Lawrence Berkeley National Laboratory

LBL Publications

Title

PREPARATION OF THE FIRST -OLEFIN COMPLEX OF A 4f-TRANSITION METAL, (Me5C5)2Yb (- C2H4)Pt(PPh3)2

Permalink https://escholarship.org/uc/item/5hr0c268

Authors

Burns, C.J. Andersen, R.A.

Publication Date

1986-09-01

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Preparation of the First n^2 -Olefin Complex of a 4f-Transition Metal, $(Me_5C_5)_2Yb(\mu-C_2H_4)Pt(PPh_3)_2$

Ø

19

Carol J. Burns and Richard A. Andersen*

Chemistry Department and Materials and Molecular Research Division of Lawrence Berkeley Laboratory, University of California Berkeley, California 94720

* Address all correspondence to Chemistry Department, University of California, Berkeley

Abstract

Reaction of $(Me_5C_5)_2Yb$ with the platinum olefin complex, $(Ph_3P)_2Pt(C_2H_4)$ gives the first olefin complex of a lanthanide metal, $(Me_5C_5)_2Yb(\mu-C_2H_4)Pt(PPh_3)_2$, as shown by X-ray crystallography.

đ

Insertion of an olefin into a metal-carbon bond is a fundamental and a reasonably well-known process in d- and f-transition metal organometallic chemistry.¹ It is generally assumed that coordination of the olefin to the metal center is a prerequisite to insertion though no olefin complexes of an f-transition metal have been isolated, in contrast to the enormous number of olefin complexes of the d-transition metals as well as the monovalent coinage metals.² Recently the n^6 -arene and n^2 -acetylene complexes, $(Me_6C_6)Sm(AlCl_4)_3^{3a}$ and $(Me_5C_5)_2Yb(MeC \equiv CMe), ^{3b}$ have been characterized showing that π -complexes of the lanthanides can be isolated.

We have observed that the bent, base-free compound, $(Me_5C_5)_2Yb$,^{4a} initiates the polymerization of ethylene, though not that of propylene nor styrene,^{4b} the mechanism of which is unknown though it presumably involves an n^2 -ethylene coordination complex. These studies encouraged us to try to isolate an olefin complex of an f-transition metal. In order to isolate such a complex, we postulated that an olefin with sterically small electron-donor groups rather than electron-withdrawing groups would maximize the Lewis basicity of the olefin donor orbitals. One way of creating such an olefin is to use a Pt(O) complex with ethylene, $(n^2-C_2H_4)Pt(PPh_3)_2$;⁵ the olefin is electron-rich since Pt(O) is a good m-donor.

Addition of white $(n^2-C_2H_4)Pt(PPh_3)_2$ to a toluene solution of $(Me_5C_5)_2Yb_1$ gives a red solution from which deep red needles of the adduct (I) may be isolated, mp 178-180 °C. The infrared spectrum (Nujol mull) is not greatly different from the superposition of the spectra of the individual molecules and the solution NMR spectra are consistent with a chemically exchanging system. The ¹H NMR spectrum of $(Ph_3P)_2Pt(C_2H_4)$ in C_6D_6 (30 °C, 500 MHz) shows the ethylene protons at δ 2.63 and J Pt-H = 60 Hz. The ethylene protons of (I) are observed $(C_6D_6, 30 °C, 90 MHz)$ at δ 2.18, J Pt-P = 56 Hz but the line

ř

ί,

-2-

is broadened and no other coupling information is available. At 500 MHz, 30 °C, C_6D_6 , the ethylene protons are not observable but at 50 °C a broadened triplet begins to appear at 6 2.23 which does not appreciably sharpen to 90 °C. At -70 °C in C_7D_8 (500 MHz) the Me_5C_5 resonance is broadened and overlaps with the ethylene resonance. This behavior is characteristic of a chemical exchange process that is rapid at high temperature, intermediate at 30 °C and apparently not stopped at -70 °C.⁶

Although the solution spectroscopy is ambiguous relative to structure, the solid state structure determined by X-ray diffraction at -80 °C is shown in the Figure.⁷ The $(Ph_3P)_2Pt$ and $(Me_5C_5)_2Yb$ portions of (I) are only slightly perturbed relative to uncomplexed $(Ph_3P)_2Pt(n^2-C_2H_4)^{5b}$ and $(Me_5C_5)_2$ Yb(thf).⁸ The averaged Pt-P and Pt-C distances are 2.268 ± 0.002 Å, 2.111 ± 0.003 Å and 2.275 ± 0.005 Å and 2.084 ± 0.001 Å in $(Ph_3P)_2(\eta^2-C_2H_4)$ and (I), respectively. The P-Pt-P and C-Pt-C angles in $(Ph_3P)_2Pt(n^2-C_2H_4)$ and (I) are 111.6(1)°, 39.7(4)° and 106.31(3)°, 40.3(1)°, respectively. The averaged Yb-C(Me₅C₅) and Yb-Me₅C₅ ring centroid distances and the Me_5C_5 ring centroid-Yb-Me₅C₅ ring centroid angle in $(Me_5C_5)_2$ Yb(thf) and (I) are 2.66 ± 0.01 Å, 2.37 Å, 143.5° and 2.67 ± 0.02 Å, 2.39 Å, 142.3°, respectively. The Yb-C(1,2) distances in (I) are 2.770(3) Å and 2.793(3) Å which average to 2.781 ± 0.006 Å and the C(1)-Yb-C(2) angle is 29.9(1)°. In $(Me_5C_5)_2Yb(\eta^2 - \eta^2)_2Yb(\eta^2 -$ MeC=CMe) the equivalent parameters are 2.850 \pm 0.010 Å and 23.4(1)°.^{3b} The Yb-C (olefin) distance in (I) is similar to the divalent Yb to semi-bridging methyl distance in $Yb[N(SiMe_3)_2]_2(dmpe)^{9a}$ of 2.77 Å and 2.86 Å, in $Na[N(SiMe_3)_2]_3^{9b}$ of 2.86 Å and 2.91 Å, and in $Yb[N(SiMe_3)_2]_2(Me_3A1)_2^{9c}$ which range from 2.756(2) Å to 3.202(3) Å. In addition, the Yb to olefin distance is intermediate between the long and short bridging Lu-C distance of 2.756(9) Å and 2.440(9) Å, respectively, in $(Me_5C_5)_4Lu_2(Me)(\mu-Me)$,¹ⁱ since Lu(III) is <u>ca</u>. 0.1 Å smaller than Yb(II) in a given coordination number. 9d

