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Abstract: 

Joseph R. Hoyt Jr. 
Local to global pathogen and host dynamics of an emerging fungal disease, white-

nose syndrome 
 

Emerging infectious diseases present a major threat to wildlife populations 

and have the ability to drive once common species towards extinction. Increasing 

globalization has resulted in accelerated change in climate, increased anthropogenic 

movement, and land-use alterations leading to the emergence of infectious diseases in 

both humans, agriculture and wildlife. Studying disease dynamics at different 

contexts and scales can provide insight into alternative levers of conservation action. 

White-nose syndrome, a disease of hibernating bats, was first detected in single 

tourist cave in northern New York. Pseudogymnoascus destructans the fungal 

pathogen responsible for WNS has since spread across much of eastern North 

America causing the collapse of hibernating bat populations. P. destructans was 

likely introduced to North America from Eurasia, where it is widely distributed, and 

has likely been present for thousands of years. The data in this dissertation provide 

insight into the factors determining temporal variation in mortality from WNS. In 

addition, we will also provide insight into the mechanisms that contribute to species 

differences in pathogen transmission. More broadly this research provides a synthesis 

of data across multiple WNS disease contexts, and highlight the substantial 

conservation insight that can be gained through this approach.  
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Abstract: 

Estimating the rate of infectious contacts among individuals and between species is a 

fundamental component in understanding, predicting, and controlling epidemics. 

However, accurately measuring infectious contact rates is extremely difficult for a 

wide range of directly transmitted pathogens, and most methods miss infrequent 

contacts that link social groups. We constructed contact networks using direct 

observations of social behavior in multispecies communities of hibernating bats. We 

then examined transmission of a surrogate pathogen (different colors of ultraviolet 

fluorescent dust (UVF-dust)), among bats to elucidate possible transmission networks 

of a directly transmitted disease, white-nose syndrome. Transmission of UVF-dust 

uncovered vast numbers of hidden links among social groups of bats that increased 

the connectedness among individuals and between species by an order of magnitude 

compared with contact metrics based on direct observations of social groups. These 

UVF-dust epidemics uncovered the pathways of transmission observed during the 

invasion of the fungal pathogen causing white-nose syndrome. More broadly, these 

results illustrate how cryptic social interactions can have dramatic effects on disease 

dynamics, and emphasize the importance of capturing uncommon or indirect links 

among social groups.  



3 
 

Introduction: 

 The rate of infectious contacts among hosts are driven by a complex mixture 

of host, pathogen and environmental factors [20] and are fundamental components in 

describing disease systems [21]. Sociality directly influences spread of pathogens, by 

structuring interactions between individuals within a population [40, 41].  Enormous 

efforts have been undertaken to characterize contact rates and social networks to 

understand and predict patterns of pathogen spread [42, 43]. These studies have 

highlighted the importance of heterogeneity among individuals [44-46], the role of 

networks in structuring and limiting epidemics [47, 48], and the variation among 

species in social interactions and pathogen infection [49, 50]. However, accurately 

predicting pathogen dynamics requires quantification of contact rates and social 

networks, and measuring infectious contact rates is a fundamentally difficult task due 

to uncertainties in the types of contact that lead to infection, and challenges in 

observing and quantifying uncommon or indirect contacts.   

Contact rates and networks can be characterized using a variety of techniques, 

but each of these methods has strengths and weaknesses in terms of easily and 

accurately capturing infectious contacts within and between social groups in ways 

that can be used to understand and predict future epidemics. These methods include 

contact tracing surveys, usually collected over short time periods [43, 51, 52]; surveys 

of sexual habits [53-55]; household disease surveys [56, 57], observation of social 

group  [58]; GPS or proximity transmitters [59-61]; and the use surrogate pathogens 

or phylodynamic reconstructions post-outbreak [62, 63]. Short-term contact surveys 

and social group studies (e.g. family groups, school classrooms) are often relatively 

easy to conduct, but they may miss important contacts between individuals in 

different social groups, links between individuals with infrequent, transient, or 

indirect connections (e.g. taxi drivers and customers, strangers sharing public spaces 

during transportation, contact with a shared environmental reservoir) [64]. For 

pathogens with long infectious periods or significant environmental reservoirs short-

term survey techniques may do a particularly poor job at characterizing infrequent or 
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indirect contacts among social groups [65]. Estimation of contact rates based on GPS 

or proximity collars can sometimes capture these contacts between members of 

different social groups, but may still underestimate them unless the whole population 

is marked.  In addition, it is difficult to define a potentially infectious contact using 

location-based methods [66, 67]. Retrospective measurements of pathogen spread 

using molecular tracing, [68] contact tracing via interviews post-outbreak [51, 64], 

and model estimation of parameters [46], can be more accurate and complete. 

However, missing information of all cases and deaths can create difficulties in 

recreating transmission chains, and circumstantial or epidemic-specific details can 

limit inference to other settings [20, 69]. Thus, a significant challenge in predicting 

epidemics is the empirical estimation of infectious contacts among hosts and the 

environment.  

Bat communities provide an ideal system in which to examine how contacts 

within and between social groups influence subsequent pathogen dynamics[3]. 

Contact among individuals bats of multiple species can be easily characterized during 

winter by quantifying clusters of individuals and clustering behavior differs 

substantially among bat species and individuals [3, 70-72]. Bats spend the great 

majority of their time (>95%) in these clusters, just as most animals (including 

humans) primarily interact with a relatively small group of individuals, making these 

clusters comparable social units [41, 60, 61].  However, hibernating bats occasionally 

arouse from torpor and contact individuals in other clusters, and may also contact 

shared environmental spaces.  The extent to which infrequent movement among 

social groups, and indirect contact via the environment influence transmission of 

pathogens among hibernating bats has not been quantified, and is of substantial 

interest, due to the recent emergence of the fungal disease white-nose syndrome. 

White-nose syndrome (WNS) has decimated hibernating bats [3, 26], as it has 

spread across North America. The fungus causing WNS, Pseudogymnoascus 

destructans, was first detected in the North America in 2006 [22], and has since 

spread from New York to over half of North America and recently to the Western 
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U.S. [23]. White-nose syndrome has killed millions of bats and extirpated species 

from many sites [3, 73]. Infection with P. destructans occurs primarily during the 

winter when bats hibernate and cool their body temperature to near ambient for 

several weeks at a time, allowing the fungus to grow on and into their epidermal 

tissue [34, 74]. Transmission of the fungus can occur through direct contact among 

bats, or indirectly via the environment (Fig. 1). Infection results in a cascade of 

physiological effects, disrupting homeostasis, and eventually resulting in death [36, 

37].  

