UC Irvine
ICS Technical Reports

Title
RT component sets for high level design applications

Permalink
https://escholarship.org/uc/item/5ha559wf{

Authors

Dutt, Nikil D.
Jha, Pradip K.

Publication Date
1994-06-01

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/5hq559wf
https://escholarship.org
http://www.cdlib.org/

RT Component Sets for High
Level Design Applications

TR #94-27

Nikil D. Dutt & Pradip K. Jha

Notice: This Material
may he protected
by Copyright Law

(Title 17 U.S.C.)

RT Component Sets for High Level Design Applications

Nikil D. Dutt and Pradip K. Jha

Technical Report# 94-27
June 1, 1994

Dept. of Information and Computer Science
University of California, Irvine
Irvine, CA 92717-3425
Phone: (714) 856-8059
FAX: (714) 856-4056
Email: pradip@ics.uci.edu

point where each of the system’s components is described as a block diagram or netlist of abstract
Register- Transfer (RT) level components. In this report, we motivate the need for such a standard
RT component set, and describe a library environment that supports automatic model generation,
design reuse, and synthesis with technology-specific estimators. We demonstrate the efficacy of the
standard RT-component set approach with experiments performed on the HLSW92 benchmarks. Our
preliminary results indicate only a small overhead of about 10% in using these standard, generic
components. We then describe an automatic model generation and technology projection scheme
that uses fast (on-line) estimators for predicting the area and delay of generic RT components tuned
to a particular technology library with an accuracy of 10%. These model generators and estimators
have been integrated with a high-level synthesis system at U.C. Irvine.

Abstract
The system-level design process typically involves refining a design specification down to the

Contents

1 Introduction

2 Related Work

3 High-level Design Using GENUS

4 The GENUS RT Library

4.1 Generic Component COVerage o vt vt v ittt e e e e

4.2 Effectiveness of GENUS o 0 e e e e e e e e e

5 Model Generation

6 Technology Projection

7 Summary

8 Acknowledgements

10

13

14

List of Figures

=1 (W}

o

RT component set for high-level design: . . .- ¢« 5 5 v hv v i dwwalbubeiian 2
TREOoslEh SERAARIO 1 v & « cv m e mmm e wmw ws ae ek s e e e 5

Coverage of GENUS components across different libraries and parameters i

Studyet overliead incurred With GENUS & v w5 3 ¢ vt v i v e ile o mm o b 8
Experimental results of GENUS overhead study 9
Behavioral VHDL simulation models 10
Estimation approach with anexample 11
Aggregate error profile as compared to DTAS 12
Aggregate error profile as compared to LAST/TELE 12

1 Introduction

Present-day design methodologies involving schematic capture and simulation require the system
designer to partition, refine and specify a design as an interconnection of components drawn from a
vendor’s library. These components can vary in their level of complexity from simple logic gates. to
sequential components such as counters and registers, to arithmetic blocks such as ALUs, and all
the way up to complex components such as CPU cores. However, the register-transfer (RT) level is
a common design entry point that is supported by most of the existing CAD tools on the market.
Furthermore, the RT-level has had a long history of use as a design entry point, as evidenced by the
frequent use of TTL databook component names by designers, as well as in digital system design
courses outlined in standard textbooks and taught at universities. We also note that most data
sheets for product specifications (either being designed. or after they have been designed) are often
composed of register-transfer schematics typically drawn up by system level designers.

Although RT-level components are commonly used in specifying, documenting, refining and
synthesizing designs, there is a lack of standardized RT component sets that can facilitate unam-
biguous documentation, communication and design reuse. Only recently has an effort spearheaded
by the FPGA community (LPM)[10] begun to address this issue. This is in contrast to the logic-
level, where the designs can be expressed as netlists of well-understood standard components such
as the equivalent 2-input NAND or NOR gate. The lack of a standardized RT-level component
set is a serious roadblock to elevating the design process beyond the RT-level and will affect the
capability of effectively synthesizing large-scale system designs in an efficient manner. Furthermore,
the lack of a component set also prevents the capability of automatic model generation for various
design tasks such as simulation, synthesis and verification — an important feature that is often
crucial for supporting design reuse as well as redesign.

