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Abstract: Stokes parameters describe the polarization state of light. Mueller formalism can be 

used to manipulate these parameters as light passes through optical elements. The polarization 

state can then be visualized through the Poincaré sphere. 

 

INTRODUCTION 

In 1852, George Gabriel Stokes defined a set of parameters (which will be expressed in vector 

form) to describe, in a convenient fashion, the polarization state of light1. These parameters 

were named after Stokes later in 1942 by Francis Perrin after he discovered Stokes’ work2. 

Quickly after that in 1943, physicist Hans Mueller developed a matrix method to manipulate 

the Stokes parameters as they pass through optical elements. This now allowed a 

mathematically convenient way of determining the polarization at the output Stokes vector of 

a system by knowing the initial Stokes vector and the elements in the system. Finally, the 

Poincaré Sphere, developed by mathematician Henri Poincaré in 1892, allows to visualize the 

polarization by extracting spherical coordinates from the Stokes parameters3. In the 21st century, 

Stokes-Mueller Formalism and the Poincaré sphere continue to be prominent methods to 

determine the polarization state of light. Furthermore, the Stokes-Mueller formalism continues 

to be improved, expanding its use cases in optics. As recently as 2019 a team from the 

University of Toronto developed Stokes-Mueller polarimetry for 3D non-linear cases4. 

 

METHODS 

A. Stokes Parameters 

The Stokes vector is a four-dimensional vector comprised of real, measured values defined as 

follows3: 
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Here, the brackets represent values that are time averaged values. S0, S1, S2, and S3 are the 

four Stokes parameters where S0 is the light’s total intensity, S1 is the tendency for linear 

polarization in horizontal or vertical directions, S2 is the tendency for linear polarization in 

either diagonal direction, finally S4 is the tendency for circular polarization3. These 

parameters allow the derivation of necessary values to describe light’s polarization. 

B. Mueller Calculus 

Mueller calculus allows the derivation of the output Stokes vector of a wave after passing 

through a system of optical devices. Each optical device has a 4 by 4 Mueller matrix (Mdevice) 

which contains all the information that describes the polarization characteristics of the device 

(birefringence, dichroism, and depolarization)5. For typical optical devices, Mueller matrices 

are already defined (see Ref. [6], Table 8.6). With an input Stokes vector (Sin) and the 

aforementioned Mueller matrix we can find the output Stokes vector (Sout) as follows: 



                                                                   𝑺𝒐𝒖𝒕 = 𝑀𝑑𝑒𝑣𝑖𝑐𝑒𝑺𝒊𝒏 (2) 

Conveniently, this can be applied to a multiple device system as follows: 

                                         𝑺𝒐𝒖𝒕 = 𝑀𝑑𝑒𝑣𝑖𝑐𝑒2(𝑀𝑑𝑒𝑣𝑖𝑐𝑒1𝑺𝒊𝒏) = 𝑀𝑑𝑒𝑣𝑖𝑐𝑒2𝑺𝒐𝒖𝒕𝟏 (3) 

C. Poincaré Sphere 

With the Stoke parameters in-hand the focus can be turned onto the Poincaré sphere. The 

Poincaré sphere denotes a sphere of diameter S0 with axes S1, S2, and S3 as shown in Fig.1.b, 

which bounds the stokes vectors of any polarized light. A point on or within the Poincaré sphere 

denotes a polarization state with an ellipse as shown in Fig. 1.a bellow. 

 
Fig. 1  (a) the polarization ellipse and (b) the Poincaré sphere (Ref. [7], Fig 2). 

Where Azimuth angle (θ) and ellipticity angle (β) can be found from the Stokes vector as 

follows3: 
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RESULTS AND INTERPRETATION 

Through the use of Stokes-Mueller formalism, the output polarization state of a light wave 

through an optical system can be determined. Stokes vectors provide a mathematically 

convenient way of describing the polarization state of light while Mueller matrices provide the 

necessary information from optical devices. Consequently, Stokes-Mueller formalism uses 

matrix multiplication between Mueller matrices and an input Stokes vector. The output of the 

matrix multiplication is a Stokes vector that describes the polarization state of the light coming 

out of the optical system. The output Stokes vector can be mapped to a point in the Poincaré 

sphere which can then be used to determine the polarization ellipse of the light coming out of 

the system. This method provides a convenient way of calculating the effect of a system on the 

polarization state of light. Furthermore, optical devices can easily be swapped out or added by 

simply swapping out or adding the Mueller matrices of the device in the calculations, creating 

a sense of modularity in the calculations. When using a computer to perform Stokes-Mueller 

formalism this modularity proves to be very convenient. 

 

CONCLUSIONS 

In conclusion, by using Stokes vectors, it is possible to conveniently determine the polarization 

state of light. By further using Mueller matrices, the Stokes vectors can be modified to represent 

the output state of polarization of light going through an optical system. Finally, an 

understanding of the Poincaré sphere allows for the derivation of the polarization ellipse of a 

Stokes vector. Combining the three proves to be a useful and convenient method to visualize 

polarization state of light before and after it passes through a system. As time has passed, 

Stokes-Mueller formalism has been expanded to allow its use for an even wider variety of topics 

in the field of Optics not covered in this review, such as 3-dimensional polarimetry, which could 

be explored further. 
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