Figure 1: Diagram of P. 
destructans transmission in 
bats. Hosts acquire infection 
through direct contact with 
either other infected bats or the 
environment. If suitable growth 
conditions are present, the 
fungus then grows on and into 
the epidermal tissue. As the 
fungus grow, it forms conidia 
and other structural elements, 
which can be shed into the 
environment, reinfect the same 
host, and/or be transmitted to a 
new host through direct contact.  

 

Differences in social behavior among species appear to play a role in 

transmission and impact of the fungus, but rapid mortality and frequent colony 

extinction in a highly solitary species challenge simple explanations for local within-

species pathogen transmission [3], as is the case in other systems [75]. Transmission 

differs substantially among bat species in the year of pathogen invasion [38], with 

infection prevalence in two species (Myotis lucifugus and Myotis septentrionalis) 

increasing from <5% to 100% over a four month period while prevalence in two 

others (Perimyotis subflavus and Eptesicus fuscus) rose from <5% only to 40% [38]. 

Interestingly, the two species that roost solitarily (Myotis septentrionalis and 

Perimyotis subflavus) have very different transmission patterns, suggesting that 
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contacts among social groups (and possibly between species) plays a key role in 

transmission dynamics.  

Here, we examine the role of within and between social group contacts in 

influencing pathogen transmission. We quantified social contacts by measuring 

physical contacts and social group sizes (clusters) of four species of hibernating bats 

in eight winter bat colonies. We examined between-social group contacts by tracing 

the spread of seven different colors of a ultraviolet-fluorescent dust (UVF-dust) 

applied to seven individual bats per site, as repeated surrogate pathogen invasions for 

the fungus causing WNS. We hypothesized that there would be significant differences 

between observed and unobserved social behavior, both among species and 

individuals, potentially explaining the high transmission of P. destructans in solitary 

individuals and species.  

 

Methods: 

Study Sites and Sampling for P. destructans  

We studied contact rates, networks and fungal infection with P. destructans in 

bats at eight abandoned mines in Wisconsin and Michigan over two winters (Table 

S1; 2013/2014 and 2014/2015). Mines were previously excavated for minerals 

including lead, copper, and graphite [76].There were between 18-624 total bats, of 3 

or 4 species hibernating at each site (Table S1). Bats in this region begin hibernating 

in October and leave hibernacula in April-May.  We visited each site twice during 

each winter, in November and March, counted all bats by species, and sampled up to 

20 of each species for the fungus, P. destructans, using a previously described swab 

sampling technique [34, 77].  Samples were placed in RNAlater (Thermo Fisher 

Scientific), and subsequently tested for P. destructans by qPCR [34, 78].  

Quantifying contact rates and transmission networks 

We quantified connections among hibernating bats in three ways, bats 

physically touching each other, bats hibernating in a cluster, and bats that shared a 

surrogate pathogen (a unique color of UVF-dust. The first two measures, close 
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contacts and social groups, are comparable to measures in other systems, because bats 

spent >99% of the winter hibernating in these conditions. The number of individuals 

detected with each UVF-dust color provides an estimate of the total epidemic size 

resulting from a single (dusted) individual and include both direct bat-to-bat and 

indirect (bat-environment-bat) contacts (Fig. 1). 

In early winter, we applied a unique color of UVF-dust to each of 4-7 

individual male bats at each site (with one exception; see below). There were seven 

unique colors: ECO-11 Aurora Pink, ECO-15 Blaze Orange, ECO-16 Arc Yellow, 

ECO-17 Saturn Yellow, ECO-18 Signal Green, ECO-20 Ultra Violet, ECO-19 

Horizon Blue; Risk Reactor: DFSB-C0 Clear Blue (Day-Glo Color Corp., Cleveland, 

OH, USA; Risk Reactor Inc., Santa Ana, CA, USA). We liberally applied UVF-dust 

to the entire dorsal and ventral surface of each bat except for the head, and placed a 

unique band on each bat for identification. We returned to each site during March, 

and mapped out the location of all bats, including which bats were physically 

touching each other and which bats were in a cluster (a group of bats touching each 

other). We visually inspected each bat for UVF-dust using a UV flashlights (395nm; 

Hayward, CA, USA) and visible light. Each color of UVF-dust observed on each bat 

was recorded. We also quantified the area of each patch of UVF-dust, by color, in the 

hibernacula environment to the nearest square centimeter. 

The species and number of bats dusted at each site varied depending on 

species composition and number of bats present, but included three species, M. 

lucifugus, M. septentrionalis, and P. subflavus (Table S1). At six sites, we dusted 3 

individuals of one species, and four individuals of another. At one sites site, we 

dusted four individuals of a single species, P. subflavus because the abundance of 

other species was too low (a single bat). (Table S1). At the eighth site, we dusted five 

M. septentrionalis with five unique colors and five M. lucifugus with a single color 

(Table S1).  

Analyses  
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We quantified the fraction of the bats of each species at a site that were 

connected to each focal bat either through physical contact, being members of a 

cluster, or sharing a color of UVF-dust. For the first two measures (physical contact 

and clusters) every bat in the site served as a focal bat (a single data point).  For dust 

networks, each dusted (focal) bat was a single data point. We compared this number 

of connections among connection type (physical contact, cluster member, UVF-dust) 

and species (including within vs. between species) using generalized linear mixed 

effects models with a binomial distribution (with size equal to the number of bats of 

that species at the site) and a logit link. We included site and the individual bat ID as 

random effects to account for repeated observations of the bat with multiple colors of 

UVF-dust at a site.  

We examined whether bats within the same cluster were more likely to share 

the same UVF-dust color than bats among clusters. For each cluster within a site, we 

calculated the fraction of individuals within a cluster that had the same color of UVF-

dust (within group metric), as well as the fraction of clusters within each site that had 

a given color (among group metric). We used a generalized linear mixed effects 

model with a gamma distribution and an inverse link and site as a random effect to 

determine whether transmission was higher within or among groups.  

We also examined differences among species in the probability of becoming 

infected with P. destructans over the winter at the same sites, using a generalized 

linear mixed model with a binomial distribution and logit link, with species 

interacting with date as fixed effects, and site as a random effect. UVF-dust and 

fungal epidemics were compared by regressing the change in P. destructans 

prevalence over the winter during the first year of fungal invasion to the change in 

UVF-dust prevalence over the winter using a linear mixed model with site as a 

random effect. Finally, we examined differences among species in the total surface 

area of the environment covered with UVF-dust, using a linear mixed model with 

species as a fixed effect, and site as a random effect. All statistical tests were carried 

out using R 3.3.2 and using package lme4. 
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Results: 

 The bat community included three primarily solitary species (P. subflavus, M. 

septentrionalis, and E. fuscus, with 93% of bats roosting alone), and one species (M. 

lucifugus) that was more social with cluster sizes averaging 3.2 +/- 5.36 and ranging 

from 1 to 36 (Fig. 2; Supp. Fig b).  

