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~ Abstract

Chan, Karolyi, Longstaff, and Sanders [1992] find no evidence that the October 1979
change in Federal Reserve operating policy resulted in a once-and-for-all deterministic break
in the behavior of short term riskless interest rates. In contrast, we provide evidence of
such a regime shift even after allowing the volatility of interest rate changes to depend on
the level of interest rates. However, rather than modeling this regimecvshift as a permanent
event with no further shifts possible, it is more realistic to model the change in regimes
itself as a random variable. Accordingly, we put forward a stochastic volatility interest rate
model which generalizes previous specifications of interest rate dynamics and allows testing
for stochastic regime shifts. This Markov regime shifting model provides a more accurate
description of the behavior of U.S. short term riskless interest rates. We also consider a
specification that allows interest rate volatility to follow a diffusion process and we provifie a
statistically efficient integration-based filtering procedure to estimate its parameters. Given
U.S. short term riskless interest rate data, we cannot statistically distinguish between these
alternative models. In either case, once the stochastic nature of interest rate volatility
is taken into account, we find little or no evidence of a deterministic structural break in

corresponding stochastic volatility interest rate dynamics around October 1979.



REGIME SHIFTS IN SHORT TERM RISKLESS INTEREST RATES

1 Introduction

Modeling the stochastic behavior of short term riskless interest rates is of considerable im-
portance in financial economics. As such, numerous specifications of interest rate dynamics
have been put forward. Common to all of these alternatives, however, is the assumption
that the conditional distribution of interest rate changes is time varying. For example, in
the Cox, Ingersoll, and Ross [1985] mean-reverting, square-root specification of interest rate
dynamics,

dr = (a + br)dt + o/rdz, (1)

both the conditional mean and the conditional variance of interest rate changes depend upon

the level of the interest rate, .

It is also typically assumed that the structural form of this conditional distribution
remains unchanged. That is, the parameters which characterize interest rate dynamics are
assumed to be constant. However, structural breaks in the conditional distribution of interest
rate changes may occur in response to, say, changes in monetary policy so that i;he parameters
will not remain constant but rather will shift over time. The Cox, Ingersoll, and Ross
specification, for example, implies that high volatility in interest rates is associated with
high interest rate levels. While this may have been an accurate description of interest rate
behavior in the late 19705, casual empiricism suggests that it does not adequately characterize

their behavior in the late 1980s when interest rates were relatively low but still quite volatile.!

1For example, the one month Treasury bill yield was approximately 10% in December 1979 as compared

to approximately 5% in June 1987. However, the volatility of monthly interest rate changes, measured by the

square root of the annualised 7-point smoothed variance estimate centered at these dates, was approximately
Y



This paper investigates the empirical evidence of regime shifts or structural breaks in the
post-1964 times series behavior of U.S. short term riskless interest rates. The possibility of
regime shifts is important for at least two reasons. First, if there is evidence of regime shifts,
estimation procedures which ignore this may systematically misestimate the parameters of
the interest rate process. Second, if regime shifts have occurred in the past, they may occur
again in the future. If so, hedging and valuation techniques which ignore the possibility of

regime shifts may prove to be inaccurate.

Earlier studies by, among others, Huizingé. and Mishkin [1984], Campbell [1987], and
Sanders and Unal [1988], conclude that the October 1979 change in Federal Reserve oper-
ating policy did result in a once-and-for-all deterministic break in interest rate behavior.
In contrast, more recently, Chan, Karolyi, Longstaff, and Sanders (CKLS) [1992] find no
evidence of such a structural break once the instantaneous volatility of interest rate changes

is explicitly allowed to depend on the level of interest rates.

The keys to reconciling these conflicting conclusions lie in the assumed specification of
interest rate dynamics, and in the applicability of the statistical techniques used. Given
CKLS’s specification of interest rate dynamics, we provide clear evidence of a deterministic
break in interest rate dynamics around October 1979. A fortiori, these tests explicitly

acknowledge that the precise timing of this shift is potentially unknown.

The assumption of a deterministic regime shift implies that this structural break in
interest rate behavior is a permanent event with no further shifts possible. As an alternative,
it may be more realistic to model the change in regimes itself as a random variable. We do

so by following Hamilton [1990] and putting forward a stochastic volatility interest rate

the same, at 15%.



model which generalizes CKLS’s specification of interest rate dynamics and allows testing
for stochastic regime shifts. This Markov regime switching model provides an accurate
description of the time series behavior of post-1964 U.S. short term riskless interest rates
and, in fact, cannot be rejected in favor of a competing specification in which interest rate
volatility follows a diffusion process. However, little or no evidence exists of a once-and-for-
all deterministic break in these stochastic volatility interest rate dynamics around October

1979.

