
UC Irvine
ICS Technical Reports

Title
Object-space blending and splatting of points

Permalink
https://escholarship.org/uc/item/5hs7x5qq

Authors
Pajarola, Renato
Sainz, Miguel
Guidotti, Patrick

Publication Date
2003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5hs7x5qq
https://escholarship.org
http://www.cdlib.org/


Object-Space Blending and Splatting of Points 

Renato Pajarola, Miguel Sainz, Patrick Guidotti 

UCI-ICS Technical Report No. 03-01 
Department of Information & Computer Science 

University of California, Irvine 

February 2003 

-: :Jtice: This Material 
rray be protected 
Ly Copyright Law 
(Title 17 U.S.C.) 



Object-Space Blending and Splatting of Points 
Renato Pajarola 

Computer Graphics Lab 
Information and Computer Science 

Unifersity of California Irvine 

Miguel Sainz Patrick Guidotti 

Mathematics 
Physical Sciences 

Unifersity of California Irvine 

Image Based Modeling and Rendering Lab 
Electrical Engineering and Computer Science 

Unifersity of California Irvine 

Abstract 
In this paper we present a novel point-based rendering 

approach based on object-space point interpolation of 
densely sampled surfaces. We introduce the concept of a 
transformation-invariant covariance matrix of a set of 
points which can efficiently be used to determine splat sizes 
in a multiresolution point hierarchy. We also analyze con­
tinuous point interpolation in object-space, and we define a 
new class of parametrized blending kernels as well as a nor­
malization procedure to achieve smooth blending. Further­
more, we present a hardware accelerated rendering 
algorithm based on texture mapping and a-blending as well 
as programmable vertex- and pixel-shaders. Experimental 
results show the high quality and rendering efficiency that is 
achieved by our approach. 

Keywords: point-based rendering, image-based rendering, 
multiresolution modeling, level-of-detail, hardware acceler­
ated blending 

1. Introduction 
In recent years, point-based surface representations have 
been established as viable graphics rendering primitives 
[GroOl]. In particular they lead to compact multiresolution 
representations that can provide efficient level-of-detail 
(LOD) rendering of large point-sampled surfaces such as the 
digitally scanned statues of Michelangelo [LPC+OO]. The 
advantage of the point-based representations over triangle 
meshes is that the explicit surface reconstruction step (i.e. 
[HDD+92, CL96, GKSOO]) and the storage of mesh connec­
tivity is avoided. Recent efforts in point-based rendering 
(PBR) have focused on compact and very efficient multires­
olution models [RLOO, BWK02], as well as on high-quality 
texture sampling and rendering [ZPvBGOl, RPZ02]. 

The major challenge for a PBR method is to achieve 
smooth and continuous surface interpolation from point 
samples that are irregularly distributed over a surface. Fur­
thermore, it must support correct visibility as well as pro­
vide an efficient rendering algorithm. In this paper we 
propose a novel point blending and rendering technique that 
is based on the direct interpolation between point samples in 
3D. In contrast to previous methods, we define the blending 
of surface points as a weighted interpolation in object-space. 
We analyze the smooth interpolation between points in 
object-space and define a new class of parametrized blend­
ing kernels. We also provide an efficient technique to calcu­
late splat sizes in a multiresolution point hierarchy. 
Furthermore, our approach exploits hardware acceleration. 

An example rendering result of our approach for the tex­
tured David statue of Michelangelo is shown in Figure 1. 

FIGURE 1. The head of Michelangelo's David statue 
rendered with t=16 pixels screen tolerance, at 1/4 of 
the full resolution (510827 out of 2000606 points). 

The contributions of this paper are threefold. First, we 
introduce the notion of a transformation-invariant homoge­
neous covariance of a set of points to efficiently compute 
hierarchical LOD splat sizes. Second, we analyze and define 
object-space blending functions that smoothly interpolate 
the texture color of irregularly distributed point samples. 
Third, we present an efficient hardware accelerated point 
rendering algorithm for visibility splatting and color blend­
ing. 

The remainder of the paper is organized as follows. 
Section 2 briefly discusses related work on point-based ren­
dering. Section 3 discusses how to efficiently determine the 
elliptical splat size for each LOD-node of a spatial-partition­
ing multiresolution point data structure. In Section 4 we 
introduce our concept of object-space point interpolation 
and define a new class of parametrized blending kernels 
with limited support. Our point rendering algorithm is 
described in Section 5. Section 6 presents experimental 
results of our approach and Section 7 concludes the paper. 

2. Related Work 
Points as rendering primitives have first been discussed in 
[L W85] but only much later were re-discovered as a practi­
cal approach to render complex geometric objects [GD98, 
RLOO]. QSplat [RLOO] is a high-performance point render­
ing system that uses a region-octree multiresolution data 
structure for efficient LOD selection and a simple point 
splatting method for fast rendering. The surfels approach 
[PZvBGOO] generates a hierarchical orthographic sampling 

2 



of an object in a preprocess, and surfels colors are obtained 
by texture pre-filtering. Its rendering algorithm is a combi­
nation of approximate visibility splatting, texture mipmap­
ping, and image filtering to fill holes between surfels. In 
[ZPvBGOl] the basic principle of EWA texture filtering 
[Hec89] is applied to irregularly sampled texture informa­
tion on 3D surfaces. For this EWA surface splatting a 
two-pass rendering method and hardware accelerated imple­
mentation is provided in [RPZ02]. Another efficient point 
rendering approach is presented in [BWK02] with a mem­
ory efficient multiresolution hierarchy and a precomputed 
footprint table for fast splatting. 

