOFI), a collaborative research effort with NOAA 

Southwest Fisheries Science Center (SWFSC), University of California San Diego, 

Scripps Institution of Oceanography (UCSD SIO), and CDFG, has and continues to 

conduct fisheries and oceanography surveys since 1951.  

For both time periods, I averaged measurements over years at each sample site. In 

ArcGIS, I used IDW spatial interpolation to develop sea surface temperature and salinity 

estimates at spatial resolution of ~17km.  

I acquired future sea surface temperature and salinity data for the SCB for 2040-2050 

and 2090-2100 at a spatial resolution of 5 arcminutes (~9.2 km at the equator) (Assis et 

al. 2018; Tyberghein et al. 2012). Temperature is recorded in °C and salinity is recorded 

in psu. Bio-ORACLE is a team a marine researchers aiming to provide new ecologically 
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relevant layers tailored for ecological modeling. Researchers produced future estimates 

by averaging data from distinct atmosphere-ocean general circulation models provided by 

the Coupled Model Intercomparison Project. Future conditions are based on new 

representative concentration pathway (RCP) scenarios with varying CO2 concentration 

levels: RCP26, a peak-and-decline scenario resulting in low concentration levels by the 

end of the 21st century, RCP45 and RCP60 where CO2 levels stabilize, and RCP85 where 

emission increases over time, resulting in high concentration levels of greenhouse gases 

(Assis et al. 2018; Tyberghein et al. 2012). 

The sources for physical oceanographic variables differed in collection and derivation 

methods. To assess the equivalency of these data sources and verify differences in 

collection and derivation did not bias estimates, I conducted a comparison test with the 

averaged sea surface measurements for overlapping years (2000-2014). I expected to get 

a 1:1 relationship, depicted by a diagonal line (y=x) through the origin when graphing. 

Although data sources did not exhibit a direct 1:1 relationship, they were comparable and 

assumed equivalent (Figure 2.3 and Figure 2.4).   

2.3.7 Predator Diversity Index 

Predator diversity is the average proportion of abalone predators present through 

time. Among the sweet of known predator species, I included Octopus Spp. (Octopus 

bimaculatus and Octopus rubescens), Panulirus interruptus, Semicossyphus pulcher, 

Scorpaenichthys marmoratus, Myliobatis californica, and Heterodontus francisci in the 

analysis. Predator diversity values range from 0 (no predators present) to 1 (high predator 

presence and diversity).  
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I acquired predator data (Reef Environmental Education Foundation 2017) for 

southern California from 1994 to 2017. Reef Environmental Education Foundation 

(REEF) is an active organization of divers and marine enthusiasts (researchers and citizen 

scientists) committed to ocean conservation. One of REEF’s primary projects, the 

Volunteer Fish Survey Project, collects and reports information on marine fish 

populations as well as selected invertebrate and algae species in temperate reef areas, 

including the West Coast of the US and Canada, the South Atlantic States, and the 

Northeast US & Eastern Canada. Divers use a Roving Diver Technique, a visual survey 

method where divers swim freely throughout a 500 meter radius of a dive location and 

record every observed fish and invertebrate species that can be positively identified. Each 

recorded species is assigned one of four abundance categories based on how many were 

seen throughout the dive (single (1); few (2-10), many (11-100), and abundant (>100)). 

In R, I converted species’ abundance data for each survey to a binary 

classification of presence where if abundance was greater than 0 it was considered 

present (1) and if species were not detected in a survey it was considered absent (0). I 

derived predator diversity by first calculating the sighting frequency for each predator at 

each dive location (Equation 1) and then calculating the mean proportion of predators 

present for each dive site (Equation 2). Using the Buffer Tool in ArcGIS, I developed 

buffers around survey sites (600 meters in radius) that assumed its corresponding 

predator diversity values to mimic the search area of divers. Assuming similar habitat and 

thus similar predator abundances, the buffers were extended by 100 meters in radius 

around survey site to meet modeling requirements. In areas where buffers overlapped, the 

highest predator diversity value was adopted.  
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Equation 1 . Sighting Frequency  
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Where 	� is the number of surveys where a predator species, p, was observed and 	
 is 

the number of surveys conducted at location s.  

Equation 2. Mean Proportion of Predators Present (Predator Diversity)  
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Where ��� is the sighting frequency for each predator species, and �� is the number of 

predator species (in this case 7 species). 

2.3.8 Two Spot Octopus  and Urchin (Purple and Red) Abundance Scores 

Abundance score is an estimate of abundance for a species that accounts for non-

sightings. Values range from 0 (no abundance) to 4 (high abundance) for Two Spot 

Octopus and 0 to 8 for urchin (because it represents a collective measure for Red and 

Purple Urchin). I calculated abundance scores (Equation 4) from species’ density scores 

(Equation 3), derived from REEF’s abundance category data and sighting frequency for 

each dive location. Density score is a weighted average index based on the frequency of 

observations in different abundance categories. Dive locations that included at least 5 

conducted surveys were used in analysis to increase confidence in analysis results.  I 

conducted similar methods from predator diversity analysis in ArcGIS.  

Equation 3. Density Score 

� =
�	� × 1� + �	� × 2� + �	� × 3� + �	� × 4�

	� + 	� + 	� + 	�
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where 	�, 	�, 	�, and 	� represented the number of times each abundance category 

(Single, Few, Many, Abundant) was assigned for a given species.  

Equation X. Abundance Score  

� = � × ��� 

2.3.9 Distance from Port 

Distance from nearest port is defined as the shortest path between two points on a 

curved surface, in this case Earth, and is represented as geodesic distance in km. Using 

the Near tool in the ArcGIS Proximity toolset, I derived distance from closet CPFV port 

location to the center of each CDFG statistical fishing block. Distance values range from 

0 to 240 km. 

2.3.10 Length of Coastline 

Length of coastline is defined as the distance in km of coastline within each CDFG 

statistical fishing block and ranges from 0 to 190 km.  

2.3.11 Variable Preparation and Diagnostics  

Using ArcGIS (version 10.15), I prepared (aggregated, clipped, and projected) rasters 

for corresponding environmental variables for broad-scale and fine-scale models at the 

appropriate spatial resolution, spatial extent, and projected coordinate system (WGS84 

UTM  Zone 11N) using the Aggregation, Extract by Mask, and Project tools, 

respectively. These files were then converted into ASCII files to be used in MaxEnt and 

dataframes to be used in Random Forest for broad-scale and fine-scale modeling.  