The plan of this paper is as follows. Section 2 introduces our specifications of interest
rate dynamics and discusses their statistical estimation. Section 3 provides reliable evidence
of a deterministic regime shift in post-1964 U.S. short term riskless interest rates around
October 1979. Recognizing that it is unrealistic to assume that this change in Federal
Reserve operating policy represented a permanent event with no further regime shifts in
interest rates possible, Section 4 tests for stochastic regime shifts given a Markov switching
model for interest rate dynamics. We also consider a specification that allows interest rate
volatility to follow a diffusion process. The stability of these stochastic volatility interest
rate specifications around October 1979 is also examined. Section 5 provides a summary-and

conclusions.

2 Models of Interest Rate Dynamics and their Esti-
mation

CKLS introduce the following continuous-time specification for the dynamics of the short

term riskless rate r:

dr = (a + br)dt + or'dz, (2)
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where the parameters a and b characterize the linear drift component, o measures the ‘base’
instantaneous volatility, while 4 > 0 allows the instantaneous volatility of changes in r
to functionally depend, in a power fashion, on its level. While, as noted by CKLS, this
specification includes as special cases many models of interest rate dynamics previously
put forward in the literature, it does not, however, allow interest rate volatility to evolve

stochastically.

To estimate the parameters of their model, ¥ = {a,b,o?,7}, CKLS use the Gener-
alized Method of Moments (GMM) assuming discrete-time observations from the posited

continuous-time model:

Tey1 — Tt = @+ bre + €41, (3)
Eletsa] = 0, E[ff-u] =o’r}". (4)

Defining the vector:
fi(0) = [e41,  €rqamy, ef+1¢,2,.f'¥, (€3+1 —”2":1)7’t]T, (5)

GMM requires finding those parameter values which minimize the distance between the

population moment conditions, E[f;(6)], and their sample counterparts, g(6).

In practice, with this choice of moment conditions, GMM reduces approximately to
generalized least squares (GLS). On an annualized basis, monthly observations correspond to
a small time increment and renders any consequent temporal aggregation problem negligible.
This follows from the fact that increments to diffusion processes are locally Brownian and,

hence, for small time increments, are approximately multivariate normally distributed.?

2See Kearns [1993] for a discussion of the various problems with using GMM to estimate parameters of
interest rate processes.



However, particular care must still be taken in this estimation. For example, for b ~ 0,
we are near a unit root in the interest rate process and therefore can expect systematically
biased estimates of b as well as unreliable estimates of 0.5 For GMM estimators to be well-
behaved, regularity conditions must also be imposed on the interest rate process (Hansen
[1982]). In the CKLS case, the following parameter restrictions are necessary as well as
sufficient for the stationarity and ergodicity required by GMM: b > 0 and 0 < v < 1 (see

Broze, Scaillet, and Zakoian [1993], especially Proposition 3.3, as well as Ait-Sahalia [1995]).*

Unfortunately, CKLS often obtain estimates of ¥ > 1, calling into question the reliability
of their statistical conclusions. The resultant explosive behavior of short term riskless interest
rates given CKLS’s estimate of 4 = 1.4999 can clearly be seen in Figure 1 where we plot
a representative sample path of {r,} assuming ro = 0.07 with a = 0.004, b = 0.06°, and
o = 1.721. Holding all else equal, larger values of o consistently result in floating point
overflows when using a 32-bit version of GAUSS-386. Intuitively, if r, is sufficiently large
then the resultant volatility of interest rate changes increases correspondingly for ¥ > 1 so

that an even larger 7, becomes likely.

As noted earlier, the CKLS specification does not permit stochastic volatility. Howev:r, it
is straightforward to generalize their framework to accommodate this feature. To begin with,
we follow Hamilton [1990] and consider the following Markov switching regime specification

for interest rate dynamics:
dr = (a + br)dt + o(t)r{dz, (6)

3For further details, see Ball and Torous [1995].

4If these conditions do not hold then sample moments (means, variances, etc.) will converge to different
values depending on the particular sample. Hence, estimates of the parameters (which are transformations
of the moments) will be sample-dependent even asymptotically. In other words, if we allow v > 1, then
estimates of 7 would change from one sample to another, regardless of the sise of the sample.

5These values of the a and b parameters correspond approximately to the least squares estimates obtained
using the CKLS interest rate data series.
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a(t) = 6 + BI(t), (M

where I(t) is a zero-one indicator variable following a simple two state Markov chain cor-
responding to low and high levels of volatility, respectively. The two stage Markov chain is
characterized by p = prob(l; = 1 | I,_; = 1), the probability of being in the high volatility
state given we were previously in the high volatility state, and g = prob(f; = 1| I,y = 0),
the probability of being in the high volatility state given we were previously in the low
volatility state. According to (6) and (7), the regime shift in interest rates, from a state of
low volatility to one of high volatility, is itself a random variable. This specification may be
estimated using maximum likelihood techniques. As the level of stochastic volatility may
take on only two values, the resulting likelih.ood function may be eﬁicféntly evaluated using
a nonlinear filter. We initiate the recursion at prob(lo = 0 | ro) = prob(lo = 1| o) = 1/2,

say, and run the filter for a warm-up period. The one-step-ahead forecast is given by
prob(l; = 1| r;;) = p prob(l;—y = 1| #_y1) + g prob(f;_y = 0 | 71;)

where 7., corresponds to all interest rate observations through (¢—1), while the contribution

to the likelihood function is
prob(r; | 71) = prob(y = 1,7 | 7¢_1) + prob(Je = 0, 7¢ | 7e_1).
We update our assessment of the state variable according to

prob(l; = 1| ry,r21) = prob(ly = 1,7 | re_y)/prob(re | re1)

= prob(r, | I; = 1,7¢,) prob(ly = 1 | ry)/prob(re | 7¢_4).