-3-

The bridging olefin portion of (I) is the structural feature of principal interest. The hydrogen atoms on the olefin of (I) were located and refined isotropically whereas they were not located in $(Ph_3P)_2Pt(n^2-C_2H_4)$.^{8a} The averaged C-H distance is 0.96 ± 0.06 Å, the averaged H-C-H, H-C-C, and H-C-Pt angles are $117.1 \pm 0.3^{\circ}$, $117.8 \pm 2.7^{\circ}$, and $112.2 \pm 3.5^{\circ}$, respectively. The C-C distance in (I) of 1.436(5) Å is the same as that in $(Ph_3P)_2Pt(n^2-C_2H_4)$ of 1.43(1) Å. In addition α , the angle between the normals to the planes defined by the hydrogen atoms, is 52.7°.^{2c} The intersection of the planes defined by H(1)C(1)H(2) and C(1)C(2)Pt, H(3)C(2)H(4) and C(1)C(2)Pt are 89.0 and 85.7°, respectively. Intersection of the PtC(1)C(2) and YbC(1)C(2) planes is 15.1°. This bending results in moving two of the four hydrogen atoms, H(1,3), towards the electropositive ytterbium atom, the averaged YbC(1)H(1) and YbC(2)H(3) angles being $69.5 \pm 0.6^{\circ}$ and the averaged YbC(1)H(2) and YbC(2)H(4) angles being 100.0 \pm 1.4°. The bending results in two types of Yb...H contact distances, YbH(1) = 2.58(5) Å, YbH(3) = 2.64(3) Å, YbH(2) = 3.09(4) Å and YbH(4) = 3.15(3) Å. The shorter pair of distances is similar to those found in the semi-bridging methyl to divalent Yb distances in which two of the three hydrogens on each methyl group approach the ytterbium atom at distances of 2.53, 2.63, 2.72 and 3.13 Å in $Yb[N(SiMe_3)_2]_2(Me_3A1)_2^{9c}$ and the Yb...H contact distances of 2.77 and 2.86 Å in $Yb[N(SiMe_3)_2]_2(dmpe)$.^{9a} The Yb...H distances are substantially longer than those found in the bridging hydrides, $Cp_{4}Lu_{2}(thf)_{2}(\mu-H)_{2}$ of 1.98(6) Å and 2.13(6) Å and $[Na(thf)_{6}][Cp_{6}Lu_{2}(\mu-H)]$ of 2.09 Å.¹⁰

The $Pt(C_2H_4)Yb$ interaction in (I) is obviously a weak interaction not unlike the d-transition metal olefin-alkali metal interactions found by Jonas and Klein.¹¹

1.

-4-

<u>Acknowledgment</u>. We thank the Fannie and John Hertz Foundation for a fellowship (C.J.B.) and Dr. F. J. Hollander for his help with the X-ray crystallography. This work is supported by the Director, Office of Research, Office of Basic energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under contract DE-AC03-76SF00098.

<u>Supplementary Material</u>. Atomic positional parameters, thermal parameters, and tables of bond lengths and angles (9 pages).