I applied a suite of diagnostics to warrant the inclusion of variables in analysis for 

both broad-scale and fine-scale models, including an analysis of the relationship (in 

environmental space) between species occurrences and variables, Moran’s I test, and 
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Pearson’s correlation. Relationships between species occurrences and variables should 

not be truncated to make inferences of its effect on habitat suitability. Calculating the 

Moran’s I for each variable using the species’ occurrences can measure spatial 

autocorrelation. A lack of autocorrelation can be a result of local spatial patterns or the 

inclusion of a variable that is meaningless to the distribution of the species. Pearson’s 

correlation is a measure of linear correlation between two variables. I calculated the 

Pearson’s correlation coefficient for each environmental variable pair for each study area 

(fine-scale and broad-scale). When variables exhibited a correlation coefficient ≥ 0.75, I 

assessed the information content of both variables to explain white abalone habitat and 

omitted the variable considered to be less informative.  

All study areas passed the relationship test and Moran’s I test. At the broad-scale 

temperature and salinity exhibited a correlation of 0.75 and so I omitted salinity and kept 

temperature because temperature is known to influence reproduction, growth, and 

survival.  At the fine scale, slope and VRM exhibited a correlation > 0.75 at 2 out of the 5 

study areas. Because study areas had very few variables, I used both variables in 

modeling at all study areas. The variables included in each fine-scale study area is listed 

in Table 2.2. I decided to omit substrate from fine-scale modeling because abalone are 

known to adhere to substrate and any discrepancy observed in the models is an artifact of 

misclassification (Type 1 or 2 error).  

2.4 Species Distribution Models 

2.4.1 Random Forest 

To make the most of fishery-dependent catch data, I used random forest to 

develop the “historic” distribution of white abalone at a broad-scale. I then projected the 
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model to future climate change scenarios for two periods (2040-2050 and 2090-2100) 

based on RCP scenarios to assess potential impacts resulting from of climate change. 

Here I am assuming the fishery-dependent data are a reasonably exhaustive and 

standardized survey throughout the species’ distribution within US waters, where areas 

with no catch recorded are assumed void of white abalone. With these assumptions in 

place, random forest was a strong method to develop SDMs using fishery-dependent data. 

I used ‘randomForest’ package to fit random forest to fishery-dependent data. 

Outputs represent the mean catch averaged over 2000 trees. Because white abalone catch 

is right-skewed, more specifically zero-inflated, there were more observations in the 

lower tail, and therefore random forest tended to over predict lower tails and under 

predict the upper tails. I transformed the catch data to log x+1 to alleviate the skewness. 

Despite this issue, in the context of species distribution modeling relative values, rather 

than actual values, are of more interest. Consequently, I converted predicted mean catch 

to relative mean catch, shifting the scale from 0 (low relative catch to 1 (high relative 

catch). By assuming catch as a proxy of abundance, I interpreted these outputs as a metric 

of suitability of habitat where probabilities represented relative habitat suitability. I also 

computed every SDMs associated 95% quantile range of predicted relative catch. I used 

root mean square error (RMSE), comparing predicted and actual catch values to evaluate 

model performances.  

To assess the importance of each environmental predictor variable and compare 

with the broad-scale fishery-independent based SDM, I obtained random forest’s measure 

of importance, which is known as the percent increases in mean square error (MSE), for 

each variable. Percent increase in MSE is the most robust and informative measure, 
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representing the increase in MSE of predictions for each variable if it were omitted from 

the model. Higher values correspond to variables of more importance.  

Lastly, I developed response curves of the variables to examine and compare effects 

of each variable on the prediction of relative abundance. Response curves display how 

each variable included in the model affects the random forest prediction (feature 

contribution), while keeping all other environmental variables constant at their average 

sample values.   

2.4.2 MaxEnt  

I used MaxEnt to model the contemporary distribution of white abalone at both 

broad-scale and fine-scale resolutions using fishery-independent species occurrence data. 

I then projected the broad-scale model to future scenarios analogous to that done for 

fishery-dependent models to compare findings. Since fishery-independent surveys were 

conducted at specific locations within the SCB where white abalone were known to 

historically occur, it cannot be considered a standardized survey throughout the entirety 

of the SCB. Consequently, MaxEnt was the best method to develop SDMs using fishery-

independent data. I developed these models in R (v 3.4.2) using the MaxEnt method 

implemented in ‘dismo’ package.  

Every SDM developed from MaxEnt can be slightly different because results depend 

on the random selection of background points (S. B. Phillips et al. 2006), making it 

valuable to obtain a sample of SDMs. Thus, the final models and projections of white 

abalone were the averages of 100 model runs. MaxEnt outputs represent the relative 

likelihood of presence of white abalone, which can be interpreted as the relative habitat 

suitability ranging from 0 (very unsuitable) to 1 (highly suitable), similar to 
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interpretations of random forest SDMs. I also calculated every SDMs associated 95% 

quantile range of relative likelihood of presence.   

By default MaxEnt runs with auto-features selecting at random 70 % of the species 

occurrences as training data and 30% as test data. However given the low sample sizes of 

species data in a majority of the study areas, I adopted bootstrapping.  When 

bootstrapping, I used all species occurrences as training data and sampled background 

points with replacement for each model run.  

One of MaxEnt’s fundamental assumptions is that the study area has been 

systematically sampled, yet a majority of occurrence records are spatially biased towards 

better surveyed areas (Kramer-Schadt et al. 2013). To address this potential sampling 

bias, I developed a probability surface in ArcGIS, where cell values reflected sampling 

effort (prevalence of white abalone), giving weight to each background point. Sampling 

of background points was thus biased by these weights to mirror sampling effort.  

SDMs are usually evaluated with area under the curve (AUC) of the receiver 

operating characteristics (ROC) curve. AUC is used to discriminate a species’ model 

from a random model and is independent of prevalence (Raes and Ter Steege 2007). 

However AUC is sensitive to the proportion of species occurrences and the study area 

(background points); the larger the proportion, the larger the AUC value (Lobo, Jiménez-

Valverde, and Real 2008).  Due to this sensitivity, I conducted significance testing, 

similar to hypothesis testing, of SDMs’ against null models’ AUC values. Null models 

represent a null distribution based on, in this case, spatially bias sampling (Raes and Ter 

Steege 2007). I used a one-sided 95% confidence interval since I was only interested in 

whether an SDM performed significantly better than by chance, and interpreted 
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significant models to indicate that relationships between species’ occurrences and 

associated environmental conditions were stronger than can be expected by chance.  

To assess the importance of each environmental predictor variable in explaining 

species’ distribution, I computed average percent contribution of each environmental 

variable and conducted a jackknife analysis of regularized training gain to the models. 