 There was on average 20-fold more connections among individuals revealed 

by transmission of UVF-dust from two species (the more social M. lucifugus and the 

solitary M. septentrionalis), than were apparent from physical contact or shared group 

(cluster) connections (Fig. 2; Table S1, S2). For the third species, (the solitary P. 

subflavus), there were few additional connections among individuals beyond direct 

contact or membership in a cluster (Table S2d; Fig. 2). Within-species connections 

were significantly higher for M. septentrionalis and M. lucifugus than among species 

connections for all connection types (Table S2d; Fig. 2).  

Connections revealed through UVF-dust transmission also differed 

significantly among species, but not in ways that were apparent from physical contact 

and cluster membership connections (Fig. 2 & 3). UVF-dust from both M. lucifugus 

(a clustering species) and M. septentrionalis (a solitary species) was detected on large 

fractions of both con- and heterospecifics (and large fractions of the total colony 

size). In contrast, connections were much lower for P. subflavus (a solitary species) 

than for M. lucifugus and M. septentrionalis (Fig. 2 & 3, Table S2a). For one species, 

M. lucifugus, within-species transmission of UVF-dust was higher than transmission 

of UVF-dust to all three other species, E. fuscus, M. septentrionalis, and P. subflavus 

(Table S2a; Fig. 3).  
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Figure 2: Cluster and epidemic networks for hibernating bats from 4 mines in 
Wisconsin and Michigan. Each row shows an individual site. (left) Cluster networks 
represent observed physical contact networks at the end of winter. All individuals 
connected represent clusters observed in each site. (right) UVF-dust networks show 
epidemics created over the winter hibernation period using a surrogate pathogen. 
Each circle (node) represents a bat in a colony (cave or mine). Larger circles 
represent bats that were originally dusted in early winter (November). For the cluster 
networks, smaller circles indicate the bats that were re-sighted in late winter, and 
edges (black lines) between nodes represent physical contact among bats (March). 
(right) For the epidemic networks (UVF-dust), circles that are not connected with any 
other circles indicate bats with no dust, or resighted dusted bats that did not spread 
dust to any other bats (large circles). (right) Edges (gray lines) represent the 
transmission from dusted to non-dusted individuals via direct or indirect transmission 
(Fig. 1). Transmission events originating from non-dusted individuals are not shown. 
The arrow for the MI_BC cluster networks indicates a bat roosting solitarily in 
March, and the arrow under the dust epidemics shows the same resighted bat with 
three colors of dust originating from M. septentrionalis. 
 

In contrast, for another species, M. septentrionalis, transmission of UVF-dust 

was similar between other individual M. septentrionalis and E. fuscus (Table S2a; 

Fig. 2 & 3). Finally, transmission of UVF-dust from P. subflavus was very low with 

no significant differences within and among species for all comparisons (Table S2a; 

Fig. 2 & 3). Despite this variation among species, there were no significant 

differences among species in the total area of the environment with UVF-dust 

originating from different species (Supp. Fig. 2). 

Transmission networks revealed by UVF-dust also showed evidence of group 

cohesion, transmission increasing with sociality, and differential cross-species contact 

by cluster size. M. lucifugus within the same cluster (group) were more likely to share 

UVF-dust with each other than with M. lucifugus in other clusters in the same site 

(Fig. 2; coef: 0.180 +/- 0.04, p<0.0001). The probability of M. lucifugus individuals 

having UVF-dust originating from another M. lucifugus increased with cluster size 

(cluster size coef: 0.013 +/- 0.005, intercept: -0.549 +/- 0.201, p = 0.012; Supp Fig. 

1a). At the same time, the probability of M. lucifugus having UVF-dust originating 

from dusted M. septentrionalis decreased with cluster size (Fig. 2 (arrow); cluster size 

coef: -0.014 +/- 0.004, intercept: -1.961 +/- 0.217, p = 0.0002; Supp Fig. 1b).  
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Figure 3: Fraction of individuals of each species at each site observed in physical 
contact, in a cluster, or observed with dust originating from a single individual 
of three dusted species, (a) M. lucifugus, (b) M. septentrionalis, and (c) P. 
subflavus. The color of the bar represents the species that was observed in physical 
contact (touching), in a group of individuals contacting each other (cluster), or with 
the UVF-dust (dust) from the focal individual. Panels show connections with a) M. 
lucifugus, b) M. septentrionalis, and c) P. subflavus. Different letters above bars 
indicate groups that differ significantly within and among panels (Table S2a-d). The 
legend indicates the order (left to right) of receiving species when box color is not 
visible. 

 

Transmission of P. destructans 

P. destructans was detected at all sites within 0-3 years of the contact rate 

studies. Prevalence of P. destructans in early winter did not differ significantly 

among species (Fig. 4a). However, prevalence on M. lucifugus and M. septentrionalis 

increased rapidly over the winter hibernation period, reaching ~70%-100% at all sites 

(Fig. 4a). In contrast P. subflavus became infected much more slowly, with 

prevalence reaching only ~40% by the end of the winter (Fig. 4a). Patterns of fungal 

transmission (the fraction of individuals becoming infected over time) were strongly 

correlated with the total spread of UVF-dust in a species at a site (Fig. 4b.).  
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Figure 4. Change in fungal, P. destructans, prevalence and the relationship 
between the change in UVF-dust prevalence and fungal prevalence. (a) Change in 
prevalence during the first year of P. destructans invasion at eight sites in the 
Midwestern U.S. Lines show fitted models across the winter hibernation period with 
points representing site prevalence. Stars above each sampling point indicate 
significance differences in the probability of infection during early hibernation and 
the change in probability of infection over the winter (GLMM with site as random 
effect; MYLU (intercept): -3.71 +/- 0.80, PESU: 0.50 +/- 1.18, MYSE: -1.14 +/-0.20, 
MYLU date: 1.43 +/- 0.20, PESU date: -0.75 +/- 0.30, MYSE date: 0.41 +/- 0.27) (c) 
The change in dust and pathogen prevalence (' species prevalence at each site 
divided by 1 – early winter species prevalence). The line shows the fitted linear 
relationship and 95% confidence intervals of the regression (coef: 0.825 +/- 0.15, t = 
5.496, P = 0.0006). Dashed line shows 1:1 line for comparison. Total surface area of 
the hibernacula walls and ceilings contaminated with fluorescent dust. (c) Each 
point represents the summed and then log10 transformed surface area of an individual 
color at a site (ref: MYLU 2.705 +/- 0.15, MYSE coef: 0.141 +/- 0.17, t = 0.788, PESU 
coef: -0.211 +/- 0.18, t = -1.163). 
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Discussion: 

Many studies of contact rates and sociality attempt to quantify connections 

among individuals that may lead to transmission of pathogens [43, 79, 80], using a 

variety of methods [43, 58, 61]. These studies provide estimates of contact rates and 

social connections among cohesive groups that are limited by logistical constraints, 

including relatively short time periods, data from only a small subset of all hosts, 

only direct contacts, or a combination of these issues [42, 81]. We have shown that 

indirect and transient connections among social groups result in an order of 

magnitude more connections among individuals than are observed from measures of 

direct contact or shared social groups. These hidden connections revealed by 

transmission of surrogate pathogens not only link social groups within species, but 

also create bridges among species, and result in a much more highly connected 

network across the multi-species community than was apparent from other measures 

of association.  