Proceeding in this fashion, the log-likelihood function can be constructed recursively and

then maximized using numerical techniques.



3 The CKLS Evidence Revisited

In October 1979 the Federal Reserve announced a change in its operating policy from target-
ing interest rates to targeting money supply growth. In this sectic;n, we investigate whether
this change gave rise to a once-and-for-all structural break in the stochastic behavior of
U.S. short term riskless interest rates. Following CKLS, we restrict, for the time being,
our attention to (2) where the volatility of interest rate changes is not allowed to evolve

stochastically.

As before, the parameter vector is denoted by ¥ = {a,b,0?,7}. Assume we have a sample

size of T observations, t = 1,...,T.

The null hypothesis is no structural change in the parameters:

Ho:1’¢=‘l’o fOI t=1,...,T. (8)

Alternatively, assume that a deterministic structural change has occurred and that the
change point is known with certainty. If this known change point is designated by =, 7¢(0, 1),
then the assumed time of change is Tt (or more precisely [T'x], where [.] is the integer part

operator). In this case, we can write the alternative hypothesis as

4 _ ) t(x) for t=1,...,Tr
Hl""-'{#g(-;r) for t=Tx+1,...,T. (©)

For the case where 7 is known with certainty, we can use likelihood ratio or Wald tests

to test Hy versus H;. For example, the likelihood ratio test statistic is

LRp(x) =2 [L(9,) + L($,) — L(o)]

<



where L(#) is the value of the log-likelihood function under Ho, while L($,) + L(¥;) is the

value of the log-likelihood function under H;. Alternatively, the Wald test statistic is
Wa(x) = T — &) (V5 + (1 = =) 310y — 92)
where V; is the asymptotic variance of #, while V; is the asymptotic variance of ;.

However, it is more realistic to assume that the change point 7 is not known with
certainty. In the case of the October 1979 change in Federal Reserve operating policy this
implies that interest rates anticipated this policy change or, alternatively, that the resultant
change in interest rates was effected with a lag (see Antoncic [1986] for further details). Bliss
and Smith [1994] argue that the misspecification of this change poinf ‘reduces the power of
CKLS’s test to reject the null hypothesis of no regime shift. If x is taken to be unknown,
the resultant statistical inference is complicated by the fact that this parameter is no longer
identified under the null hypothesis. As a result, likelihood ratio or Wald tests which treat

7 as a parameter do not possess their standard asymptotic distributions.

Because of these difficulties, we follow Andrews [1993] and test for a structural break

b

when the change point is unknown by considering test statistics of the form _
sup,cn LRr(r) and sup,.g Wr(x) (10)

where II is some pre-specified subset of [0,1]. That is, if the change point is known to
lie in some restricted interval, we calculate the Wald and likelihood ratio test statistics at
each potential change point within this test interval and determine corresponding maxima.
Andrews derives the nonstandard asymptotic null distribution of these maximal test statistics

and tabulates their critical values for a variety of test intervals.

s



3.1 Data

Following CKLS, we use the one-month Treasury yield® to proxy for the short term riskless
rate, r. We also consider CKLS’s sample period, June 1964 tluc;ugh December 1989, and
given annualized monthly data, this provides a sample size of T' = 307 observations. However,
unlike CKLS who use CRSP’s Fama 12-month Treasury bill term structure file, we rely on
one-month risk-free rates (the average of bid and ask) reported in CRSP’s risk-free rate file

since this data provides a more accurate measure of prevailing one-month riskless rates.”

3.2 Empirical Results

Without further restriction, estimation of (2) can result in inadmissible + values larger than
one; for example, CKLS report 4 = 1.4999. By definition, a structural break gives rise
to non-stationarity in the underlying data, and so it is not surprising that CKLS cannot
detect the October 1979 regime shift once such non-stationarity has been captured by their

estimated v value.®

The asymptotic null distribution of Andrew’s maximal test statistics requires stationarity

SDuffee [1994] argues that the instantaneous riskless rate is better proxied by the one-month Eurodollar
yield. However, to ensure the comparability of our results to those of CKLS, we rely on Treasury bill yields
throughout.

TSee Duffee [1994] for further details. The Fama 12-month Treasury bill term structure file is based on
the longest bill with at least 11 months and 10 days to maturity on a given date. The yield on this bill
when there is approximately one month until its maturity is taken to be the one-month Treasury yield. In
contrast, the CRSP risk-free rate file’s one-month series is constructed by selecting that Treasury bill closest
to 30 days to maturity, regardless of the bill’s original term to maturity; if more than one bill is closest to
the targeted 30 day maturity, that bill with shortest original term maturity is chosen. Therefore, unlike
the 12-month file, there is little variation between the target and actual maturities in the risk-free file. For
example, over our sample period, the days-to-maturity underlying the one-month yield series obtained from
the Fama 12-month Treasury bill file range between 10 and 41 days. In addition, given that with one month
to maturity the 12 month bill is furthest off-the-run, liquidity effects may further jeopardize the accuracy of
these quotes.