The average percent contribution is a metric that quantifies the relative contribution of 

each variable in developing the model and thus explaining presence of the species. The 

jackknife regularized gain is a statistic that measures how well a variable distinguishes 

locations where white abalone occur from the total area under study. By excluding each 

environmental variable in turn and developing models with the remaining variables, 

MaxEnt generates the regularized gain of the model in predicting species presence 

without the variable. A similar procedure is done to develop models with each variable 

alone to determine gain with only the respective variable. Due to the low sample sizes 

across study areas, I was unable to conduct a jackknife analysis test gain or AUC values.  

Lastly, I developed response curves of the variables to examine the effect of each 

environmental predictor variable on the prediction of relative suitable habitat. Response 

curves displays how each variable included in the model affects the MaxEnt prediction 

(probability of presence), while keeping all other environmental variables constant at 

their average sample values.   

2.5 Assessment of Climate Change 
 

To assess the impact of climate change on habitat quality, I took the difference in 

habitat suitability values between future projected (2040-2050 and 2090-2100) and 

original (historical and contemporary) broad-scale SDMs based on fishery-dependent and 
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-independent data. Resulting maps capture persistence of suitable habitat, ranging from -1 

(complete loss of suitable habitat in the future) to 1 (complete gain of suitable habitat in 

the future); 0 represents no change in habitat suitability through time.   

2.6 Interviews with Former Abalone Fishermen 

Fishery-dependent white abalone catch data, which temporally covers the species’ 

presence when it was more prevalent, exists at a scale much larger than that which white 

abalone operate on. In effort to refine this spatial scale and gain more insight on white 

abalone habitat preferences, I conducted interviews with former abalone fishermen who 

observed white abalone during their fishing experience in the SCB. Using detailed 

nautical charts of the Channel Islands and the southern California coast, I asked each 

fisherman to identify locations where he or she observed white abalone.  

For each identified location I asked for details on the catch history, fine-scale habitat 

characteristics, and population structure. I interviewed a total of 10 former abalone 

fishermen throughout the SCB and the Channel Islands and acquired 2 oral transcripts of 

interviews with former abalone fishermen conducted by David Kushner at CINPS. 
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CHAPTER 3 (RESULTS) 
 
3.1 Broad-scale SDMs 
 
 3.1.1 Fishery-Dependent  

 

The computed RMSE for the random forest model developed from fishery-

dependent data was 42676.16. Based on fishery-dependent data, Depth exhibited the 

highest percent increase in MSE (45.34303), followed by Length of Coastline (41.9360), 

Distance from Port (37.8108), Slope (15.4483), and Sea Surface Temperature (16.2159) 

(Figure 3.1). The response curves of the variables included in the model indicated relative 

abundance and effectively relative probability of suitable habitat of white abalone 

suitable habitat increased as Length of Coastline increased (Figures 3.2). The response 

curve for Distance from Port suggests suitable habitat is offshore at varying distances. At 

greater depths, suitable habitat for white abalone decreased. Sea Surface Temperature and 

Slope had minimal effects on white abalone habitat, although these effects were highest 

when temperatures ranged from 14 to 18 °Celsius and slope was greater than 4º.  

Random forest predicted the highest suitable habitat at San Clemente Island and 

Tanner and Cortes Banks as well as Anacapa, San Nicolas, and Santa Catalina at lower 

levels (Figure 3.3). Although random forest predicted suitable habitat in areas where 

white abalone were not as abundant in catch, areas of higher suitable habitat 

corresponded to areas of high catch.  

3.1.2 Fishery-Independent  

 

The MaxEnt model developed from fishery-independent data at the broad-scale 

obtained a high average AUC training value (0.8620). The pairwise comparison against a 
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null model’s AUC value indicated that MaxEnt was significantly better in predicting 

suitable habitat (p-value<0.001) than that predicted by chance (AUC=0.6149).   

 Distance from Port had the highest average percent contribution (62.9922), 

followed by Length of Coastline (26.1954), Slope (4.3816), Depth (3.5131), and Sea 

Surface Temperature (2.9176). Jackknife analysis indicated Distance from Port was the 

most informative variable to the model, followed by Length of Coastline, shown by the 

consistency in rankings of importance in both jackknife metrics (“gain With only” and 

“gain Without”) (Figure 3.9). The remaining variables exhibited inconsistent verdicts in 

ranking of importance from jackknife metrics. Sea Surface Temperature displayed the 

next highest gain when used by itself, followed by Slope and Depth. These rankings of 

variable importance differ from that seen when each variable was omitted from model 

development process. When omitted from model development, Slope displayed the next 

most loss in gain, followed by Depth and Sea Surface Temperature.  

The response curves of each variable indicated that the probability of white abalone 

presence and thus suitability of habitat increased with Length of Coastline and Sea 

Surface Temperature (Figure 3.10). On the contrary, suitability of habitat decreased as 

Depth increased (became more negative) as well as when Distance from Port and Slope 

increased.  

The MaxEnt model based on fishery-independent data predicted a larger suitable area 

than that occupied by white abalone from 1993 through 2017 (Figure 3.11). Suitable 

habitat were confined to areas along the southern California coast, particularly in the 

middle and the coastlines of immediate islands, closer to Port, specifically Anacapa, 

Santa Cruz, and Santa Catalina Islands.  
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3.2 Future Projections and Effects of Climate Change 

 Projected fishery-dependent SDMs of future scenarios differ slightly from the 

predicted model developed from fishery-dependent data at hand (Figure 3.4-Figure 3.7). 

Most areas along the southern California coast, where suitability was predicted to be low, 

remain unchanged through time. While areas of high suitability at the Channel Islands 

and northern region of the southern California coast exhibit a slight decreasing trend in 

habitat suitability through time (Figure 3.16 and Figure 3.17). 

 Projected fishery-independent SDMs for future scenarios (Figure 3.12-Figure 

3.15) are partially different from the contemporary SDM, exhibiting a slight increase in 

suitability throughout the SCB (Figure 3.18 and Figure 3.19). 

3.2 Fine-scale SDMs 

MaxEnt models developed for each fine-scale study area had high average AUC 

training values (Table 3.1). Pairwise comparisons of AUC values against null models 

indicated that MaxEnt was significantly better in predicting suitable habitat at all study 

areas (p-value<0.001) than that predicted by chance. I obtained the percentage 

contribution of each variable used in the models (averaged over 100 model runs) and 

calculated the mean percentage contribution across all study areas (Table 3.2, Figure 

3.20). Depth had the highest mean percentage contribution (57.82) across all study areas, 

followed by Kelp persistence Index (36.29), Two Spot abundance Score (22.14), Slope 

(10.64), Predator Diversity Index (10.35), VRM (9.38) and Urchin Abundance Score 

(5.67).  

