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Cyber-Insurance for Cyber-Physical Systems

Carlos Barreto, Alvaro A. Cardenas, and Galina Schwartz

Abstract— In this paper we review the emerging role of
cyber insurance for Cyber-Physical Systems (CPSs) and discuss
the obstacles, the needs, and the avenues forward. Specifically
we focus on the unique characteristics and challenges that
cyber-physical systems provide to the cyber-insurance industry
(compared to classical information technology risks) and show
how they change the incentives for security investments.

I. INTRODUCTION

While investing in security protections is a challenge for
most industries, there is a difference between industries that
use conventional Information Technology (IT) systems and in-
dustries that work with CPS. Companies that use traditional IT
(e.g., have a web-presence, or handle any financial transaction)
are constantly targeted by increasingly sophisticated and well-
organized criminal groups. For IT companies, cyber threats
are recurrent events, so they constantly upgrade and improve
the security of their systems to minimize losses. Disclosure
of these attacks to the general public was facilitated by data
protection laws enacted in several countries.

On the other hand, most industries in the CPS domain
have rarely seen attacks sabotaging their physical process.
While there have been attacks with the potential of causing
catastrophic physical damage (e.g., Stuxnet [1], the attacks
against the power grid in Ukraine [2], and the Triton malware
attacking safety systems in the Middle East [3]), attacks with
physical-world consequences are still rare, in part because
they are hard to monetize by attackers.

In addition to being rare, attacks too CPS are not openly
reported. This lack of actuarial data leads to low quality risk
estimates; as the U.S. Department of Energy (DoE) stated in
their Energy Delivery Systems Cyber Security Roadmap [4],
“Making a strong business case for cyber security investments
is complicated by the difficulty of quantifying risk in an
environment of (1) rapidly changing, (2) unpredictable threats
(3) with consequences that are hard to demonstrate.”

Therefore, market incentives alone are insufficient to
improve the security posture firms, and as a result, our CPS
infrastructures remain fairly vulnerable to computer attacks
and with technology that is decades behind the current security
best practices used in enterprise IT domains. This market
failure for improving the security of CPS has resulted in
several calls for government intervention [5], [6], [7]

Instead of asking companies to follow specific standards,
governments would demand firms to have cyber-insurance for
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their operations [8], [9], [10]. There is a popular view that un-
der certain conditions, the insurance industry can incentivize
investments in protection [11]. In particular, premiums would
reflect the cyber security posture of CPS companies; if a
company follows good cyber security practices, the insurance
premiums would be low, otherwise, the premiums would be
high (and this would in principle incentivize the company to
invest more in cyber-security protections).

The purpose of this paper is twofold. On one hand, present
a survey of mechanisms to manage risks, in particular, the risk
of events with catastrophic consequences. On the other hand,
we investigate how cyber insurance affects the protection
of CPS against cyber threats. In a numerical case-study, we
show how the self-interest of firms leads to low protection
(low security investments), which in turn generate losses to
society as a whole. We also find that with an active insurance
market, firms will improve their profit; however, they will
invest less in protection. To solve this problem, we show how
asking operators for full liability for losses caused by cyber-
attacks improves the security of CPS (operators will invest
more in security protections). This shows that governments
and regulatory bodies need to be careful in their design of
insurance requirements.

The paper is organized as follows. In Section II, we discuss
the problem of improving protections of CPS as a socially
desirable problem and how insurance can help. In Section III
we illustrate some of the main results from the theory of
extreme events and how other industries have dealt with
them. We present in Section IV an experiment of the impact
of insurance in the security investment of CPS firms. In
Section V we discuss further challenges and open problems
for risk assessment and insurance for CPS, and in Section VI
we conclude the paper.

II. INVESTMENTS IN CYBER SECURITY AND THE ROLE OF
CYBER INSURANCE

In decision theory, it is assumed that firms make decisions
to maximize their expected utility. However, firms must cope
with uncertain events (or risks), such as potential losses caused
by cyber-attacks. For example, if we assume a Bernoulli risk
distribution, a successful attack against a firm occurs with
probability p and causes damage L; similarly, the attack fails
with probability (1− p). The risk under these conditions is
E[L] = pL.

Common ways to manage risks include risk reduction (e.g.,
avoidance or mitigation) and risk transfer (e.g., insurance).
A risk reduction strategy consists in procuring protections to
reduce the probability of successful attacks, e.g., investing e
resources in protection to reduce the probability of successful
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attacks to pe ≤ p. A rational agent will invest in cyber-security
protections as long as pe L+ e < pL.