References

- (a) Yamamoto, A. "Organotransition Metal Chemistry," John Wiley, New York, 1986, Chap. 7. (b) Sinn, H.; Kaminsky, W. <u>Adv. Organomet. Chem</u>. 1980, <u>18</u>, 99-149. (c) Turner, H. W.; Schrock, R. R. J. <u>Am. Chem. Soc</u>. 1982, <u>104</u>, 2331-2333. (d) Schmidt, G. F.; Brookhart, M. <u>Ibid</u>. 1985, <u>107</u>, 1443-1444. (e) Clawson, L.; Soto, J.; Buchwald, S. L.; Steigerwald, M. L.; Grubbs, R. H. <u>Ibid</u>. 1985, <u>107</u>, 3377-3378. (f) Watson, P. L. <u>Ibid</u>. 1982, <u>104</u>, 337-339. (g) Watson, P. L.; Roe, D. C. <u>Ibid</u>. 1982, <u>104</u>, 6471-6473. (h) Watson, P. L.; Herskovitz, T. in "Initiation of Polymerization," Bailey, F. E., ed. ACS Symposium Series 212, 1983, p. 459. (i) Watson, P. L.; Parshall, G. W. <u>Acc. Chem. Res</u>. 1985, <u>18</u>, 51-56. (j) Thomas, R. R.; Chebolm, V.; Sen, A. J. <u>Am. Chem. Soc</u>. 1986, <u>108</u>, 4096-4103.
- (a) Green, M. L. H. "Organometallic Compounds," Vol. 2, 1968, Chapman and Hall, London, Chap. 2. (b) Herberhold, M. "Metal π-Complexes" 1974, Elsevier, Amsterdam. (c) Ittel, S. D.; Ibers, J. A. <u>Adv. Organomet.</u> <u>Chem. 1976, 14, 33-61. (d) Pasquali, M.; Floriani, C.; Gaetani-</u> Manfredotti, A.; Chiesi-Villa, A. J. Am. Chem. Soc. 1978, 100, 4918-4919. (e) Thompson, J. S.; Whitney, J. F. <u>Inorg. Chem</u>. 1984, 23, 2813-2819.
- (a) Cotton, F. A.; Schwotzer, W. J. Am. Chem. Soc. 1986, 108, 4657-4658.
 (b) Burns, C. J.; Andersen, R. A., submitted.
- 4. (a) Andersen, R. A.; Boncella, J. M.; Burns, C. J.; Green, J. C.; Hohl, D.; Rosch, N. J. Chem. Soc. Chem. Comm. 1986, 405-407. (b) Burns, C. J., unpublished results.
- 5. (a) Cook, C. D.; Jauhal, G. S. J. Am. Chem. Soc. 1968, 90, 1464-1467.
 (b) Cheng, P. T.; Nyburg, S. C. Canad. J. Chem. 1972, 50, 912-916.
- 6. ${}^{31}P{}^{1}H{}$ NMR of (I): C_6D_6 , 30 °C, 36.4 MHz, δ 33.0, JPtP = 3807 Hz. (Ph₃P)₂Pt(C₂H₄): C_6D_6 , 30 °C, 36.4 MHz, δ 3.40, JPtP = 3745 Hz. ¹H NMR of (I): C_6D_6 , 30 °C, 500 MHz, δ 7.53(m), 6.94(m), phenyl H's; 2.08s Me₅C₅. (Ph₃P)₂Pt(C₂H₄), C_6D_6 , 30 °C, 500 MHz, δ 7.51(m), 6.94(m) phenyl H's; 2.63 JPtH = 60 Hz, C_{2H_4} .
- 7. The compound crystallizes in the triclinic space group PT with cell dimensions a = 9.577(2) Å, b = 14.797(2)Å, c = 18.429(2)Å, a = $96.90(1)^{\circ}$, $\beta = 92.5g(1)^{\circ}$, $c = 102.77(1)^{\circ}$, $V = 2522(1)^{\circ}$, Z = 2 and $d(calc) = 1.57 \text{ gcm}^{-3}$. The data were collected on a Nonius CAD-4 automated diffractometer with MoK_a X-rays ($\lambda = 0.71073$ Å) at -80°C. The structure was solved from Patterson and electron density maps and refined by full-matrix least squares to a conventional R-factor of 0.020 (R =0.031, and GOF = 1.70) by using 5929 absorption corrected data, where $F_0^{2W} > 3\sigma(F_0^2)$, against 576 variables. The R-valve for all 6568 unique data was 0.026. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms on the ethylene carbons were located in a difference Fourier map and they were refined isotropically. The hydrogen atoms on the phenylcarbons and on the Me_5C_5 -ring methyls were located in a difference Fourier map, placed in calculated positions with fixed thermal parameters, included in structure factor calculations but were not refined.

4

1

- Tilley, T. D.; Andersen, R. A.; Spencer, B.; Ruben, H; Zalkin, A.; Templeton, D. H. <u>Inorg. Chem</u>. 1980, <u>19</u>, 2999-3003.
- 9. (a) Tilley, T. D.; Andersen, R. A.; Zalkin, A., J. Am. Chem. Soc. 1982, 104, 3725-3727. (b) Tilley, T. D.; Andersen, R. A.; Zalkin, A. <u>Inorg.</u> <u>Chem.</u> 1984, 23, 2271-2276. (c) Boncella, J. M.; Andersen, R. A. <u>Organometallics</u> 1985, 4, 205-206. (d) Shannon, R. D. <u>Acta Cryst</u>. 1976, <u>32A</u>, 751-767.
- 10. Schumann, H.; Genthe, W.; Hahn E.; Hossain, M.B.; Van Der Helm, D. J. Organomet. Chem. 1986, 299, 67-84.
- 11. (a) Jonas, K. <u>Angew. Chem. Int. Ed.</u> 1976, <u>15</u>, 47. (b) Brauer, D. J.; Krüger, C.; Roberts, P. J.; Tsui, Y. H. <u>Ibid</u>. 1976, <u>15</u>, 48. (c) Goddard, R.; Krüger, C.; Pörschke, K. R.; Wilke, G. <u>J. Organomet. Chem</u>. 1986, <u>308</u>, 85-103. (d) Klein, H. F.; Gross, J.; Bassett, J. M.; Schubert, U. <u>Z.</u> <u>Naturforsch</u>. 1980, <u>35b</u>, 614-619. (e) Klein, H. F.; Witty, H.; Schubert, U. <u>J. Chem. Soc. Chem. Comm</u>. 1983, 231-232.

9

- se

-7-

An ORTEP diagram of (I), the ellipsoids, represent 50% probability surfaces, except those of the hydrogen atoms on the ethylene unit which are arbitrary.

 $\sqrt{}$

5

 \mathbf{V}

1

- 7b-

Κ.

¢

د <u>م</u>

Supplementary Material for

Preparation of the First n^2 -Olefin Complex of a 4f-Transition Metal, $(Me_5C_5)_2Yb(\mu-C_2H_4)Pt(PPh_3)_2$

Carol J. Burns and Richard A. Andersen

Atomic Positional Parameters Thermal Parameters Bond Lengths and Angles

v.