Further related techniques using point representations 
include the integration of polygonal and point primitives in 
a unified multiresolution data structure [CAZOl, CNOl, 
DH02], simplification methods [ABCO+Ol, PGK02] and 
interactive editing of point sets [ZPKG02]. Also the ran­
domized z-buffer method [WFP+Ol] is related to PBR since 
it renders triangle meshes from dynamically chosen random 
point samples. 

3. Surface Representation 

3.1 Point-sampled geometry 
In this project we consider blending and rendering tech­
niques for surfaces represented as dense sets of point-sam­
ples organized in a space-partitioning multiresolution 
hierarchy. The surface elements may be irregularly distrib­
uted on the surface, however, here we assume that the dis­
crete input point set reasonably samples the surface (i.e. 
satisfies the Nyquist sampling criteria, or other sufficient 
surface sampling criteria as discussed in [MeeOl]). Not 
unlike [PZvBGOO] and [ZPvBGOl, RPZ02], our approach 
also assumes that the points reasonably sample the surface's 
color texture. 

The full resolution input data set consists of point sam­
ples, surface elements (surfels) s with attributes for spatial 
coordinates p, normal orientation n and surface color c. Fur­
thermore, it is assumed that each surfel also contains the 
information about its spatial extent in object-space. This size 
information specifies an elliptical disk e centered at p and 
perpendicular to n. For correct visibility and occlusion, 
these elliptical surfel disks must cover the sampled object 
nicely without holes and thus overlap each other in 
object-space as shown in Figure 2. As noted also in 
[PZvBGOO], tangential planar disks may not completely 
cover a surface if it is strongly bent or under extreme per­
spective projections. However, this is not very often notice-

0 able in practical situations. 

FIGURE 2. Elliptical surface elements covering a 
smooth and curved 30 surface. 

An elliptical surfel disk e consists of major and minor 
axis directions e1 and e2 and their lengths. Together with the 
surfel normal n, the axis directions e1 and e2 define the local 
tangential coordinate system of that surfel. 

In the remainder of-this section we focus 9n discussing 
adequate splat size generation in a spatial-partitioning multi­
resolution hierarchy defined over the input point set, and we 
assume that the surfel splat sizes of the input data set are 
already given. Initial splat ellipses could be derived from 
locally computed Voronoi cells as in [DGHOl] and [DH02], 
or from local neighborhood and covariance analysis as pro­
posed in [PGK02] and outlined at the end of Section 3.4. 

3.2 Multiresolution hierarchy 
The multiresolution point representations considered in this 
paper are hierarchical space-partitioning data structures 
[Nie89, Sam89]. Each cell or node c of such a hierarchy H, 
containing a set of k surfels Sc= {s1 .. . st) has a representa­
tive sample sc with averag~coordinates jc = k-1 • L: = 1p;, 
as Wf!ll as average normal nc and color cc information. Fur­
thermore, for efficient view-frustum and back-face culling 
each cell c E H may also include the sphere radius r c and 
normal-cone [SAE93] semi-angle ec parameters bounding 
all surfels in Sc. Several conforming space-partitioning mul­
tiresolution hierarchies have been proposed for point-based 
rendering [RLOO, BWK02, PGK02] which can be used ·with 
our techniques. In our work we use a point-octree [Sam84, 
Sam89] hierarchy which partitions the space adaptively to 
the sample distribution (data-driven) rather than regularly in 
space (space-driven) as region-octrees which have been pro­
posed more commonly. Figure 3 illustrates the two-dimen­
sional example of a point-quadtree with up to 4 points stored 
in a leaf node. 

• 
split point 

• • • 

• leaf node 

FIGURE 3. Point-quadtree example with a fan-out of 4 
also at the leaf level - up to 4 elements per leaf node. 

Given n input surf els s1 ••• sn, a point-octree data struc-
ture can efficiently be generated by a single depth-first tra­
versal in O(n log n) time as illustrated in Figure 4. Given the 

3 



k surfels Sc = {st .. . sk} of a node c E H and the average 
position pc of the surf els SC' the set Sc is partitioned into sets 
St to s8 according to the eight octants with respect to the 
split coordinate pC' While dividing Sc into the subsets Si the 
averages Pi; ni and ci are computed (for i = I.. .8), and the 
process is repeated recursively for the eight child nodes. To 
compute the elliptical disk ec the child nodes of c return 
their generic homogeneous covariance matrices Mi to calcu­
late Mc and then derive the ellipse eC' In the following 
Section 3.3 we introduce the concept of a generic homoge­
neous covariance matrix and in Section 3.4 we describe how 
to derive the elliptical surfel disks therefrom. 

input (Sc.Pc• lie, cc) return (Mc= !.i=l..kM';) 

H 
El node c 

output (S;.p;. n;. ctW'' ~eturn (M;) 

13 node i l!J 
FIGURE 4. Recursive point-octree generation. 

3.3 Generic homogeneous covariance 
Given n points p 1, .. • ,pn E R 3 and their average p the cova­
riance matrix is defined by 

1 n - - T 
M = ~ L (pi - p) . (pi - p) . (EQ 1) 

i = 1 

In homogeneous space with p'J = (pJ, 1) we can 
- - T rewrite the expression (pi - p) · (pi - p) to 

(T · p';) · (T · p';) T with the transformation matrix T denot­
ing the translation by -P. Thus we can revamp Equation 1 to 

M = ~ i (T·p';) · (T·p'/ 
i= I 

1 ; (T I IT TT) 
=~LI 'P;'P; . 

i= 1 

= ! T. ( i p' . . p' ·T) . TT = ! T. M . TT 
n i= I ' ' n 

(EQ2) 

with M' denoting the new generic homogeneous covari­
ance matrix of points Pt ···Pn· Thus from calculating M' we 
can derive a covariance matrix M with respect to any center 
o as the upper-left 3x3 sub-matrix of T · M · TT using the 
translation matrix T with parameters (-ox, -oy, -oz) and mul­
tiplied by I!n. 