Component sets and libraries play a particularly important role in the context of synthesis; well
defined component sets at the input and output are critical for the successful realization of any
synthesis tool. We typically use generic components to specify the input or intermediate results
of synthesis, and follow with a phase of technology mapping to realize the design with a set of
components from a technology library [11]. For instance, logic synthesis uses generic components
such as simple logic gates (e.g., AND, OR, INVERT) at the input and for intermediate synthesis
steps, but the last step of logic synthesis involves technology mapping of the generic design into
components drawn from a technology library (e.g., complex CMOS gates, or a different logic gate
family such as NOR-NOR)[24]. Generic component sets facilitate technology independence, and
allow the capture of a design in a standard form that can be retargetted to different libraries (or
technologies) without changing the input description. Of course, technology independence needs
to be coupled with good technology mapping strategies that can effectively map generic designs to
target library components with low overhead.

Another important requirement for system-level design is the capability of specifying the design
once, but using this specification to predict technology-specific design characteristics (e.g., area,
speed, power) for different target implementations. System-level designers would like to perform
early design space exploration by delaying binding of system-level components to a particular
technology or implementation, but need the capability of rapid technology projection for different
target libraries. The concepts of delayed binding, technology projection and effective estimation
for system-level design cannot be performed without the support of a well defined component set
and associated tools for technology mapping and prediction.

:HL synthesis

: Logic/Sequential synthesis

Behavioral
description

Netlist
generator

Scheduler d

Allocator -f

Y

Y

L

Memory
synthesis

Control
synthesis

Functional < .:
synthesis :

L e

[

Physical design

P P e

Generic
Library

RT
Component

Set

Technol:
Lfbraﬁgsg ¥

T

J!

L

|

Figure 1: RT component set for high-level design

User
Interface

High-Level Synthesis (HLS) also relies on a library of well-defined. parameterized RT component
generators to simplify the mapping of behavioral variables and operators to physical components.
This mapping of the abstract design into an interconnection of RT components involves design space
exploration by selecting and allocating a proper set of RT components, guided by design metrics
(e.g., area and delay). The parameterized components are used as the building blocks for the
tasks of allocation and binding. Each component is customized by parameterized attributes such
as the required bit-width and functionality. Such a library of RT component generators provides
a complete component set for HLS [9], and provides a path to physical design through logic and
layout synthesis [7]. Figure 1 shows an overview of such a scheme. However, it is important to note
that much of the previous efforts in HLS have focused on the tasks of scheduling and allocation
(represented by the dotted box in Figure 1), and not much attention has been paid on how to
support component sets for this synthesis task (the shaded box in Figure 1).

With increasing interest in high-level synthesis and higher-level design methods, the need has
thus evolved for a well defined generic RT component set, together with rapid estimators that allow
technology projection into different backend libraries. We briefly describe the GENUS library and
discuss its comprehensiveness by comparing it with various technology libraries. We then present
the results of experiments on some high-level synthesis benchmarks to evaluate the amount of
overhead incurred by using generic components. Once the utility of the generic component library
is established, we need to establish an automatic model generation strategy, and provide technology
estimators to support high-level synthesis and design space exploration. Typical design metrics
include the area, delay and power of the RT-components projected in a particular technology.
We finally describe the automatic model generation strategy, as well as the technology-specific
estimation technique that can support high-level synthesis.

2 Related Work

Although abstract component characterization is an important task for high-level design and synthe-
sis, not much work has been reported on this topic. Traditional high level synthesis systems either
use very abstract components with crude estimates for delay and area, or use design components
drawn from a particular technology library. The direct incorporation of technology information
may yield good performance estimates, but complicates the task of retargetting to new libraries
and evaluating design alternatives across different technologies.

Some work on component characterization and module databases has been done at the layout
and logic levels [22] [32]. VHDL [12] is a standard for design documentation and exchange, and has
good constructs for describing specific libraries and component instances. However, it is unsuitable
for the task of generating customized component libraries. The module generator approach to
RTL component synthesis is most often observed in silicon compilers and behavioral synthesis
tools. High-level synthesis systems assign operators to parameterized module generators, which
are treated as architectural primitives for generating layout [6]. Some synthesis systems integrate
module generators with logic synthesis tools [4]. However, no comprehensive work has been reported
on characterizing RT component libraries.