5

 \mathbf{V}

Atom	× -	. y	Z 	.2 B(A)
PT	Ø.22439(1)	Ø.34578(1)	Ø.22261(1)	1.756(3)
ΥΒ P1	$a_{323}a_{13}$	6,22866(7)	$g_{25651(5)}$	1.900(4)
P2	Ø.0619(1)	Ø.28Ø12(7)	Ø.12718(5)	1.87(2)
C 1	0.3206(5)	Ø.4628(3)	0.2972(2)	2.70(9)
C2	0.2050(4)	Ø.4824(3)	$\emptyset.2539(2)$	2.64(9)
	Ø.4/94(4) Ø 5963(A)	10.0400(3) ((6715(3)	Ø.1903(2) Ø.2436(2)	2.40(9)
CI3	Ø.597Ø(4)	Ø.766Ø(3)	Ø.2768(2)	2.51(9)
C14	Ø.4782(4)	Ø.7939(3)	Ø.2445(2)	2.62(9)
C15	Ø.4065(4)	Ø.7195(3)	Ø.1913(2)	2.46(9)
C16 C17	10.4594(5) 0 7097/5	Ø.5601(4)	$\emptyset.1341(2)$ $\alpha.2567(2)$	3.8(1)
C18	$\emptyset.7148(5)$	$\emptyset.8261(4)$	$\emptyset.2307(3)$	4.2(1)
Č19	0.4449(5)	Ø.8892(3)	0.2569(2)	3.5(1)
C2Ø	Ø.2768(5)	Ø.721U(4)	Ø.1423(2)	3.7(1)
C21	$\emptyset.2144(5)$	Ø.7391(3)	$\emptyset.4148(2)$	2.65(9)
C23	$\alpha \ 4097(5)$	0.7739(37	0.4407(2)	2.9(1)
C24	Ø.2957(5)	Ø.6194(3)	Ø.4556(2)	2.95(9)
C25	Ø.174Ø(5)	0.6440(3)	0.4245(2)	2.93(9)
C26	Ø.1162(6)	Ø.7933(4)	0.3840(3)	5.2(1)
C29	0.4383(6)	10.8/48(4) a 7aac/4)	Ø.453/(3)	4.8(1)
C29	Ø.2972(6)	$\emptyset.7005(47)$	Ø.4843(3)	4.6(1)
C30	0.0250(5)	Ø.5831(4)	Ø.41Ø1(3)	4.9(1)
C111	$\emptyset.5105(4)$	Ø.2673(3)	Ø.2937(2)	2.24(8)
C112 C112	$\emptyset.5692(5)$	$\emptyset.2235(3)$	$\emptyset.3466(2)$	3.4(1)
	Ø.7119(5) Ø.7965(5)	N.2302(4) A 33A1(3)	0.3720(2)	4.0(1) 3.0(1)
CI15	Ø.7418(5)	Ø.3725(3)	Ø.2919(3) -	3.8(1)
C116	Ø.5974(4)	0.3405(3)	0.2669(2)	2.96(9)
C121	Ø.3298(4)	Ø.1262(3)	Ø.1912(2)	1.99(8)
C122	0.4548(4)	(122)(3)	0.1550(2)	2.65(9)
C124	$\emptyset.3325(5)$	-0.0209(3)	y_{0}^{1}	3.3(1)
C125	Ø.2106(5)	-Ø.Ø179(3)	Ø.1166(2)	3.0(1)
C126	Ø.2079(5)	Ø.Ø562(3)	Ø.1711(2)	2.72(9)
C131	$\emptyset.2259(4)$	Ø.1786(3)	Ø.3311(2)	2.29(8)
C132 C133	1404(4) 0 (17(19/5)	N.2315(3) 6 1996(2)	0.3/14(Z) 0.4207(2)	2.54(9)
C134	$\emptyset.0703(3)$	$\emptyset_{1129(4)}$	Ø 4297(2) Ø 4272(3)	5.2(1)
C135	Ø.1591(7)	0.0508(3)	Ø.4005(3)	6.5(1)
C136	Ø.2314(6)	ຝ.ມ915(3)	0.3552(3)	4.2(1)

Table of Positional Parameters and Their Estimated Standard Deviations

¢.

æ.

₹.

				.2
Atom	×	y	Z	B(A)
	-	-	-	
C211	Ø.1363(4)	Ø.2614(3)	Ø.Ø387(2)	1.96(8)
C212	Ø.Ø569(4)	Ø.2547(3)	-Ø.Ø279(2)	2.55(9)
C213	Ø.1197(5)	Ø.2434(3)	-Ø.Ø935(2)	3.2(1)
C214	Ø.2612(5)	Ø.2397(3)	-Ø.Ø938(2)	3.4(1)
C215	Ø.3412(5)	0.2454(3)	-Ø.Ø295(2)	3.5(1)
C216	Ø.2811(4)	0.2572(3)	0.0375(2)	2.88(9)
C221	-0.0527(4)	Ø.167Ø(3)	Ø.138Ø(2)	1.98(8)
C222	$-\emptyset, \emptyset 841(4)$	0.0907(3)	0.0844(2)	2.39(9)
Č223	$-\emptyset.166\emptyset(5)$	0.0060(3)	$\emptyset, \emptyset 986(2)$	3.0(1)
C224	$-\emptyset.2166(5)$	-0.0028(3)	Ø.1665(3)	3.3(1)
C225	-0.1885(5)	0.0732(3)	$\emptyset.221\emptyset(2)$	3.3(1)
C226	-0.1056(4)	Ø.1582(3)	0.2074(2)	2.70(9)
C231	-0.0656(4)	0.3494(3)	$\emptyset, 1050(2)$	2.34(8)
C232	-0.0111(5)	$\emptyset, 4421(3)$	0,0952(3)	3.4(1)
C233	-0.0977(6)	Ø.4983(3)	0.0759(3)	4.8(1)
6234	$-\theta_{1}^{2}$ 2413(5)	0,4659(4)	Ø. Ø67Ø(3)	4.7(1)
6235	-9.3699(5)	Ø.3753(A)	0.0766(3)	5.3(1)
6236	-0.2140(5)	6.3165(4)	Ø. Ø955(3)	3.8(1)
HI	9,497(5)	Ø. 489(A)	Ø.292(3)	6(1)*
H2	0.294(5)	a 45a(3)	Ø.351(2)	5(1)*
H2	a 23a(A)	a 521(2)	$\alpha 218(2)$	$\frac{1}{2}$ 1(8)*
HA	$a_{112(4)}$	Ø 479(3)	Q 273(2)	2 8(9)*
			<i>w.213(21</i>	2.0197*

Table of Positional Parameters and Their Estimated Standard Deviations (cont.)

* -- Atoms refined with isotropic thermal parameters.