In fact, we can now express the homogeneous covari­
ance matrix of a set of points for any local coordinate sys­
tem from the generic homogeneous covariance matrix as 

1 - :r T 
M = -R·T·M·T ·R 

n 
(EQ3) 

with T denoting the translation of the point set with 
respect to the new origin and R expressing the rotation into 
the new coordinate axis directions. Furthermore, from 
M = IMlupper-Ieft3 xJmatrix the 2D covariance matrices Mx,y, 
My,z or Mz,x of the points projected into the x,y-, y,z- or 
z,x-planes, of the new local coordinate system, can be 

formed by simply removing the row and column vectors 
from M corresponding to the projection axis. 

The introduced generic homogeneous covariance matrix 
now allows efficient calculation bottom-up in the multireso­
lution hierarchy as indicated in the previous Section 3.2. 
Given two different sets of pointsP = {p 1, .. • ,pn} and 
Q = { q 1, ••• , q nt} as well as their covariance matrices 
Mp = LP'; ·p'; and MQ = Lq'; · q'/ as sum of tensor 
products, the combined generic covariance matrix M' of the 
union Pu Q is simply given by 

(EQ 4) 

Thus the expensive tensor product sums of all point~ are 
only computed once for the leaf nodes of the multiresolution 
hierarchy in O(n) time: All non-leaf nodes compute their 
generic homogeneous covariance matrix by compo­
nent-wise addition from the child nodes using Equation 4 as 
suggested in Figure 4. 

3.4 Splat-size determination 
The elliptical disks ec of nodes c E H must cover the sur­
face at all levels in the multiresolution representation. Based 
on the generic homogeneous covariance matrix we show 
how these elliptical disks are kept covering the surface at all 
LODs. The basic principle of our approach is to project the 
set of points Pt .. ·Pk of a node c onto the tangent plane 
Kc: ii c • (x - jJ c) = 0 defined by pc and normal orientation 
nc, and to calculate a bounding ellipse ec in this tangent 
plane as illustrated in Figure 5. 

tangent plane Kc 

FIGURE 5. Projection of points onto tangent plane Kc 

at position pc and with normal nc. 
Using the generic homogeneous covariance matrix M' c 

we first get the elliptical distribution of points in the tangent 
plane Kc and second we adjust the ellipse to include all 
points. 

Let us first outline how we get the ellipse ·axis and its 
axis-ratio within the tangent plane KC' For a node c and its 
matrix M' c denoting the covariance of all points P; repre­
sented by c, we apply a coordinate system transformation 
RT according to Equation 3 using a translation matrix T with 
the last column being (-px, -py, -pz, l)T from the average pc 
and a rotation matrix R with row vectors Rx = Ry X Rz, Ry = 
(0, -nz, ny, 0) and Rz = (iix, ny, nz, 0) given by nC' The result­
ing transformed homogeneous matrix M' then expresses the 
covariance in the local tangent-space coordinate system. 
Moreover, its upper-left 2x2 sub-matrix Mx,y represents the 
covariance matrix of all points projected onto the tangent 
plane Kc· We get the ellipse axis-ratio of the point distribu­
tion in Kc from the eigenvalue decomposition of Mx,y, and 

4 



we obtain the eigenvalues A.1 and A.2 from solving the qua­
dratic equation 

(EQ5) 

Furthermore, we obtain the major and minor axis orien­
tations of the bounding ellipse in the tangent plane Kc by 
solving 

Nr'y. V; = A;. V; (EQ 6) 

for the eigenvectors v1 and v2. Note that v1 and v2 are in 
R2, the tangent plane Kc. However, with respect to the local 
coordinate system with z-axis perpendicular to Kc we get the 
appropriate 3D vectors by setting z to zero, v'T = (vl, 0). 
The world-coordinate system ellipse axis e1 and e2 are 
obtained by applying the inverse rotation K 1 of the coordi­
nate system transform as e; = R-

1 
• v'; and normalization to 

unit length. Now we have defined a planar elliptical disk ec 
in the world coordinate system with center pc• axis direc­
tions e1, ez perpendicular to nc as well as major axis length 
a' = A.1 and minor axis length b' = A.2. 

The so defined elliptical disk does not yet exactly bound 
all points Pi projected onto Kc and its size must be scaled to 
a =fa' and b =fb'. We obtain the necessary maximal scale 
factor f by evaluating the ellipse equation 
j2 = x2 I a2 + y2 I b2 in the tangent plane Kc spanned by e1 
and e2 for all points Pi• with X; = (pi -fie)• e1 and 
Y; = (p; - pc) • e2 • However, since every surface element 
si represents an elliptical disk ei and not just a single point pi 
we generate bounding ellipses that not only include pi but 
cover the entire disks e;, approximated by bounding boxes 
as illustrated in Figure 6. Without this conservative measure 
a coarse LOD representation would not cover the surface 
well. 

a) 

FIGURE 6. a) Ellipse ec bounding only the points P; 
and b) conservatively bounding the disks e;. 

The outlined generation of elliptical disks cannot only be 
used to compute bounding surfels of nodes c of the multires­
olution hierarchy H, but could also be applied in a similar 
way to obtain elliptical disks of the initial input point set. 
For this one would compute the k-nearest neighbors of each 
point, calculate the average normal if necessary, compute 
the covariance matrix of this neighborhood and get a bound­
ing ellipse of the k-nearest neighbors as outlined above. 