The problem of area and delay estimation has been studied at several design levels and in several
contexts. At the level of a complete datapath design, work has been done to predict the area-time
tradeoff and this prediction has been used for component selection[13]. At the logic level, work has
been done to predict the area and delay of an RT component, given its structural implementation

as a netlist of logic cells or blocks [18]. LAST[21], TELE[25], [31] and [5] provide technology-driven
estimates that include physical design effects (e.g.. routing), given the structural netlist of the
design.

Work on coupling technology independence with technology prediction has been investigated
at the logic level. [30] proposes a simple technology-independent model for predicting the delay
of combinational control (random) logic. given the Boolean equations for the logic (it does not
deal with area estimation). Tyagi [28] uses an information-theoretic approach for estimating the
area and delay of some parameterized combinational components. However, previous work has
not addressed the estimation problem for the complete set of parameterized generic components
including combinational and sequential components.

Kang and Szygenda address issues in automatic model generation for simulation applications
[19]. They use a rule base and a model library to generate VHDL simulation models using a variety
of input descriptions (truth tables, Boolean equations, schematics, etc.). Although the approach
looks very promising, their work is limited to simulation model generation for logic-level schematics,
and does not address behavioral model generation at the RT level.

3 High-level Design Using GENUS

The design scenario we propose consists of a well-characterized RT component library named
GENUS (Figure 2). The high-level design phase (either manual design or automatic synthesis)
refines the input specification into a netlist of RT components from this library. Different high-
level design trajectories produce different designs consisting of netlists of RT components. Each
netlist of RT components is then mapped to components from a technology library with the help
of a high-level technology mapper or through logic synthesis. The components in the technology
library could vary in complexity from simple 2-input logic gates to complex multifunctional RT
components such as ALUs.

A standardized set of RT components is critical to the success of the high-level VLSI design
process, since it provides the crucial link between the high-level design phase and the logic and
layout level design phases. In order to facilitate seamless communication between these two phases,
we need a standard set of components that have well-defined semantics and models to facilitate
simulation, synthesis, testing and verification. The standard component set should automatically
generate different models as shown in Figure 2. Simulation models are behavior models used to
validate the input and output of each high-level design step. Synthesis models are used to refine the
high-level design description into logic or layout-level design. Testing models provide test vector sets
and can also provide testability functions for performing hierarchical ATPG. Verification Models
are used to perform formal verification of the design refinement. Technology projectors provide
rapid estimates of generic component implementation in specific technology. Such estimates are
crucial for effective design space exploration and tradeoff analysis at higher levels.

However, technology independence comes at a cost — implementing a generic design with differ-
ent technology libraries can result in an overhead due to the mismatches in the types of components.
In the next section we briefly describe the GENUS library and discuss its comprehensiveness by
comparing it with various technology libraries. We also present the results of experiments on some
high-level synthesis benchmarks to evaluate the amount of overhead incurred by using generic
components.

Design
Specification

High-level

Tech.

esign

D1
\

Netlist of Generic
RT Components

High-level
Technology
Mapping

Projectors

GENUS

Generic
RT Comp
Library

Verification
Models

Synthesis
Models

Simulation
Models

Testing
Models

Tech Libraries

Technology Library
Components

Layout and
Physical Design

Figure 2: The design scenario

O=

VHDL
Simulator,

|

Fault
Simulator

Once the utility of the generic component library is established, the high-level design phase
in turn needs model generators to support high-level design tasks and technology projectors that
estimate design metrics to facilitate rapid design-space exploration. Typical design metrics in-
clude the area, delay and power of the RT-components projected in a particular technology. We
need to develop estimators that can factor in technology-specific information such as layout styles
and physical design considerations such as placement and routing so as to provide accurate area-
delay metrics specific to a particular technology. Section 5 and 6 addresses model generation and
estimation respectively for the generic components.