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: 2 2 2

(4/3) * [a *B(1,1) + b *B(2,2) + c *B(3,3) + ab(cos gamma)*B(1,2)]

-10-

 \leq

۰à

+ ac(cos beta)*B(1,3) + bc(cos alpha)*B(2,3)]

<u>.</u>

Atom	×	v	Z	.2 B(A)
	-	-	-	
	<i>a</i> 5116	a 1701	Ø 0657	
H112	10.5110 0 7520	10.1704	10.300/ a Aaco	5.5°" 5.5**
H114	Ø.7530 Ø 8947	a 3527	A 364A	5.5**
HIIS	0.8006	Ø.4235	Ø.2711	5.5**
H116	Ø.557Ø	Ø.37Ø7	Ø.23Ø9	5.5**
H122	0.5409	0.1700	0.1705	5.Ø**
H123	Ø.54Ø7	Ø.Ø476	Ø.Ø746	5.0**
H124	Ø.3348	-Ø.Ø727	0.0444	5.Ø**
H125	Ø.1257	-0.0682	Ø.1Ø25	5.0**
H126	0.1202	0.0592	Ø.1952	5.0**
1132	0.1441	10.2919	10.3584 0.4560	5.0~*
H133	Ø.0137 Ø 6257	D.2300 A A0A3	0.4000 0 A883	ο. <i>μ</i> ~~ 7 α××
H135	Ø.1628	-0.0020	Ø. 4208	7.5**
H136	Ø.287Ø	Ø. Ø549	Ø.3224	7.0**
H161	0.5024	Ø.5712	Ø.Ø917	5.5**
H162	Ø.4796	Ø.5Ø94	Ø.1543	5.5**
H163	Ø.35Ø7	ø.54Ø5	Ø.1192	5.5**
H171	Ø.7849	Ø.6349	Ø.2256	5.5**
H172	0.7501	Ø.6392	0.3072	5.5**
H1/3	0.6698	1.5555	0.2506	5.5**
H102	0.7000	0.0002	0.3047	5.5~~
H183	Ø. 7557	Ø. 7877	Ø 3594	5.5**
H191	0.4972	a. 93aa	Ø. 2272	5.5**
H192	Ø.3472	Ø.8864	Ø.252Ø	5.5**
H193	Ø.4788	Ø.9173	Ø.3Ø89	5.5**
H2Ø1	Ø.3Ø36	Ø.7454	Ø.Ø985	5.5**
H2Ø2	Ø.2172	Ø.6594	Ø.13Ø4	5.5**
H2Ø3	Ø.2191	Ø.7596	Ø.1673	5.5**
H212	-0.0431	10.2567	-10.0275	5.0**
H213 ·	0.0040 0.2077	10.2363	-0.1396	5.0**
H214 H215	0.3077 0 1390	D.2344 0 2282	-0.1300	5.0°° ·
H216	Ø. 3367	1.2641	-0.0309 0 0828	5.0**
H222	-Ø.0498	<i>ũ</i> . <i>й</i> 965	<i>ũ. й</i> 368	5.0**
H223	-0.1870	-0.0473	Ø.Ø6Ø9	5.Ø**
H224	-Ø.2693	-Ø.Ø63Ø	Ø.1763	5.Ø**
H225	-Ø.23Ø2	Ø.Ø671	Ø.2677	5. <i>£</i> **
H226	-Ø.0837	Ø.212Ø	Ø.2452	5.0**
H232	0.0903	Ø.4678	Ø.1933	5.0**
H233 U224	-10.105410	0.5632	Ø.0699	1.10**
N234 H235	-0.3043 -0 1012	0.505J 0.505J	10.10533 0 0600	7.10**
11233	******	ມ່ວງກ່ວ	້ນເປັນບ່	1.0

Table of Positional Parameters and Their Estimated Standard Deviations (cont.)

٤.

ž.,

ŕ

4

Atom	¥	v	7	.2 B(A)
	-	<i>3</i>		
H236	-Ø.2578	8.2528	Ø.1Ø31	6.Ø**
H261	8.8788	Ø.8212	Ø.4234	7.8**
H262	Ø.1727	Ø.8443	Ø.362Ø	7.0**
H263	0.0479	0.7558	Ø.3494	7.0**
H271	Ø.4181	0.9032	Ø.5ØØ8	7.0**
H272	0.5387	0.8809	Ø.4531	7.0**
H273	0.4077	Ø.9Ø91	Ø.4173	7.0**
H281	Ø.5629	0.7162	0.5480	7.Ø**
H282	Ø.58Ø4	Ø.6413	Ø.4846	7.Ø**
H283	Ø.6258	Ø.7467	Ø.4763	7.Ø**
H291	Ø.2674	Ø.5298	Ø.5331	7.Ø**
H292	Ø.23Ø5	Ø.4776	ø.454ø	7.Ø**
· H293 ·	Ø.3896	Ø.5157	Ø.4835	7.0**
· H3Ø1	-Ø.0291	Ø.5864	Ø.4522	7.Ø**
H3Ø2	-Ø.Ø257	Ø.6Ø12	Ø.37Ø3	7.0**
H3Ø3	Ø.Ø288	Ø.5186	Ø.3968	7.Ø**
CP 1	Ø.5115	Ø.72Ø1	Ø.2292	
CP2	Ø.29Ø9	Ø.6949	Ø.44ØØ	

Table of Positional Parameters and Their Estimated Standard Deviations (cont.)

