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TOWARD A THOMAS- FERMI MASS FORMULA" 
by 

William D. Myers 
Lawrence Radiation Laboratory 

University of California 
Berkeley, California 

August 11, 1967 

ABSTRACT 

Nuclear properties-nuclear masses in particular­
lend themselves to a two-part approach in which average 
properties and shell effects are treated separately. Re­
cent improvements in treating the shell- effect part of nu­
clear mas ses have stimulated an investigation of correc­
tions to the smooth part of the formula-the liquid-drop­
model part. The Thomas-Fermi statistical method is ern­
ployed t017~lculate these corrections, and the coefficient 
of the A term is discussed in detail. In addition the 
nuclear density distributions are shown which arise in the 
course of the Thomas-Fermi calculations. 
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INTRODUC TION 

The time has come to take another look at possible 
improvements in the liquid-drop-model part of the mass 
formula. Since such improvements are difficult to extract 
directly from the experimental masses, a theory is needed 
which relates these corrections to established nucle,ar 
properties. I will present here, according to the following 
outline, one possible approach to this problem: 

Two-part Treatment of Nuclear Properties 
The Thomas-Fermi Method 
Results of the Calculations 

TWO-PART TREATMENT OF NUCLEAR PROPERTIES 

From the earliest work on nuclear masses to the 
present, it has been recognized that a simple four-term 
liquid-drop-model formula- consisting of volume energy, 
surface energy, symmetry energy, and Coulomb energy­
provides a good explanation of average mass trends (1). 
Attempts to improve the agreement as more mass data 
have become available have often involved higher-order 
contributions to the energy such as 

(a) the surface symmetry energy, 
(b) the surface curvature correction, 
(c) the compressibility correction, 
(d) the Coulomb exchange correction. 

But, although one believes such terms are present, it has 
been difficult to find evidence for them directly in the 
trends of the experimental masses. The reason for this 
is that these corrections tend to be obscured by variations 
in the masses due to shell effects, and these variations­
which appear as wiggles in plots of mass against particle 
number- must be removed before the details of the smooth 
trends can be extracted. The need to separate wiggles 
from smooth trends in other nuclear properties-not only 
masses..,calls for a characteristic two-part formulation of 
nuclear theory. 

An analogy can be used to demonstrate the value of a 
two-part approach. Suppose the problem is to map the 
surface of the earth instead of the nuclear mass surface. 
Then there are two ways of proceeding from first princi­
ples (which he re include various observational data such 
as angles between surface features, elevations, etc.). 
One is the direct approach of extending local measurements 
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over wider and wider regions until all points on the globe 
are linked together in a self-consistent way. The second 
way, and the only one that is satisfactory at present, is to 
add detailed local measurements to a smooth reference 
geoid whose shape has been determined from astro~omical 
data. 

FIRST PRINCIPLES 

Direct 
Method 

Complete. 

Earth 
Descri ption 

Indirect Method 

! ! 
Astronomica I Local 
Observations Surveying 

Complete 

Earth 
Descri pt ion 

'".,.' , 
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Each part of the two-part approach calls on separate ob­
servational data and is characterized by its own special 
techniques, and this is just as true in the nuclear case. 

FI RST PRINCIPLES 

Direct Indirect Method 
Method 

1 ! 
Liqu id - drop Shell 

Formu la Effects 

Co mplete Com plete 
Mass Mass 

Formula Formula 

In both instances the direct method is too difficult at pres­
ent, but the separate parts of the indirect method provide 
a tractable approach which yields satisfactory results. 
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There are many examples of application of this two­
part approach to nuclear properties, the prediction of nu­
clear masses being one of the most familiar. In Fig. I we 
can see how well the masses are given by the liquid-drop 
model; Fig. 2 shows the remaining shell- effect variations 
and how they may be treated. The nuclear deformation 
energy may also be treated in this two-part way, and Fig. 3 
illustrates how shell effects can be added to the liquid-drop 
model in order to predict the shape of nuclei. Finally, 
consider Fig. 4, which shows the smooth behavior of the 
liquid-drop-model fission barriers and the modifications to 
be expected from adding shell effects. 