81t is interesting to note from CKLS’s Table V that only when 7 is assumed or estimated to be larger
than one does their x* test not reject the null hypothesis of no deterministic regime shift.

<



to be applicable. To ensure this, we fix v and restrict our attention to 0 < 4 < 1. By varying
~ we investigate whether allowing the volatility of interest rate changes to depend on the

level of interest rates affects the likelihood of detecting a deterministic regime shift.

Using the CRSP risk-free rate ﬁle’s‘ one month series, Figure 2 displays the values éf the
likelihood ratio and Wald test statistics for each 0 < 4 < 1, in increments of 0.01. We use
the test interval IT = [0.45, 0.55); that is, assuming the CKLS specification, we investigate for
each given 4 value whether there is evidence of a deterministic structural break in interest
rates anytime between September 1978 and November 1980. Since for a given v the model of
interest rate dynamics now involves p = 3 parameters, {a,b, 0?}, the 5% asymptotic critical
value under the null hypothesis of no deterministic regime shift is 10.15 (Table I, page 840,
Andrews [1993]).

For any admissible 4 value, we see reliable evidence of a once-and-for-all deterministic
break in short term riskless interest rates between September 1978 and November 1980. The
likelihood ratio test appears to provide more significant evidence against the null hypothesis
of no structural break than does the Wald test.? In either case, however, the reported test
statistics are well in excess of their 5% asymptotic critical value.’® As v increases, both test

statistics tend to decline in value, consistent with CKLS’s intuition that the evidence of a

structural break depends upon whether the volatility of interest rate changes is modeled as

9We also investigated the properties of these test statistics under the null hypothesis of no regime shift.
To do so, we simulated T = 307 observations according to r¢43 — ¢ = @ + br¢ + c\/re€es1, where {€41}
are simulated iid standard normals, assuming ro = 0.07 with @ = 0.004, b = 0.06, and ¢ = 0.01. The
maximal Wald and likelihood ratio test statistics were then calculated assuming I = [0.45,0.55]. We
repeated this experiment 500 times and tabulated the resultant empirical distributions. Under the simulated
pull hypothesis, the test statistics had very similar sampling characteristics. For example, the 5% (10%)
empirical cutoff value for the Wald statistic was found to be 11.1621 (9.3003) as compared to 11.6174 (9.8630)
for the likelihood ratio statistic. Different v values, 0 < 7 < 1, did not significantly alter these results.

10We repeated this analysis for one-month Treasury yields obtained from CRSP’s 12-month Treasury bill
file used by CKLS and found similar results.

10



being dependent upon the level of interest rates. However, even for v = 1, we still have

significant evidence of a deterministic structural break.

We now turn our attention to whether a more accurate modeling of volatility dynamics,
beyond simply assuming that the volatility of interest rate changes depends on the level of
interest rates, is consistent with this evidence. Such a model would provide the basis for an

improved description of short term riskless interest rate dynamics.

4 Stochastic Regime Shifts in Short Term Riskless
Interest Rates

The previous section provided evidence of a deterministic regime shift in U.S. short term
riskless interest rates. Even though the test procedures allowed for a potentially unknown
change point, we explicitly assumed that the regime shift was a permanent event with no
further shifts possible. However, this may not be a realistic assumption. For example,
the October 1979 change in Federal Reserve operating policy was short-lived, ending in
September 1982 and this suggests the possibility of other regime shifts.!* It may, thereiore,
be more appropriate to model the change in regimes itself as a random variable. One way to
capture this behavior is by Hamilton’s [1990] Markov switching model which assumes that

regime shifts follow a Markov chain.1?

URomer and Romer [1990] relying on the Minutes of the Federal Open Market Committee identified a
number of dates in addition to October 1979 when Federal Reserve operating policy changed, including
December 1968, April 1974, and August 1978.

12Variations on this model for interest rate dynamics have been suggested by Cai [1994] and Naik and Lee
[1994]. Unfortunately, Cai does not allow the volatility of changes in r to explicitly depend on the level of 7
and so cannot address CKLS’s claim that doing so eliminates evidence of a deterministic structural break.
Unlike Naik and Lee, we later examine the case where volatility follows a diffusion process.

11



4.1 Testing for Markov Regime Shifts

The Markov regime shifting specification for interest rate dynamics is summarized by (6) and
(7). We estimate the drift parameters a and b by OLS; these estir;lators are consistent even
when the variance is itself stochastic. As a result, we consider the following discrete-time
specification

res; = o(t)r{ &,

and
o(t) = 0 + BI(t),

where I(t) summarizes the state of the system and is governed by a two state Markov chain
parameterized by (p, g), res; is the residual from the OLS estimation at time ¢, while the

{e:} are assumed iid standard normal.}?