On the other hand, firms can reduce their uncertainties
transferring the risk through an insurance policy. In this case,
the risk (expected loss) of the firm becomes p(L− I) + P
where I is an indemnity and P is a premium (payment to the
insurance company). The premium that insurance industries
compute is a measure of risk, which individuals, industries,
and governments can use to make decisions (e.g., decide
whether to start a business or move to a hurricane prone
area). Therefore, insurance is seen as an essential tool for
protecting societies against risk, and particularly, extreme
events. Without insurance, nations would suffer larger material
and non material losses [12].

A. Risk Reduction + Risk Transfer
Ehrlich and Becker [11] discuss the relationship between

risk reduction and risk transfer. They find that insurance and
self-protection are complements when investments in self-
protection reduce the premium.1 That is, with insurance we
can incentivize investments in risk mitigation (protection),
and transfer the remainder risk to a third party simultaneously.

The promise of insurance for managing the risks to cyber-
events in classical IT systems has led to a growing interest
on cyber-insurance [13], [14]. The cyber insurance market
collected globally $75 bn in premiums during 2015 [15], and
while the cyber insurance market is small compared with the
commercial insurance market, (which has $1.1 trn in the U.S.
alone [16]), it is expected to keep growing, since cyber crime
has become more relevant in recent years.2

Cyber-insurance for CPS on the other hand is still in the
future. Attacks to CPS with real physical world consequences
are rare, therefore, insurers have insufficient information to
estimate these risks (and the risk reduction resulting from
investments in prevention). The classical insurance industry
(e.g., health insurance or vehicle insurance) has achieved
good risk estimates based on their access to large historical
datasets of events, where they can identify the prevalence of
certain types of accidents or risky human behavior. But these
do not exist in CPS yet.

Besides inaccurate risk estimations, cyber threats on CPS
also expose the insurer to long tail risks (events with low
frequency and high cost, such as a blackout in the power grid).
When these long tail risks reach unexpected high levels, they
are called extreme events. By their nature, extreme events
result in a contagion effect that affect other industries.

Therefore we need to start developing the theory and
background necessary to discuss cyber-insurance for CPS,
and we cannot think of insuring without clearly understanding
the thresholds of indemnity that insurance companies will use
to declare uninsurable events. To properly understand these
problems we need to look at the theory of extreme events
and at how other industries have dealt with them.

1Additionally, the probability of losses must be high enough (greater than
1/2 for quadratic utility functions).

2For instance, the respondents of the survey [17] estimate that the
probability of having losses in information assets is larger than in material
assets (2.5% and 0.5% for maximum losses in each case).

III. EXTREME EVENTS

Extreme events are difficult to predict long time ahead and
their impact can exceed the capabilities of the (re)insurer,
leading to insolvencies [18]. For instance, events like Hur-
ricane Katrina in 2005, the Fukushima Daiichi disaster in
2011, or terrorist actions, such as 9/11, classify as extreme
events because they reached unprecedented impacts and had
repercussions in the international economy [19].

It is rational from a profit maximizing point of view
to ignore extreme events. Effectively, extreme events are
frequently explicitly excluded from insurance contracts. For
example, earthquakes above certain Richter scale are excluded.
For CPS security however there is not a clear cut way to
exclude these events yet.

Below we introduce models used to estimate the risk of
extreme events and mechanisms to deal with them. We focus
on mechanisms used to protect against terrorist attacks, which
unlike other risks, occur because of intelligent adversaries,
rather than random events. These mechanisms can offer some
guidelines to deal with attacks on CPS.

A. Modeling extreme events

The traditional statistical analysis based on Gaussian
approximations is inappropriate to model extreme events,
because some extreme events (in natural and social phenom-
ena) follow power laws [20] and might have infinite variance
(extreme events are capable of black swan behavior [21]).
On the contrary, the analysis of extreme events focuses on
characterizing the extremes (or tail of the distribution) rather
than the mean, because losses of extreme events have more
importance than the losses of smaller but frequent events.

Extreme value theory (EVT) is devoted to the analysis
of extreme events with little information, such as natural
catastrophes (e.g., windstorms, earthquakes, tsunamis, and
volcanic eruptions), man made catastrophes (e.g., aviation
crashes, explosions, terrorist acts, marine disasters), and
financial events (e.g., sudden changes in the stock market)
[22]. EVT is supported by a strong theoretical background,
and in general, it is the best we can do with limited data
[23], [24].