Jackknife analysis indicated that at three out of the five study areas, excluding San 

Diego and Santa Catalina, Depth contained the most information over all other variables, 
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shown by the consistency in ranking of importance in both jackknife metrics (gain With 

only and gain Without), followed by VRM and Slope (Table 3.3 and Figure 3.21). At San 

Diego, Kelp Persistence Index was the most important variable, followed by Slope, 

Depth, and VRM. At Santa Catalina where predator and competitor variables were 

included into analysis, jackknife metrics were inconsistent in ranking most variable’s 

importance. When each variable was used exclusively to build the model, Depth was the 

most informative, followed by VRM, Two Spot Abundance Score, Predator Diversity 

Index, and Urchin Abundance Score. When excluded from model development, Depth 

exhibited the most loss in model performance, followed by Predator Diversity Index, 

Two Spot Abundance Score, VRM, Slope, and Urchin Abundance Score.   

 Response curves of these variables indicated that suitability of habitat was 

estimated highest at depths ranging from 30 to 70 m (3.22-Figure3.26). Suitability of 

habitat decreased as VRM, Slope, Predator Diversity Index, and Urchin Abundance Score 

increased. Habitat suitability was generally high at all levels of Two-spot Abundance 

Scores. Kelp persistence index exhibited conflicting results between the two study areas 

that included the variable. At San Diego, suitable habitat increased as Kelp Persistence 

Index increased, while at Palos Verdes the opposite relationship was detected. The fine-

scale SDMs identified areas of high habitat suitability mostly on hard substrate at depth 

ranges of 30 to 70 m at the Channels islands and 15 to 30 m along the southern California 

coast (Figures 3.28-Figure 3.36). Not all areas of high suitability were occupied by white 

abalone, demonstrating the power of the model to detect suitable habitat in unsurveyed 

areas.   
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3.3 Fishermen Observations 
 

Fishermen observations span areas along the Channel Islands, including Santa Cruz, 

Anacapa, Santa Barbara, Santa Catalina, San Clemente, in addition to the outer Banks, 

Tanner and Cortez, and along the coast of the Santa Barbara county and San Diego 

county. While white abalone were observed at depths ranging from 5-60 m, highest 

abundance was observed at 20-40 m, along or near the edge of the kelp bed, where the 

prevalent macroalgae species shifted from Macrocystis to Nereocystis. All fishermen 

identified preferred white abalone habitat to be small rock piles or boulders with low 

rugosity, scattered amongst sand channels. White abalone were most often observed 

exposed on boulders usually at the sand-rock interface located at the base of the boulder 

where drift macroalgae collected. Sometimes white abalone were seen under low ledges, 

but not generally on high reefs.  

Fishermen observed white abalone along the entire west side of San Clemente Island 

from Cat Rock to China Point, at the edge of the kelp bed in 20-60 m of water (Figure 

3.42). A majority of these observations came from depths of 20-40 m. At Anacapa Island, 

fishermen observed white abalone along the northwest side of the island, near Rat Rock 

and all along the edge of the kelp bed towards Cat Rock (Figure 3.37). Fishermen 

observed white abalone near the southeast end between Anacapa and Santa Cruz Islands. 

In both areas white abalone inhabited areas in 20-40 m depths, but predominantly in latter 

depths of this range. Fishermen observed white abalone along the west side of Santa 

Catalina from Whale Rock to Farnsworth Bank, near the edge of the kelp bed at 18-50 

feet, with a majority of white abalone, occurring in 20-40 m (Figure 3.41). Some 

fishermen observed white abalone along the northwest side of the island from Black 
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Rock to Yellowtail Point as well as Little Farnsworth, located near the southeast edge of 

the island at similar depths. At Santa Barbara Island, white abalone inhabited deeper 

depths specifically at and Arch Point and Landing Cove, on the northwest side of the 

island (Figure 3.39). Along the coast, fishermen observed white abalone near Santa 

Barbara county, from Gaviota to Camby’s Reef in 5-25 m (Figure 3.40). In San Diego 

County, fishermen observed white abalone in San Onofre as well as in the La Jolla 

Canyon and South of Point Loma near the kelp bed edge at 20-30 m depths (Figure 3.44). 

Fishermen sighted white abalone in high numbers at the Coronado Islands in similar 

depths. At Cortes and Tanner, fishermen spotted white abalone at depths deeper than 25 

m (Figure 3.43).  

The amount of white abalone observed by fishermen at the Channel Islands and 

Tanner and Cortes Banks was much higher compared to that seen along the coast. Based 

on the interview results, fishermen identified fishing hotspots, areas where fishermen 

persistently observed white abalone of all size classes in high abundance over time. 

Identified hotspots (Nine Fathoms, Cat Rock, Yellow Banks, and Coronado Islands) were 

unanimously identified amongst all fishermen who fished at those locations. Only a few 

of the fishermen interviewed observed white abalone of all size classes, including 

juveniles because fishermen were targeting adults of legal size. When white abalone were 

observed in aggregations (two or more abalone in close proximity), they did not 

aggregate as tightly as other abalone species that usually stacked on top of each other. 

Many fishermen noted white abalone were most closely associated with pink abalone in 

depth. Consequently white abalone were recorded as pinks before white abalone became 

a species to catch in 1955, and often times mistakenly recorded as pinks thereafter.  
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When asked where one would outplant white abalone for conservation efforts, most 

fishermen identified locations where they persistently observed highest numbers of 

abalone. Interestingly, a majority of fishermen identified the coast as poor habitat for 

outplanting efforts due to the high risk of poaching and quality of water due to runoff. 
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CHAPTER 4 (DISCUSSION) 

 The goal of this research was to develop a SDM to inform future outplanting 

efforts and assess the effects of climate change on habitat. To facilitate these goals I 

applied random forest and MaxEnt models to fishery-dependent and independent data, 

respectively. These modeling platforms were the strongest methods that could 

accommodate the intricacies and nuances of each dataset. Given the spatial scale at which 

fishery-dependent data were recorded (fishing block), I developed SDMs at a broad-scale 

to compare historical and contemporary species distributions derived from each dataset. 

SDMs at this spatial scale allowed for the assessment of climate change at broad regional 

scales.  

Because white abalone operate at a much finer spatial scale than CDFG statistical 

fishing blocks I developed fine-scale SDMs based on fishery-independent data using 

MaxEnt. While these models provide reasonable estimates of suitability, model 

performance was nevertheless constrained by data quality and quantity. In an effort to 

match fine-scale SDMs and gain knowledge of white abalone presence during the fishery, 

I also interviewed former abalone fishermen who consistently observed white abalone 

and could describe fine-scale habitat. 