4. Point Blending 

4.1 Continuous interpolation 
Our approach of smoothly interpolating surface parameters 
between surfels in object-space is closely related to para­
metric curved surface design using weighted blending of 
control points such as for example Bezier or B-Spline sur­
faces. Given a grid of control points PiJ and weight func­
tions B;J a parametric surface is given by 
s(u, v) = L· .B; 1.(u, v) · p,.

1
. (generally for u and v 

l,) , , 

E [ 0, 1] ). In particular, the blending functions BiJ satisfy 
the positivity B ;,/ u, v) ~ 0 and partition-of-unity 
L· .B;

1
.(u, v) = 1 criteria. Blending functions with global 

l,J ' 
support have B ;,/ u, v) > 0 for the open interval 
u, v E ( 0, 1) , while local support means non-:: zero weights 
B;j(u, v) only for u and v within a sub-interval 
I;,j c [ 0, 1] x [ 0, 1] denoting the limited support of control 
pointpiJ· 

Similarly we interpret the interpolation of surface 
parameters such as color in object-space between surfels 
s1 . .• sn as a weighted sum. In fact, we need to compute the 
interpolated color cP of a pixel p which is the perspective 
projection of a point p. Thus Equation 7 interpolates 
between the visible surfels s; whose elliptical disks e; have a 
non-empty intersection with the projection p as illustrated 
in Figure 7. 

cP = 2: '¥;(u;, v;) · c; (EQ7) 
Vi$ n e;:I= 0 

The blending function '¥; of the surfel s; is only posi­
tively defined over its local support, the elliptical disk e;, 
and zero outside. The local parametrization of '¥; with 
respect to a pixel p is given by the intersection 
Pe; = p n e; in the plane of the elliptical disk e;. The 
parameters u;, vi then specify the intersection point Pe 

I 

expressed as linear combination of the two ellipse axis 
directions e1 and e2, thus Pe, = u; · e1 + V; • e2 • Note that u; 
and v; never have to be explicitly computed because the 
blending function '¥1 is implemented as an a-texture 
mapped on the disk e;, see also Section 5.2. 

.... -

' / - .,; 

\ 
I 
I 

I 

a) b) 

FIGURE 7. a) Surfels s; overlapping p (dashed surfels 
do not contribute). b) Side view of projection p 
intersecting the planar elliptical disks e;. 

~ p 

In order to achieve a continuous interpolation, the blend­
ing functions '¥; must satisfy the positivity '¥;cP) ~ 0 and 
partition-of-unity Lv;;pne,:1:0'¥;cP) = 1 criteria for any 
given p. We can define a conforming blending function'¥; 
as a normalization of simple rotation-symmetric blending 

5 



kernels \JI. Given a surfel s; and its overlapping neighbors 
si, I· . . si,k as illustrated in Figure 8 we define its conforming 
blending function as 

':I'/~) = 'V;cP) . 
1\P ~ k '~) 

'V;Cfi) + Lj = i 'Vj\P 
(EQ 8) 

Thus given an arbitrary, positive blending kernel \JI used 
for each surfel, and to achieve partition-of-unity its final 
contribution to a pixel is normalized by the sum of all other 
surf els' blending kernels contributing to that same pixel. 
Per-pixel visibility determination of contributing surfels is 
detailed in Section 5.3. 

a) 

FIGURE 8. a) Regular grid of control points. b) 
Irregular set of surface elements. 

For control points distributed on a regular grid in a glo­
bal u, v-parameter space as shown in Figure 8 a) a solution to 
Equation 8 is simple to achieve and a single blending func­
tion ':I' can be obtained to be used for each control point. In 
our case, however, we have a point sampled geometry w~th 
surfels irregularly distributed over the surface as illustrated 
in Figure 8 b). Therefore, conforming blending functions 
according to Equation 8 have to be computed for each indi­
vidual surfel resulting in a computationally intractable solu­
tion. Note that any conforming blending function ':I' with 
limited support is not rotationally symmetric. 

The solution to Equation 8 is to separate Equation 7 into 
separate sums for the nominator and the denominator as 

L 'V;CP). C; 

(EQ9) 
cp = J. ,L 'V;CP) . 

Vi-,pne1#:.0 

Thus we can perform the interpolation of Equation 7 
using a simple blending kernel \JI and get an intermediate 
blended color 

c'.,. = p L 'V;CP) . C;. (EQ 10) 

Vi-$ n e1#:. 0 

Then the resulting intermediate color c'P of a pixel p 
after blending all contributing surfels has a weight 
W» = Lv;pne :#:- 0 \Jf;cP) of value less than 1, thus not (yet) 
p:rtitioning ui{ity. However, this weight W» is exactly the 
same value as the denominator of Equation 9. Hence we can 
obtain the final and correct color c;; by first blending the 
surf els according to Equation 10 to get the intermediate 
per-pixel result c'P and then performing a post-process 
per-pixel normalization by dividing the color intensity c';; 
by its weight w.,.. Note that this normalization to guarantee p 

partition-of-unity must be performed per pixel and its imple­
mentation is explained in Section 5.4. 