Discovering hidden connections among social groups can help explain 

otherwise mysterious transmission patterns. In our system, M. septentrionalis were 

almost always observed as solitary individuals, which one would expect would 

reduce transmission of a directly transmitted pathogen relative to a more social 

species such as M. lucifugus. However, transmission of UVF-dust showed that this 

species is, in fact, highly connected to both other M. septentrionalis individuals as 

well as individuals of two other species, E. fuscus, and M. lucifugus (but not P. 

subflavus). This connectedness was evident in the rapid infection in this species with 

the fungus P. destructans. Although the data cannot determine whether these 

connections are via direct contact or from indirect contact via the environment, it is 

clear that they occur during the very short arousal periods from hibernation because 

M. septentrionalis are almost never observed hibernating in clusters with other M. 

septentrionalis or other species (>99.5% of observations are of solitary individuals). 

The higher transmission of UVF-dust from M. septentrionalis to M. lucifugus 

roosting solitary than to M. lucifugus roosting in clusters may be a result of mistaken 
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mate selection during arousal periods, or due to avoidance of areas used by large 

groups of other bats. Hidden connections outside social groups have been observed 

in several other systems [82, 83], and are especially important for pathogens with an 

environmental reservoir, such as cholera, and avian influenza, but they are likely also 

important for pathogens with more limited survival outside the host, or those with 

aerosol transmission, including respiratory pathogens and oral fecal pathogens. 

The extent of hidden connections outside social groups can also differ greatly 

for different groups of individuals, and suggests key differences in social behavior 

beyond differences in space use [84-86].  Transmission of both P. destructans and 

UVF-dust demonstrated that P. subflavus had relatively few hidden connections and 

overall very low contact rates, in sharp contrast to M. septentrionalis which was very 

similar in terms of connections by physical contact and social groups. Interestingly, 

the low connectance of P. subflavus was not simply because individuals of this 

species were immobile.  We found no difference in the amount of the environmental 

surface with UVF-dust from P. subflavus versus the two other dusted species, M. 

lucifugus, and M. septentrionalis.  Instead, the data suggest that P. subflavus 

individuals have lower rates of contacts resulting in transmission and avoid areas of 

the environment used by other individuals and species than.  Uncovering these 

asocial space use patterns requires being able to simultaneously map the locations of 

individuals, and not simply to characterize individual metrics of space use such as 

home range size. 

 Studies of surrogate pathogen transmission overcome some challenges with 

other measures of contact networks, but also have several limitations. Transmission 

of surrogate pathogens can reveal both direct and frequent physical contact within 

social groups (which are well-captured by contact surveys, or studies using proximity 

or GPS transmitters) as well as those that occur through indirect or transient contacts, 

which are common in many systems [87-89].  Contact surveys or tracking studies 

also have a key limitation that is shared by some surrogate pathogen studies – 

accurately differentiating infectious contacts from contacts unlikely to transmit 



17 
 

pathogens.  In contact surveys, efforts are usually made to quantify certain types of 

behaviors that are more likely to result in transmission (e.g. physical contact, 

conversing; [80]), but these are still approximate at best, since pathogen transmission 

given contact is often a highly stochastic process [82, 90]. Surrogate pathogens that 

have similar transmissibility to the pathogens they are models for are obviously best 

for overcoming this challenge. In our study, the amount of UVF-dust on bats decayed 

over time due to grooming and general shedding of UVF-dust, whereas pathogens 

(including P. destructans) replicate on hosts and generally increase in load and 

infectiousness over time.  Finally, a limitation of the surrogate pathogen used in our 

study, UVF-dust, is that we were unable to trace the transmission connections among 

individual bats if transmission chains occurred that weren’t from the primary dusted 

individual. However, the quantity of UVF-dust observed on individual bats was often 

very small, suggesting that secondary transmission chains from intermediate 

individuals were less likely in our study.  Molecular studies with surrogate pathogens 

that mutate at a rate that enables accurate phylogenetic reconstruction of the 

epidemic overcome this hurdle [62, 63, 68], but suitable surrogate pathogens that 

approximate the biology of the target pathogen are often hard to find.  

Estimating contact rates among individuals is a key element in understanding, 

predicting, and controlling infectious disease outbreaks. We have shown that hidden 

connections outside social groups play a key role in transmission dynamics, and 

increase connectance in multi-host communities by an order of magnitude for within-

species transmission and even more for cross species transmission.   These results 

emphasize the importance of contacts that are indirect, transient, or outside social 

connections for understanding and predicting disease dynamics. Uncovering these 

links can provide clues and context for disease management to improve health 

outcomes for affected populations.   
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Supplemental Figures: 

 
Supp Figure 1: Winter clustering behavior of 3 species of hibernating bats and 
predicted probabilities of having dust from three origin species to different 
cluster sizes of M. lucifugus. Cluster size during winter hibernation for four species 
of bats. Letters above each bar represent significant differences among species 
(Likelihood ratio test of models with and without species: &2 =46.954; df = 3, P < 
0.0001 ) EPFU – E. fuscus; MYLU – M. lucifugus; MYSE - M. septentrionalis; PESU 
- P. subflavus.  
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To the Editor: Emerging infectious diseases have 
caused catastrophic declines in wildlife populations, and 
the introductions of many pathogen have been linked to in-
creases in global trade and travel (1). Mapping the distribu-
tion of pathogens is necessary to identify species and popu-
lations at risk and identify sources of pathogen spillover 
and introduction. Once pathogen distributions are known, 
management actions can be taken to reduce the risk for fu-
ture global spread (2).

Bats with symptoms of white-nose syndrome (WNS) 
were firs t  detected in the United States in 2006, and the 
disease has subsequently caused precipitous declines in 
temperate bat populations across eastern North America 
(3,4). Pseudogymnoascus destructans, the causative agent 
of WNS, is a cold-growing fungus that infects bats’ skin 
during hibernation, leading to more frequent arousals from 
torpor and death (3). P. destructans is widespread through-
out Europe (5), but, to our knowledge, its presence in Asia 
has not been documented.