4.1 Broad-scale SDMs 

 Fishery-dependent and -independent based SDMs indicated differences between 

historic and contemporary white abalone distributions, and thus potential differences in 

suitable habitat. Although the rankings of variable importance in each model did not 

differ dramatically between models (Figure 3.1 and Figure 3.8), prediction of relative 

abundance or presence did differ in variable space across models (Figure 3.3 and Figure 
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3.11). Both models defined white abalone habitat to longer coastlines at shallow depths 

with a slight steepness in seafloor. However the fishery-dependent SDM described white 

abalone habitat to locations further from Port in temperatures ranging from 14-18 º C 

while the fishery-independent SDM described habitat to locations closer to Port in 

warmer temperatures (≥16 º C). 

Random forest and MaxEnt predicted a larger suitable area than that occupied by 

white abalone during their respective time periods. Although the most suitable areas 

corresponded largely to the observed populations, there were other areas where habitat 

was suitable but the species was not recorded. The fishery-dependent based SDM 

identified the Channel islands, specifically San Clemente Island and Tanner and Cortes 

Banks, where catch was highest, to be highly suitable habitat, followed by Santa Catalina, 

San Nicholas and Anacapa Islands. The fishery-independent based SDM recognized the 

southern California coast, particularly the middle region in addition to the immediate 

Channel islands to be highly suitable, specifically Anacapa, Santa Cruz and Santa 

Catalina Islands. These inconsistencies in suitability across models likely resulted from 

data limitations/differences associated with the input data. Fishery-dependent data is 

distributed throughout the SCB at broad-scale resolutions while fishery-independent data 

are spatially-restricted and derived from a remnant post fishery populations. Additionally, 

the quantity of fishery-dependent data is significantly greater than fishery-independent 

data. These differences are significant and likely impact model performance and outcome 

in habitat associations and predicted suitable habitat.      
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4.2 Fine-scale SDMs and Fishermen Observations 

 At a fine-scale, Depth, VRM and Slope generally contributed the most to SDMs. 

Habitat was defined by low rugosity and relief across study areas. At the Channel Islands 

suitable habitat was found at deeper depths (30-70 m) while along the southern California 

coast suitable habitat was in shallower depths (<30 m).  These associations were observed 

in past studies (Butler et al. 2006; Hobday and Tegner 2000) and from former abalone 

fishermen.  

For study areas where I included biological data, inconsistencies amongst study 

areas and historical knowledge existed. San Diego and Palos Verdes define habitat to 

areas of most and least kelp persistence, respectively. Past studies (Butler et al. 2006; 

Tutschulte 1977) and former abalone fishermen identified brown algae species to be a 

staple food source for white abalone, suggesting habitat would be confined to areas of 

high kelp persistence like exhibited in San Diego. This inconsistency may be due to the 

small sample size or spatial resolution of satellite kelp estimates. For Santa Barbara and 

Santa Catalina Islands where predator and competitor data were included, habitat was 

identified as areas of low predator diversity and urchin abundance score, which holds true 

to past studies (Tutschulte 1977; Tegner, Breen, and Lennert 1989) and ecological theory 

of predator-prey and competitor dynamics. Although I expected suitable habitat would be 

confined to areas of low Two-spot octopus abundance Score, the model suggested white 

abalone suitable habitat occurs in all areas where Two-spot were found, irrespective of 

abundance level. This association may be representative of poor habitat or the high 

prevalence of Two-spot octopus within this study area, but without further investigation 

at other study areas, little can be concluded.  
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4.3 Future Projected SDMs and Effects of Climate Change 

Since Sea Surface Temperature did not contribute a great deal to either of the 

braodscale models, future projected SDMs exhibited minimal deviations suggesting that 

the consequences of climate change will minimally impact habitat suitability. 

Nonetheless, fishery-dependent and -independent SDMS told contradicting stories. Based 

on the fishery-dependent SDMs, areas of higher predicted suitability will decrease in 

suitability as temperatures rise in the future. On the contrary, fishery-independent based 

SDMs suggest a slight increase in suitability of habitat throughout the SCB in the future. 

Taking into consideration the temperature preferences and thresholds identified in 

historical laboratory experiments, the fishery-dependent SDMs convey a more likely 

story.  

The cause of the differing model results stemming from fisheries dependent 

versus independent datasets is likely due to the different timeframes of the two datasets. 

Assuming fishermen focused their effort on highly productive areas, results derived from 

fishery-dependent data are likely more representative of white abalone habitat. On the 

other hand, the fishery-independent data, which exists as an artifact of the fishery, is 

representative of a vestigial population that reflects both habitat quality and a legacy of 

exhaustive fishing. Water temperatures exhibited in the SCB during the abalone fishery 

were much cooler than those seen in latter years during the fishery-independent studies 

(Di Lorenzo et al. 2005). Regarding the relationship between SST and habitat suitability 

results of the fishery-independent model are inconsistent with the thermal tolerances of 

white abalone (Leighton 1972; Tutschulte 1977) and thermal requirements of WS 

(Moore, Robbins, and Friedman 2000). As water temperatures in the SCB increase they 
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approach the thermal tolerance of white abalone and the activation temperature of WS, 

which decreases suitability.  

Based on the assessment of asses impacts from climate change using outputs from 

the fishery-dependent model current areas of higher predicted suitability in the south will 

decrease in suitability as water temperatures increase. Conversely, the distribution of 

suitable areas will increase further north.  

4.4 Limitations with Data and Modeling Methods 

Given the long history of exploitation and lack of efficient management of white 

abalone, both datasets may be representative of previously impacted population with 

fishery-independent data most obviously so. In view of this, the SDMs I have developed 

with these data may not represent all suitable habitat. Also, because the fishery-dependent 

and –independent datasets do not represent standardized surveys throughout the SCB, 

they are not ideally suited to habitat  assessment. On the other hand, such broad scale and 

long term surveys are very rare in practice, and the analytic methods I employed admit 

for and account for this lack in standardization.  

While I made assumptions to address data limitations, data quality and quantity 

curtailed model performance and strength. Low sample size amongst the fishery-

independent dataset was an issue at both spatial scales. The incorporation of fine-scale 

biological data proved challenging given the inconsistency in spatial resolution with 

white abalone occurrences data. Despite these limitations and associated assumptions, the 

data generated from the fishermen interviews largely comported with results produced 

from both the fine-scale and broad-scale habitat models. The agreement between these 
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information sources suggests habitat models are a reasonably accurate representation of 

suitable habitat, and should support an aggressive and effective outplanting effort.  