4.2 Blending kernels 
As shown in the previous section we can shift our focus to 
define a simple two-dimensional rotationally symmetric 
blending kernel 'Jf:r ___, [0, 1], apply it to each surfel s; 
scaled and oriented according to the ellipse e;, and achieve 
correct interpolation by a post-process per-pixel normaliza­
tion. There are many obvious choices for blending kernels 
'Jf(r) such as hat-functions or Gaussians. However, to 
achieve good blending results and to provide flexibility in 
rendering systems and for future research we would like to 
define a blending kernel with the following properties: · 

1. positivity: Vr;'Jf(r) ~ 0 , . 
2. smoothness: 'Jf(r) is n times differentiable 
3. limited support: 'Jf(r) = 0 for r > cmax 

4. control over width: 'Jf (r) > 0.5 for r < cmid 
5. control over slope: \Jf'(cmid) = s 

A Gaussian blending kernel given by 

-r2 

'Va(r) = e202 (EQ 11) 

satisfies the first two criteria of positivity and smooth­
ness, however, clearly does not have a limited support and 
very limited control over its shape. Figure 9 shows several 
Gaussian blending kernels \JI a(r) over a limited domain 
r < 1.5 for varying parameters cr. Obviously the kernel can 
be made more or less localized with varying cr, however, 
this single parameter concurrently influences the slope of 
the interpolation around 'Jla(cmid) = 0.5 and the support 
'Va(cmax) ~ E · 

~a~ 
FIGURE 9. Gaussian blending kernels for r < 1.5 and 
with: cr = 0.2, 0.3, 0.5, 0.6, 0.8, 1.0 (u.l. to l.r.). 

We propose a new blending kernel 'VE(r) that supports 
plateau-like blending kernels with variable sharp drop-off 
regions: 

for 0 ~r~b (EQ 12) 

The novel blending kernel defined in Equation 12 sup­
ports all five desired control criteria specified above. In par­
ticular it is well defined over a limited support area specified 
by the parameter b with lim 'VE(r) = 0. Furthermore one 
can adjust the width of th~kcfrnel with parameter a and sep-

6 



arately control the slope of the drop-off region by the 
parameter n. As can be seen from Figure 10, higher settings 
of a make for a more narrow blending kernel (for a fixed n), 
while high values for n generate plateau like kernels. 'lfE(r) 
also allows to simulate Gaussian shaped kernels if desired, 
for example 'If E(r) with n = 2 and a= 10 is very similar to 
'If 0 (r) with a= 0.3. 

~~i~ 
a~ 

FIGURE 1 o. Smooth blending kernels 'llE(r) for b = 1.5 

and with: n = 2, a= 8 and a= l; n = 3, a= 20 and a= 5; 
n = 5, a = 50 and a = 4 (u.l. to Lr.). 

The kernel 'If E(r) defined on the disk with radius b is 
mapped to an elliptical surfel disk e; by simple scaling. For 
e; with major and minor axis lengths 11 and 12, a point (x,y) 
one; is mapped tor= bJ(x/l1)2+(yll2)2 as shown in 
Figure 11. 

FIGURE 11. Mapping from elliptical surfel disk e; to the 
support domain of the blending kernel 'VE· 

5. Rendering 

5.1 Overview of algorithm 
Our proposed point blending and splatting algorithm uses 
hardware graphics acceleration to efficiently render and 
scan convert surfels as a-textured polygons. Exploiting ver­
tex- and pixel-shader programmability we present an effi­
cient rendering algorithm that performs visibility splatting 
and blending. The blending correction is then performed by 
a per-pixel normalization post process. Our rendering algo­
rithm performs the following steps for each frame: 

1. View-dependent LOD selection of surf els s i with 
projected screen size less than a threshold of 't pixels. 

2. Selected surfels s; are represented as triangles ori­
ented according to the surf el normal n i and the 
ellipse axis eil and e;2. The blending kernel 'If E(r) is 
specified by an a-texture on the triangle. 

3. The surfels are visibility splatted using an E-z-buffer 
concept such that surfels within E distance of each 
other are blended together according to Equation 10. 

4. The intermediate blending result is normalized in an 
imaging post process by dividing each pixel color by 
its accumulated blending weight. 

Figure 12 illustrates the different stages of our point ren­
dering process. The first step of view-dependent LOD selec­
tion is not further explained in this paper as it is a straight 
forward depth-first traversal of a multiresolution hierarchy. 
Given the hierarchy Ha top-down traversal decides for each 
node c E H if the corresponding surfel is visible, within the 
view-frustum and front-facing. Furthermore, if its elliptical 
disk projection on screen is larger than a threshold of 't pix­
els the child nodes are recursively processed. 

LOO selection of surfels s; 

triangle and a-texture setup , 
--------i.-----..... vertex-shader I 
fi,~: ;~~~~;~,~:; ... '. ', ·[ program VP1 I 

I .:~~' •·. .setup for,e~z~butte(ottset ; L 

z-buffer blocking 

Temporal 
storage of 
triangles 

.;,~~-----~ 

~ 
::I 

"' .£:: 
(..) 
ca 
Q) 

.E 

display 

FIGURE 12. Point rendering overview. 

Our rendering algorithm is implemented in OpenGL and 
takes advantage of nVIDIA's vertex-program [Ope02] and 
texture-shader [DSOl] extensions. 

5.2 Blending 
As mentioned earlier, blending is performed by mapping the 
rotationally symmetric and circular blending kernel 'If E(r) 
onto the elliptical disk e; of each visible surfel s;. In fact, the 
blending kernel 'If E(r) is precomputed and discretized in a 
pre-process, and the result is stored in a high-resolution ras­
ter image I'll. As shown in Figure 13, this a-texture I'll is 
mapped onto a generic triangle tunit in the x,y-plane such 
that the blending kernel covers a unit-size disk. For each 
surfel s;. the triangle setup stage in Figure 12 scales the 
generic triangle tunit in x- and in y-directions according to 
the major and minor axis lengths of ellipse e;, rotates the tri­
angle to align with the surface normal n; and the two ellipse 
axis, and then translates it to the object-space coordinates Pi• 
resulting in triangle t;. Thus each surfel is rendered as one 
triangle and blending is achieved by a-texturing. 