We sampled bats and hibernacula surfaces (cave walls 
and ceilings) across northeastern China during 2 visits 
(June–July 2014 and March 2015) using a previously de-
scribed swab-sampling technique (6). Bats were captured 
inside caves and at their entrances. DNA was extracted 
from samples by using a modified  QIAGEN DNeasy blood 
and tissue kit (QIAGEN, Valencia, CA, USA) and tested in 
duplicate for the presence of P. destructans with a quantita-
tive real-time PCR (qPCR) (6,7).

In the summer of 2014 and winter of 2015, we collected 
385 samples from hibernacula surfaces at 12 sites in 3 prov-
inces and 1 municipality (Figure, panel A) and 215 samples 

from 9 species of bats at 10 sites (summer: Rhinolophus fer-
rumequinum, Rhinolophus pusillus, Myotis adversus, Myotis 
macrodactylus, Myotis pilosus, Myotis chinensis, Murina 
usseriensis; winter: R. ferrumequinum, Murina leucogaster, 
Myotis petax). During the summer, P. destructans was wide-
ly distributed across the study region with positive samples 
(determined on the basis of qPCR results) obtained from 
cave surfaces at 9 of 12 sites and from bats at 2 of the 9 sites 
where bats were sampled (Figure, panel A).

Prevalence of P. destructans was low during summer 
in the environment (mean prevalence across sites 0.06 ± 
0.03) and in bats. Bats of 3 species tested positive for P. 
destructans in the summer: M. macrodactylus (1/10), M. 
chinensis (1/1), and M. ussuriensis (1/1). P. destructans 
was not detected in bats of 4 other species, of which >20 
individual animals of each species were sampled (R. fer-
rumequinum, R. pusillus, M. pilosus, and M. adversus). The 
low prevalence of P. destructans in bats and on hibernacula 
surfaces in China during the summer was similar to compa-
rable results from studies in North America (6). 

In winter, prevalence at the 2 sites we revisited was 
much higher; 75% of 85 samples from 3 species tested 
positive, including samples from 16/17 M. petax bats. We 
also detected P. destructans in bats from 2 additional spe-
cies (R. ferrumequinum [11/19 bats] and M. leucogaster 
[11/16 bats]).

In addition, during March 2015, we observed visual 
evidence of P. destructans in bats (M. petax; Figure, panel 
C) and obtained 2 fungal cultures from swab specimens 
taken from these bats. To isolate P. destructans from these 
samples, we plated swab specimens from visibly infected 
bats on Sabouraud dextrose agar at 10°C. We identified  po-
tential P. destructans isolates on the basis of morphologic 
characteristics. DNA was then extracted from 2 suspected 
fungal cultures and tested for P. destructans by qPCR, as 
previously described. 

To further confirm  the presence of P. destructans, 
we prepared the fungal isolates for Sanger sequencing 
(online Technical Appendix, http://wwwnc.cdc.gov/EID/
article/22/1/15-1314-Techapp1.pdf). The 600-nt amplifi-
cation products from these 2 isolates were sequenced and 
found to be 100% identical to the P. destructans rRNA gene 
region targeted for amplific

a
t ion.  In addition, using BLAST 

(http://www.ncbi.nlm.nih.gov/blast.cgi), we found that se-
quences were a 100% match with isolates from Europe 
(GenBank accession no. GQ489024) and North America 
(GenBank accession no. EU884924). This result confirm s  
that the same species of fungus occurs on all 3 continents. 
We also obtained wing biopsy punches from these bats and 
found lesions characteristic of WNS by histopathologic ex-
amination (Figure, panel B; online Technical Appendix). 

The occurrence of P. destructans at most sites sam-
pled indicates that this pathogen is widespread in eastern 
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Asia (Figure, panel A). The presence of P. destructans 
in bats from 6 species in China and on bats in 13 spe-
cies in Europe (8) confirms the generalist nature of this 
fungus and suggests that it may occur throughout Eurasia  
(Figure, panel D).

Decontamination and restrictions on the use of equip-
ment that has been used in caves in Asia would help  
reduce the probability of introducing P. destructans to un-
infected bat populations (e.g., western North America, New 
Zealand, southern Australia, and temperate areas of South 

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 22, No. 1, January 2016 141

Figure. A) Distribution of Pseudogymnoascus destructans in cave environments during summer at 9 sites in northeastern China. Pie 
charts show the prevalence of P. destructans, and the size of pie graphs indicates the number of samples taken at each site (range 10–
35). B) Histologic wing cross-section from Myotis petax bat collected in March 2015 with cup-like lesion (arrow) diagnostic of white-nose 
syndrome (periodic acid–Schiff staining). C) M. petax bat found in a cave in Jilin, China, showing visible signs of white-nose syndrome, 
March 2015. D) Documented global distribution of P. destructans. Areas in solid black represent the provinces and countries in China 
and Europe, respectively, where P. destructans was detected in this study and from previous research (5). Semitransparent regions 
show the species ranges (range data taken from http://www.iucnredlist.org/) for the bat species detected with P. destructans in Asia (n 
= 6) and Europe (n = 13) (8) and possible distribution of P. destructans. The solid black region in North America shows the extent of P. 
destructans spread as of May 15, 2015 (https://www.whitenosesyndrome.org/resources/map). A color version of this figu r e  is available 
online (http://wwwnc.cdc.gov/EID/article/22/1/15-1314-F1.htm).
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LETTERS

America). These measures would also reduce the risk of 
introducing new strains of P. destructans to regions where 
bats are already infected (e.g., eastern North America and 
Europe). These measures are necessary to prevent the 
devastating effects this pathogen has had on bats in North 
America and would help maintain the ecosystem services 
that bats provide (9,10).
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Neisseria gonorrhoeae with 
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to Ceftriaxone, Japan
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To the Editor: In 2009, 2010, and 2013, Neisseria 
gonorrhoeae strains H041 (ceftriaxone MIC of 2 mg/L), 
F89 (ceftriaxone MIC of 1 mg/L), and A8806 (ceftriax-
one MIC of 0.5 mg/L) were isolated from samples from 
patients in Japan (1), France (2) and Australia (3), respec-
tively. In Japan, no other clinical N. gonorrhoeae strains 
with decreased susceptibility to ceftriaxone were reported 
until 2014, when clinical strain GU140106 (ceftriaxone 
MIC of 0.5 mg/L) was isolated from a man in in Nagoya, 
Japan. We report details of this case and sequencing results 
of the penA gene for the strain. The study was approved by 
the Institutional Review Board of the Graduate School of 
Medicine, Gifu University, Japan.