The parameters to be estimated are summarized by ¥ = (3,T,6,v), with T = (p,q). To
test for the presence of Markov regime shifts, we consider the following null and alternative

hypotheses:
Ho:B=0 Hy:B#0. N ()

However, when B = 0, the variance () is constant and the corresponding likelihood
function is flat with respect to I' = (p, ¢). In other words, the transition probabilities p and
q are not identified under the null hypothesis. Furthermore, the scores with respect to 3,
p, and g are all identically zero. Consequently, standard asymptotic theory does not apply.

For example, the usual ¢ — statistic on B will no longer have a standard ¢ distribution.!*

13We also considered Markov switching models which allowed shifts in mean as well as variance. However,
likelihood ratio tests provided no evidence of mean shifts once volatility shifts had been taken into account.
140ne might attempt to resolve these problems by simulating under the null hypothesis and then estimating

<«
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Fortunately, Hansen [1992] has developed a theory of statistical testing precisely under
these nonstandard conditions. Whereas standard statistical theory requires that the mean of
the likelihood ratio be well-behaved, Hansen relies on much weake:r regularity conditions on
the deviation of the likelihood ratio from its mean. While the resultant statistical procedure
is not optimal when standard asymptotic theory applies, Hansen’s method has reasonable
power and is not overly conservative for the nonstandard conditions underlying the Markov
regime switching model. See Appendix A for a summary of this statistical method as well

as further details.

4.1.1 Empirical Results e

Table 1 presents the maximum likelihood parameter estimates of the Markov switching
model of interest rate dynamics. As before, short term riskless interest rates are proxied by

one-month Treasury yields obtained from the CRSP risk-free rate file.

Our empirical results are consistent with the presence of Markov regime shifts, 8 # 0.1°
There is persistence in these regimes as the transition probability p of remaining in the high
volatility state is quite large. The persistence of the low volatility state, as measured by

1 — g, is also correspondingly high.

the switching model to obtain the sampling distribution of the corresponding likelihood ratio test statistic.
Unfortunately, there are severe difficulties with this approach. In particular, under the null hypothesis, the
likelihood function for the nonlinear switching model is ill-behaved, usually with numerous local maxima,
rendering global optimization extremely difficult.

15Hansen’s nonstandard test procedure requires a grid search to obtain the appropriate test statistic. We
varied g from —0.1 to —2.0 in steps of 0.1, while the transition probabilities p and g were varied from 0.1
to 0.9 in steps of 0.1. This grid search required 20 x 9 x 9 = 1620 evaluations of the test statistic. The test
statistic’s maximum value was determined to be 5.6821 at p = 0.9, ¢ = 0.8 and 8 = —0.2 with & = —5.869
and 4 = 0.674. We then simulated, with 1,000 replications, the sampling distribution of this test statistic
and obtained the following empirical critical values: 10% = 1.28, 5% = 1.63, 1% = 2.30, and 0.5% = 2.63.
These results provide reliable evidence of Markov regime shifts in our short term riskless interest rate data.

13



The maximum likelihood estimate of v is 0.6792 with an asymptotic standard error of
0.1679. That is, with the presence of Markov regime shifts, we cannot reject Cox, Ingersoll,
and Ross’s hypothesis that 4 = 0.5. This result is also consistent with CKLS’s claim that
much of the variability in short term riskless interest rates is attributable to their level. How-
ever, even after accounting for this heteroscedasticity, our results indicate that a significant

Markov switching component remains.

To see this more clearly, Figure 3 plots the time series behavior of prob(l, = 1 | #;) at
the Markov switching model’s maximum likelihood parameter estimates. For example, the
1979 — 1983 time interval represents a regime of highly volatile interest rates as evidenced by
the corresponding likelihood of being in the high volatility state, I, =1 Figure 4 plots the
resultant estimated volatility of monthly changes in one month Treasury yields. As expected,
estimated volatilities are highest over the 1979 — 1983 time period. While the 1974 — 1975
and post-1985 time periods also appear to correspond to the high volatility state, estimated

volatilities are lower since prevailing interest rates were much lower.

We also test for stability in the Markov switching model of interest rate dynamics. In
other words, we consider whether this switching model is itself subject to a once-and—fo:all
deterministic regime shift around October 1979. To do so in the presence of an unknown
change point, as before, we select the test interval I = [0.45,0.55] and, restricting our
attention to v = 0.5, compute likelihood ratio test statistics for each possible monthly change
point between September 1978 and November 1980.1% The resultant maximum likelihood
ratio test statistic (10.84) actually obtains at October 1979. To reflect the uncertainty in the

change point, the critical values for p = 4 parameters, from Andrews [1993], are 10.35 and

16Recall that we cannot reject ¥ = 0.5 for the full sample. We assume 4 = 0.5 to make the required
computations feasible.