7 

-i 



(-2,-1 

blending kernel \JfE(r) 

a-texture image I'V 

FIGURE 13. Mapping of blending kernel \JfE(r) as 
a-texture onto a generic triangle. 

If a coarse LOD surfel si has a normal cone of 
semi-angle 0 associated with it, then the corners of the trian­
gle ti can have surface normals that are offset by 0 from ni 

as shown in Figure 14. This allows that the elliptical splat 
will actually be Gouraud shaded in the graphics hardware 
which increases the smoothness of the point blending. 

n;7 
..J.o::::..------.....:::::~ 

surfel s; triangle t; 

FIGURE 14. Triangle normals offset by normal cone 
semi-angle 8. 

5.3 Visibility splatting 
Visibility splatting uses an E-z-buffer rendering concept 
similar to [GD98] and [RPZ02], implemented by a two-pass 
rendering approach. In a first pass all selected surf els s i are 
rendered with lighting and a-blending disabled. Note how­
ever, that the a-test function is enabled such that the a-tex­
ture map I'll indeed generates an elliptical splat during 
scan-conversion of the rendered triangle. During this first 
pass the corners of the triangle representing a surfel are dis­
placed by E along the perspective projector as shown in 
Figure 15. After this first rendering pass the depth-buffer 
represents the rendered surface perspectively translated by E 
along the view-projection. 

x,y 

camera 
coordinate 

system ~--------------~z 
FIGURE 15. Application of a depth e-offset along 
view-projection for visibility splatting. 

At the beginning of the rendering stage, and for each of 
the selected surfels s i' the generic reference triangle !unit 

needs to be translated, oriented and scaled accordingly to 
the surfel information yielding t;. Since this will be repeated 
for the second rendering pass and since it involves expen­
sive CPU calculations, a temporal data structure is set to 
store the transformed values of the vertices of each surfel 
triangle ti. 

Additionally, since the purpose of the first rendering 
pass is only to set the E-offset z-buffer, the triangles sent to 
the graphics card do not require any color or normal infor­
mation. A simple vertex program, VPl in Figure 12, per­
forms the appropriate object-space to screen-space 
transformations of this first rendering pass. VPl also per­
forms the perspective translation of each vertex of ti by. E as 
illustrated in Figure 15. 

In the second rendering pass the depth-buffer is set to 
read-only and all visible surfels are rendered with lighting 
and a-blending enabled. Since the depth-buffer contains the 
visible surface offset by E, the desired E-z-buffering effect is 
achieved. 

For the second rendering pass, the object-space coordi­
nates of each surfel triangle ti are read from the temporal 
data structure and sent to the standard OpenGL pipeline or a 
vertex program - VP2 in Figure 12 in our case - with 
per-vertex normal, a-texture and material properties in 
order to incorporate Gouraud shading and lighting . 

5.4 Normalization 
After visibility splatting and blending, the resulting image I 
contains the interpolated pixel values according to 
Equation 10. The pixel color values contain the intermediate 
blending result c' = (a·R, a·G, a·B, a), the a component 
contains the accumulated blending weight. These color val­
ues constitute the correct proportionally blended color val­
ues, however, the a values need not be 1.0 as required. To 
get the final desired color c = (R, G, B, 1.0) each color com­
ponent of c' has to be multiplied by a-1• This normalization 
is performed as an image post-process stage on the interme­
diate blending result, see also Figure 12. 

Without any hardware extensions to perform complex 
per-pixel manipulations this normalization step has to be 
performed in software. However, widely available graphics 
accelerators now offer per-pixel shading operators that can 
be used more efficiently. In our current implementation, we 
perform this normalization in hardware using nVIDIA's 
OpenGL Texture Shader extension [DSOl]. 

To compensate the illumination deficiency we perform a 
remapping of the R, G and B values based on the value of a. 
During initialization time we construct a texture encoding in 
(s,t) of a look-up table of transparency and luminance values 
respectively, from 0 to 255 possible values as shown in 
Figure 16. The pixels of this texture encode the new inten­
sity for a given luminance (t) compensated with the a trans­
parency (s). 

8 



255 

0 s o a 255 
FIGURE 16. Alpha-Luminance map. 

Based on this alpha-luminance map, we proceed to cor­
rect each of the R,G and B channels of every pixel. Using 
n VIDIA' s texture shader extension operation 
GL_DEPENDENT_AR_TEXTURE_2D_NV the graphics 
hardware can remap the Rand a by a texture lookup with 
coordinates s =a and t = R into our alpha-luminance map. 
At this point, rendering a quadrilateral with the intermediate 
image I as texture-one and the alpha-luminance map as tex­
ture-two, and setting the color mask to block the G, B and a 
channels will compensate the red channel by a-1. Note that 
only the R and a channels are used by this dependent texture 
replace operation. Therefore, we need to remap the G and B 
channels to the R channel of two new images JG and ls 
while copying the a channel as well. This is done by render­
ing two quads and using nVIDIA's register combiners. Then 
the dependent texture replace operation is also performed on 
the images JG and ls. Thus by separating the RGB channels 
into three different images and using the a.R-dependent tex­
ture replace operation we get the corrected RGB values (in 
the red channel of three new images). Figure 17 illustrates 
this normalization process. 

~ir§!_p5!§S __ _ 
a 

L---- .J 
GL_DEPENDENT_AR_TEXTURE_2D_NV 

FIGURE 17. Per-pixel normalization process. 