N. gonorrhoeae strain GU140106 was isolated from a 
urethral swab sample from a man with acute urethritis. The 
man had received fellatio, without condom use, from a fe-
male sex worker in Nagoya in December 2013. He visited 
our clinic in January 2014 for urethral discharge. Culture 
of a urethral swab sample was positive for N. gonorrhoeae. 
We used the Cobas 4800 CT/NG Test (Roche Molecular 
Systems Inc., Pleasanton, CA, USA) to test a firs t -voi ded 
urine sample; results were positive for N. gonorrhoeae but 
negative for Chlamydia trachomatis. The infection was 
treated with a single-dose regimen of ceftriaxone (1 g) ad-
ministered by intravenous drip infusion. Two weeks later, 

142 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 22, No. 1, January 2016

1These authors contributed equally to this article.



31 
 

 



32 
 



33 
 



34 
 



35 
 



36 
 



37 
 

  



38 
 

Global pathogen dynamics of white-nose syndrome 
 
Joseph R. Hoyt1,2*, Keping Sun3, Kate E. Langwig1,2, Katy L. Parise14, Yujuan 
Wang3, Xiaobin Huang3, Lisa Worledge4, Helen Miller4, Tamas Gorfol5, Sandor 
Boldogh6, Dai Fukui7, Muneki Sakuyama8, Munkhnast Dalanast9, Ariunbold 
Jargalsaiken10, Nyambayar Batbayar11, Yossi Yovel12, Eran Michael12, Isoseb 
Natradze13, Winifred F. Frick1, 15, Jeffrey T. Foster14, Jiang Feng3, A. Marm 
Kilpatrick1 

 
1Department of Ecology and Evolutionary Biology, University of California, Santa 
Cruz, CA 95064 USA 
2 Department of Biology, Virginia Polytechnic Institute, Blacksburg, VA, 24060 USA  

3Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, 
Northeast Normal University, Changchun 130117, China  
4 Bat Conservation Trust, London, United Kingdom 
5 Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary 
6Department of Nature Conservation, Aggtelek National Park, Josvafo, Hungary 
7 The University of Tokyo Hokkaido Forest, The University of Tokyo, Hokkaido, 
Japan 
8 Association of Bat Conservation, Morioka, Japan 
9 Bat Research Center of Mongolia, Ulaanbaatar, Mongolia 
10 Department of Biology, School of Mathematics and Natural Science, The 
Mongolian University of Education, Ulaanbaatar, Mongolia 
11 Wildlife Science and Conservation Center, Ulaanbaatar, Mongolia 
12 Department of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 
Israel 
13Institute of Zoology, Ilia State University, Tbilisi, Republic of Georgia 

14Center for Microbial Genetics and Genomics, Northern Arizona University, 
Flagstaff, AZ 86011, USA 
15Bat Conservation International, Austin, TX, USA 
*Corresponding author: hoytjosephr@gmail.com 
 
Key words: white-nose syndrome; emerging infectious diseases; Pseudogymnoascus 
destructans; endemic disease; Geomyces; global pathogen dynamics  



39 
 

Abstract: 

The introduction of novel pathogens to naïve host populations can cause catastrophic 

impacts and species extinctions. However, the mechanisms allowing hosts to persist 

with these same pathogens in disease endemic regions are poorly known. We 

examined the global dynamics of white-nose syndrome (WNS) on bats and in the 

environment to determine how species and populations in endemic regions persist 

with this disease. WNS, a devastating disease of North American hibernating bats, 

was recently introduced to North America from Eurasia, where it has been present for 

millennia. In Eurasia, we found that infection dynamics during winter in species with 

the highest prevalences were similar to the first year of pathogen invasion in sites in 

North America (when bat mortality is low), with prevalence increasing from near 

zero to high levels (50-100%). These dynamics differed substantially from infection 

patterns during the decline-phase of WNS in North America, when most North 

American bats have sustained high infection prevalence (100%) over winter. 

Although P. destructans has been present in hibernacula in Europe and Asia for 

thousands of years, we found that P. destructans in the environment, which is the 

source for bat reinfection each winter, started at low levels at the beginning of winter, 

and decreased over the summer. In contrast, in North America, P. destructans 

increased in the environment with each year of WNS detection, reaching much higher 

levels than endemic regions with no decline between winters.  The reduction in P. 

destructans each summer in endemic regions could explain the limited mortality in 

bat populations across Eurasia. These results suggest that factors that regulate the 
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fungal populations in endemic regions (e.g. natural enemies) are absent in North 

America, leading to the ecological release and high population impact in invading 

regions.  

Introduction: 

Introduced pathogens have caused widespread population declines and 

extinctions and limit the distributions of many host populations [1-5, 91]. Although 

disease dynamics of emerging pathogens are frequently intensively studied in 

introduced regions, far less is known about how species persist with emerging 

pathogens in endemic regions [92, 93]. Many emerging pathogens are generalists that 

infect a diverse range of host species, with substantial variation in disease dynamics 

and impact in both introduced and endemic ranges. In some cases, hosts in endemic 

regions have evolved physiological traits (e.g. resistance or tolerance [94] that reduce 

disease impacts [95]. Myriad other factors could also allow for long term host 

persistence with pathogens including behavioral avoidance [41, 96], differences in 

pathogen strains [97], or environmental conditions that limit the impact of the 

pathogen [98, 99]. One factor that often differs between invasive species in their 

native and introduced regions is the presence of natural competitors that regulate their 

populations [100-102], which may be particularly important for pathogens with 

environmental reservoirs.   

Abiotic reservoirs can play a key role in the dynamics of seasonal host-

pathogen systems [103-105], and can increase the likelihood of host extinction from 

disease [4, 65]. Likelihood of host extinction is increased by the maintenance of 
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transmission even after host populations have decreased to very low levels and host-

to-host transmission has become inefficient. Abiotic reservoirs can also serve as 

sources of infection (or reinfection) for immigrating hosts, or for hosts that recover 

with non-sterilizing immunity [106]. Controlling abiotic reservoirs is the cornerstone 

of many disease management programs, including treatment of water to reduce 

cholera transmission [107], as well as household and hospital sanitation practices 

[108].   

White-nose syndrome (WNS) is a recently emerged fungal disease of 

hibernating bats in which the environmental reservoir appears to play a key role in 

population impacts [3, 22, 109].  WNS, caused by the fungus Pseudogymnoascus 

destructans, has caused severe declines in multiple species of bats in North America, 

and threatens several species with extinction [3, 25, 26]. Declines due to WNS are 

low in the first year P. destructans is detected in a site and increase with time since 

arrival [38, 39]. There is also significant variation in species impacts from WNS. 

Following WNS detection, four species of bats declined significantly (Myotis 

lucifugus, Myotis septentrionalis, Myotis sodalis, and Perimyotis subflavus) while 

two others (Eptesicus fuscus and Myotis leibii) had only small reductions in 

population growth rate [3].  