Some of the most important results in EVT are analogous
to the central limit theorem, which states that the sum of
iid samples have a distribution that converges to a Gaussian
distribution as the number of samples increase. Similarly,
EVT predicts that the distribution of extreme events (their
tails more precisely) converge to a family of functions (see
Table I). Below we show some of the main results of EVT,
and refer the interested reader to [25], [26].

1) Generalized extreme value distribution: Suppose that
we have a sequence of random variables I1, I2, . . . with
an unknown distribution G(x) = P[Ii ≤ x] (here Ii might
represent losses or insurance claims. Let

Mn = max
i
{I1, . . . , In}

be the maximum among the n first observations. Furthermore,
let us define the normalized maximum as Mn−bn

an
, where bn
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Fig. 1: Examples of the families of extreme value distribu-
tions.

and an determine the location and scale of the distribution.
The Fisher-Tippett Theorem [27] states that if the distribution
of a normalized maximum converges, then the limit belongs
to the family extreme value distributions Hξ, with some
parameter ξ. That is,

Gmax(anx+ bn) = P

[
Mn − bn

an
≤ x

]
→ Hξ(x)

as n → ∞. The family of extreme value distributions is
defined as

Hξ(x) =

{
exp(−(1 + ξx)−1/ξ) if ξ 6= 0,

exp(−e−x) if ξ = 0,

where ξ is the shape parameter of the distribution and x
satisfies 1+ξx > 0. We can extend the family of distributions
as Gmax(x) = Hξ(

x−µ
σ ), which represents a distribution with

location µ and scale σ.
We can classify the extreme value distributions in three

subfamilies. I) If ξ = 0, then Hξ belongs to the Gumbel
family, which have medium tails. This distributions have a
unlimited domain. II) If ξ > 0 then Hξ belongs to the Fréchet
family, which have heavy tails (its tail resembles a power
law). The distributions in this sub family have a lower limit.
III) If ξ < 0, then Hξ belongs to the Weibull family, which
have a short tail with an upper limit. Fig. 1 shows some
examples of each family with µ = 80 and σ = 20.

2) Generalized Pareto distribution (GPD): The GPD
is another distribution of extreme events that describes
observations exceeding a high threshold u. The probability
that an event surpasses the threshold u is

Gu(x) = P [X − u ≤ x|X > u] =
G(x+ u)−G(u)

1−G(u)
. (1)

The Pickands-Balkema-de Haan Theorem [28], [29] states
that Gu converges to a GPD as the threshold u increases.
The GPD is defined as

Gξ,u,σ(x) =

{
1− (1 + ξx

σ )−1/ξ if ξ 6= 0,

1− exp(− x
σ ) if ξ = 0,

TABLE I: Statistical principles analogous to the central limit
theorem used in extreme value theory.

Fisher-Tippet
Theorem.

The distribution of extreme events (if it exists)
converges to the extreme value distribution.

Pickands-
Balkema-de
Haan Theorem.

The tail of a distribution converges to the
generalized Pareto distribution.

where x ≥ u and ξ and σ determine the shape and scale,
respectively. This result suggest that we can use the GPD to
model the tail of distributions, that is, the probability that
an event exceeding u occurs. In such case we can fit the
GPD to the data that exceeds the threshold u using some
method like maximum likelihood estimation or probability
weighted moments. From Eq. (1) we can approximate the
loss distribution G for y > u as

Ĝ(y) = (1−Gn(u))Gξ,u,σ(y) +Gn(u)

where Gn(u) is the empirical distribution evaluated at u.
Estimations of extreme events involve some level of

judgment to select the threshold u because there is a trade-off
between quality of the approximation and its bias. With less
data the approximation will be less biased, but its quality
will also deteriorate [25].

3) Catastrophe (CAT) models: We can enrich the data with
hypothetical losses to observe the effect of unobserved adverse
effects. For example, catastrophe models provide estimations
of the cost of real or hypothetical catastrophes. These
models are more complex than statistical models because
they consider previous events, geographical information, and
data about the infrastructures to emulate the damage of
hazardous events [30]. Although the predictions tend to
underestimate the losses of extreme events, these models
are useful to generate data and overcome the lack of data
from real events [25].