4.5 Conservation Implications and Next Steps 

The differing outcomes in broad-scale SDMs developed from fishery-dependent 

and -independent data pose challenges for managers when planning future recovery 

efforts. Managers should be wary of looking to the remaining white abalone population, 

notably represented by the fishery-independent studies, to inform outplanting. Instead, 

more focus should be directed to historical catch records captured in fishery-dependent 

data and fishermen observations. Fishery-dependent models suggest the Channel Islands, 

specifically San Clemente and Tanner and Cortes banks as strong candidates of potential 

outplanting sites, based on the high catch from those locations. Knowledge of the biology 

and ecology of the species as well as ensuing effects of climate change suggest efforts 

should be made at the northern Channel Islands, specifically Anacapa and Santa Cruz 

Isalnds. These islands were highly suitable in fishery-independent SDMs and suitable, 

although less than San Clemente and Tanner and Cortes Banks in fishery-dependent 

SDMs. 

Temperature and nutrients influence the health and persistence of Macrocyctis 

populations in the SCB. Long periods of warmer temperatures observed in past El Nino 

events brought destruction of populations and deterioration of subsurface kelp canopies 

(M. J. Tegner et al. 1996). As temperatures increase in the future, the kelp forest will 

most likely exhibit similar patterns. Persistent warm temperatures will inhibit kelp forest 

recovery and persistence, starving future outplanted abalone populations of food. These 

potential conditions also will likely increase activation of RLP and thus prevalence of 
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WS disease. These locations present a natural experiment to assess the effects of 

temperature and climate change on the success of outplanting. 

In addition to these areas suggested from the models, experimental outplanting 

based on a randomized block design can be set up in additional areas within the SCB, 

such as Santa Catalina, Santa Barbara, and Palos Verdes, and San Diego, which were 

identified as suitable in the fishery-independent and fishery-dependent, although less so 

for the southern California coast. Although more economically feasible to outplant and 

monitor, these locations come with a higher risk of poaching than more distant or 

protected locations (e.g. San Clemente Island), which managers should consider. Fine-

scale models and fishermen observations can inform outplanting experiments with 

environmental variable space to test in. An outplanting approach that incorporates an 

experimental design to assess habitat performance has the potential to expedite recovery 

efforts. If such a approach is employed, I suggest efforts are made to collect the high 

resolution environmental and biological data at outplanting sites, such as temperature, 

dissolved oxygen, biological data (macroalgae, predator and competitor abundance). 

While the research presented is representative of habitat suitability for adult white 

abalone, the proposed experiment will provide greater insight on juvenile white abalone 

habitat preference and suitability, which has proven to be challenging to identify due to 

their cryptic behavior.    

 To further advance these efforts, fishery-independent surveys should continue to 

monitor existing populations and in addition begin to conduct a standardized survey of all 

coastlines within the SCB. These surveys will help to locate new potential habitat and 
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provide the necessary data to develop more reliable habitat models to better inform 

outplanting and recovery efforts. 
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APPENDIX 

 

Figure 1.1: Historical white abalone distribution from Point Conception, California, US to 
Punta Abreojos, Baja California, Mexico.  
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Figure 1.2: Time series of commercial landings (metric tons) of the California abalone 
fishery (bars), combined (top), and by red, pink, green, black, and white abalones. 
Landings are divided into periods (A-D) by trends in the total fishery landings, with 
regression (dotted) lines for each period (m=slope). Regressions are provided for 
individual species where sufficient data exists. The average annual value of all species 
(US $ per kilogram) is represented by a solid line. Figure came from 2005 Abalone 
Recovery and Management Plan.  
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Figure 1.3: Time series of commercial white abalone catch (metric tons) by region from 
1951 to 1993. Data provided by CDFG.  
 
 
 

0

20

40

60

1950 1960 1970 1980 1990

Year

C
a

tc
h

 (
M

e
tr

ic
 T

o
n

s
)

Anacapa Island

Begg Rock

Cortes Bank

Dana Point to Mexican Border

Point Conception to Point Mugu

Point Mugu to Dana Point

San Clemente Island

San Miguel Island

San Nicolas Island

Santa Barbara Island

Santa Catalina Island

Santa Cruz Island

Santa Rosa Island

Southern California Mainland

Tanner Bank

Unknown



 

 53

 
 
Figure 2.1: Ocean circulation patterns in the SCB.  
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Figure 2.2: Total commercial landings (metric tons) of by CDFG statistical fishing block 
from 1951 through 1993. Data provided by CDFG.  
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Table 2.1: Fishery-independent white abalone surveys. Surveys are described by data, 
spatial resolution, method, and general location surveyed.  
 

Survey 

 

Date 

 

Spatial 

Resolution 

(m) 

Survey 

Method 

 

Location 

Tutschulte, 1976 
 1976 800 Scuba 

Santa Catalina Island 

Davis et al., 1996 (1) 
 1980-1981 100 Scuba 

Anacapa, Santa Cruz, 
and Santa Barbara 

Islands 

Davis et al., 1996 (2) 1992-1993 
65 (1992); 
10 (1993) Scuba 

Anacapa, Santa Cruz, 
San Clemente, Santa 

Catalina Islands 

Davis et al, 1998 1996-1997 10 Submersible 

Anacapa, Santa Cruz, 
and Santa Barbara 

Islands, and Osborn 
Bank 

DELTA 1999 1999 10 Submersible 

Anacapa, Santa Cruz, 
and Santa Barbara, 

San Clemente, Santa 
Catalina Islands, 

Tanner and Cortes 
Banks, Osborn bank 

NOAA SWFSC 2002-2017 

10 (2002-
2010); 

2 (2012-
2017) ROV 

San Clemente, Santa 
Catalina, Tanner and 

Cortes Banks, and 
southern California 

coast 

NOAA/Universities 

2010-2017 

35 (2010-
2012); 10 

(2013-
2017) Scuba 

Santa Catalina Island, 
southern California 

coast 
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Figure 2.3: Comparison of data sources (CalCOFI versus Bio-ORACLE) for mean sea 
surface temperatures (averaged over 15 years; 2000-2014) throughout the SCB. The 
diagonal lines represents the y=x line, which denotes a 1:1 relationship between the two 
data sources.  
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Figure 2.4: Comparison of data sources (CalCOFI versus Bio-ORACLE) for mean sea 
surface salinity (averaged over 15 years; 2000-2014) throughout the SCB. The diagonal 
lines represents the y=x line, which denotes a 1:1 relationship between the two data 
sources.  
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Table 2.2: List of variables and sample sizes included in modeling by study area  
 

San 
Clemente 

Island 
(n=26) 

Tanner and 
Cortes Banks 

(n=359) 

Santa Barbara and 
Santa Catalina 

Islands 
(n=16) 

 
San Diego 

(n=19) 

 
Palos 

Verdes 
(n=14) 