** -- Atoms included but not refined.

x"

17

-12-

 \mathcal{C}^{*}

Name	B(1,1)	B(2,2)	8(3,3)	B(1,2)	B(1,3)	B(2,3)	Beqv
рт	1.8Ø1(6)	1.496(6)	1.838(6)	Ø.2Ø7(5)	Ø.Ø84(5)	Ø.Ø28(5)	1.756(3)
YB	2.248(7)	1.575(7)	1.916(6)	Ø.2Ø5(6)	Ø.38Ø(6)	Ø.141(6)	1.950(4)
P1	2.Ø4(4)	1.87(4)	1.92(4)	Ø.35(3)	Ø.10(3)	0.07(3)	1.97(2)
P 2	1.72(4)	1.86(4)	1.96(4)	Ø.33(3)	Ø.24(3)	.Ø.Ø9(3)	1.87(2)
C 1	3.1(2)	1.6(2)	3.0(2)	Ø.Ø(1)	-Ø.3(2)	-Ø.1(1)	2.70(9)
C2	2.8(2)	1.9(2)	3.1(2)	Ø.3(1)	Ø.5(1)	Ø.2(1)	2.64(9)
C11	2.4(2)	2.8(2)	2.3(2)	Ø.7(1)	Ø.8(1)	Ø.7(1)	2.45(9)
C12	2.3(2)	2.8(2)	3.0(2)	Ø.8(1)	Ø.8(1)	1.0(1)	2.60(9)
C13	1.7(2)	2.8(2)	2.9(2)	-Ø.1(1)	Ø.3(1)	1.2(1)	2.51(9)
C14	2.7(2)	2.5(2)	2.8(2)	Ø.4(1)	0.8(1)	1.0(1)	2.62(9)
C15	2.5(2)	2.9(2)	2.1(1)	Ø.4(1)	Ø.7(1)	1.0(1)	2.46(9)
C16	3.8(2)	4.4(2)	3.0(2)	Ø.7(2)	1.2(2)	-Ø.1(2)	3.8(1)
C17	2.7(2)	4.6(2)	5,3(2)	1.4(2)	Ø.7(2)	1.6(2)	4.Ø(1)
C18 ·	3.3(2)	4.5(2)	4.2(2)	-Ø.2(2)	-Ø.3(2)	Ø.7(2)	4.2(1)
C19	4.2(2)	2.8(2)	4.0(2)	1.1(2)	1.1(2)	1.2(2)	3.5(1)
C2Ø	2.9(2)	4.9(2)	3.4(2)	Ø.8(2)	Ø.Ø(2)	1.2(2)	3.7(1)
C21	3.2(2)	2.6(2)	2.7(2)	Ø,9(1)	Ø.7(1)	-Ø.1(1)	2.85(9)
C22	4.0(2)	2.1(2)	2.2(2)	Ø.1(2)	Ø.7(1)	Ø.4(1)	2.9(1)
C23	3.3(2)	3.3(2)	2.Ø(2)	Ø.5(2)	Ø.2(1)	Ø.1(1)	2.9(1)
C24	4.3(2)	2.8(2)	2.Ø(1)	1.Ø(2)	1.2(1)	Ø.5(1)	2.95(9)
C25	3.3(2)	2.8(2)	2.5(2)	Ø.4(2)	1.1(1)	Ø.1(1)	2.93(9)
C26	5.6(2)	5.0(2)	5.8(3)	3.2(2)	1.1(2)	Ø.7(2)	5.2(1)

Table of General Temperature Factor Expressions - B's

ť,

<u>, 1</u>

<

`

-13-

i

							•
Name	B(1,1)	B(2,2)	B(3,3)	B(1,2)	B(1,3)	B(2,3)	Beqv
C27	6.7(3)	2.8(2)	4.1(2)	-Ø.1(2)	1.2(2)	-Ø.7(2)	4.8(1)
C28	4.6(2)	6.3(3)	3.1(2)	1.8(2)	-Ø.1(2)	Ø.1(2)	4.6(1)
C29	7.7(3)	3.5(2)	3.0(2)	1.6(2)	1.4(2)	1.1(2)	4.6(1)
C 3Ø	3.5(2)	4.8(3)	5.6(2)	-Ø.2(2)	1.9(2)	-Ø.4(2)	4.9(1)
C111	2.2(2)	2.5(2)	1.9(1)	8.6(1)	-Ø.1(1)	-Ø.2(1)	2.24(8)
C112	3.6(2)	4.3(2)	2.6(2)	1.4(2)	0.4(2)	Ø.6(2)	3.4(1)
C113	3.5(2)	6.6(2)	2.4(2)	2.6(2)	-Ø.4(2)	Ø.1(2)	4.0(1)
C114	2.3(2)	4.2(2)	4.5(2)	1.1(2)	-Ø.5(2)	-1.3(2)	3.8(1)
C115	2.1(2)	3.Ø(2)	6.3(3)	Ø.7(2)	Ø.1(2)	-Ø.Ø(2)	3.8(1)
C116	2.4(2)	2.4(2)	4.1(2)	Ø.9(1)	-Ø.2(2)	0.3(2)	2,96(9)
C121	2.0(1)	2.Ø(1)	2.Ø(1)	Ø.6(1)	-Ø.Ø(1)	Ø.1(1)	1.99(8)
C122	2.8(2)	2.7(2)	2.4(2)	Ø.4(1)	Ø.4(1)	Ø.1(1)	2.68(9)
C123	4.0(2)	3.9(2)	2.4(2)	2.Ø(2)	Ø.8(1)	Ø.3(2)	3.3(1)
C124	4.6(2)	3.1(2)	2.4(2)	1.8(2)	Ø.Ø(2)	-Ø.7(2)	3.3(1)
C125	3.3(2)	2.3(2)	3.2(2)	Ø.4(2)	-Ø.1(2)	-Ø.2(2)	3.Ø(1)
C126	3.1(2)	2.2(2)	2.8(2)	8.7(1)	Ø.1(1)	-Ø.3(1)	2.72(9)
C131	2.1(2)	2.3(2)	2.4(2)	Ø.2(1)	Ø.3(1)	Ø.3(1)	2.29(8)
C132	2.9(2)	2.6(2)	2.2(2)	Ø.7(1)	Ø.4(1)	Ø.5(1)	2.54(9)
C133	3.7(2)	3.4(2)	3.3(2)	1.Ø(2)	1.0(2)	Ø.4(2)	3.4(1)
C134	7.8(3)	3.7(2)	4.6(2)	1.0(2)	3.2(2)	1.6(2)	5.2(1)
C135	10.2(3)	2.5(2)	6.Ø(2)	1.8(2)	5.2(2)	1.6(2)	6.Ø(1)
C136	6.3(2)	2.7(2)	4.3(2)	1.7(2)	2.3(2)	1.0(2)	4.2(1)
	1						