4 The GENUS RT Library

GENUS [9][17] is a generic RT component library that consists of a set of parametrized RT com-
ponent generators. The generators are defined using RT-level functionality and are grouped into
classes based on functional similarity. A component instance is generated by specifying parameter
for a corresponding generator. For example, an ALU generator is characterized by the following
parameters: (bit-width, set-of-functions, implementation-style), whereas a specific ALU instance
is generated by specifying values for these parameters. The grouping of similar components into
classes of generators makes the task of library management simpler and more efficient since the
resulting number of generators (approximately 50) is much less than the virtually infinite number
of possible component instantiations.

Besides the parameters that are used to instantiate a specific component, each generator is
characterized by a well-defined interface and associated semantics. Components derived from a
generator can perform a specific set of RT level functions and each generator’s specification includes
the set of these functions. RT-functional mappings specify the exact relationship of each output
with respect to the input. GENUS follows a well-defined port naming convention - an important
detail that can often make technology mapping difficult if not done consistently. Synthesis and
simulation models are also available for each class of RT generator. The user interface to GENUS
provides a set of routines to create, delete and query information regarding a specific component.
The set of Boolean equations constitute a synthesis model that explains how the generic component
can be built from logic-level primitives.

Although generic components are appealing in concept, we have to address some important
issues while defining a standardized generic component set. First, how comprehensive is the generic
library set? That is, how well does GENUS cover various components across different technology
libraries? Second, how much penalty do we pay in using GENUS as compared to directly using the
technology components? We discuss these two issues in the remainder of this section.

4.1 Generic Component Coverage

We present the results of our survey of library coverage with respect to different technology libraries
that use varying layout styles for component implementation. In particular, we examined the
following layout styles: Standard cell, Bitslice, Gate array and Field programmable gate array
(FPGA). The first two layout styles typically result in more compact designs at the cost of longer
design cycles, while the gate array and the FPGA styles provide a quick method for prototyping
designs. We considered the following technology libraries in our survey: VTI Datapath Compiler

[29], Cascade Digital Library [3]. Toshiba Gate Array Library[27] and the XBLOX FPGA library
[33]. We summarize the results here: further details can be found in [16].

O GENUS O Technology library

Set of
Functions

Param Port

Matching

Set of

Components Semantics Style/Type

Size
Library

vTI
datapath

Cascade
datapath

Toshiba
gate array

Figure 3: Coverage of GENUS components across different libraries and parameters

Figure 3 pictorially illustrates the coverage of GENUS components across various parameters
relative to different technology libraries. [9] contains a description of the set of parameters associ-
ated with various components. Each column in Figure 3 represents a parameter type or component
attribute and each row shows a technology library. The technology libraries that are parametrized
(e.g., Cascade and VTI) provide fairly good coverage for GENUS components. The Toshiba gate
array library provides components of specific sizes; components of other sizes have to be built
from the available components. The other major difference was the availability of a specific set of
functions in realm of multifunction components. We also observed a common problem with mis-
matches in the port names. This survey indicates that GENUS provides good coverage for several
technology libraries.

4.2 Effectiveness of GENUS

In order to further evaluate the usefulness of generic components, we performed some experiments
with various designs derived from the HLSW92 benchmark suite [8]. The goal was to test our
approach on designs of various sizes, and that encompass different sets of components so as to
exercise the major component types in the GENUS component set. In our preliminary set of
experiments, the designs varied in complexity from a few hundred gates to a couple of thousand
gates. The mapping experiments were performed with respect to two different technology libraries:
the VTI Datapath Compiler [29] and the Toshiba Gate Array library [27]. We chose these libraries
since they had published gate counts for their databook components, thereby allowing us to compare

=1

the effectiveness of mappings for different designs.

High-level Design

Kl

Netlist of Generic ".‘ Gk

RT Component
GENUS
v Library
Technology 3
Mapping
Technology Technology
Netlist Netlist
U] U)

Figure 4: Study of overhead incurred with GENUS

We considered the following RT-level designs derived from different categories such as processors,
DSP and interface circuits: the AM2901 Microprocessor[1], the AM2910 Microprogram Controller|2]
an SRT Interface[23], and a Circular Buffer(CB) Interface[23].