Bathymetry Bathymetry Bathymetry Bathymetry Bathymetry 

Slope Slope Slope Slope Slope 

VRM VRM VRM VRM VRM 

  Predator Diversity 
Index 

Kelp  
Persistence 

Index 

Kelp 
Persistence 

Index 

  Two Spot Octopus 
Abundance Score 

  

  Urchin Abundance 
Score 
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Figure 3.1: Variable importance (percent increase in MSE) developed by random forest 
using fishery-dependent data.  
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Figure 3.2: Response curves (feature contribution) for each predictor variable developed 
by random forest using fishery-dependent data. The black line represents the mean 
contribution to prediction and the grey shaded region represents the 95% quantile range 
of predictions in variable space.  
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Figure 3.3: Projected historical distribution of white abalone developed by random forest 
using fishery-dependent data. A. Predicted relative mean abundance averaged over 2000 
trees and B. Error in predicted relative abundance (represented as the 95% quantile range 
of predictions).  
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Figure 3.4: Projected relative mean abundance of white abalone for 2040-2050 developed 
by random forest using fishery-dependent data. Each map represents projected relative 
mean abundance for A. RCP 2.6, B. RCP 4.5, C. RCP6.0, and D. RCP8.5 scenarios 
averaged over 2000 trees.   
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Figure 3.5: Error in projections for 2040-2050 based on random forest and fishery-
dependent data. Each map represents 95% quantile range of predictions of relative 
abundance for A. RCP 2.6, B. RCP 4.5, C. RCP6.0, and D. RCP8.5 scenarios.   
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Figure 3.6: Projected relative mean abundance of white abalone for 2090-2010 developed 
by random forest using fishery-dependent data. Each map represents projected relative 
mean abundance for A. RCP 2.6, B. RCP 4.5, C. RCP6.0, and D. RCP8.5 scenarios 
averaged over 2000 trees.   
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Figure 3.7: Error in projections for 2090-2010 based on random forest and fishery-
dependent data. Each map represents 95% quantile range of predictions of relative 
abundance for A. RCP 2.6, B. RCP 4.5, C. RCP6.0, and D. RCP8.5 scenarios.   
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Figure 3.8: Variable importance (percent contribution) developed by MaxEnt using 
fishery-independent data at a broad-scale. The horizontal lines within each box and 
whisker plot represents the median of 100 model runs. The ends of the box represent the 
upper and lower quartiles. The whiskers that extend from the box represent minimum and 
maximum values of percent contribution. Each point represents a model run. 
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Figure 3.9: Variable importance (jackknife regularized training gain) developed by 
MaxEnt using fishery-independent data at a broad-scale. The red horizontal line (With 
all) represents the gain of the model developed with all variables included. The circle 
points represent the gain of a model when developed with each variable is used 
exclusively (With only). The triangle points represent the gain of a model developed 
when each variable is excluded and remaining variables are used (Without).   
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Figure 3.10: Response curves (log contribution to prediction) for each predictor variable 
developed by MaxEnt using fishery-independent data at a broad-scale. The black line 
represents the mean contribution to prediction and the grey shaded region represents the 
95% quantile range of predictions in variable space. 
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Figure 3.11: Projected contemporary distribution of white abalone developed from 
MaxEnt using fishery-independent data at a broad-scale. A. Predicted relative mean 
likelihood of presence averaged over 100 model runs and B. Error in predicted relative 
likelihood of presence (represented as the 95% quantile range of predictions).   
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Figure 3.12: Projected relative mean likelihood of presence of white abalone for 2040-
2050 developed by MaxEnt using fishery-independent data at a broad-scale. Each map 
represents projected relative mean likelihood of presence for A. RCP 2.6, B. RCP 4.5, C. 
RCP6.0, and D. RCP8.5 scenarios averaged over 100 model runs.    
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Figure 3.13: Error in projections for 2040-2050 based on MaxEnt and fishery-
independent data at a broad-scale. Each map represents 95% quantile range of predictions 
of relative likelihood of presence for A. RCP 2.6, B. RCP 4.5, C. RCP6.0, and D. RCP8.5 
scenarios.   
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Figure 3.14: Projected relative mean likelihood of presence of white abalone for 2090-
2100 using fishery-independent data at a broad-scale. Each map represents projected 
relative mean likelihood of presence for A. RCP 2.6, B. RCP 4.5, C. RCP6.0, and D. 
RCP8.5 scenarios averaged over 100 model runs.    
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Figure 3.15: Error in projections for 2090-2100 based on MaxEnt and fishery-
independent data at a broad-scale. Each map represents the 95% quantile range of 
predictions of relative likelihood of presence for A. RCP 2.6, B. RCP 4.5, C. RCP6.0, and 
D. RCP8.5 scenarios.   
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Figure 3.16: Change in relative mean abundance for white abalone in 2040-2050 from 
projected historic distribution based on fishery-dependent data. Each map represents 
change in relative mean abundance for A. RCP 2.6, B. RCP 4.5, C. RCP6.0, and D. 
RCP8.5 scenarios.   
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Figure 3.17: Change in relative mean abundance for white abalone in 2090-2100 from 
projected historic distrbution based on fishery-dependent data. Each map represents 
change in relative mean abundance for A. RCP 2.6, B. RCP 4.5, C. RCP6.0, and D. 
RCP8.5 scenarios.   
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Figure 3.18: Change in relative mean likelihood of presence for white abalone in 2040-
2050 from projected contemporary distribution based on fishery-independent data at a 
broad-scale. Each map represents change in relative mean likelihood of presence for A. 
RCP 2.6, B. RCP 4.5, C. RCP6.0, and D. RCP8.5 scenarios.   
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Figure 3.19: Change in relative mean likelihood of presence for white abalone in 2090-
2100 from projected contemporary distribution based on fishery-independent data. Each 
map represents change in relative mean likelihood of presence for A. RCP 2.6, B. RCP 
4.5, C. RCP6.0, and D. RCP8.5 scenarios.   
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Table 3.1: Results of one-sided significance test by study area (AUC values derived from 
null and MaxEnt fine-scale models). Values in parentheses represents the 95% CI 
intervals.  
 

 San 
Clemente 

Island 

Tanner and 
Cortes Banks 

Palos Verdes San Diego Santa 
Barbara and 

Santa 
Catalina 
Islands 

Null 
model 
mean 

0.6954 

(−∞,0.7704) 

0.5420 

(−∞,0.8032) 

0.5706 

(−∞,0.8984) 

0.6918 

(−∞,0.7639) 

0.6840 

(−∞,0.9341) 

MaxEnt 
model 
mean 

0.7763 0.8046 0.9042 0.7698 0.9370 

 
Table 3.2: Variable importance (percent contribution) by study area developed by 
MaxEnt using fishery-independent data at a fine-scale. Values represent mean percent 
contributions averaged over 100 model runs.  
 