-14-

1-

Table of General Temperature Factor Expressions - B's (Continued)

 \mathcal{T}

-

Name	B(1,1)	B(2,2)	B(3,3)	B(1,2)	B(1,3)	B(2,3)	Beqv
C211	2.3(2)	1.0(1)	2.3(1)	-Ø.Ø(1)	Ø.4(1)	-Ø.1(1)	1.96(8)
C212	2.8(2)	2.3(2)	2.5(2)	Ø.6(1)	8.1(1)	Ø.2(1)	2.55(9)
C213	5.0(2)	2.5(2)	2.1(2)	Ø.8(2)	Ø.5(2)	Ø.2(1)	3.2(1)
C214	5.0(2)	2.1(2)	2.9(2)	0.3(2)	2.0(2)	Ø.1(1)	3.4(1)
C215	2.8(2)	4.1(2)	3.5(2)	Ø.4(2)	1,3(2)	Ø.3(2)	3.5(1)
C216	2.4(2)	3.3(2)	2.9(2)	Ø.2(2)	Ø,6(1)	Ø.6(2)	2.88(9)
C221	1.3(1)	2.3(2)	2.1(1)	0.1(1)	Ø.1(1)	Ø.2(1)	1.98(8)
C222	2.4(2)	2.3(2)	2.2(2)	-Ø.Ø(1)	Ø.3(1)	Ø.2(1)	2.39(9)
C223	2.8(2)	2.5(2)	3.4(2)	Ø.1(2)	-Ø.1(2)	0.0(2)	3,Ø(1)
C224	2.8(2)	2.4(2)	4.4(2)	-Ø.2(2)	Ø.7(2)	1.Ø(2)	3.3(1)
C225	2.9(2)	3.5(2)	3.4(2)	0.2(2)	1.3(1)	1.0(2)	3.3(1)
C226	2.5(2)	2.7(2)	2.9(2)	Ø.5(1)	Ø.6(1)	Ø.3(1)	2.7Ø(9)
C231	2.1(1)	3.3(2)	1.6(1)	1.0(1)	Ø.Ø(1)	-Ø.3(1)	2.34(8)
C232	3.5(2)	2.4(2)	4.3(2)	1.0(2)	-Ø,3(2)	Ø.3(2)	3.4(1)
C233	6.6(3)	3.6(2)	4.9(2)	2.6(2)	-Ø.5(2)	Ø.4(2)	4.8(1)
C234	5.4(2)	6.1(2)	3.9(2)	4.0(2)	Ø.5(2)	Ø.7(2)	4.7(1)
C235	2.7(2)	9.7(3)	4.4(2)	3.4(2)	0.3(2)	Ø.7(2)	5.3(1)
C236	2.4(2)	5.2(2)	3.9(2)	1.Ø(2)	Ø.3(2)	Ø.6(2)	3.8(1)

Table of General Temperature Factor Expressions - B's (Continued)

1

+ 2klb*c*B(2,3)]] , where a*,b*, and c* are reciprocal lattice constants.

-15-

1

Intramc ATOM 1 - YB YB YB PT C1 C1 C1 H1 H1 H2 H3 H3 H3 H4	ATOM 2 C1 C2 C1 C2 C1 C2 C1 C2 VB PT C1 C1 C1 C2 C2 C2 VB C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	Angles ATOM 3 PT C2 C1 C2 C1 C2 C2 C2 H2 C2 C2 H2 C2 C2 H2 C2 C2 H2 C2 C2 H2 C2 C2 H2 C2 C2 C2 H2 C2 C2 C2 H2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	ANGLE 142.68(17) 141.Ø6(17) 75.89(19) 74.18(19) 69.82(2Ø) 29.93(11) 4Ø.3Ø(14) 116.6(37) 12Ø.8(33) 113.3(21) 117.6(28) 116.9(2Ø) 12Ø.3(20)	C21 C22 C25 C21 C23 C22 C24 C23 C24 C23 C21 C24 P1 P2 P2 P1 P1	C25 C21 C22 C22 C23 C23 C24 C25 C25 PT PT PT PT PT PT	C24 C26 C27 C27 C28 C28 C29 C3Ø C3Ø C3Ø C1 C2 C1 C2 C1 C2 P2 C111	107.5(3) 126.8(4) 124.7(4) 125.7(4) 126.6(3) 124.5(4) 125.4(4) 125.6(4) 125.6(4) 126.7(3) 104.70(10) 144.10(10) 148.91(10) 108.69(10) 106.31(3) 114.25(11)	C213 C214 C211 P2 P2 C222 C221 C223 C224 C221 P2 P2 P2 C232	C214 C215 C216 C221 C221 C222 C223 C224 C225 C226 C226 C231 C231 C231 C231	C215 C216 C215 C226 C226 C226 C223 C224 C225 C225 C225 C236 C236 C236 C236 C236	120.4(3) 120.6(3) 119.6(3) 124.40(23) 116.34(23) 119.2(3) 120.6(3) 120.4(3) 120.4(3) 119.7(3) 119.9(3) 117.8(3) 125.2(3) 117.8(3) 122.0(4)	•
H1 H2 H3 H4	C1 C1 C2 C2	YB YB YB YB	68.3(33) 97.2(20) 70.7(20) 102.8(20)	PT PT C111 C111 C121	P1 P1 P1 P1 P1	C121 C131 C121 C131 C131	121.51(10) 109.13(11) 101.68(14) 104.77(14) 103.86(14)	C231 C232 C233 C234 C231	C232 C233 C234 C235 C236	C234 C235 C236 C235	120.6(4) 119.8(4) 120.4(4) 120.2(4)	
H 1 H2 H3 H4 CP 1	C1 C1 C2 C2 YB	PT PT PT PT C1	118.0(32) 109.5(20) 113.4(20) 107.8(20) 108.7	PT PT C211 C211	P2 P2 P2 P2 P2	C211 C221 C231 C221 C231 C231	115.51(1Ø) 115.33(1Ø) 115.21(1Ø) 1Ø4.91(13) 1ØØ.62(14)					
CP1 CP2 CP2 CP1 CP1 CP1 CP1 CP2 CP2 CP2	YB YB YB YB YB YB YB YB YB YB YB	C2 C1 C2 H1 H2 H3 H4 H1 H2 H3	105.5 106.8 111.6 95.4 127.2 88.0 118.7 115.9 86.8 127.3	C221 P1 C112 C111 C112 C113 C114 C111	F2 C111 C111 C112 C113 C114 C115 C116	C231 C112 C116 C116 C113 C113 C114 C115 C116 C115	1Ø3.45(15) 122.7(3) 118.50(24) 118.7(3) 119.6(4) 12Ø.7(4) 12Ø.5(3) 118.8(4) 121.6(3)				-16-	:
CP2 CP1 C12 C11 C12 C13 C11 C12 C12	YB YB C11 C12 C13 C14 C15 C11	H4 CP2 C15 C13 C14 C15 C14 C16	96.6 142.3 108.4(3) 107.9(3) 107.7(3) 107.5(3) 108.5(3) 125.6(3)	P1 P1 C122 C121 C122 C123 C124 C121	C121 C121 C121 C122 C123 C124 C125 C126	C122 C126 C126 C123 C123 C124 C125 C126 C125	120.36(24) 120.52(24) 118.9(3) 120.4(3) 120.4(3) 120.3(3) 120.5(3) 120.5(3) 120.3(3)					
 C15 C11 C13 C12 C14 C13 C15 C15 C11 C14	C11 C12 C12 C13 C13 C13 C14 C14 C14 C15 C15	C16 C17 C18 C18 C19 C19 C19 C2Ø	125.4(3) 126.2(3) 125.7(3) 124.9(3) 126.8(3) 125.9(3) 126.3(3) 126.6(3) 124.9(3)	P1 P1 C132 C131 C132 C133 C134 C131	C131 C131 C132 C132 C133 C134 C135 C136	C132 C136 C136 C133 C134 C135 C136 C135	118.21(25) 123.1(3) 118.7(3) 121.8(3) 118.5(3) 121.2(4) 129.5(4) 128.3(4)					
C22 C21 C22 C23	C21 C22 C23 C24	C25 C23 C24 C25	108.5(3) 106.3(3) 108.8(3) 108.4(3)	P2 P2 C212 C211 C212	C211 C211 C211 C212 C212 C213	C212 C216 C216 C213 C214	122.85(25) 118.58(24) 118.5(3) 12Ø.6(3) 12Ø.3(3)					