<«
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12.27 at the 10% and 5% significance levels, respectively. Consequently, when uncertainty in
the change point is acknowledged, we see but marginal evidence against the null hypothesis

of no deterministic regime switch in the Markov switching model.

4.2 A Stochastic Volatility Model for Short Term Riskless In-
terest Rates

In the previous section we statistically rejected the assumption of deterministic interest rate
volatility in favor of stochastic volatility characterized by Markov regime shifting. While
appealing, this specification is limited since the ‘base’ instantaneous volatility, o(t), can

attain only two values.

This section addresses this deficiency within the CKLS framework by allowing o(t) itself
to follow a diffusion process'”. We then develop and implement statistical techniques to
efficiently estimate the parameters of this stochastic volatility model for short term riskless
interest rates. In particular, we assess the extent to which interest rate volatility is dependent
upon the level of interest rates within a more realistic stochastic framework where o(t) can

attain a continuum of values (or regimes).

As before, the drift parameters a and b are estimated by OLS with the resultant residuals

denoted by {res;}. The logarithm of o*(t) is denoted by z;. We now posit the following

17A number of stochastic volatility models have previously been put forward in the literature. Hull
and White [1987) and Wiggins [1889], for example, introduce stochastic volatility models for equity return
dynamics with a view to pricing options on these assets. Melino and Turnbull [1990] consider stochastic
volatility models for exchange rates, while Harvey, Ruis, and Shephard [1993] apply these models to a
multiple exchange rate setting. Longstaff and Schwarts [1992] provide a closed-form two factor model for
pricing interest rate derivatives using the short term riskless interest rate and its volatility as state variables.
Most recently, Jacquier, Polson, and Rossi [1994] investigate a Bayesian approach to stochastic volatility
estimation by using Monte Carlo Markov chain simulation methods. In all of these cases, the estimation of
the underlying stochastic variables is subject to substantial econometric difficulties.

15



dynamics for short term riskless interest rates

1
res; = ezp(izg)r;'_lel (12)

2y = a+ Pz +Ee, ‘ (13)

where {¢;} and {e;} are iid standard normals. Notice that we are assuming that lno?(t) is

itself stochastic and follows an AR(1) process.

Taking the logarithm of the squared observations gives the following equivalent specifi-

cation:

¥ = In(res?) = z¢ + 27In(re1) + In(e}) (14)

Ty = a+ﬂz,_1+£ez. (15)

If we assume that In(el) is normally distributed'®, we may follow Harvey, Ruiz, and
Shephard [1993] and rely on the Kalman filter to estimate the parameters of this model
using quasi-maximum likelihood. That is, we maximize the likelihood function obtained via
the Kalman filter by treating the conditional distribution of the observable (y;) given the

state (z;) as if it were normal.

While the quasi-maximum likelihood procedure is straightforward to implement, its sta-
tistical efficiency hinges on the adequacy of the normal approximation to the log x? distri-
bution with 1 degree of freedom. To assess the adequacy of the approximation, Figure 5
graphs this distribution and its associated normal approximation. Clearly the approximate
Kalman filter will be adversely affected by outlying observations in the log x? distribution’s

skewed left tail which are highly irregular under the normal approximation.

18The mean and standard deviation of the normal distribution are chosen to match the corresponding
mean and standard deviation of the log x? distribution with one degree of freedom: —(In2 + euler) and
euler + x2 /6, respectively, where euler is Euler’s constant = 0.57731.

16



To circumvent this problem and minimize any consequent loss of statistical efficiency, we
use an alternative procedure (Fruhwirth-Schnatter [1994]) which ezplicitly incorporates the
non-normality of the observable’s conditional distribution. This integration-based Kalman
filter is detailed in Appendix B. Rather than assuming the measurement errors to be normally
distributed, we make the less stringent assumption that the prior on the state is normally
distributed. As a result, this technique is likely to be more accurate than Harvey, Ruiz, and

Shephard’s quasi-maximum likelihood procedure’®.

4.2.1 Empirical Results

The results of implementing the integration-based Kalman filter are reported in Table 2.
These estimates are consistent with mean reversion in the volatility of short term riskless
interest rates (8 # 0). The volatility also appears to be dependent upon the prevailing level
of interest rates, 4 = 0.6871, and this relationship is estimated relatively precisely with a
standard error of 0.2576.2° As in the Markov switching model, we again cannot reject Cox,
Ingersoll, and Ross’s hypothesis that 4 = 0.5 and, in fact, we obtain remarkaBly simil:r v

estimates in the Markov switching and diffusion models (0.6792 and 0.6871, respectively).

Given this similarity of 4 estimates, it is interesting to statistically compare the fit of
the Markov switching and diffusion models. Unfortunately, we cannot rely on a standard
likelihood ratio test in making this comparison since the competing models are not nested.

Rather, we use Vuong’s [1989] modified likelihood ratio test procedure to formally compare

1945 compared to the corresponding full non-linear filter (which takes approximately 100 times longer
to computationally implement), we find the integration-based filter to be extremely accurate. Unreported
experiments indicate that the likelihood obtained under the full non-linear filter differs by less than 0.002%
from the integration-based Kalman filter’s result.