 San 
Clemente 

Island 

Tanner and 
Cortes 
Banks 

San 
Diego 

Palos 
Verdes 

Santa Barbara 
and Santa 
Catalina 

Bathymetry 81.96 81.96 16.93 71.25 26.36 

VRM 15.76 15.76 0.18 7.84 16.47 

Slope 2.27 2.28 28.14 3.05 10.35 

Kelp Persistence 
Index 

NA NA 54.74 17.84 NA 

Predator Diversity 
Index 

NA NA NA NA 10.35 

Two-spot 
Abundance Score 

NA NA NA NA 22.14 

Urchin 
Abundance 

Score 

NA NA NA NA 5.67 
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Figure 3.20: Variable importance (percent contribution) by study area developed by 
MaxEnt using fishery-independent data at a fine-scale. The black points represent mean 
variable importance (percent contribution) averaged over study areas and n represents the 
number of study areas used to derive mean contribution for each variable.  
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Table 3.3: Variable importance (jackknife regularized training gain) by study area 
developed by MaxEnt using fishery-independent data at a fine-scale. Values within 
parentheses next to the name of each study area represent the gain of the model when all 
variable are included in model development. Values under “With only” represent the gain 
of a model when developed with each variable is used exclusively. Values under 
“Without” represent the gain of a model developed when each variable is excluded and 
remaining variables are used.  

 

San Clemente (0.1950) 

 With only Without 

Depth 0.1542 0.0554 

VRM 0.0532 0.1732 

Slope 0.0276 0.1929 

Tanner and Cortes Banks (0.5855) 

Depth 0.5529 0.1226 

VRM 0.1184 0.5627 

Slope 0.0307 0.5818 

San Diego (0.3037) 

Depth 0.0484 0.2642 

VRM 0.0242 0.3035 

Slope 0.0584 0.2473 

Kelp Persistence 0.1704 0.1042 

Palos Verdes (0.65555) 

Depth 0.5305 0.2499 

VRM 0.1249 0.6268 

Slope 0.1070 0.6473 

Kelp Persistence 0.0914 0.6050 

Santa Barbara and Santa Catalina Islands (0.9213) 

Depth 0.3430 0.6771 

VRM 0.3354 0.8032 

Slope 0.1830 0.8614 

Predator Diversity 0.0700 0.7817 

Two Spot Abundance 0.1752 0.7931 

Urchin Abundance 0.0691 0.8678 
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Figure 3.21: Variable importance (jackknife regularized training gain) by study area 
developed by MaxEnt using fishery-independent data at a fine-scale. The red horizontal 
line (With all) represents the gain of the model developed with all variables included. The 
circle points represent the gain of a model when developed with each variable is used 
exclusively (With only). The triangle points represent the gain of a model developed 
when each variable is excluded and remaining variables are used (Without).   
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Figure 3.22: Response curves (log contribution to prediction) for each environmental 
predictor variable developed by MaxEnt at San Clemente Island. The black line 
represents the mean log contribution to prediction and the grey shaded region represents 
the 95% quantile range of predictions in variable space.  
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Figure 3.23: Response curves (log contribution to prediction) for each environmental 
predictor variable developed by MaxEnt at Tanner and Cortes Banks. The black line 
represents the mean log contribution to prediction and the grey shaded region represents 
the 95% quantile range of predictions in variable space.  
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Figure 3.24: Response curves (log contribution to prediction) for each environmental 
predictor variable developed by MaxEnt at San Diego. The black line represents the mean 
log contribution to prediction and the grey shaded region represents the 95% quantile 
range of predictions in variable space.  
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Figure 3.25: Response curves (log contribution to prediction) for each environmental 
predictor variable developed by MaxEnt at Palos Verdes. The black line represents the 
mean log contribution to prediction and the grey shaded region represents the 95% 
quantile range of predictions in variable space.  
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Figure 3.26: Response curves (log contribution to prediction) for each environmental 
predictor variable as generated by MaxEnt at Santa Barbara and Santa Catalina Islands. 
The black line represents the mean log contribution to prediction and the grey shaded 
region represents the 95% quantile range of predictions in variable space.  
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Figure 3.27: Projected relative mean likelihood of presence of white abalone at San 
Clemente Island. Values represent predicted relative mean likelihood of presence 
averaged over 100 model runs. 
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Figure 3.28: Error in projections of relative likelihood of presence at San Clemente Island 
represented as the 95% quantile range of predictions.   
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Figure 3.29: Projected relative mean likelihood of presence of white abalone at Tanner 
and Cortes Banks. Values represent predicted relative mean likelihood of presence 
averaged over 100 model runs. 
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Figure 3.30: Error in projections of relative likelihood of presence at Tanner and Cortes 
Banks represented as the 95% quantile range of predictions.   
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Figure 3.31: Projected relative mean likelihood of presence of white abalone at San 
Diego. Values represent predicted relative mean likelihood of presence averaged over 
100 model runs. 
 



 

 92

 
Figure 3.32: Error in projections of relative likelihood of presence at San Diego 
represented as the 95% quantile range of predictions.   
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Figure 3.33: Projected relative mean likelihood of presence of white abalone at Palos 
Verdes. Values represent predicted relative mean likelihood of presence averaged over 
100 model runs. 
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Figure 3.34: Error in projections of relative likelihood of presence at Palos Verdes 
represented as the 95% quantile range of predictions.   
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Figure 3.35: Projected relative mean likelihood of presence of white abalone at Santa 
Barbara and Santa Catalina Islands. Values represent predicted relative likelihood of 
presence averaged over 100 model runs. 
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Figure 3.36: Error in projections of relative likelihood of presence at Santa Barbara and 
Santa Catalina Islands represented as the 95% quantile range of predictions.   
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Figure 3.37: General locations where former abalone fishermen observed white abalone 
at Anacapa Island during the fishery.  
 

 
Figure 3.38: General locations where former abalone fishermen observed white abalone 
at Santa Cruz Island during the fishery.  
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Figure 3.39: General locations where former abalone fishermen observed white abalone 
at Santa Barbara Island during the fishery.  

 
Figure 3.40: General locations where former abalone fishermen observed white abalone 
in the Santa Barbara area during the fishery.  
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Figure 3.41: General locations where former abalone fishermen observed white abalone 
at Santa Catalina Island during the fishery.  
 

 
Figure 3.42: General locations where former abalone fishermen observed white abalone 
at San Clemente Island during the fishery.  
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Figure 3.43: General locations where former abalone fishermen observed white abalone 
at the banks during the fishery.  
 

 
Figure 3.44: General locations where former abalone fishermen observed white abalone 
in the San Diego area during the fishery.  
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