B. How can we manage extreme risks?

There are two main postures regarding the role of insurance
in the management of extreme events [31]. On one hand, some
authors believe that the insurance industry will be able to
deal with the risk of extreme events. Private insurers have
tried to use the international reinsurance market3 and capital
markets to diversify the risk of catastrophic risks [32], [33].
Particularly, the insurers transform their risk into securities,
which are traded in capital markets. This has been used
for natural catastrophes such as hurricanes, windstorms, and
earthquakes [34].

On the other hand, some authors believe that, since losses
of catastrophic events are highly correlated, they should be
handled with social insurance (e.g., with assistance of the
government).4 Moreover, Ulrich Beck [35] argues that the
modern risks, such as nuclear accidents, global warming,

3 Reinsurance is the main mechanism to diversify catastrophe risk (40-50%
of catastrophe losses in the U.S. are covered by reinsurance).

4For example, terrorism depends on the government’s actions and has
similarities with war, which is not insurable [31].
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and terrorism are product of the human activity and are
characterized by radical uncertainty, that is, we cannot deal
with them through statistical analysis [36]. Such risks are
beyond territory, time, and societies and the responsibility
of their consequences are difficult to asses [35]. This theory
is appealing due to the increasing frequency and impact
of catastrophes, as well as the emergence of new forms of
catastrophes, e.g., cyber risk.

Despite the characteristics of the new risks, the insurance
industry has managed to insure against extreme events, such as
terrorism (although governments usually act as insurers of last
resort). However, the mechanisms to securitize the insurer’s
risk are in its infancy and their viability remains uncertain
[22]. Below we describe some mechanisms to transfer and
mitigate the risk of extreme events.

1) Risk-linked securities: CAT bonds are risk-linked secu-
rities, with payments made when some event occur, such as
hurricanes or earthquakes. They work as follows: an insurer
issues bonds that are sold through a reinsurer to the investors
of the capital market. If no event occurs, the investors get a
return (interest) for their investment. However, if a catastrophe
occurs the loan is forgiven and the insurance company uses
the collected capital to pay claims of the catastrophe (which
cannot be covered only with premiums). The main advantage
for the insurance company is to pass the risk to other agent
and guarantee solvency in case of an accident. Furthermore,
cat bonds are attractive investments to diversify because they
avoid credit risks (risk that the loan is not paid) and have a
low correlation with the market investment returns [18].

2) Proactive risk management: Firms and regulators seem
to wait until accidents occur before they take action for
managing risks of catastrophic events (because these events
apparently are unimaginable or unlikely); however, there are
signals that can alert about the risks of catastrophic events.
For instance, although the 9/11 attacks are considered to
be unpredictable, there where previous attempts of using
airplanes in attacks [19]. Also, the tsunami risk of the
Fukushima Daiichi nuclear plant was recognized (before
the accident in 2011) through simulations that used updated
estimations of threats. Furthermore, before the Fukushima
accident other nuclear plants suffered floods, such as the
Blayais Nuclear Plant in France in 1999 and the Madras
Atomic Power Station in India in 2004 [37]. Although signals
are easier to identify after the events, the previous examples
show the importance of reevaluating risk management based
on the evolution of both threats and best practices. Particularly,
Paté-Cornell [19] highlights the importance of considering
the risk of events that haven’t happened yet and update their
likelihood based on degrees of belief.

C. Insurance for terrorism

Perhaps the industry that is most relevant to insuring large-
scale CPS, is the insurance industry focused on terrorism.
Below we discuss some anecdotes and trends within this
industry.

The terrorist attacks (truck bomb) by the Irish Republican
Army (IRA) on Bishopsgate (London’s financial district) in

TABLE II: Characteristics of government reinsurance for
terrorism.

Pool Re TRIA

Membership Optional Mandatory
Collect funds Ex-ante Ex-post

Premium Based on risk Based on total
claims

1993 had a cost of £350 million and caused serious losses to
insurance companies. After the attack, reinsurers announced
exclusions of terrorism coverage from their contracts not only
due to high costs, but because of their inability to estimate
the risk.5 Excluding terrorism from coverage would have
profound consequences on the nation’s economy. First, direct
insurers won’t accept risks without reinsurance [38], which
in turn would expose businesses to additional attacks. Also,
without protection the value of property would decline, as
well as the interest in undertaking construction projects [38].