Recent emphasis in the application of the two-part 
approach to the calculation of nuclear masses has been on 
improving the corrections for single-particle effects (2- 5). 
These wiggles can now be approximately accounted for, 
and when they are subtracted a very smooth empirical mass 
surface remains. The time is ripe to make refinements to 
the old four-term liquid-drop theory in analyzing this cor­
rected smooth surface. 

THE THOMAS- FERMI METHOD 

The natural choice when undertaking a study of aver­
age nuclear properties is a statistical method of calcula­
tion like the Thomas-Fermi treatment of atoms. For 
example, see Refs. (6-8). In this approach the kinetic 
energy of the particles is assumed to be that of a Fermi 
gas without correction for density gradients. The validity 
of this assumption depends upon how slowly the density 
varies o~er a typical particle deBrog,lie wavelength. De­
tailed analysis of this question in Ref. (9) shows that gra­
dient corrections are les s than 10% when 

Igrad e I $ 12. 
4/3 

P 

The criterion is satisfied over most of the charge distribu­
tion in an atom; which explains why the simple Thomas­
Fermi approach works so well. The introduction of gradi­
ent corrections into the atomic calculations has been shown 
to have little influence on the results (9). For nuclei the 
criterion is met over the central region and through the 
surface out to the point where the density has dropped to 
about 1/6 of its central value. Consequently, the neglect 
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of gradient corrections. is expected to have little influence 
on the outcome of the calculation except for the outer 
fringe of the density distribution. 

In addition to the T:homas- Fermi expres sion for the 
kinetic energy, the law of interaction between the particles 
must be specified. In this work a phenomenological inter­
action was chosen which leads to saturation and which is 
simple enough to allow calculations with no further approxi­
mations. This interaction-which was first applied in this 
context by Seyler and Blanchard (7)-consists of a Yukawa 
force whose strength decreases with increasing relative 
momentum of the particles, and is of different magnitude 
between "like" and "unlike 11 particles. The l1like 11 strength 
applies to proton-proton or neutron-neutron interactions, 
while the l1unlike 11 strength applies to the neutron-proton 
interaction. This interaction may be written. 

- (r-' / r ) 
e 12 y 

v - - C
like 
(or unlike) 

where r
12 

is the relative distance, and P12 the relative 
momentum of the particles. The parameter p governs 
the velocity dependence of the potential. It is fhe value of 
the relative momentum at which the attractive force-whose 
strength is decreasing with increasing relative momentum­
would vanish, and beyond which the force would become 
repulsive. The four parameters of the interaction-the two 
strengths C

l 
and C u , the Yukawa range rY' and the criti­

cal momentum p -will be determined later from the prop­
erties of nuclei. c 

With the kinetic and interaction energies specified 
one may ask, as in the atomic problem, what spatial dis­
tribution o{ nucleons minimizes the total energy. This 
leads to a standard variational problem which in the atomic 
case results in the nonlinear Thomas-Fermi differential 
equation. For nuclei this minimization leads to an integral 
equation which might be called the Seyler- Blanchard equa­
tion. The systematic working out of the consequences of 
this equation leads to a compact theory of all smooth nu­
clear properties analogous to the Thomas-Fermi theory of 
atomic properties. 

With respect to the analogy between the nuclear 
theory presented here and the Thomas-Fermi atomic the­
ory, it should be pointed out that there is one important 
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difference. This has to do with exchange corrections. In 
the standard atomic case exchange effects are simply ne­
glected because their influence is known to be small. In 
nuclei such effects are not small but their proper treatment 
is difficult. The approach used here is a compromise in 
which such effects are not neglected, but are treated in a 
qualitative way through the velocity dependence of the inter­
action. 

RESULTS OF THE CALCULATIONS 

The implications of this approach will be shown by 
considering the following natural sequence of calculations: 

1. Infinite nuclear matter 
2. Semi-infinite nuclear matter 
3. Finite nuclei, without Coulomb energy 
4. Finite nuclei, with Coulomb energy 

The infinite nuclear matter problem takes the form of a 
simple algebraic relation when this method is used, and Fig. 
5 shows how the energy per particle of nuclear matter de­
pends on density and composition. The requirement that 
the experimental values of the volume energy, symmetry 
energy, and density of nuclear matter be reproduced pro­
vides three relations among the four free parameters of the 
theory. At this stage, and without specifying'the fourth 
parameter, we are able to make our first predictions, which 
are that the calculated compressibility of nuclear matter is 
large (about 295 MeV) and that the energy per particle of 
neutron matter is small (about -1 Me V). 