6. Experimental Results 
The blending kernel \j/E(r) introduced in Section 4 has 
many advantages due to its flexibility in parametrization. 
Figure 18 shows a checkerboard of 512 x 512 point samples 
rendered with a fairly "round" kernel in Figure 18 a) and 

with a more localized kernel in Figure 18 b) (see also 
Figure 10). Clearly the more localized kernel exhibits less 
blurring effects, but it nevertheless provides to some extent 
antialiasing in object-space. 

a) b) 

FIGURE 18. Different blending kernels -\j/E with 
parameters: a) a = 1.0, b = 1.5 and n = 2.0 and b) 
a = 6.0, b = 1.5 and n = 3.0. (both rendered at 
screen-projection tolerance 't=0.02% of window 
area) 

In Figure 19 we can see the effect of a wide plateau like 
blending kernel \j/E(r) in image b) compared to a more 
round but narrow blending kernel in image a). The wide pla­
teau shaped kernel provides very smooth blending while 
retaining detail sharpness; the narrow kernel can result in an 
almost facetted appearance. 

a) b) 

FIGURE 19. Blending kernels \j/E with parameters: a) 
a= 6.0, b = 1.5 and n = 3.0 and b) a= 4.0, b = 1.5 
and n = 5.0. ('t = 0) 

The performance of our point blending and splatting 
method was measured using several color textured models. 
All performance measures were taken on a l .5GHz 
Pentium4 CPU and n VIDIA GeFroce4 Ti4600 GPU. 

In Table 1 we provide timings of the pre-process that 
generates the octree multiresolution hierarchy and computes 
the elliptical splat sizes as described in Section 3. We can 
see that our multiresolution model and splat size generation 
achieves a performance of processing about 100,000 input 
points per second. Even multi-million point models can effi­
ciently be processed by our method, and the splat size gen­
eration using the homogeneous covariance computation is 
very efficient. 

9 



Female 302948 121439 2.978 

Balljoint 137062 54992 1.378 

Dragon 437645 173507 4.268 

TABLE 1. Multiresolution point hierarchy construction and 
splat generation times. 

The performance of our point blending, visibility splat­
ting and color normalization algorithm is summarized in 
Table 2. It lists the number of actually visible and processed 
splats, the time for LOD selection, the time for blending and 
visibility splatting, and the time for color normalization all 
given in seconds for one rendered frame. We can see that 
our approach can render up to and over 600,000 points p~r 
second. Note that unlike in other experimental results this 
performance measure includes LOD processing and com­
plete per-vertex illumination, as well as a per-pixel normal­
ization of the weighted blended colors. 

Model Tol.-r #Splats LOO Splatting Normalization Total 
0.0% ~U4121 10.3158 1.::l!:St:i8 U.UUU.:!8 1.llU8 

David 0.01% 454656 0.2698 0.7918 0.000198 1.061s 

0.12% 340537 0.1958 0.6128 0.00028 0.8088 

Male 0.0% 116549 0.0388 0.1608 0.002038 0.1998 

Female 0.0% 147098 0.0488 0.2178 0.000198 0.2668 

Balljoint 0.0% 60663 0.018s 0.081s 0.000198 0.1008 
Dragon O.Q1% 163238 0.070s 0.2468 0.000198 0.3178 

TABLE 2. Rendering performance 1s given for each task 1n 
seconds used per frame. Splats denotes the number of visible 

surfels at the given screen-space tolerance 't. 
(tolerance 'tin percent of the window area size) 

All tests and images have been rendered at a resolution 
of 512x512 pixels. Note however, that higher resolutions 
such as 1024Xl024 pixels have not shown any noticeable 
change in rendering performance. Our rendering algorithm 
is not dependent on the output image size. 

Screen captured images of all test models are given in 
Figure 20. Note the high quality of the David model ren­
dered at a screen-space tolerance of 't = 0.01 % of the win­
dow area and the reduction of· visible splats by 50% 
compared to the zero tolerance. All models provide a 
smooth texture color interpolation and blending of surfels 
using a blending kernel VE(r) with parameters a= 6.0, 
b = 1.5 and n = 3.0. 

FIGURE 20. From top-left to lower-right: David at -r=O 
and -r=0.01; Male, Female and Balljoint at -r=O; and 
Dragon at -r=0.01. (screen-space tolerance T given in 
percent of window area) 

7. Conclusion 
We have presented a novel point-based rendering algorithm 
that interprets the problem of blending between surface ele­
ments as an interpolation in object-space. We have analyzed 
the problem of object-space point interpolation and demon­
strated that correct blending can be achieved even for irreg­
ularly distributed points using simple blending kernels and a 
per-pixel normalization post-process. Furthermore, we have 
provided mathematical details on how to generate appropri­
ate splat sizes for irregular point samples maintained in a 
space-partitioning multiresolution hierarchy. We have also 
described an efficient hardware accelerated point splatting 
algorithm. Our approach provides great flexibility in the 
shape of the desired blending kernels and is capable of effi­
ciently generating high-quality texture color interpolation 
between surface samples. 

Future work will address the problem of transparent sur­
faces within this framework and the development of a sin­
gle-pass point blending and splatting algorithm. 
Furthermore, we want to improve the parametrization of our 
new blending kernels such that the parameters affect the 
shape of the blending function more independently and are 
easier to use. 

10 



Acknowledgements 
We would like to thank the Stanford JD Scanning Reposi­
tory and Digital Michelangelo projects as well as Cyber­
ware for freely providing geometric models to the research 
community. 

References 
[ABCo+ol] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shackar Fleish­

man, David Levin, and Claudio T. Silva. Point set surfaces. In Pro­
ceedings IEEE Visualization 2001, pages 21-28. Computer Society 
Press, 2001. 

(BWK02] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient high 
quality rendering of point sampled geometry. In Proceedings Euro­
graphics Workshop on Rendering, pages-, 2002. 