To avoid such crisis, the insurance industry (in cooperation
with the British government) implemented the Pool resinsur-
ance company (Pool Re), in which the government supports
insurers acting as reinsurer of last resort for losses over £75
million. The government involvement allows to spread losses
in the entire population through taxes. To date, Pool Re has
covered claims from thirteen terrorist incidents contributing
with more than £600 million [39].

A similar strategy was adopted in other countries that
suffered terrorist attacks. For instance, The ‘Consorcio de
Compensacioń de Seguros’ (CCS) is a catastrophic risk
consortium created in Spain in 1941 to cover political risks
(insurance against terrorism is compulsory). Sri Lanka created
a fund known as the strike riot civil commotion and terrorism
fund (SRCCTF). On the other hand, France has the ’Gestion
de l’Assurance et de la Réassurance des Risques Attentats et
actes de Terrorisme’ (GAREAT) pool for terrorism risk. It
was created after the attacks on 9/11 (again, having insurance
against terrorism is compulsory).

Before 9/11 the estimated probability of attacks on U.S.
soil was close to zero, because from 1991-1998 the attacks on
the U.S. were only 1% of attacks in the world. However, the
attacks on 9/11 unleashed a crisis in the insurance industry,
because the attack occurred on U.S. soil and the insured
losses amounted to $40 − $70 bn. After 9/11 reinsurers
ceased terrorism coverage and insurers were reluctant to
cover terrorism without federal assistance, which motivated
the participation of the government as reinsurer of last resort
through the Terrorism Risk Insurance Act (TRIA). The TRIA
supports insurance claims caused by acts of terrorism. The
total cap of federal coverage is $100 bn per year [40], [41].
Unlike Pool Re, the TRIA is mandatory and determines the
government’s payment once the attack took place. Table II
shows a comparison between Pool Re and TRIA.

5 Unlike natural events, it is difficult to asses the frequency or the impact
of terrorism because these acts are carried out intentionally.
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D. Summary and Insights

We have discussed ways to model and quantify extreme
risks, such as EVT, GPD and CAT models. We also introduced
a variety of tools to manage risks, such as reinsurance
markets, securities, risk-linked securities, and proactive risk
management. Finally, we have summarized how the insurance
industry dealt with catastrophic events arising from terrorism.
One particular interesting point to take is that in several of
these cases we need the government’s intervention, like the
TRIA act for terrorism in the U.S. Without it, the insurance
market for terrorism could have collapsed. Therefore, the
government may have to eventually play a similar role for
nurturing a cyber-insurance market for protecting critical
infrastructures such as the power grid from cyber-attacks.

IV. EXPERIMENT

In this example we illustrate how cyber insurance can affect
investments in security protection. We assume that the insurer
can estimate the risks accurately. As discussed before, most
of the firms operating CPS have limited liability in case of a
catastrophic attack, that is they do not bear the total damage
caused to others.

We define the firm’s utility function as

U(x) = 1− e−ax,

where x is a real number and a = 0.01. The following
parameters determine the wealth of the firm: i) the initial
wealth w0 = 200, ii) the losses, represented with the random
variable L; and iii) the cost of protecting the system, denoted
C(z) = kcz

η, where z ∈ [0, 1] is the degree of protection,
kc = 50, and and η = 1.5.

Here we model the losses of a firm L with a GEV
distribution with parameters µ = 80, σ = 20, and ξ ∈ [0, 1].
Hence, L has cdf

P[L ≤ x|ξ(z)] = G(x, ξ(z)) = Hξ(z)

(
x− µ
σ

)
,

which depends on the shape parameter ξ(z). For simplicity
we assume that the shape parameter ξ changes linearly with
the protection level z, i.e., ξ(z) = 1 − z, where z ∈ [0, 1].
Therefore, investments in security reduce the likelihood of
extreme losses.

With the previous considerations the expected utility of
the firm is

E[U(w0−C(z)−L)] =
∫ Qα

0

U(w0−C(z)−x)dG(x, ξ(z)),

where Qα is the maximum loss contemplated in the risk
analysis. Here we assume that the firm uses value-at-risk
(VaR) as the risk metric; hence, the firm discards extreme
losses that occur with low probability. The maximum loss
considered by the firm, Qα, is defined as the α% quantile of
the loss distribution, that is,

P[L ≥ Qα|ξ(z)] = 1− α,

where α is the precision of the risk metric.
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Fig. 2: Expected utility of a firm and the social cost when
a firm ignores the tail of the distribution. The firm invests
more in protection and reduces the social cost when the risk
measure α-VaR has large precision α.