20This can be compared with the result obtained using the quasi-maximum likelihood procedure where
4 = 0.9281 with a standard error of 0.3404.

<
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these non-nested hypotheses. Vuong’s approach uses the standard deviation of the differ-
ence in the logarithm of the competing models’ densities to standardize the likelihood ratio
statistic and can also be modified to account for differences in their degrees of freedom. See

Appendix C for an overview of this method and further details.

Using the Akaike [1973] and Schwarz [1978] criteria and relying on Newey-West [1987]
standard errors, we compute corresponding Z statistics of 0.1146 and 0.9566, respectively,
when comparing the Markov regime switching and diffusion models. By either criteria, we
cannot statistically distinguish between these competing models of interest rate dynamics.
Intuitively, both models capture the stochastic structure of interest rate volatility. However,
since volatility is a second moment property of interest rate changes, even twenty five years

of monthly data does not provide sufficient information to decide which model provides the

better fit.

Finally, we also test whether the diffusion model is itself subject to a once-and-for-all
deterministic regime shift around October 1979. For the test interval II = [0.45, 0.55], we
once again restrict our attention to 4 = 0.5 and compute likelihood ratio test statistics for
each possible monthly change point between September 1978 and November 1980. This
likelihood ratio test statistic is maximized in October 1979 at 9.425, and, from Andrews’
Table I for p = 5 parameters, we see but marginal evidence against the null hypothesis
of no deterministic regime switch in this stochastic volatility model of riskless interest rate

dynamics.
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5 Summary and Conclusions

Is there a regime shift or structural break in the behavior of short term riskless interest
rates surrounding the October 1979 change in Federal Reserve operating policy? Using a
generalized specification of interest rate dynamics, this paper provides reliable evidence of a
once-and-for-all deterministic regime shift in the behavior of one-month Treasury yields even

after acknowledging that the precise timing of this change point is potentially unknown.

A deterministic regime shift, however, assumes such an event is permanent with no
further shifts possible. To relax this assumption, we also model the change in regimes as a
random variable itself by implementing a Markov switching model of interest rate dynamics.
We also generalize this specification by allowing interest rate volatility to follow a diffusion
process but cannot statistically distinguish between these competing stochastic volatility

specifications.

Our results confirm the importance of modeling interest rate volatility in accurately
describing the dynamics of short term riskless interest rates. It is not enough to simply
assume that the volatility of interest changes depends solely on the prevailing level of int:rest
rates. While such interest rate level eflects are clearly present in the data, an important

stochastic volatility component remains.
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6 Appendix A: Hansen’s Nonstandard Test of a Markov
Switching Model

Denote the Markov switching model’s log-likelihood function by

T
LT(ﬂa P: a: 7) = Zu(ﬂ1 T, 0, 7)'
=1

Set @ = (B,T) and § = (0,9) so that Ly(B,T,0,9) = Lr(a,d) and L(B,T,0,7) = li(a, §).

Since § is identified, we can eliminate § by concentration
b(a) = mazsLr(a, 6),
giving the concentrated log-likelihood function
Lr(a) = Lr(a, §()).
It is more convenient to work with the corresponding likelihood ratio function defined by
LRr(a)) = Lz(e, §(a)) — Lz(co, 6(e0))

T " a
= g[u(a) — ti(aq). “ -

where aq is the value of a under the null hypothesis. The likelihood ratio test statistic for

testing Hy = ao against the composite alternative H; # oy is then

LRy = sup,LRy(a).

The likelihood ratio function can be decomposed into its mean, Rr(a), and deviation

from the mean, Qr(a):

LRr(a) = Ry(a) + Qr(a).

<«
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Standard asymptotic theory requires that Rr(a) = E[Lhr(a)] be well-behaved. Unfortu-
nately, as argued earlier, this is not the case with the Markov switching model. However,
we can avoid this requirement by noting that under Hy we have Rr(a) < 0, yielding the

following upper bound on the likelihood ratio function
LRr(a) < Qr(a).

Hansen uses this maximum to test Hp. Since it is a bound, the resultant test will be
conservative (under-reject when the null is true) and suffer a consequent loss in power (ability
to reject the null when it is false). However, Hansen provides simulation evidence in the
context of a Markov switching model for GNP which indicates that the proposed test is not

overly conservative and appears to have reasonable power.