In our experiments, we designed each of these circuits using three different paths, as shown in
Figure 4. First, we designed the circuit using technology library components only (labeled (1)).
Next, we designed the circuit using only generic components from the GENUS library, and then
mapped each of these generic components to the technology library components (labeled (I1)). The
goal was to examine the penalty incurred by designing with a generic component library, followed
by technology mapping, as opposed to directly implementing the designs with technology-specific
components. For each of these designs, we calculated the total gate count. For our experimental
results, a gate is equivalent to the layout area of 4-transistors.

Figure 5 tabulates the gate-counts for various designs across different libraries. For each design
and each technology library, we present the gate-count for the two methodologies (I, IT). We also
present the percentage difference (in terms of the gate-count) between implementing a component
in the technology library (I) and mapping the GENUS component design to the technology library
(IT). This percentage gives a measure of how much overhead is incurred by using generic components
from GENUS.

In Figure 5, we observe that the percentage difference between the two design methodologies
(I and II) varies from 0.00% to 12.53%. For the SRT interface, the two designs (I and II) are very
close in gate-count. This is because the SRT circuit is fairly simple and primarily uses lower-level
components such as logic gates and flip-flops that have good coverage relative to the technology
libraries. The lack of complex RT components enables a very simple and effective mapping with a
resulting overhead that is very low.

VTI Library Toshiba Gate Array

Design . :
Direct | Tech % Direct | Tech %
() |Map(ll) Overhead | (I) Map(ll) (Overhead

AM2901 391 435 [11.25% | 1523 1628 | 6.89%

AM2910 832 869 4.44% | 1528 1557 1.89%

SRT
Interface | " 747 | 1.63% | 674 674 | 0.00%
CB
interiace 1832 1836 0.22% | 1979 2227 | 12.53%

Figure 5: Experimental results of GENUS overhead study

On the other hand, consider the mapping of the 2901 microprocessor and the CB interface to the
Toshiba gate array library. There is a significant difference in gate-counts for the two methodologies
(I and II). These designs use higher-level components such as ALUs and register-files which have a
larger mismatch with respect to the technology library components.

Based on these preliminary experiments, we observe that not much penalty (generally < 10%)
is incurred in using generic components first and then performing high level library mapping.
This supports our hypothesis that high-level mapping is feasible and practical for the designs we
examined.

5 Model Generation

The GENUS environment currently provides both automatic simulation model generation and
automatic synthesis model generation for each component. The simulation models correspond to
behavioral VHDL processes representing functional behavior of the parameterized RT component.
The user can also ask for a block-delay model that generates a behavioral VHDL simulation model
with a nominal delay for each instantiated component. Since the RT components are generic and
are typically used in HLS tasks such as scheduling and allocation, this delay model is often sufficient
to support both the design task, as well as the ensuing task of functional verification. The synthesis
models for each RT component correspond to Boolean logic equations in a standard form (EQN)
for combinational components, and sequentialized EQN for sequential components. These Boolean
equations can be used to synthesize generic components from logic-level primitives.

The VHDL simulation models are generated in the order of a few seconds; Figure 6 shows that,
even for small examples, the number of VHDL code lines runs into the thousands. Automatic
simulation model generation thus obviates the burdensome task of VHDL code generation and

Design coﬁ%ggsnts Vllqig?.scgfde
AM2901 ALU, Reg-file, Reg, Mux 1078
AM2910 ALU, Reg-file, Reg, Mux 854
CB Int ALU, Reg, Div, Mux 1311
Kalman ALU, Reg-file, Reg, Mux 1341
Clk~div ALU, Reg, Mux 476
Timer ALU, Reg, Mux 605

Figure 6: Behavioral VHDL simulation models

validation, since these model generators have already been validated and tested. The same situation
holds for automatic synthesis model generation.