The problem may also be solved in the semi-infinite 
case, and the resulting density distribution, and part of the 
potential associated with it, are shown in Fig. 6. This 
case-nuclear matter bounded by a flat surface-may be 
thought of as a solution for the surface region of a very large 
nuclE;!us. Also shown in the figure is a curve representing 
the difference between the energy of the surface particles at 
any point through the surface and the energy they would have 
if they were in the nuclear interior. We may call this the 
surface energy function, since integration over it gives the 
surface energy coefficient. 

At this point the last free parameter may be chosen to 
fix the numerical value of either the surface energy or sur­
face thickness. Since the emphasis here is on the mass for­
mula, I have chosen to fix the surface energy, with the re­
sult that the surface thickness-characterized by the distance 
in which the density falls from 90% to 10% of its central 
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Fig. 6. Curve A is the predicted density distribution at the 
boundary of sytnnletric, sem.i-infinite nuclear m.atter. 
Curve B shows-in relative units-how the source of the 
surface energy is distributed across the nuclear sur­
face. Curve C is the constant part of the velocity­
dependent potential that corresponds to the density dis­
tribution shown here. It is the average between neutrons 
and protons of the potential which would be felt at each 
point by a zero-velocity particle. 



value-turns out to be 2.0 fermis. Table I lists the quanti­
ties used to determine the adjustable parameters, and the 
values that result. 

Value 

-15.677 MeV 

28.062 Mev 
1.2049 fm 

18.56 MeV 

TABLE I 

Input quantities from Ref. (2) 

Property 

Energy per particle of symmetric 
nuclear matter 

Symmetry energy coefficient 
Nuclear radius constant 
Surface energy coefficient 

Resulting values of the adjustable 
parameters 

Value 

367.7 MeV 

289.7 MeV 

82.03 MeV 

0.6256 fm 

Parameter 

C l' Strength of neutron- neutron, 
proton-Froton force 

C u ' Strength of neutron- proton 
force 

(p 212M)' Critical energy of the 
c momentum dependence 

r, Range of the interaction 
y 

With all the parameters fixed the next calculation to 
consider is that of finite nuclei without Coulomb energy. 
The important features of this new calculation are the den­
sity distributions, and the total binding energy as a function 
of the mass number A. Figure 7 gives three examples of 
the density distributions (which are the same for neutrons 
and protons). Since these density distributions represent 
average properties they do not have the wiggly appearance 
of a Single-particle calculation; hence, they may be thought 
of as representing the average distribution for a number of 
neighboring nuclei. They show an increase in the central 
density of medium and heavy nuclei which is caused by the 
squeezing of the central region by the nuclear surface. 
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Other features of the density distribution also deserve dis­
cussion, but since we are here concerned pri:marily with 
the mass for:mula let us turn to the other aspect of these 
calculations, that is, the total energy. Before showing the 
numerical results let us note so:me general features of the 
A dependence of the nuclear energy. For saturating sys­
te:ms, such as nuclei, co:mposed of particles interacting 
via a short- range force we are led to expect a description 
of the total energy in terms of an expansion in the dimen­
sionle s s ratio 

( range of the force) 
(radius of the syste:m) , 

which is proportional to A-I /3. Because of this the various 
contributions to the nuclear part of the binding energy of a 
heavy nucleus form the following natural hierarchy of ef­
fects: 

Order Typical energy 
(MeV) 

3000 
600 

50 

5 

Effect 

Volume energy 
Surface energy 
Curvature and co:mpres sibility· 

corrections 
Finiteness and single-particle 

effects 

Figure 8 illustrates this point by showing hon the energy 
per particle of finite nuclei depends on A -1 3. The cU~/~ 
in the figure may be expressed as a Taylor series in A­
and subsequent :multiplication by A yields the following for­
:mula for the nuclear part of the energy of sy:rnmetric finite 
nuclei: 

As noted before, the interaction para:meters were chosen 
to give the correct values for the volu:me and surface ener­
gies (the first two coefficients). The first new coefficient 
to be predicted is that of the A 1/3 ter:m. Two physical ef­
fects were found to :make up this coefficient: the co:mpress­
ibility correction, and the surface curvature correction. 
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The first of these, the compressibility correction, ac­
counts for the reduction of the surface energy at the expense 
of compressing the nuclear interior. This correction can 
easily be calculated from the expression 

2c~ 
Compressibility correction = - K = - 2.34 MeV, 

where the surface energy coefficient c2 is 18.56 MeV and 
the compressibility K is 295 MeV. 