A firm with α%-VaR might cover the losses up to Qα;
however, losses exceeding Qα are imposed on third parties6

who pay for the damage either by bearing the losses or by
paying bail outs. In this case we define the social cost Ls as
the expected losses not paid by the firm

Ls(z) =

∫ ∞
Qα

(x−Qα)dG(x, ξ(z)).

Fig. 2a shows the expected utility of a firm that ignores the
tail of the distribution and Fig. 2b shows the social costs as a
function of the investment z. Here, with lower α%-VaR the
firm increases its profit by investing less in protection, which
in turn increases the social cost.7 This model thus captures
the behavior we see in CPS and identifies the driving factors
for the current underinvestment in security protections.

A. Effect of Insurance

Now let us consider the effect of an insurance policy
covering at most Qα losses. In other words, the policy
covers the losses that the firm considered in its risk analy-
sis.8 Also, we assume a fair premium, that is, the insurer
charges the expected losses covered by the policy P (z) =∫ Qα
0

x dG(x, ξ(z)).
Fig. 3 shows that firms with full liability invest more

resources in protection than firms with limited liability. There-
fore, a regulator or a government demanding full liability from
their operators improves the security of systems. Moreover,

6E.g., shareholders, other firms, customers, or the government.
7In our experiments the firm contemplates losses up to 90%-VaR and

95%-VaR, therefore, the firm ignores events that occur once every 10 and
20 years, respectively.

8We assume that an insurer won’t accept the risk of extreme events unless
the firm is prepared for such events. Therefore, the policy covers only the
maximum loss for which the firm took precautions.
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(b) Full liability (99.9%VaR).

Fig. 3: Expected utility of a firm with (and without) insurance
and different liability levels. The insurance improves the
benefit of the firm, regardless of the liability; however, firms
with insurance invest less in protection.

firms improve their profit with insurance, but invest less in
protection (regardless of their liability). Therefore, insurance
fails to improve the protection of firms, which might occur
because the probability of extreme events is small. According
to [11], insurance can incentive investments in protection
when the probability of losses is high enough. Despite the
failure of insurance to improve protection, insurance can still
play an important role estimating the risk of companies in
situations with asymmetric information.

V. CHALLENGES AND OPPORTUNITIES

Below we describe some new and unique problems for
managing risks in CPS.

A. Design of policies

1) Asymmetries in information: The U.S. Department of
Homeland Security has sponsored some initiatives to facilitate
and encourage voluntary data sharing, such as the Cyber
Incident and Analysis Repository (CIDAR), Information
Sharing Analysis Organizations (ISAO), Information Sharing
Analysis Centers (ISAC), Cybersecurity Information Sharing
Act (CISA) [42]. At present these initiatives are voluntary
and face the following challenges: 1) ensure accurate reports
(many organizations are reluctant to share meaningful infor-
mation), 2) ensure anonymity and privacy of individuals, 3)
maintain a voluntary nature and encourage participation, and
4) insurer’s won’t contribute data, because this information
gives them a competitive advantage.

The government can regulate the cyber insurance market to
reduce asymmetries in information. In particular, governments
can implement regulations to mandate sharing of information
[43], which in turn is expected to improve the insurability
of cyber risks [44]. Particularly, [45] reports that federal

regulation such as HIPAA and data breach disclosure laws
increase demand for cyber insurance.

2) Development of response plans: It is also important
to develop response plans to minimize the social impact of
catastrophic events. Despite the fact that risk management
practices would reduce losses (e.g., equipment damage),
society still bears intangible damage, such as the suffering
caused by catastrophic events. Therefore, it is necessary to
raise awareness of cyber risks, so we can be prepared to face
them [46].

B. Building CPS cyber-risk models

1) Estimation of cyber risks: Most works on risk manage-
ment assume that risks can be estimated precisely, which
implies knowledge of the likelihood of events and their
impact. However, estimating risks in practice could be
unfeasible due to a lack of information on attacks, and
the complex interrelations among firms [47]. Furthermore,
statistical properties of risks change upon observation in this
type of adversarial system, because rational individuals react
to acquired information. Hence, we need verify the precision
of risk estimates (or develop better risk measures9) and design
risk management strategies that consider uncertainties in the
risk [48], [49]. Also, models should account for information
feedback: i.e., changes in risk produced by the implementation
of risk management actions.