Hansen’s test procedure is implemented on the basis of the variance standardized Qr(a)

statistic:
LR} = 8UP Lﬁr(a),
Vi ()
where

R A, o 1 .
gi(a) = li(a) — li(ao) — TLRT(a)
with variance measure

T
Vr(a) = E‘f(a)-

=1

We may simulate the variance standardized statistic, LRy, for a particular value of a by
o~ dia)us
=R
where {u;} are simulated iid standard normal random variables. The supremum of these

test statistics across different values of a allows us to test Hy = oo against the composite

<
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alternative H; # ao. This latter computation may, in general, be burdensome as the opti-
mization of this potentially ill-behaved function may necessitate a grid search over values of

.
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7 Appendix B: Fruhwirth-Schnatter’s Integration-Based
Kalman Filter for Non-Gaussian Time Series

Recall that for the general filtering problem the likelihood function is obtained by Bayesian
updating. Let Y; denote the history of the observable through time t, Y; = {y¢, ¥¢-1,.--¥o}-
Given a prior on the state p(zi—; | Y;-1), there are three stages to the iterative filtering
procedure: a projection to obtain p(z, | ¥;-1); followed by an integration to calculate the
conditional likelihood p(y, | Y;-1); and finally an updating to obtain p(z, | ;). More
specifically, given the prior p(z¢_; | ¥;-1), the projection is given by:
pze | Yeaq)= _L - (2, 21 | Yeor)dz, g
= L ‘ 1P(f"t | 2e-1, Ve )p(2e-1 | Yeo1)dzes

= L P2 | 2e-1)p(2e-1 | Yeo1)dzey.

The conditional likelihood is obtained by integrating with respect to z;:

p(ye | Yeoa) = /z ‘ P(ye, 2 | Yeon)dz, .

= ./, P(ye | ze)p(ze | Yioa)dze,

while the updating is given by:

pize | Yi)=p(ze |y, Ye)
= p(z:,yg | Yt—l)/P(!lt |Yt—1)

= p(ye | z)p(z | Yi1)/o(ve | Yioa).
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For a linear state space model with multivariate normal measurement errors, the Kalman
filter gives the projection, conditional likelihood, and updating as simple matrix calculations
(see Harvey [1989]). However, for our problem we have a linear state space model but

non-normal measurement errors.

Rather than assuming the measurement errors are normally distributed, we follow Fruhwirth-
Schnatter [1994] and assume that the prior distribution on the state is normal. Since the
projection based on a normal prior preserves normality, it can be implemented analytically.
The conditional likelihood, however, requires numerical integration as the measurement error
is assumed log x? distributed. Taking this igto account, we integrate the posterior distribu-
tion p(z, | ¥;) to obtain its first and second moments needed in our {{i)dating scheme. We
then match moments and assume that p(z; | ;) is approximately normally distributed. By
maximizing the product of the resultant conditional likelihoods across time, we obtain the

model’s maximum likelihood parameter estimates.

Fruhwirth-Schnatter recommends Gauss-Hermite integration to implement this integration-
based Kalman filter. We experimented with Gauss-Hermite as well as the extended Simpson’s
rule for this problem. The Gauss-Hermite method is a variable-grid numerical qua.dra?;ure
method that is extremely efficient for calculating integrals whose kernels are products of
polynomials and normal densities. However, Simpson’s rule is extremely accurate as well as
being simpler to implement. For example, we obtained 12-digit accuracy using a 141 point
extended Simpson’s rule in which we updated z,’s range at each time point ¢ by its predicted

mean 1 7 estimated standard deviations.
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8 Appendix C: Vuong’s Test for Non-Nested Alter-
native Hypotheses

This appendix briefly describes our implementation of Vuong’s test ‘for comparing the Markov
switching stochastic volatility model, denoted H;, with the diffusion stochastic volatility
model, denoted H,. Except for the degenerate case when volatility is constant, the two
models do not overlap. We have already rejected the hypothesis of constant volatility using
Hansen’s nonstandard test, therefore, as noted by Vuong, we may proceed as though the two

hypotheses H, and H, are strictly non-overlapping.

Vuong’s test sta.tisfic is a likelihood ratio statistic adjusted by the standard deviation
of the average log-likelihood functions under the competing models. In particular, let Inf,
denote the loglikelihood of r, | #;—; at the maximized likelihood under H; and let Ing, be
the corresponding maximum loglikelihood under H,. For convenience, set ¢; = Inf; — Ing..
With T observations, define LRy = ¥, ¢;, the maximum loglikelihood ratio and denote
by wy the estimated standard deviation of ¢ based on the T observations. Under mild
regularity assumptions, outlined in Vuong, the test statistic T-°® L Ry /wr has approximately
the standard normal distribution when the competing hypotheseé ére indisti}lguishable. It
is also possible to adjust this statistic to account for different degrees of freedom in the
competing hypotheses and thus give more weight to a particular hypothesis. To do this, we
replace LRy by LR} = LRy — Kr where, for example, using the Akaike [1973] criterion
Kr = p; — ps with p; being the number of estimated parameters under H; and p; the
number of parameters under H,. Alternatively, one could use the Schwarz [1978] criterion

with Kr = In(T) * (p1 — p2)/2.
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Vuong’s test is based on the assumption of independent drawings from a common par-
ent distribution. However, for our time series application we may expect autocorrelation or
heteroscedasticity in the data which could potentially distort the estimation of the standard
deviation of the average loglikelihoods. As a precaution, we use the Newey-West [1987]
method to estimate this standard deviation. We experimented with various lag length ad-
justments ranging from 3 to 12 periods. The results were quite insensitive to the choice of
lag and, in addition, were also indicative of no significant deviation from the assumption of

independence.
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