6 Technology Projection

We perform technology projection for different libraries using closed form functions to estimate
the area and delay for a component in the generic library. These area and delay models (FA
and FD respectively) are functions (a weighted sum) of the parameters(PG) such as bit-width,
set-of-functions, etc. required to instantiate a specific component belonging to the generator:

o FA=ap+) i(ar* fA(PGy))
o FD =dy+ Y i (dr » fDr(PGy))

Note that ag and dy are the constants and a; and dj are the coefficients for various terms in
these area and delay models.

Our estimation technique uses a sample space of design points on which we perform a least-
square regression fit of the formulated functions F'A and F'D. We believe that this is a useful
approach since designers often store the attributes of commonly occurring designs (e.g., 4-, 8- and
16-bit adders). Since a regression analysis using least-square approximation may not capture the
intricacies of certain component implementations, we have to pay attention to the appropriate
selection of the sample data points. The following steps summarize our approach:

Step 1 Generate some real design structures for a component and obtain sample data points for
area and delay. ;

10

Step 2 Study the structure of the design generated, and the variations of the area-delay metrics
with respect to the parameters that define the component.

Step 3 Formulate functions for estimating the area and delay of the generator.

Step 4 Run least square approrimation to calculate the constants (ag and do) and the coefficients
of various terms (a; and d;) used for the functions modeling the metrics.

Step 5 Test the estimation model.

Figure 7 illustrates above steps pictorially along with an example. The area/delay models for
the Encoder generator in this figure are functions of generator parameter num-of-inputs (nz).

Get sample components =

!

Study A/D variation wrt
structure and parameter

Formulate FA, FD |e

1
Run least-square fit

Satisfy érro Does not satisfy
oun ¢
Encoder(ni)

FA =ay+a,* ni+a,* ni * [iny(ni)]

FD =d g+ dy+ [iny(ni}] + dp+ ni

Figure 7: Estimation approach with an example

We test the accuracy of the results against a user-specified error bound. If our models do not
satisfy the user-specified error bounds, we go through an iterative experimentation phase, where we
repeat some of the Steps 1-5 above. We note that the error bound is often satisfied by the simple
addition of linear and logarithmic factors to the estimation functions, as suggested by the design’s
structure. In an extreme case when the error bound is not satisfied, we may have to generate more
implementation data points and repeat all of the steps to obtain new coefficients. However, in our
experiments, we have observed convergence within one or two iterations for an error bound of 10%.
Further details on the formulation of the models can be found in [15].

11

51

N
o
L

n
L

Frequency

=T
~—

o™
!

o o

v— ~—

16-18 |
18-20

L]
(o]
o
<r
~—

20-

Percentage error

Figure 8: Aggregate error profile as compared to DTAS

o5 Hm Area
iy Delay
515
=3
S
l:m--

¢ l

N = O 0 O N € OO
1 1 1~ = = = o
o N v O 1 1 10

-

Percentage error

Figure 9: Aggregate error profile as compared to LAST/TELE

12

We now describe the experiments performed to test our models. We compared the estimates
generated by our model against the metrics derived from the design structures generated by DTAS
[20], LAST [21] and TELE [25]. The area values provided by DTAS counts the number of equivalent
two-input NAND gates used to implement the component. For a component’s delay (measured in
nanoseconds). DTAS returns the worst-case delay for all paths through the design. LAST and TELE
provide area and delay values respectively, based on GDT 3u CMOS standard cell technology.

Our experiments attempted to cover a wide range of possible component implementations. We
did this by generating parameter values randomly for each component generator. The number and
set of functions (for multi-function components) were also chosen randomly. For each such randomly
chosen component, we ran our models, and compared the results with an actual design generated
by above mentioned tools. We considered the following generators: Logic gates, Multiplexer,
Comparator, LU, Adder, ALU and Shift-register.

Figures 8 and 9 show the aggregate percentage error profiles across all the generators in consid-
eration; the detailed results for each generators can be found in [14]. From Figure 8 we observe that
with respect to DTAS roughly one-third of the area and roughly half the delay data points exhibit
an error of less than two percent. After this huge concentration in the range of 0-2%, the frequency
of error tapers off as the error increases. For area, 77% percent of the test points have error less
than 10 percent and 95% test points have errors less than 16 percent. For delay, figures are 87% and
94% respectively. Figure 9 exhibits a similar trend. These results validate our hypothesis about
the goodness of our estimators.