2) Improve attack models: Traditional security studies
consider that a system is partially secure if the cost of
finding and exploiting a vulnerability exceed its benefits
[50]. Furthermore, it is assumed that the cost of exploiting
a vulnerability depends on the risk of being discovered
(based the seminal work on the economics of crime by G.
Becker [51]). However, the attackers responsible for cyber
crimes often remain anonymous or cannot be prosecuted in
their country of residence [52]. Hence, we need to design
risk management strategies whee the attacker can remain
anonymous.

While cyber-attackers may not be prosecuted, they still
have limitations when attacking. For example, Axelrod and
Iliev [53] explain that attackers face some risk when launching
attacks, e.g., if the attacker uses some cyber-resource and
is discovered, such resource would become useless in the
future. On the contrary, if the attacker waits for too long,
the defender might discover some protection against the
vulnerability. Hence, the defender can prevent attacks by
depleting the resources of its adversaries, without punishing
them directly [54].

3) Dealing with evolving threats: Some research focuses
on static settings, where protection decisions are made only
once [55], [56]. However, unlike other static threats, cyber
threats evolve in time because humans react to decisions
made by the other parties. For example as an attack unfolds,
the defender might discover new information to update
its protection strategy. Likewise, attackers react to defense
efforts by finding new vulnerabilities and attack strategies.

9[48] shows that risk measures with VaR lack robustness and volatility,
that is, forecasts are inaccurate and fluctuate between time periods.
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Consequently, the information about previous attacks can
become irrelevant for evaluating new risks [43].

We can model the evolution of threats by considering
dynamics in the security of systems. For instance, [57], [58]
consider problems of resource allocation in networks akin
to viral spreading processes. On the other hand, [59], [60]
analyze dynamics in the defense strategies, such as moving
target defense, where changes are made to the configuration
of the system to make it more difficult for attackers to launch
successful attacks. Other works consider that the security
of the system evolves according to a Markov process, in
which the actions of both defender and attacker determine
the security of the system [61], [54], [62]. We believe that
we can design better protection schemes having into account
the evolution of threats and the time restrictions mentioned
in [53].

C. Challenges for investment in risk management

Firms with limited budgets face problems making sound
security choices due to difficulties evaluating the risks. In
addition, firms must choose between several mechanisms to
reduce and transfer risks that perform different tasks and
tackle different security problems. Hence, firms need to find
the combination of risk management practices that bests suits
them, however, individual firms often ignore the effectiveness
both cyber insurance and mitigation technologies. Moreover,
firms often ignore their exposure to risks. As a consequence,
firms ignore the distribution tails (potential extreme events)
and under invest in protection.

1) Determination of best practices: Cyber insurance poli-
cies can improve the security of systems if they promote
effective security practices, e.g., through premium discounts.
In such cases, the insurance industry can play the role
of a regulator, which coordinates industries encouraging
similar protections. However, the coordination of actions
also introduces correlations in the risk, because the firms
would have also the same vulnerabilities. Hence, insurers
face a challenge in determining the best practices to cope
with future unknown vulnerabilities. In general, a list of
best practices should go beyond a list of requirements (e.g.,
standards, specific implementations of technologies), because
the firms would focus on complying the requirements, rather
than reducing the real risk.10

Nonetheless, investments in security can improve the
protection even when the risk is misunderstood. For example,
[63] finds that firms with a CISO (Chief Information Security
Officer) have lower average costs of data breaches than
companies without strategic security leadership. Indeed, [44]
suggests that investments in mitigation explains why losses
in the U.S. and Europe are lower than losses in Asia.

VI. CONCLUSIONS

In this paper we have focused on providing an overview
of the unique characteristics that make cyber-insurance for

10In many cases the specific configuration of the devices determines the
risk, rather than their adoption

CPS more challenging than cyber-insurance for classical IT
networks.

We also saw how insurance can decrease security in-
vestments in protection; however, under the right setting
(demanding to be fully covered for all liability losses) will
actually motivate more investments in security protections
and therefore will improve our public good.

Ultimately the success of a cyber-insurance market for
CPS protection will depend on the ability of the insurance
companies to estimate risks, and these estimates will have to
address extreme events and the previous efforts on managing
extreme risks.
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