[CAZOl] Jonathan D. Cohen, Daniel G. Aliaga, and Weiqiang Zhang. Hybrid 
simplification: Combining multi-resolution polygon and point render­
ing. In Proceedings IEEE Visualization 2001, pages 37-44, 2001. 

(CL96] Brian Curless and Marc Levoy. A volumetric methad for building 
complex models from range irngaes. In Proceedings ACM SIG­
GRAPH 96, pages 303-312. ACM Press, 1996. 

[CNOl] Baoquan Chen and MinhXuan Nguyen. POP: A hybrid point and 
polygon rendering system for large data. In Proceedings IEEE Visual­
ization 2001, pages 45-52, 2001. 

[DGHOI] Tamai K. Dey, Joachim Giesen, and James Hudson. A delaunay 
based shape reconstruction from larga data. In Proceedings IEEE 
Symposium in Parallel and Large Data Visualization and Graphics, 
pages 19-27, 2001. 

[DH02] Tamai K. Dey and James Hudson. PMR: Point to mesh rendeering, a 
feature-based approach. In Proceedings IEEE Visualization 2002, 
pages 155-162. Computer Society Press, 2002. 

[DSOl] Sebastien Domine and John Spitzer. Texture shaders. Developer Doc­
umentation, 2001. 

[GD98] J.P. Grossman and William J. Dally. Point sample rendering. In Pro­
ceedings Eurograplzics Rendering Workslwp 98, pages 181-192. 
Eurographics, 1998. 

[GKSOO] M. Gopi, S. Krishnan, and C.T. Silva. Surface reconstruction based 
on lower dimensional localized delaunay triangulation. In Proceed­
ings EUROGRAPHICS 00, pages 467-478, 2000. 

[GroOl] Markus Gross. Are points the better graphics primitives? Computer 
Graphics Forum 20(3), 2001. Plenary Talk Eurographics 2001. 

[HDD+92] H. Hoppe, T. DeRose, T. Duchampt, J. McDonald, and 
W. Stuetzle. Surface reconstruction from unorganized points. In Pro­
ceedings ACM SIGGRAPH 92, pages 71-78. ACM Press, 1992. 

[Hec89] Paul S. Heckbert. Fundamentals of texture mapping and image warp­
ing. Master's thesis, Department of Electrical Engineering and Com­
puter Science, University of California Berkeley, 1989. 

[LPC+oo] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, 
David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James 

Davis, Jeremy Ginsberg, Jonathan Shade, and Duane Fulk. The digi­
tal michelangelo project: 3d scanning of large statues. In Proceedings 
SIGGRAPH WOO, pages 131-144. ACM SIGGRAPH, 2000. 

[L W85] Marc Levoy and Turner Whitted. The use of points as display primi­
tives. Technical Report TR 85-022, Department of Computer Science, 
University of North Carolina at Chapel Hill, 1985. 

[MeeOl] Gopi Meenakshisundaram. Theory and Practice of Sampling and 
Reconstruction for Manifolds with Bowuiaries. PhD thesis, Depart­
ment of Computer Science, University of North Carolina Chapel Hill, 
2001. 

[Nie89] J. Nievergelt. 7'±2 criteria for assessing and comparing spatial data 
structures. In Proceedings of the 1st Symposiwn on the Design and 
Implementation of Large Spatial Databases, volume 409 of Lecture 
Notes in Computer Science, pages 3-27. Springer-Verlag, 1989. 

[Ope02] OpenGL Architecture Review Board. ARB vertex program. OpenGL 
Vertex Program Documentation, 2002. 

[PGK02] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simplifica­
tion of point-sampled. surfaces. In Proceedings IEEE Visualization 
2002, pages 163-170. Computer Society Press, 2002. 

[PZvBGOO] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus 
Gross. Surfels: Surface elements as rendering primitives. In Proceed­
ings SIGGRAPH 2000, pages 335-342. ACM SIGGRAPH, 2000. 

[RLOO] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution 
point rendering system for large meshes. In Proceedings SIGGRAPH 
2000, pages 343-352. ACM SIGGRAPH, 2000. 

[RPZ02] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space 
EWA surface splatting: A hardware accelerated approach to high 
quality point rendering. In Proceedings EUROGRAPHICS 2002, 
pages-, 2002. also in Computer Graphics Forum 21(3). 

[SAE93] Leon A. Shirman and Salim S. Abi-Ezzi. The cone of normals tech­
nique for fast processing of curved patches. In Proceedings EURO­
GRAPHICS 93, pages 261-272, 1993. also in Computer Graphics 
Forum 12(3). 

[Sam84] Hanan Samet. The quadtree and related hierarchical data structures. 
Computing Surveys, 16(2):187-260, June 1984. 

[Sam89] Hanan Samet. The Design and Analysis of Spatial Data Structures. 
Addison Wesley, Reading, Massachusetts, 1989. 

[WFP+ol] Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer 
auf der Heide, and Wolfgang Strasser. The randomized z-buffer algo­
rithm: Interactive rendering of highly complex scenes. In Proceedings 
SIGGRAPH 2001, pages 361-370. ACM SIGGRAPH, 2001. 

[ZPKG02] Matthias Zwicker, Mark Pauly, Oliver Knoll, and Markus Gross. 
Pointshop 3D: An interactive system for point-based surface editing. 
In Proceedings ACM SIGGRAPH 2002, pages 322-329. ACM Press, 
2002. 

[ZPvBGOl] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus 
Gross. EWA volume splatting. In Proceedings IEEE Visualization 
2001, pages 29-36. Computer Society Press, 2001. 

11 