We conclude our analysis with two important observations. First, our test points were generated
randomly (i.e., we randomly selected the component generator parameter values). Note that in a
real design situation, components with certain design properties (i.e., parameters) will be invoked
more often, and can be stored with precomputed metrics in the component database. This will
lower our average error. Second, our estimation models are integrated on-line with HLS tools.
This is possible because of the simple estimation functions chosen, which use only a few additions,
multiplications and logarithmic operations. We thus tradeoff accuracy of the metrics (i.e., £10%)
for real-time evaluation of the estimates.

7 Summary

With increasing interest in tightly coupling high-level design techniques with physical design, the
need for a well-characterized RT-library, together with technology projection using accurate esti-
mation models has emerged. In this work, we motivated the need for such generic RT component
libraries, and described GENUS, a specific well-characterized generic RT component library. We
then surveyed the relative coverage of GENUS with respect to some technology libraries and per-
formed experiments on some high-level synthesis benchmarks for testing the usefulness of GENUS.
In particular, we studied the penalty incurred by using the GENUS generic RT components fol-
lowed by technology mapping, versus directly implementing the designs in the technology libraries.
Our preliminary results are encouraging, indeed even promising, since the maximum overhead we
observed was in the range of 10% for area on the benchmarks we examined.

We also presented an automatic model generation technique for simulation and synthesis, as well
as a technology projection scheme to link physical design-level information using accurate on-line
estimators for the area and delay of the GENUS RT component generators. The simulation and

13

synthesis model generators increase designer productivity, since the models are generated automat-
ically in the order of seconds via component parameters. Furthermore, the model generators reduce
design errors as compared to the tedious process of manual model generation. since the generators
are pretested and encapsulated. Our estimation models can handle the area/delay contributed by
functional blocks as well as the total area/delay including the wiring. We have demonstrated the
estimation technique on both combinational and sequential RT components with aggregate errors
in the range of £10%. Our model generators are simple, fast and fairly accurate, and have been
integrated with an existing high-level synthesis system [26].

We believe that the benefits of using a standard component set such as GENUS greatly outweigh
the small penalty that may be incurred during technology mapping to target libraries. Coupled
with technology projection, this approach can effectively support accurate system-level design space
exploration. We demonstrated a concrete technique for linking system-level design information
with different technology libraries using the GENUS RT component library. Future work needs
to address the high-level technology mapping problem and the tradeoffs between custom synthesis
versus standard component realization.

8 Acknowledgements

This work was supported in part by in part by NSF grant #MIP9009239 and in part by SRC
contract #93-DJ-146. We also thank Prof. Daniel Gajski for his helpful comments.

References

—
p—

] 7"Am290lc: Four-bit Bipolar Microprocessor Slice,” Applied Micro Devices Inc., California,
1993.

[2] "Am2910A: Microprogram Controller,” Applied Micro Devices Inc., California, 1993.
[3] "Cascade Design Automation Databook,” Cascade Design Automation, Washington, 1992.

[4] R. Camposano and L. H. Trevillyan, “The Integration of Logic Synthesis and High-Level
Synthesis,” Proc. ISCAS, 1989.

[5] V. Chaiyakul, A. C-H. Wu and D. D. Gajski, “Timing Models for High-level Synthesis,” Proc.
of The European Design Automation Conference, September 1992.

(6] H. De Man, et. al., “Architecture-Driven Synthesis Techniques for VLSI Implementation of
DSP Algorithms,” Proceedings of the IEEE, Vol. 78, No. 2, pp. 319-335, February 1990.

(7] N. D. Dutt and J. R. Kipps, “Bridging High-Level Synthesis to RTL Technology Libraries,”
Proc. 28th Design Automation Conference, June 1991.

[8] N.D.Duttand C. Ramachandran, “Benchmarks for the 1992 High Level Synthesis Workshop,”
Technical Report 92-107, University of California at Irvine, 1992.

[9] N. D. Dutt, “GENUS:A Generic Component Library for High Level Synthesis,” Technical
Report 88-92, University of California at Irvine, 1988.