Host and pathogen ecology are both important in determining seasonal 

dynamics and impacts of WNS [34]. Bats become exposed to P. destructans when 

they enter hibernacula each fall. Fungal loads on bat skin increase over winter when 

bats reduce their body temperature to a range suitable for P. destructans growth [34, 
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110]. Infection with P. destructans disrupts homeostasis, and leads to increased 

arousals that can result in death approximately 70-120 days after infection [25, 37]. 

Bats clear infection each summer when they become euthermic and leave hibernacula 

[34]. However, the fungus persists in hibernacula over the summer and can survive 

for long periods of time in the absence of bats [32, 109].  

Pseudogymnoascus destructans is endemic to Eurasia, and genetic analyses 

suggest it has been present for thousands of years [9, 31]. P. destructans has been 

detected throughout Europe and in east Asia, where it has not been associated with 

significant declines [28, 29], although bat colony sizes are an order of magnitude 

lower in Europe than they were in in North America before WNS emerged [111]. 

Late winter infection prevalence and fungal loads on bats in Asia were lower than in 

the North America, suggesting that bats in Asia were more likely to be resistant than 

tolerant [93]. The mechanisms responsible for the lower infection prevalence and 

fungal loads on bats in Asia remain unknown, but could not be explained by lower 

colony sizes of bats, lower winter severity, or lower hibernacula temperatures in Asia 

[93].  

Here, we examine the global dynamics of P. destructans to understand how 

bat populations throughout endemic regions persist with WNS.  To explore 

mechanisms influencing infection, we sampled bats and hibernacula environments for 

P. destructans across seven countries on three continents over five winters. This data 

will help elucidate the interplay between bat infections and contamination in the 
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environment across a global scale and provide potential insight for developing 

effective disease management strategies in invading regions. 

Methods: 

Sample collection, species identification and testing 

We examined dynamics P. destructans on bats and in the environment in 

hibernacula across the Northern Hemisphere. We collected swab samples from both 

hibernating bats and hibernacula substrate surface (walls and ceilings) in caves and 

mines in North America, Europe and Asia (Fig. a). We visited sites twice per year 

over a 5-year period (2012 – 2017) to measure changes in infection prevalence and 

fungal loads in the United States, the United Kingdom, Hungary, and China. In 

addition, we collected samples from a single time point in mid- to late-winter from 

Israel, the Republic of Georgia, and Japan.  

Epidermal and environmental swab samples were collected using standardized 

techniques across all regions using a previously described swabbing protocol [34, 93]. 

For bat sampling, we dipped polyester swabs (Puritan, Guilford, ME) in sterile water, 

and swabbed the wing and muzzle five times back and forth [112]. We collected 

environmental samples by swabbing a section of substrate that was similar to the 

length of a bats’ forearm (36-40mm) using the same methods, but without dipping the 

swab in sterile water. Three types of environmental samples were collected: under 

hibernating bats (“under”), approximately 10 cm from hibernating bats (“near”), and 

>2 m from hibernating bats (“far”). Bat and environmental samples were stored in salt 

buffer (RNAlater; Thermo Fisher Scientific) immediately following collection to 
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preserve DNA. We extracted DNA from samples using a modified Qiagen DNeasy 

blood and tissue kit (Qiagen, Hilden, Germany) [34] and tested for the presence of P. 

destructans using quantitative PCR [78]. All samples were run in duplicate, with 

quantification standards on each plate and 16 negative controls per plate. All 

quantification standards were within a consistent range and all negative controls had 

no fungal detection.  

We counted all bats present at each site by species. For bats that could not be 

identified based on morphological criteria, we collected a wing biopsy (3mm; Miltex, 

Plainsboro, NJ) for molecular identification. The DNA from wing biopsies was 

extracted using a Qiagen DNeasy blood and tissue kit (Qiagen, Hilden, Germany) and 

we used Sanger sequencing to amplify the Cytochrome c oxidase I gene (CO1) 

[113].  The CO1 gene sequences were compared with known sequences in the EMBL 

database [114] using MEGA BLAST (BLASTN 2.1.1, [115]) to identify the most 

similar sequence alignment. All sampling was conducted under UCSC IACUC 

protocol FrickW1106 and National Animal Research Authority in Northeast Normal 

University, China, approval number: NENU-20080416. 

Analyses 

 We analyzed changes in P. destructans prevalence on bats or the environment 

in the North America using generalized linear mixed models with a binomial 

distribution, and species or substrate type (under bats, near bats, or far from bats), 

date, and years since P. destructans detection as fixed effects, and site as a random 

effect. To show changes in P. destructans prevalence over the winter in endemic 
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regions, we subsetted to an individual country and ran four candidate models: date 

interacting with species, date with an additive effect of species, date alone, and 

species alone as fixed effects with site as a random effect. We selected the best model 

based on AIC. For countries where data was collected during a single time period 

during the winter, we excluded date from the analyses. We examined the relationship 

between early winter infection prevalence in bats and the prevalence of P. destructans 

in the environment at each site using linear mixed models with site as a random 

effect. We also examined the relationship between fungal loads on bats in late winter 

(which are highly correlated with WNS impacts among species [116], and with 

lesions [117]), with early winter infection prevalence in bats using a linear mixed 

effects model with site as a random effect.  

Results: 
We collected an average of 86 samples (range 5-496) from 35 species from 

over 75 sites with a total of 6,054 samples from bats and the environment (Table S1). 

In North America, prevalence on bats and in the environment increased sharply in the 

first year of P. destructans detection, from very low levels in early winter to moderate 

to high levels by winter’s end (Fig. 1a; Table S2). In the second and subsequent years 

after P. destructans detection, prevalence started at much higher levels in early winter 

in all but one species, and increased to 100% by late winter (Fig. 1a; Table S2). There 

was some variation among species, with M. lucifugus and M. septentrionalis 

becoming infected the fastest, followed by P. subflavus and Eptesicus fuscus (Fig. 1a, 

Table S2). Prevalence in the environment showed a similar pattern of increasing over 

time within each winter and with each subsequent year, but the increase was 
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substantially slower than infection prevalence in bats. Prevalence in the environment 

did not begin to saturate until year three years after P. destructans detection (Fig. 1b; 

Table S3).   

 

Figure 1: Changes in P. destructans prevalence on bats (a) and in the 
environment (b) during the invasion and establishment in North America. 
Invasion of P. destructans is shown from left to right, over a total of four years of 
WNS. The best supported model for both bats and the environment include a triple 
interaction between winter date, years since WNS (continuous), and species or 
substrate type (Table S2,3). Gray bars show the difference between the upper and 
lower limits of the predictions for all species and sample types, excluding E. fuscus. * 
indicates different levels of significance both within and among winters (P<0.05, 
Table S3). 
 