κ +

3,00

¢

Intramolecular Distances

3...

*

АТОМ 1 РТ РТ Ув Ув	ATOM 2 C1 C2 C1 C2 C2	DISTANCE 2.Ø84(3) 2.Ø85(3) 2.770(3) 2.792(3)	P1 P2 P2 P2	C131 C211 C221 C231	1.833(3) 1.823(3) 1.825(3) 1.822(3)
C1 C1 C2 C2	C2 H1 H2 H3 H4	1.436(5) Ø.85(5) 1.Ø7(4) Ø.93(3) Ø.97(4)	C111 C111 C112 C113 C114 C115	C112 C116 C113 C114 C115 C116	1.398(5) 1.369(5) 1.384(6) 1.369(6) 1.370(6) 1.396(5)
¥В ¥В ¥В РТ РТ РТ	H1 H2 H3 H4 H1 H2 H3	2.58(5) 3.09(4) 2.64(3) 3.15(3) 2.59(5) 2.64(4) 2.60(3)	C121 C121 C122 C123 C124 C125	C122 C126 C123 C124 C125 C126	1.396(4) 1.381(5) 1.389(5) 1.387(5) 1.364(5) 1.400(5)
YB YB YB YB YB YB	H4 C11 C12 C13 C14 C15 C21	2.55(4) 2.693(3) 2.675(3) 2.672(3) 2.6901(3) 2.6901(3)	C131 C131 C132 C133 C134 C135	C132 C136 C133 C134 C135 C136	1.384(5) 1.388(5) 1.397(5) 1.364(6) 1.396(6) 1.389(5)
YB YB YB YB YB YB	C22 C23 C24 C25 CP1 CP2	2.650(3) 2.634(3) 2.679(3) 2.694(3) 2.390 2.378	C211 C211 C212 C213 C214 C215	C212 C216 C213 C214 C215 C216	1.397(4) 1.403(5) 1.381(5) 1.368(5) 1.367(5) 1.394(5)
C11 C11 C12 C13 C14 C11	C12 C15 C13 C14 C15 C16	1.403(5) 1.405(5) 1.419(5) 1.422(5) 1.410(5) 1.515(5)	C221 C222 C222 C223 C224 C225	C222 C226 C223 C224 C225 C226	1.377(4) 1.406(4) 1.305(5) 1.373(5) 1.383(5) 1.389(5)
C12 C13 C14 C15 C21	C18 C19 C20 C22 C22	1.502(5) 1.501(5) 1.511(5) 1.508(5) 1.422(5)	C231 C231 C232 C233 C234 C235	C232 C236 C233 C234 C235 C236	1.393(5) 1.392(5) 1.361(5) 1.348(6) 1.373(7) 1.391(6)
C22 C23 C24 C21 C22 C23 C23 C24 C25	C23 C24 C25 C26 C27 C28 C29 C3Ø	1.414(5) 1.396(5) 1.414(5) 1.498(5) 1.503(5) 1.515(5) 1.503(5) 1.503(5)	PT	ΥB	4.6Ø5
РТ РТ	P 1 P 2	2.204(1) 2.266(1)			
P 1	C111	1 833(3)			

P1 C111 1.833(3) P1 C121 1.834(3) -17-

₫.

. - - . .

ė

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

_

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720 A ' AD