14

(10]

(1]

[12]
[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

21]

22]

[23]

[24]

(25]

[26]

(27]

~EDIF 2 0, Library of Parametrized Modules,” Electronic Industries Association, Washington,

D.C. 1993.

D. Gajski, N. Dutt, A. Wu and S. Lin. "High-Level Synthesis: Introduction to Chip and
System Design,” Kluwer Academic Publishers 1992.

The IEEE, “IEEE Standard VHDL Language Reference Manual,” IEEE, 1987.

R. Jain, “MOSP: Module Selection for Pipelined Designs with Multi-cycled Operations,” Proc.
IFEE International Conference on Computer-aided Design, pp. 212-215, November 1990.

P. K. Jha and N. D. Dutt, A Fast Area-Delay Estimation technique for RTL component
generators,” Technical Report 92-33, University of California at Irvine, April 1992.

P. K. Jha and N. D. Dutt, “Rapid Estimation for Parametrized Components,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, pp. 296-303, September 1993.

P. K. Jha, N. D. Dutt and D. D. Gajski, “An Evaluative Study of RT Component Libraries,”
Technical Report 93-11, University of California at Irvine, March 1993.

P. K. Jha, T. Hadley and N. D. Dutt, “The GENUS User Manual and C Programming Library,”
Technical Report 93-32, University of California at Irvine, April 1993.

Q. Ji, Y. S. Oh, M. R. Lightner and F. Somenzi, “Technology Independent Estimation of Area
in Logic Synthesis,” Proc. SASIMI, April 1992.

S. Kang and S. Szygenda “Automatic VHDL Model Generation,” Proc. IFIP Conference on
Hardware Description Languages and their Applications, April 1993.

J. R. Kipps, “An Approach to Component Generation and Technology Adaption,” Ph.D.
Dissertation, University of California at Irvine, December 1991.

F. J. Kurdahi and C. Ramachandran, “LAST: A Layout Area and Shape function esTimator
for High Level Applications,” Proc. European Design Automation Conference, February 1991.

G.W. Leive and D.E. Thomas, “A Technology Relative Logic Synthesis and Module Selection
System,” Proc. 18th Design Automation Conference, 1981.

J. Li, "VHDL Modeling for Silicon Compilation,” M.S. Thesis, University of California at
Irvine, 1993.

P. Michel, U. Lauther and P. Duzy (Editors) “The Synthesis Approach to Digital System
Design,” Kluwer Academic Publishers, 1992.

C. Ramachandran and F. Kurdahi, “TELE: A Timing Evaluator using Layout Estimation for
High Level Applications,” Proc. European Design Automation Conference, March 1992.

L. Ramachandran and D. D. Gajski, “An Algorithm for Component Selection in Performance
Optimized Scheduling,” Proc. International Conference on Computer-aided Design, November
1991.

"Toshiba ASIC Gate Array Library,” Toshiba Corporation, Tokyo, Japan, 1990.

15

[28] A. Tyagi, “A Module Generator Development Environment: Area Estimation and Design-
Space Exploration Encapsulation™ Proc. 6th International Conference on VLS Design, Bom-
bay, January 1993.

[29] "VDP300 CMOS Datapath Library,” VLST Technology, Ine., San Jose, California, November
1991. .

[30] D. E. Wallace and M. S. Chandrasekhar, “High-level Delay Estimation for Technology-
Independent Logic Equations.” Proc. International Conference on Computer-aided Design,
November 1990.

[31] A. C-H. Wu, V. Chaiyakul and D. D. Gajski, “Layout-Area Models for High-Level Synthesis,”
Proc. International Conference on Computer-aided Design, November 1991

[32] Wayne H. Wolf, “How to Build a Hardware Description and Measurement System on an
Object-Oriented Programming Language,” IEEE Transaction on Computer-aided Design, Pp.
288-301, March 1989.

[33] S. H. Kelem and J. P. Seidel, "Shortening the Design Cycle for Programmable Logic Devices,”
IEEE Design and Test of Computers, pp. 40-50, December 1992.

16