There was no evidence of a decline over the summer in fungal prevalence in the 

environment in any of the four years after P. destructans detection (Figure 1, Table 

S3). 
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 Across Eurasia, prevalence on bats in early winter was very low for most 

species, and increased at variable rates among species and regions (Figure 2, Table 

S4). The increase in prevalence over winter for the most infected species was similar 

to the rise in infection in North America during the first year of P. destructans 

invasion (Fig. 2, Table S2, Table S3). For example, increases in P. destructans on 

Myotis petax in China over the winter (slope coef: 0.93 +/- 0.09) were similar to 

increases in P. destructans on M. lucifugus in North America during the first year of 

WNS detection (coef: 1.20 +/-0.12).  

 
Figure 2: Global P. destructans prevalence dynamics on bats. Red dots indicate 
sites where samples were collected for this study and the yellow stars represent all 
known locations where P. destructans has been detected across Eurasia. Transparent 
overlays on each graph represent the upper and lower prevalence limits of highly 
impacted species for both the invasion (lower) and establishment (upper; mean for 
years 1, 2, and 3) of P. destructans in the North America, excluding the less-affected 
E. fuscus. Open circles represent prevalence for a given species at a site and the lines 
indicate best fit model for each species in each region (Table S4). Dashed lines 
indicate predictions beyond the date range of the data. Four letter species codes 
correspond to the first two letters of the genus and species names (Table S1). The 
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North American data show the changes in prevalence for year 3 of WNS for 
comparison of dynamics across all established regions. 
 

In contrast, several species across Eurasia (Rhinolophus ferrumequinum and 

Rhinolophus hipposideros) showed only moderate increases in prevalence (25-30%), 

and one species, despite being well-sampled (Hypsugo alaschanicus, N=47) was 

never detected with P. destructans (Table S4). 

P. destructans prevalence in the environment in early winter was lower in Eurasia 

than in the North America (years 2-4 after P. destructans detection). Prevalence of P. 

destructans in the environment increased significantly over the winter across Eurasia 

(Table S4). However, in China, where we collected multiple years of data in early and 

late winter, the prevalence of P. destructans significantly decreased over the summer 

(Figure 3). We found that early winter infection prevalence on bats across Europe, 

Asia, and North America increased significantly with P. destructans in the 

environment (Figure 4, left). In turn, early winter infection prevalence on bats 

predicted late winter fungal loads (Figure 4, right). 
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Figure 3: Global P. destructans prevalence dynamics in the environment. 
Transparent overlays on each graph represent the upper and lower prevalence limits 
of samples collected from under, near (10cm), and far (>2m) from bats for both the 
invasion (lower) and establishment (upper; mean for years 1, 2, and 3) of P. 
destructans in the North America. Open circles represent prevalence for a given 
substrate sample type at a site. Lines show model fits to the data and dashed lines 
indicate predictions beyond the date range of the data.  Arrow shows decrease in 
substrate prevalence over the summer in China (GLMM: intercept (China early 
hibernation 2016): -2.819 +/- 0.420, coef (China late hibernation 2015): 1.729 +/- 
0.463, P < 0.0001).  
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Figure 4: Relationship between early winter P. destructans substrate prevalence, 
early winter bat prevalence, and late winter bat fungal loads. (Left) Each point 
shows the relationship between substrate prevalence in early winter for a site, and the 
early hibernation prevalence of bats of different species in each site (intercept: 0.053 
coef: 1.267 +/-  0.115, t = 11.045, P<0.001). (Right) Points show the relationship 
between P. destructans prevalence on bat species in early winter and average late 
winter fungal loads (log10) on that same species in a given site (intercept: -4.118 coef: 
1.743 +/- 0.312, t = 5.597, P<0.001). 
Discussion: 

Introductions of pathogens over the last several decades have resulted in 

substantial impacts to wildlife and human health [3, 5, 118]. Despite the often-

devastating effects of introduced disease, the dynamics of emerging pathogens in 

areas where host impact is reduced are often poorly understood. Our results indicate 

that bats in Eurasia likely persist with P. destructans through multiple mechanisms.  

Several bat species appeared to be inherently resistant or resilient to infection, 

showing no evidence of P. destructans infection, or relatively small increases in 

prevalence over the winter. Several other bat species did not demonstrate inherent 

resistance with P. destructans. After becoming infected, these species showed 
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increases in P. destructans comparable to North American species. A key difference 

allowing these susceptible species to persist with P. destructans in Eurasia appears to 

be a reduction in early hibernation prevalence, determined by decreases in P. 

destructans in the environmental reservoir when bats are absent from hibernacula 

over the summer. Mortality from WNS in North America occurs at least 70-120 days 

after initial infection [25], and the substantially later infection of most bats in Eurasia 

may explain the persistence of these species with this disease.  

In contrast, in North America, there was no evidence of decreases in P. 

destructans in the environmental reservoir over the summer. Instead, the 

environmental reservoir showed a steady increase from initial invasion through year 

three of establishment. The difference between North America and Eurasia in the 

persistence of the environmental reservoir are consistent with the enemy or ecological 

release hypothesis observed in other invasive species [119-122]. Although the natural 

enemies causing the decrease in P. destructans over the summer in Eurasia are 

unknown, substrate dwelling bacteria and nematodes can have profound impacts and 

regulate populations of saprophytic fungi [123-126]. It appears that North American 

hibernacula may lack the natural enemies that compete with or consume P. 

destructans. 

 While the P. destructans in the environment across Europe and Asia provides 

a plausible explanation for reduced population impacts, there are numerous other 

factors that may also contribute to differences in impacts between North America and 

Eurasia, as well as the differences in dynamics among endemic countries. These 
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include differences in hibernation phenology related to climate or behavioral factors, 

innate resistance or resilience limiting fungal growth, density-dependent or species 

composition related transmission patterns, or differences in pathogen strains. Future 

work should aim to explore these additional sources of variation in both Eurasia and 

North America.  

Our data suggest that reductions in P. destructans in the environment could be 

an effective tool for managing WNS. An important next step is to identify agents that 

are effective in reducing P. destructans in the environment and can be applied during 

the summer when bats are absent from hibernacula.  Biological controls that regulate 

fungal populations have been suggested [123], but substantial hurdles exist in 

demonstrating safety and non-target effects.  

More broadly, our results underscore the importance of understanding disease 

dynamics in invading, epidemic, and endemic contexts. Although links between the 

environmental reservoir and bat infection dynamics were apparent during P. 

destructans invasion into North American sites, the environmental decay in Asia 

coupled with lower P. destructans environmental reservoirs in endemic sites across 

the globe, drew attention to the management of environmental reservoir through 

biological control as a potential conservation strategy to preserve bat populations. Our 

results also highlight the potential importance of ecological release of pathogens in 

driving disease dynamics and determining species extinction.  
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