The remaining 9.32 MeV curvature correction has two 
distinct sources. The first represents the effect of the in­
creased exposure-fewer neighbors-for particles close to a 
curved surface. The second represents the effect of the 
reduced number of particles with a given degree of exposure. 
The first effect, that of increased exposure, causes an in­
crease in the surface energy which contributes 28.74 MeV 
to the correction. To illustrate the source of the other con­
tribution, consider the vertical line in Fig. 6, which speci­
fies the mean location of the surface. When the surface is 
curved there are more particles outside this point and fewer 
inside. The effect this has on the surface energy can be ob­
tained by calculating the first moment of the surface energy 
function with respect to this point. The result of this calcu­
lation is a predicted contribution of -19.42 Me V to the cur­
vature correction. Summarizing this discussion, we have 

Coefficient of Al /3. 6.98 MeV 

~ ~ 
- . 

Compressibility Curvature 
correction: -2.34 MeV correction: +9.32 MeV 

Particle Increased 
distribution: exposure: 
-19.42 MeV +28.74 MeV 
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Continuing on to the next term in the sBries, it is interest­
ing to note that the coeJiicient of the A term is twice as 
large as that of the A 1 3 term and of opposite i~gn. This 
may explain why no strong evidence for an A 1 term has 
been observed in the experimental masses. 

The next stage of the calculation, which is the inclu­
sion of the Coulomb energy, brings us at last to the com­
plete problem. As in the previous discussion the most 
interesting features are the density distributions and the 
binding energy. From the second of these I hope to extract 
the new correction terms which arise, such as 

(a) the surface ~yrnmetry energy, 
(b) the density redistribution effects, that are due to the 

Coulomb repulsion, 
(c) the effect of surface diffuseness on the Coulomb 

energy. 
This part of the work is not yet complete, but several pre­
liminary calculations of the density distributions have been 
made, such as those shown in Fig. 9. This illustration 
shows both the neutron and proton density distributions for 
three nuclei near the valley of beta stability. 

Since the Thomas-Fermi method provides one with a 
complete theory of the average properties of nuclei, much 
more than density distributions can be obtained. The im­
mediate goal of the present investigation is to derive the 
magnitude and the Nand Z dependence of the additional 
terms needed to improve the mass formula. Since each 
new term has a physical basis and a known method for its 
calculation, its dependence on the nuclear shape can also 
be determined. Thus, the resulting description of the 
smooth part of the nuclear binding energy will be general 
enough to include even highly deformed configurations. 
[For a related discussion see Ref. (8)]. When shell effects 
are added to this new formula-in the manner of Ref. (4)­
this generality will permit improved predictions not only of 
nuclear ground- state masses, but also of ground- state de­
formations, and fission barrier energies. 

SUMMARY 

The purpose of this work is to make a contribution to 
the two-part approach to the nuclear mass formula. The 
emphasis here has been on improving the liquid- drop-model 
part of the formula. This improvement has been based on 
a statistical calculation of nuclear properties by use of the 
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Thomas- Fermi method, which is applicable when 

Igrad pi < 12 
4/3 - . 

p 

Properties that can be calculated by the application of this 
method can be expressed as expansions in powers of the 
parameter 

( range of the force) 
(radius of the system) , 

which is proportional to A- I / 3 . With this expansion in 
mind the calculations have been used to extend the liquid­
drop-model part of the mass formula to include a term in 
A l 1 3 , and work is in progress to determine the associated 
corrections to the Coulomb energy. When these additional 
terms have been calculated we will have an improved 
liquid-drop-model mass formula available. I hope it will 
have as long a life as the traditional liquid-drop-model 
formula it replaces. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
mISSIon, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resuiting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behal f of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 






